

The Staff

Ed Powers	Acting Division Chief
Angela McKinley	Program Manager
Jonathan Hirschauer	Program Manager
Russell Bumgarner	Electronic Engineer
Jordan Wright	Electronic Technician
Chris Alloway	Electronic Technician
Lee Breakiron	Mathematician

2010-2011

- Major Rebuild of Almost Every TWSTT system
 - At both USNO and AMC

TWSTT Web Interface

 Easy to log events and match events to data

 Quick plotting of signal power, frequency, carrier to noise, stddev, etc... for all links

Long-term Variations

- The next four slides suggest three different instances
 - USNO-NICT
 - USNO-PTB (probably at PTB)
 - USNO-AMC (probably at USNO)
- Other events might exist unrecognized

USNO-NICT, PPP-TWSTT

Manual adjustments

Shift of USNO-PTB, summer 2009

USNO-NIST Calibrations

- Assume USNO TWSTT calibrations are perfect
 - PTB's GPS calibration consistent with TWSTT (PTTI-10)
- USNO-NIST calibrate with direct observations using USNO satellite
- Circular T vs. Direct USNO-NIST TWSTT
 - 1. 6 ns discrepancy before summer of 2009
 - Given assumptions, means miscalibration of NIST-PTB
 - 2. 3 ns after PTB calibration shift, summer 2009
 - See next viewgraph, and ppp comparisons
 - 3. 2 ns USNO Ku band cal shift starting summer 2010
 - Ku-band system worthless by November (since rebuilt)
 - Makes USNO-NIST discrepancy with Circular T to 3+2 = 5 ns
 - March, 2011 USNO-NIST TWSTT calibration 5.1 ns
 - July, 2011 USNO-NIST TWSTT calibration 4.1 ns off

Delay shift could be due to electronics or fiber-optics feeding the TWSTT hardware

Sat/Frequency changes of summer 2011 Some diurnals reduced, others enhanced

DIURNAL REDUCTION: USNO-PTB

- Configuration I: Original Hardware
 - Electronics indoors (except Low Noise Amplifier)
 - High-frequency waveguide to dish (~100ft) w/ low pressure dehydrator
- Configuration II: Exterior Receive Section
 - Transmit side unchanged path to feed is via waveguide only
 - Receive is an Anasat on a different antenna at USNO-DC
 - 70 MHz to antenna
 - LNC to Anasat, both located on antenna
 - FACTOR OF 2 IMPROEMENT.
- Configuration III: Complete Anasat System
 - Anasat transceiver on dish, <1 meter waveguide to feed
 - 70 MHz exterior lines, transmit and receive
 - Same antenna for both

DIURNAL REDUCTION (other ways)

- I. Enclosures still untried in field
- Plan to test with just transceivers
 - Wide bandwidth outdoor amps may not contribute to diurnals
 - X-band 500 ps variation over 5 db gain chain (10=>35watts)
- 2. Spectral confusion
 - Odd hours did not help
- 3. Impedance matching
 - Removed directional coupler; made no difference
 - Ordered isolators and attenuators for Ku-band

An L-band Signal To Antenna?

- Cheaper or higher-bandwidth electronics
 - LNB ~\$400, 4W BUC ~\$700 (Ku ⇔ L band)
 - (additional cost to convert to L band)
 - UP/Down Converters 5K (low bandwidth) or 9K (high bandwidth)
 - For comparison: Anasat ~\$10K
 - Converts 70MHz ⇔ Ku-band (with internal L-band step)
 - Question: Can TimeTech make an L-Band Transmitter Module?
- Another benefit: components are smaller
 - Easier to control temperature and/or humidity
 - Lighter for Ku-band calibrations

A Suggestion

- BIPM to host an extremely detailed listing of equipment
 - Manufacturer
 - Cost
 - Critical analysis of performance
- Info to be private for players only
- USNO willing to do the work
 - Specifically, Jonathan Hirschauer

Summary

- Three TWSTT systems have independently shown calibration variations of several ns over several weeks/few months
- Diurnals and other instabilities need attention
- Calibrations via GPS useful if done with care
 - USNO uses a GPS receiver in every TWSTT calibration