

September 12, 2011 CCTF WG on TWSTFT meeting

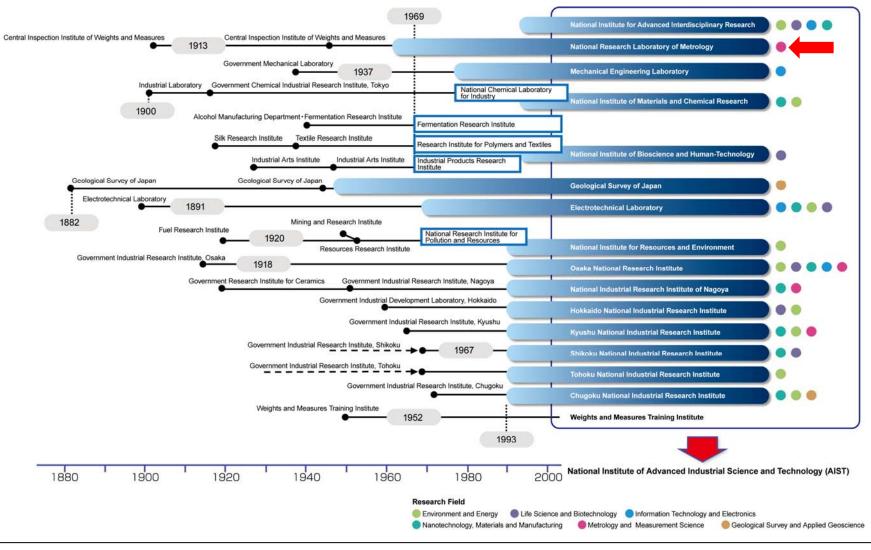
Introduction of AIST and T&F Activities at NMIJ

National Metrology Institute of Japan (NMIJ)

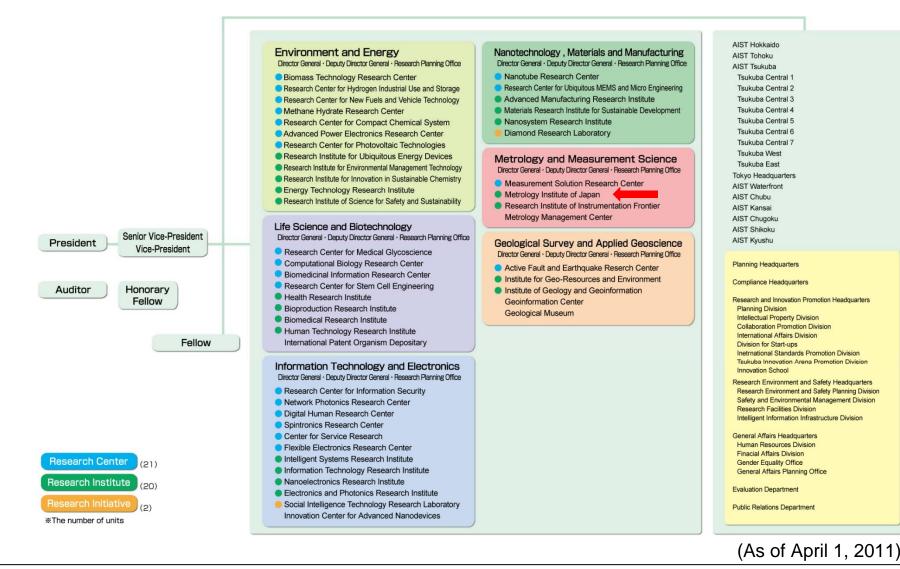
- **1. Brief introduction of AIST**
- 2. Structure of T&F division of NMIJ/AIST
- 3. Topics of R&D works of each section of T&F division
 - 3.1 Time standards section
 - 3.2 Optical Frequency and Wavelength standards section
 - 3.3 Frequency measurement systems section

1. Brief introduction of AIST

- **2. Structure of T&F division of NMIJ/AIST**
- 3. Topics of R&D works of each section of T&F division
 - **3.1 Time standards section**
 - **3.2 Optical Frequency and Wavelength standards section**
 - **3.3 Frequency measurement systems section**



Outline of the National Institute of Advanced Industrial Science and Technology (AIST)


Integration/Reorganization of 16 Institutes

NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)

AIST

AIST Organization Chart

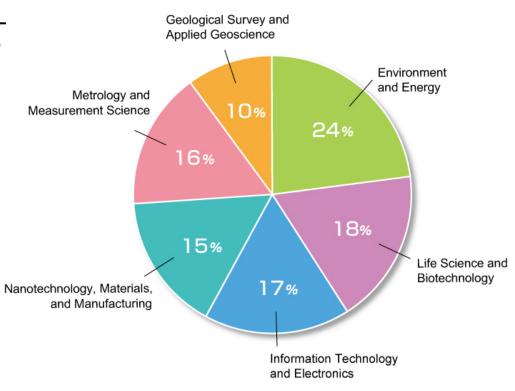
NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)

AIST DATA –Staff

Researchers (International)	2,337 (83)
Permanent	2,099
• Fixed term	238
Administrative employees	638

As of April 1, 201 1; total number of employees: 3,020 (83)

Executives	13
Visiting researchers	177
Postdoctoral researchers	318
Technical staff	1,671


Number of researchers accepted through industry/academia/government partnerships

Companies	Approx. 1,300
Universities	Approx. 2,000
Other organizations	Approx. 1,900 (553 from overseas)

(Total number of researchers accepted in FY 2010)

Composition of research staff by research field

(As of April 1, 2011)

1. Brief introduction of AIST

2. Structure of T&F division of NMIJ/AIST

- 3. Topics of R&D works of each section of T&F division
 - **3.1 Time standards section**
 - **3.2 Optical Frequency and Wavelength standards section**
 - **3.3 Frequency measurement systems section**

Structure of T&F division in NMIJ/AIST

Head of T&F standard division: Fang-Lei Hong

(1) Time standards section

Section Chief: Takeshi Ikegami, 5 researchers

- Development of primary frequency standards
- Calibration service of phase noise
- (2) Optical Frequency and Wavelength standards section Section Chief: Fang-Lei Hong, 7 researchers
 - Research and application works on optical comb, especially optical fiber comb
 - Research and development of optical lattice clocks
 - Calibration service of optical wavelength using an optical frequency system
- (3) Frequency measurement systems section Section chief: Masaki Amemiya, 4 researchers, 4 technical staffs
 - Time keeping of UTC(NMIJ)
 - Time and frequency transfer, such as GPS carrier phase, TWSTFT, and optical fiber
 - Calibration service of time and frequency and its R&D work

1. Brief introduction of AIST

2. Structure of T&F division of NMIJ/AIST


3. Topics of R&D works of each section of T&F division

3.1 Time standards section

- **3.2 Optical Frequency and Wavelength standards section**
- **3.3 Frequency measurement systems section**

Atomic fountains in NMIJ

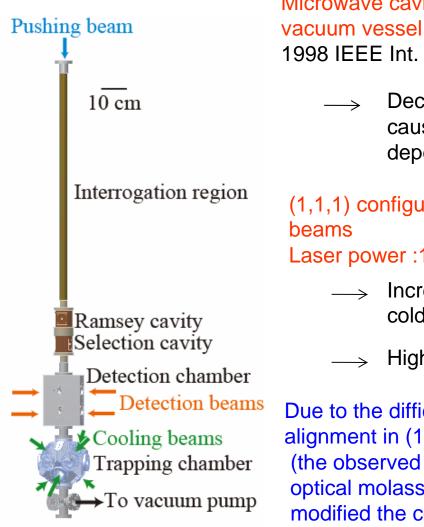
3 fountains in NMIJ

NMIJ-F1 : Long-term operation with uncertainty of 4×10⁻¹⁵

Frequent reports to BIPM (20 reports to BIPM in recent 4 years). Reference for NMIJ-F2 and optical lattice clocks on demand.

NMIJ-F2 : Under construction. Target uncertainty $< 1 \times 10^{-15}$

Higher contribution ratio to TAI.


Precise reference for optical lattice clocks.

Truncated beam fountain : New proposal (*Phys.Rev.A* 82 (2010) 013632). Target uncertainty 1×10⁻¹⁶.

In the step for proof of the principle.

NMIJ-F2

Microwave cavities which are part of the vacuum vessel (S. R. Jefferts et al., Proc. 1998 IEEE Int. Freq. Control Symp. p. 6)

> Decrease of the uncertainty caused by microwave power dependence

(1,1,1) configuration for cooling laser beams

Laser power :100 mW per beam

- Increase of the number of cold atoms
- \rightarrow Higher frequency stability

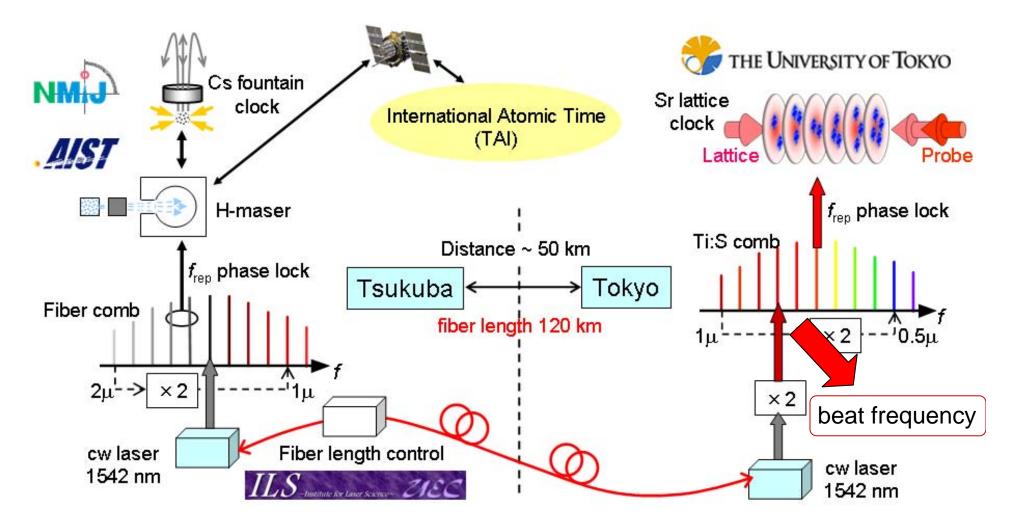
Due to the difficulty of the optical alignment in (1,1,1) configuration (the observed temperature of optical molassess was 120 µK), we modified the configuration to (0,0,1).

NMIJ-F2 (under construction)

1. Brief introduction of AIST

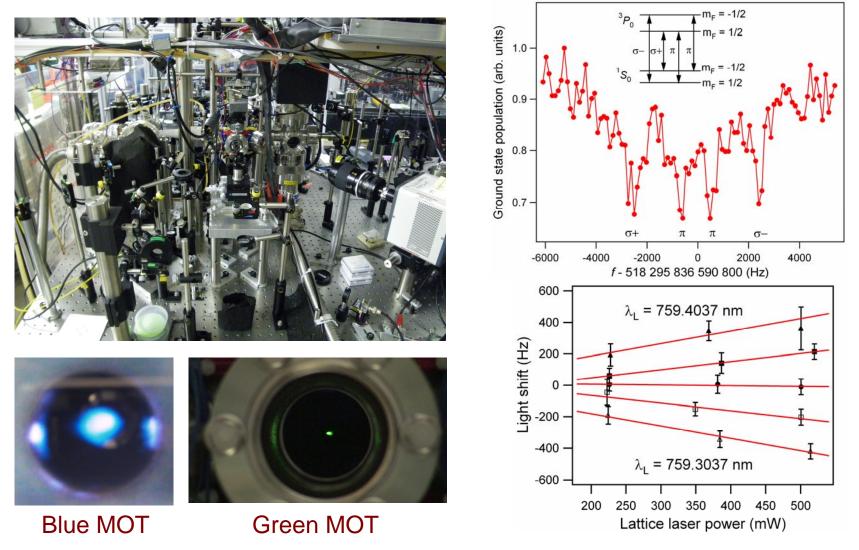
2. Structure of T&F division of NMIJ/AIST

3. Topics of R&D works of each section of T&F division


3.1 Time standards section

3.2 Optical Frequency and Wavelength standards section

3.3 Frequency measurement systems section


Experimental setup for frequency evaluation of Sr. lattice clock at the University of Tokyo

F.-L. Hong et al., Opt. Lett. 34, 692 (2009).

Yb optical lattice clock at NMIJ

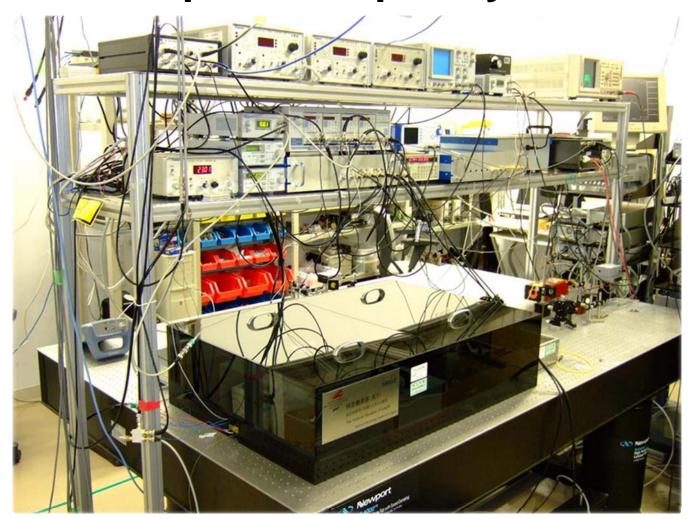
M. Yasuda, T. Kohno, H. Inaba, Y. Nakajima, K. Hosaka, A. Onae, F.-L. Hong, J. Opt. Soc. Am. B 27, 1388 (2010).

Uncertainty evaluation and result

Effect	Correction (Hz)	Uncertainty (Hz)
Blackbody radiation shift	+ 1.32	0.13
Gravitational shift	- 1.19	0.03
2nd order Zeeman shift	+ 0.4	0.05
Scalar light shift	0	14
Clock laser light shift	- 0.04	< 0.01
Clock laser scan step	0	23
UTC (NMIJ)	0	5
Total	+0.49	27

cf. NIST group's GREAT result:

N. D. Lemke *et al.*, "Spin-1/2 Optical Lattice Clock" Phys. Rev. Lett., vol. 103, pp. 063001, August 2009 $f = 518\ 295\ 836\ 590\ 865.2(0.7)\ Hz$ (Fractional uncertainty 1.4 x 10⁻¹⁵) ${}^{1}S_{0}(F = 1/2) - {}^{3}P_{0}(F = 1/2)$ transition in ${}^{171}Yb$ $f = 518\ 295\ 836\ 590\ 864\ (28)\ Hz$ (Fractional uncertainty 5.4×10⁻¹⁴)


T. Kohno *et al.*, Appl. Phys. Express vol. 2, 072501, June 2009.

CIPM Recommended frequency list (June, 2009)

¹⁷¹Yb clock can be so good!

The National Length Standard "An optical frequency comb"

1. Brief introduction of AIST

2. Structure of T&F division of NMIJ/AIST

3. Topics of R&D works of each section of T&F division

- **3.1 Time standards section**
- **3.2 Optical Frequency and Wavelength standards section**

3.3 Frequency measurement systems section

UTC(NMIJ) generation system and time transfer link

- UTC(NMIJ) is generated by reference signal form one hydrogen maser steered by an AOG.
- Clocks at NMIJ
 - 4 hydrogen masers
 - 2 RH401A made by Anritsu
 - 1 SD1T01A made by Anritsu
 - 1 CH1-75A made by KVARZ
 - 3-5 Cs clocks 5071A with high performance beam tube
- Time Transfer Link

 UTC PPP (GPS carrier phase) using Z12-T: main time transfer tool
 - TWSTFT : backup tool

Cs clocks and H-masers

Temperature controlled chambers for 5071A

Temperature controlled chamber for SD1T01A

Hydrogen masers (RH401A)

Cs atomic clocks and new hydrogen masers (RH401A, CH1-75A and SD1T01A) are placed in temperature controlled chambers.

The temperature variation of inside of the chambers is better than +/-0.2 deg. C. CH1-75A is the reference oscillator of UTC(NMIJ)

Measurement system for UTC(NMIJ)

NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)

Development of user terminals for remote time and frequency calibration

Size 480×430×88 mm Sensitivity -135 dBm Price about 1 MJPY (Rb type) NMIJ-DO using NMIJ's Web site

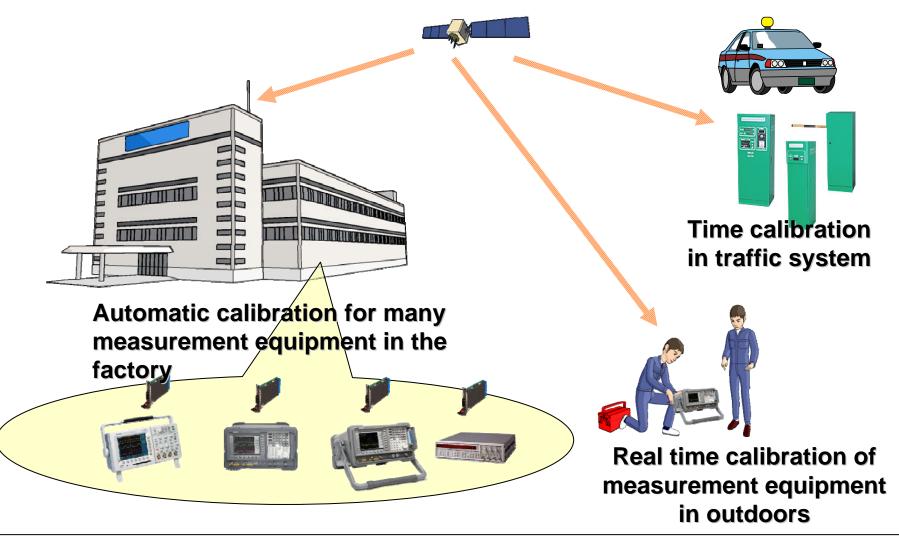
Experimental model of small size terminal

Proto-type model of small size terminal

Terminal size < 120×100×30 mm Sensitivity <-160 dBm Wire-less data communication

Target model

Proto-type models of user terminal under development



α-version Case size: 190 x 100 x 40 mm PCB size: 150 x 85 mm

β-versionCase size: 140 x 95 x 40 mmPCB size: 135 x 85 mm

On-site, On-machine, and Real-time calibration

Thank you for your attention !