



# TWSTFT Activities in NMIJ, AIST

## National Metrology Institute of Japan (NMIJ) Tomonari SUZUYAMA



# **Members of our section**

#### **Time and Frequency Division**





#### **Frequency Measurement Systems Section**

M. IMAE Head, Time and Frequency Division Chief, Frequency Measurement Systems Section

S. OHSHIMA Deputy Director, Metrology Institute of Japan



M. AMEMIYA Senior Research Scientist

**Time Standards Section** 



T. SUZUYAMA Research Scientist



Y. FUJII Technical Staff



S. MANAKO Technical Staff (part time)



D. MIYAMOTO Research Assistant (temporary)



K. KITADA university undergraduate



H. KUROIWA university undergraduate

#### **Wavelength Standards Section**



# Time keeping at NMIJ

- Seven Cs atomic clocks (four clocks are reported to BIPM)
- Four Hydrogen Masers, three of them are made by Anritsu(RH401A), one is CH1-75A made by Kvartz.
- UTC(NMIJ) has been generated by using an AOG since June, 2004.
   A HROG is used for back up now.
- The source oscillator for the AOG is one of the Hydrogen Masers since March, 2006







# Time transfer at NMIJ

- JCSAT-1B link among Pacific-rim region NMIs This station's operation was interrupted due to the SSPA trouble since August 24, 2007. We will replace a new transceiver as soon as possible.
- Preparation for another link A new earth station with 2.4 m dish antenna for PAS-4 was installed at NMIJ at last.
- Two NICT modems and one SATRE modem
- Precise time and frequency transfer
   Development of TWSTFT carrier phase system has
   been started to realize highly precise time and frequency
   transfer, such as 10<sup>-16</sup> level.



## UTC(NMIJ) measurement system



NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)



## **TWSTFT** system at NMIJ

- 1.8 m antenna (4 W) for JCSAT-1B among Pacific-rim region NMIs.
- New earth station with 2.4 m antenna (10 W) for PAS-4.





**JCSAT-1B** 

station

## **Calibration between NMIJ and NICT**

• February 19 and 20, 2007.





NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)





# **New earth station**



# A radio station license is already issued, and UAT will be performed on next Friday.

NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)



## **Carrier Phase TWSTFT development**

## **TWSTFT** using **PN** code phase

time transfer  $\sim 0.1$  ns frequency transfer  $10^{-10}$  @1 s

## **TWSTFT** using carrier phase

time transfer~ 0.1 psfrequency transfer $10^{-12}$  @1 s $10^{-16} - 10^{-17}$  @1 day

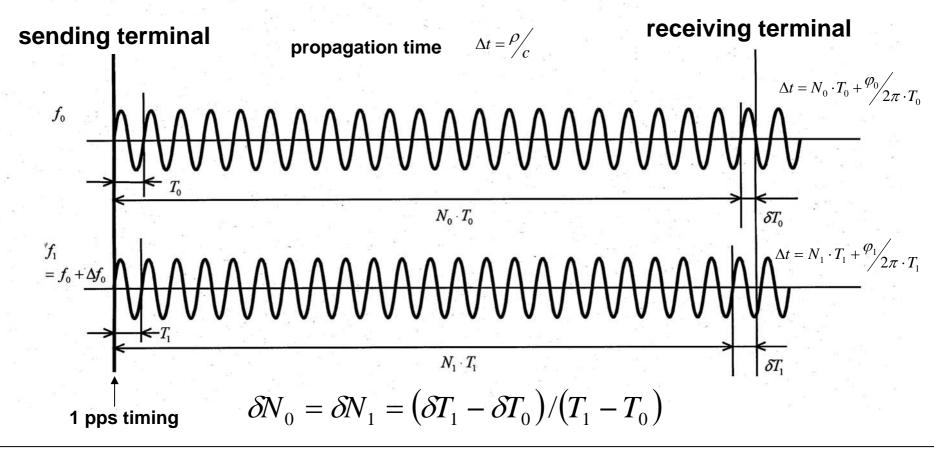


#### **Concept of Carrier-Phase TWSTFT method**

The signal carrier phase of bidirectional transmission is used.

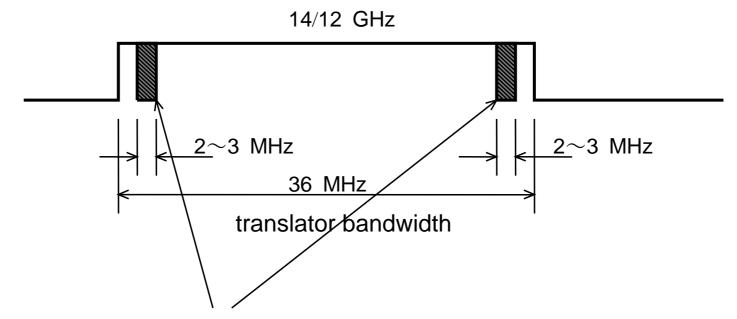
| resolution                | 0.1 ~1 ps                                    |
|---------------------------|----------------------------------------------|
|                           | (If a sub-carrier is assumed to be 10GHz,    |
|                           | it will measure by the resolution of 1/100 – |
|                           | 1/1000 of the one cycle)                     |
| time transfer Accuracy    | < 1ps                                        |
| frequency transfer Accura | lcy < 10 <sup>-12</sup> @1 s                 |

using several PN codes, and it compares simultaneously at many points.


problem to be solved

- 1. solving the ambiguity of carrier phase
- 2. correction of ionosphere delay effect caused by the frequency difference between the up-link frequency and the down-link one
- 3. compensation of phase fluctuation in the ground station devices caused by mainly temperature variation




#### **Ambiguity of carrier phase**

Using main carrier and coherent subcarrier which frequency separated  $\Delta f$ , ambiguity is removed from the approximate value of transmission time (using code phase of data), the main carrier phase and a subcarrier one and the propagation time are decided.

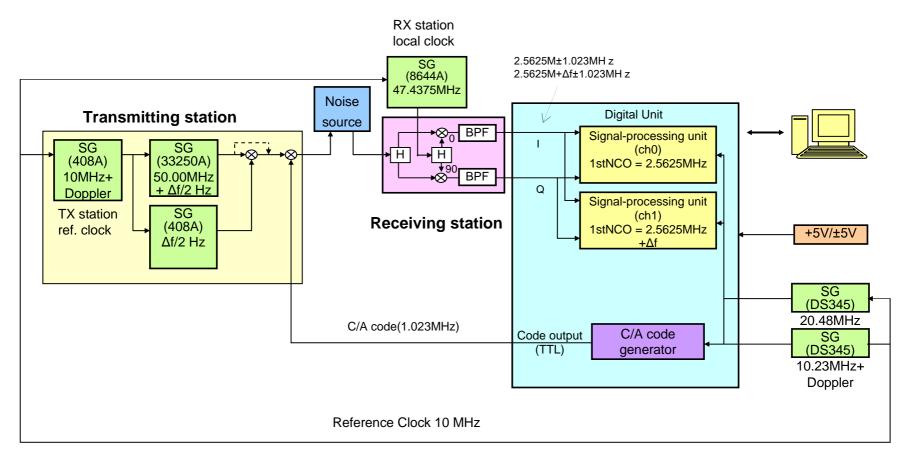




#### **Ionosphere delay effect**



the ionospheric effect can actually be measured using two slots of the time transfer signal located at near both edges of the satellite transponder.

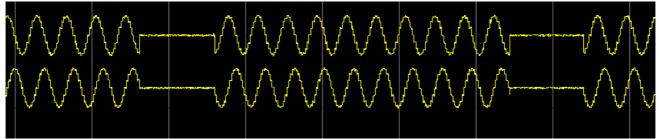

numbers of electrons (A to sat.) :  $N_{tA}$ numbers of electrons (B to sat.) :  $N_{tB}$ 

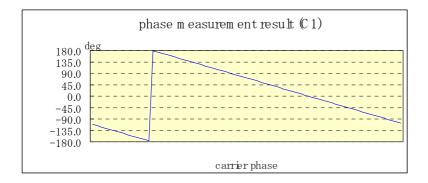
Station A to B 
$$\Delta T_{A-B}^{ion} = T_{h,A-B}^{ion} - T_{l,A-B}^{ion} = 40.5 \times \left(\frac{1}{cf_{uh}^2} - \frac{1}{cf_{ul}^2}\right) \times N_{tA} + 40.5 \times \left(\frac{1}{cf_{dh}^2} - \frac{1}{cf_{dl}^2}\right) \times N_{tB}$$
Station B to A 
$$\Delta T_{B-A}^{ion} = T_{h,B-A}^{ion} - T_{l,B-A}^{ion} = 40.5 \times \left(\frac{1}{cf_{uh}^2} - \frac{1}{cf_{ul}^2}\right) \times N_{tB} + 40.5 \times \left(\frac{1}{cf_{dh}^2} - \frac{1}{cf_{dl}^2}\right) \times N_{tA}$$

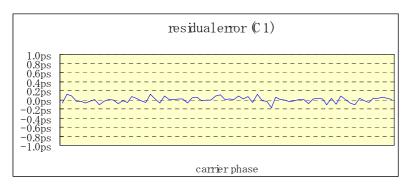


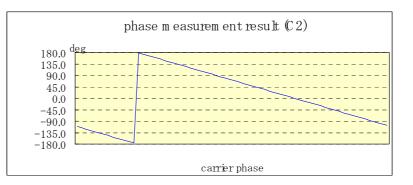
#### **Carrier-Phase TWSTFT Experiment system (Phase1)**

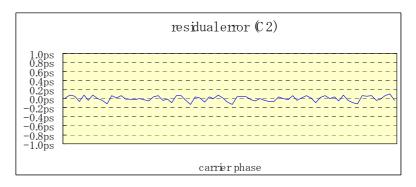
#### evaluate basic system & simulation





We are planning to solve the ambiguity comparatively easily by using a sub-carrier signal which is generated coherently with the main carrier signal.



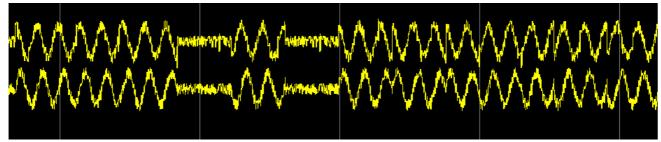


## Simulation result (CN<sub>0</sub>= 90 dBHz)

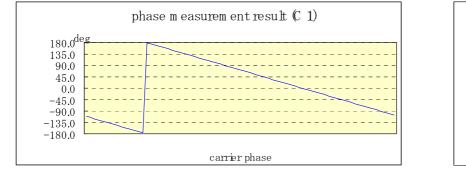

#### carrier wave pattern (upper:C1, lower:C2)

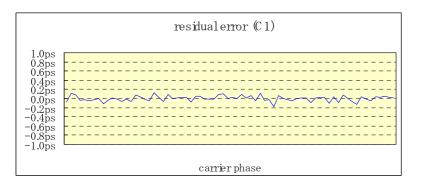


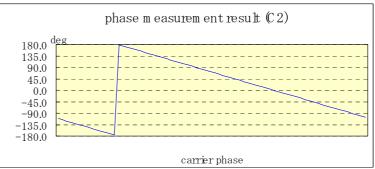


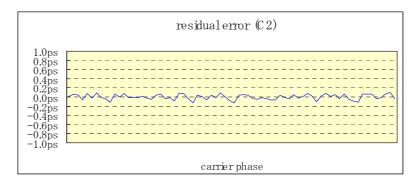






## Simulation result (CN<sub>0</sub>= 70 dBHz)


carrier wave pattern (upper:C1, lower:C2)









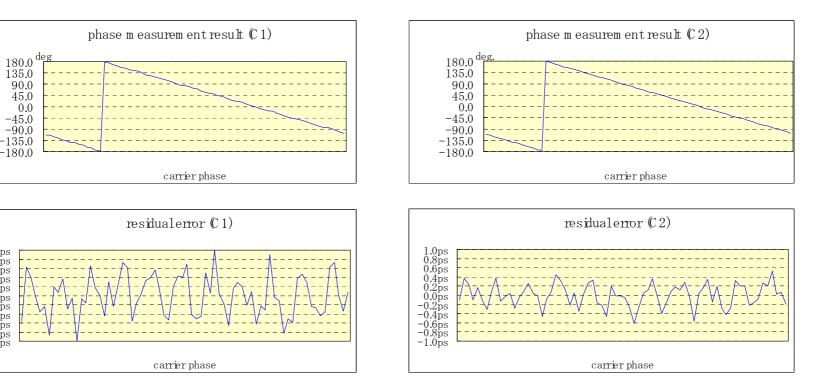




135.0

90.0 45.0

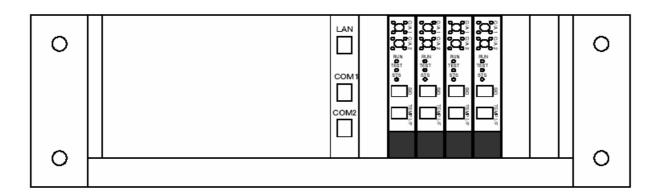
0.0


-45.0

-90.0-135.0-180.0

1.0ps 0.8ps 0.4ps 0.2ps 0.0ps -0.2ps -0.4ps -0.6ps -0.8ps -1.0ps

## Simulation result ( $CN_0 = 50 \text{ dBHz}$ )


#### carrier wave pattern (upper:C1, lower:C2)





## present status

- The simulation results show a possibility that the accuracy of 0.3 ps for solving ambiguity can be attained. (It improves by multi-bits quantization. *etc.*)
- The detailed technical specification of a prototype machine's hardware and software are under creation, and the RX parts will be completed soon.
- The evaluation test also including the TX parts is due to be started from the second half in the current fiscal year.

