Assignment of Values to Reference Standards in Haematology

> Elaine Gray JCTLM Presentation Paris, December 2004

Reference Standards and Materials

Available:

- Coagulation factors and inhibitors ISTH
- Blood group serology ISBT/ICSH
- Platelet and red cell antibodies –ISBT/ICSH/ISTH

Traceability:

- Complex biologicals mostly measured in arbitrary units eg IU where appropriate, some are assigned with SI units, some are qualitative and do not have any values assigned
- Primary standards establish by WHO
- Secondary standards directly traceable to WHO primary standards

© World Health Organization World Health Organization, Technical Report Series, No. 800, 1990

Annex 4

GUIDELINES FOR THE PREPARATION, CHARACTERIZATION AND ESTABLISHMENT OF INTERNATIONAL AND OTHER STANDARDS AND REFERENCE REAGENTS FOR BIOLOGICAL SUBSTANCES

(Revised 1989)

		Page
Introduc	tion	182
	Guidelines for the preparation, characterization and establishment of international biological standards and reference reagents	183 183
	 Assessment of need and procurement of materials Distribution into final containers	186 188
	4. Processing of filled ampoules	192 198
	 6. Detailed information to be provided to WHO 7. Establishment of an international biological standard or reference 	206
	reagent	208
	Guidelines for the preparation, characterization and calibration of national or laboratory working standards and reference reagents for	200
	biological substances	209 209
	 Introduction	210 210 210 211
	5. Calibration of national reference materials	211
Authors		212
	Acknowledgements	
	es	212
Appendi	x. Example of a statement on safe handling which may need to be included in instruction leaflets for users of international or other	214
	biological reference materials	£17

NIBSC

1989 Guidelines

- Assessment of need and procurement of materials
- Distribution into final containers
- Processing of filled ampoules
- International collaborative studies
- Detailed information to be provided to WHO
- Establishment of an international biological standard or reference reagent

Quality of Final Product I

- With a few exceptions, international standards usually in heat-sealed glass ampoules
 - No exchange of gases and moisture
 - Greater stability over time
- Precision of fill < 0.25%; 0.05 0.07% achieved
- Majority are freeze-dried, filled with inert gas before sealing
- Secondary desiccation (for some materials)
- Residual moisture: <1%; <0.05% with secondary desiccation
- Residual oxygen content: <45 μmol/L

Quality of Final Product II

- No declared shelf life
- Stability monitoring :
 - accelerated degradation study at elevated temperatures
 - ampoules stored at +4, +20,+ 37, +45 and +56°C
 - At various time-points, activities compared with -150°C ampoules
 - Fit in Arrhenius equation for prediction of loss of activity
 - real time degradation monitoring
 - Ampoules at storage temperature (-20°C) against ampoules kept at ultra-low temperatures (-150°C)

Accelerated Degradation Studies on 4th IS FVIII/vWF Plasma – ampoules stored at +4, +20,+ 37, +45 and +56°C compared with -150 °C ampoules

Study	Time points years	Labs	Method	Predicted loss at -20°C (%/year)
Single time-	0.63	а	1-stage	0.001
point, multi- lab		b	"	0.263
		С	Chromogenic	0.021
		d	"'	0.022
Multi-time	0.34, 0.55,			
point, single lab	1.06, 2.30,	С	Chromogenic	0.007
	3.76, 4.66			

Real Time Studies on the 4th IS FVIII/vWF Plasma

	Potency of -20°C ampoules as		
Ampoule/Assay	% -150°C ampoules		
	3.75 yrs	4.66 yrs	
1	102	102	
2	96	101	
3	101	96	
4	103	97	
Mean (%CV)	100 (3.1)	99 (3.0)	

NIBSC

Actual "Shelf-Life"

FVIII Concentrate	5 years
FVIII/VWF Plasma	5 years
Protein C Plasma	18 years
Unfractionated Heparin	15 years
Antithrombin Concentrate	7 years

Quality of Final Product III

- No declared uncertainty of measurement
 But
- Collaborative study reports do contain information on 95% confidence limits based on potency estimates from:
 - individual laboratory
 - > all laboratories

 Potency estimates and confidence limits can be calculated for different method types, but this is not always helpful for the intended use of WHO biological international standard

New Revision of WHO Guidelines – In Progress

General consideration

Traceability Path

- Relationship of the UNIT of proposed standard to the previous units of the same material
- Evaluation of the extent of the continuity of the IU

Uncertainty of Measurement

- CV of the fill
- Evaluation of the requirements of uncertainty in the context of the traceability path

Specific for IVD reference materials

- ISO 17511 principles
- Commutability

Coagulation Factors & Inhibitors

Definition of unit

Continuity of unit

• Like vs like

Multi-methods

Units of Coagulation Factors and Inhibitors

1 International Unit =

Amount or activity in 1mL of "average fresh normal plasma"

As defined by pools of fresh plasma collected from normal donors in labs participating in international collaborative study, according to a defined protocol (normally > 200 donors overall)

NIK

Coagulation Factors & Inhibitors

Definition of unit

Continuity of unit

• Like vs like

Multi-methods

Continuity of Unit

- Long-term use of same standard
 - Dependent on batch size and demand
 Assuming no significant degradation
- Replacement by similar material
 - Calibrate against preceding standard
 - Same lab, same methods?
- Cross check against "normal plasma" as well as previous standards
 - For plasma standards
 - Assuming unchanging values in normal population

Coagulation Factors & Inhibitors

Definition of unit

Continuity of unit

• Like vs like

Multi-methods

Importance of "Like vs Like"

- To minimise "matrix" effects
- Concentrate standards for assay of concentrate products
- Plasma standards for assay of patients' plasma
- Concentrate vs plasma:

 large variability between labs
 differences between methods

VWF: Collagen binding

Estimates for concentrate C relative to the 4th IS Plasma

VWF: Collagen binding

Estimates for concentrate C relative to 1st IS VWF Concentrate

Coagulation Factors & Inhibitors

Definition of unit

Continuity of unit

• Like vs like

Multi-methods

"All Methods" Approach

- WHO Standards should be suitable for use with all current methods
- "Reference methods" not easily definable for coagulation factors/inhibitors
- Some prescription of methodology in collaborative studies etc:
 - Pre-dilution of concentrates with specific buffers or deficient plasma

Exceptions to Combined Potency with All Methods

- Antigen and biological activity always separate
- Different biological activities if related to differences in mechanism of action, eg:
 - ristocetin co-factor and collagen binding activities of vWF
 - anti-Xa and anti-IIa activities of LMW heparin

Assigned Potencies (IU/Ampoule) of 5th IS FVIII/vWF Plasma

FVIII:C	0.68
FVIII:Ag	0.94
VWF:RCo	0.78
VWF:CB	0.94
VWF:Ag	0.91

Route for Establishment of WHO Biological International Standards and Reference Preparations

- Collaborative study: multi-centre; multi-methods
- Participants comments and approvals on analysis of results and recommendations
- For some materials, review and approval by appropriate expert/professional organisations eg International Society for Thrombosis and Haemostasis (ISTH)
- Review and approval by the Expert Committee on Biological Standardisation (ECBS)

Role of ISTH in Establishment of WHO Standards in Haemostasis & Thrombosis

- ISTH Scientific & Standardisation Committee (SSC)
- SSC Annual Meetings 19 Subcommittees
- SSC involvement at all stages of standards establishment

- proposals, methodology, evaluation of results

Role of ISTH in Establishment of WHO Standards in Haemostasis & Thrombosis

Formal process

- Report to Subcommittees
- Approval (with comments) by Subcommittee Chair, co-chairs and members (up to 30 members)
- Comments and approval by attendees of the Subcommittee meeting (up to 200 people)
- Discussion and presentation of comments at SSC business meeting – Official ISTH approval
- Approval send by ISTH to WHO/ECBS
- ECBS reviews study design, analysis of data and recommendation of the proposed assigned values

