The Complete Blood Count (CBC): Reference Procedures and Traceability

• RiLiBÄK, Annex 1d:

Requirements for internal / external Quality Assurance

• Flow Cytometric Blood Cell Counting

 $\mathbf{C}_{\text{ery}},\,\mathbf{C}_{\text{leu}},\,\mathbf{C}_{\text{thr}}$

- PCV / Hkt Reference Values by Centrifugation
- Traceability
- New (Reference-) Procedures
- Summary

CBC: Requirements for Accuracy and Precision

RiliBÄK, i.e. Guidelines of the German Medical Association

Annex 1d - Measuring quantities in whole blood								
1	2	3	4	5	6	7	8	/
Seq. No.	Analyte	Type of quantity	Target value ¹	Maximal admissible unprecision	Maximal admissible deviation from target value	Maximal admissible deviation of single measurement	Measuring range	Reference Procedures:
i i		1	1					
5	Erythrocytes	Cell-concentration	RP	3 %	4 %	10 %		DIN 58932-3
	1	1	1	1	1	1		
8	Haematocrit	Ratio of volumes	SP	3 %	3 %	9 %		DIN 58933-1
9	Haemoglobin	Concentration of Mass	RP	2 %	2 %	6 %		DIN 58931
			1					
14	Leucocytes	Cell-concentration	SP	6 % 120 / μL	6 % 120 / μL	18 % 360 / μL	$ \ge 2000 \ / \ \mu L \\ < 2000 \ / \ \mu L $	DIN 58932-4
	1	1	1	1		1		
17	Thrombocytes	Cell-concentration	SP	7% 2800 / μL	7% 2800 / μL	21% 8400 / μL	$\geq 40000 / \mu L$ < 40000 / μL	DIN 58932-4
¹ RP= value	value measured e listed in this ta							

PB

DIN

External Quality Assurance: Evaluation of Round Robin Experiments

Control blood samples (DGKL, INSTAND)

⇒ Reference procedures should be
⇒ introduced to evaluate <u>leukocyte</u>
⇒ <u>concentrations</u> in round robin tests

Flow Cytometric Blood Cell Counting by Impedance Measurements

Б

Blood Cell Counting by Laser Flow Cytometry

- Simultaneous detection of erythrocytes (RBC), leukocytes (WBC), thrombocytes (Plt)
- interaction time 2 µs
- \bullet analysis of typical 5000 cells / s
- sensitivity 500 fluorochromes

Flow Cytometric Differentiation of Blood Cells

Red Blood Cells

White Blood Cells **G**: Granulocytes Ly: Lymphocytes M: Monoctes

Platelets

Forward Light Scatter

Orthogonal Light Scatter

Concentration C of primary sample

$$C = \frac{N}{V}$$

Recorded concentration C of analytical solution

$$C_{\mathrm{ri},j} = \frac{N_{\mathrm{ri},j}}{V_{\mathrm{i},j} \cdot \phi_{\mathrm{i}}}$$

Coincidence correction by dilution series \Rightarrow N

$$\ln \frac{\overline{N}_{\rm ri}}{\phi_{\rm i}} = \ln N - \phi_{\rm i} \cdot N \cdot p$$

Definition of Symbols

- N conventional true value of the number of particles
- V volume of primary sample derived from V_{i,i}
- N_{ri,j} recorded number of events
- $V_{i,j}$ volume of analytical solution i, repeat measurement j
- ϕ_i volume fraction of primary sample in the analytical solution i
- p coincidence parameter

Concentration C of primary sample

$$C = \frac{N}{V}$$

Recorded concentration C of analytical solution

$$C_{\mathrm{ri,j}} = \frac{N_{\mathrm{ri,j}}}{V_{\mathrm{i,j}} \cdot \phi_{\mathrm{i}}}$$

Coincidence correction by dilution series \Rightarrow N

$$\ln \frac{\overline{N}_{\rm ri}}{\phi_{\rm i}} = \ln N - \phi_{\rm i} \cdot N \cdot p$$

Determination of Volume and Density

- $\begin{array}{ll} V, \varphi_i & gravimetrical \mbox{ measurement} \\ & of \mbox{ volume } V \mbox{ and } volume \mbox{ fraction } \varphi_i \end{array}$
- ρ density measurement using the mechanical oscillator method

Definition of Symbols

- N conventional true value of the number of particles
- V volume of primary sample derived from $V_{i,i}$
- $N_{ri,j}$ recorded number of events
- $V_{i,j}$ volume of analytical solution i,repeat measurement j
- $\varphi_i^{}$ volume fraction of primary sample in the analytical solution i
- p coincidence parameter

Concentration C of primary sample

$$C = \frac{N}{V}$$

Recorded concentration C of analytical solution

$$C_{\mathrm{ri,j}} = \frac{N_{\mathrm{ri,j}}}{V_{\mathrm{i,j}} \cdot \phi_{\mathrm{i}}}$$

Coincidence correction by dilution series \Rightarrow N

$$\ln \frac{\overline{N}_{\rm ri}}{\phi_{\rm i}} = \ln N - \phi_{\rm i} \cdot N \cdot p$$

Determination of Volume and Density

- $\begin{array}{ll} V, \varphi_i & gravimetrical \mbox{ measurement} \\ & of \mbox{ volume } V \mbox{ and } volume \mbox{ fraction } \varphi_i \end{array}$
- ρ density measurement using the mechanical oscillator method

Definition of Symbols

- N conventional true value of the number of particles
- V volume of primary sample derived from V_{i,i}
- N_{ri,i} recorded number of events
- $V_{i,j}$ volume of analytical solution i, repeat measurement j
- $\varphi_i^{}$ volume fraction of primary sample in the analytical solution i
- p coincidence parameter

Concentration C of primary sample

$$C = \frac{N}{V}$$

Recorded concentration C of analytical solution

$$C_{\mathrm{ri,j}} = \frac{N_{\mathrm{ri,j}}}{V_{\mathrm{i,j}} \cdot \phi_{\mathrm{i}}}$$

Coincidence correction by dilution series \Rightarrow N

$$\ln \frac{\overline{N}_{\rm ri}}{\phi_{\rm i}} = \ln N - \phi_{\rm i} \cdot N \cdot p$$

Determination of Volume and Density

- $\begin{array}{ll} V, \varphi_i & gravimetrical \ measurement \\ & of \ volume \ V \ and \ volume \ fraction \ \varphi_i \end{array}$
- ρ density measurement using the mechanical oscillator method

Definition of Symbols

- N conventional true value of the number of particles
- V volume of primary sample derived from $V_{i,i}$
- N_{ri,i} recorded number of events
- $V_{i,j}$ volume of analytical solution i, repeat measurement j
- φ_i $\ \ \, volume$ fraction of primary sample in the analytical solution i
- p coincidence parameter

Control of Influence Quantities

adhesion: deter	determination of concentration immediately						
and 30 min after preparation							
agglomeration:	analysis of pulse height distributions,						
	scatter plots, integrated dead time						
sedimentation:	stirring during measurement, time						
	dependence of N _{ri, i}						
carry over: background determination between different							
seri	ies of measurements						
lysis: comparison experiments using various reagents							

 $C = \frac{N}{V} \rightarrow C_{ri,j} = \frac{N_{ri,j}}{V_{i,j} \cdot \phi_i}$ i Measuring suspension, j Repeat measurements ϕ_i Volume fraction

Coincidence losses, specific for instrument specific for sample

2. Determination of pulse width & electronic dead time

*see e.g. S.M. Lewis et al. 1989, Phys. Med. Biol. and Recommendations of the International Commitee of Standardization in Haematology (ICSH) 1988, Clin. Lab. Haematol.

Determination of Total Dead Time

Comparison of Different Reference Instruments Using Integrated Pulse Width Measurement

Advantage: Concentration is obtained from a single measurement Dilution series serves as independent control

PCV / Hkt Determination by Reference and Routine Procedures

Cetrifugation to determine Hkt – reference values

Routine instruments:

 $\begin{aligned} \text{Hkt} &= \text{MCV} \times \text{C}_{\text{ery}} \\ \text{MCV} &\propto \text{Amplitude of signal} \end{aligned}$

Modification of routine instruments is required

- determination of amplitude & pulse width
- determination of pulse area
- \Rightarrow mechanical / rheological properties of cells are determined
- Reference values for PCV / Hkt to evaluate round robin test
- Reliable determination of RBC and PCV for pathological blood samples

Comparison of Reference Measurement Procedures with Manufacturer's and End-User's Measurement Procedures (Figure 1, EN ISO 17511, draft 2002: Extensive calibration hierarchy and metrological traceability to SI)

Abbreviations: CGPM: General conference on weights and measures; BIPM: International bureau of weights and measures;

NMI: National metrology institut; ARML: Accredited reference measurement laboratory; ML: Manufacturer's laboratory, uc(y): Combined standard uncertainty of measurement.

Comparison of Reference Measurement Procedures with Manufacturer's and End-User's Measurement Procedures (Figure 1, EN ISO 17511, draft 2002: Extensive calibration hierarchy and metrological traceability to SI)

Abbreviations: CGPM: General conference on weights and measures; BIPM: International bureau of weights and measures;

NMI: National metrology institut; ARML: Accredited reference measurement laboratory; ML: Manufacturer's laboratory, uc(y): Combined standard uncertainty of measurement.

Comparison of Reference Measurement Procedures with Manufacturer's and End-User's Measurement Procedures (Figure 1, EN ISO 17511, draft 2002: Extensive calibration hierarchy and metrological traceability to SI)

Abbreviations: CGPM: General conference on weights and measures; BIPM: International bureau of weights and measures;

NMI: National metrology institut; ARML: Accredited reference measurement laboratory; ML: Manufacturer's laboratory, uc(y): Combined standard uncertainty of measurement.

Comparison of Reference Measurement Procedures with Manufacturer's and End-User's Measurement Procedures (Figure 1, EN ISO 17511, draft 2002: Extensive calibration hierarchy and metrological traceability to SI)

Abbreviations: CGPM: General conference on weights and measures; BIPM: International bureau of weights and measures;

NMI: National metrology institut; ARML: Accredited reference measurement laboratory; ML: Manufacturer's laboratory, uc(y): Combined standard uncertainty of measurement.

Extension of Measurement Range Development of Reference Procedures

Flow cytometry: Identification - Counting – Sorting

Validation of target cells:

Microscopy (Morphology, Localisation of mAb,) / Polymerase Chain Reaction

Extension of Measurement Range Development of Reference Procedures

Flow cytometry: Identification - Counting – Sorting

Validation of target cells:

Microscopy (Morphology, Localisation of mAb,) / Polymerase Chain Reaction

Extension of Measurement Range Development of Reference Procedures

Flow cytometry: Identification - Counting – Sorting

Validation of target cells:

Microscopy (Morphology, Localisation of mAb,) / Polymerase Chain Reaction

"New" Reference Procedure to Determine Haemoglobin Concentrations ?

Comparison HiCN / AHD* – Methods

Alkaline Haematin D-575 Method; Zander et al., Wolf et al. 1984, Clin. Chim. Acta

Analyte	Control Blood	Native Blood	Influencing Quantities
C _{ery}	\checkmark	\checkmark	Anaemie: shape & rheological properties
C _{leu}	\checkmark	?	Lyse-resistant RBC Lyse-sensitive WBC
Hb (HiCN	I) 🗸	\checkmark	high conc. of WBC
(AHD)) ?	\checkmark	—
PCV	Modification of routine instrument	√ S	Anaemia

The Complete Blood Count (CBC): Reference Procedures and Traceability

Summary:

- RiLiBÄK: Reference values for the leukocyte concentration
- RiLiBÄK: Reference values for the PCV / Hkt ?

 \Rightarrow Material-independent determination using pulse width measurement !

- Determination of target values by authorised reference laboratories
- Participation of PTB to in selected round robin tests to ensure traceability
- Development & test of new reference procedures
 - WBC / RBC in liquor using flow cytometry & / microscopic validation
 - Hb determination using the AHD method
 - Platelet concentration employing CD41 / CD 61 staining
 - Immune status
 - Stem cell concentration