Recent Activity of VNIIM Neutron Group in 2007 – 2009

N.N.Moiseev

D.I.Mendeleyev Institute for Metrology St.Petersburg, Russia

The main directions of VNIIMs neutron group during 2007 - 2009 were the following;

1. Usual work for primary standards laboratory:

- modernization of the standard equipment and techniques for neutron sources and fields parameters measurements;
- participating in key-comparisons arranged by CCRI;
- certification of secondary standards used in research institutes, instrument-producing and shipbuilding enterprises, nuclear power stations, defense ministry etc;
- testing and certification of new types of measuring system;
- calibration and verification of measuring instruments for users and manufacturers;
- elaboration of the normative documents.
- 2. New investigations

- final phase of long-year investigation of possibility to use graphite moderator for measurements of neutron sources emission rate without calibration

- development of transportable device for radionuclide neutron sources comparing

- investigation of beam-like thermal neutrons field especially for key-comparisons K8

- comparative investigation of neutron devices in view to use one of them as comparison instrument in COOMET comparisons.

Neutron source emission rate measurement.

4 m spherical graphite moderator is used as comparator for measuring of radionuclide neuron sources emission rate. Primary standard in this case is a neutron generator with a special target chamber design which allows us to measure the monoenergetic neutrons emission rate from the reactions $T(d,n)^4$ He and $D(d,n)^3$ He using the associated particles method with uncertainty not more than 1%.

The proposed measurement technique is like a water-bath technique.

The radionuclide neutron source emission rate B is determined by the following equation

$$\Phi = 4\pi K_{n,\alpha} l_f l_{th} N \sigma_{th}(r) \int_0^R \varphi_{th}(r) r^2 dr$$

where $K_{n,\alpha}$ – neutron capture due to (n, α)-reaction, is determined experimentally;

 l_f – fast neutrons leakage, is determined experimentally;

 l_{th} – thermal neutrons leakage, is determined experimentally;

 $N_c = 1.13 \cdot 10^{23}$ – carbon concentration (Kurchatov report, 1944);

 $\sigma_c = 4.0 \ mb$ –thermal neutrons cross-section (report, 1944);

 $\int_{0}^{R} \varphi_{th}(r) r^{2} dr = 7.409 \cdot 10^{9} \text{ is measured by gold activation detectors.}$

As our graphite ball is made of the same graphite what the first Russian research reactor we used for calculation the N_c and σ_c obtained by I. Kurchatov with collaborators in 1944.

The result obtained by described technique is $(4.29 \pm 0.13) \cdot 10^7 \text{s}^{-1}$. The result obtained by Mn-bath-technique is $(4.31 \pm 0.07) \cdot 10^7 \text{ s}^{-1}$. The main source of uncertainty of new result is uncertainty of σ_c value.

Portable device for radionuclide neutron sources comparing

Parallelepiped ($40 \times 23 \times 14$) cm made of organic glass with spherical cavity 12 cm diam. in the centre. A special gadget makes it possible to fix a neutron source in the centre of cavity. Four He-3 counters (two pairs) are fixed at two different distances at four different directions from the centre of cavity. The main characteristics of comparator are presented in Table.1.

	Channel A	Channel B	Channel C	Channel D
Warming time	10 min	10 min	10 min	10 min
Long-term stability	< 0.1 %	< 0.1 %	< 0.1 %	< 0.1 %
Reproducibility after	<0.2 %	<0.2 %	<0.2 %	<0.2 %
turning of				
Dead-time	1.09 µs	1.51 µs	1.55 µs	1.98 µs
Gamma-sensitivity	$< 10^{-4}$	< 10 ⁻⁴	$< 10^{-4}$	$< 10^{-4}$
Efficiency for Cf-252	0.120 %	0.315 %	0.128 %	0.313 %
Emission rate	10^3 to 10^7 s ⁻¹			

Table 1.

Investigation of different neutron devices in view to use one of them as comparison instrument in COOMET comparisons

Three devices of different manufacturers were investigated.

- MAP VNIIM design, was used in CCRI(III)-K10 key-comparisons
- AT1117 produced by ATOMTECH, Belarus
- LB6411 produced by BERTHOLD, Germany

The main characteristics of comparator are presented in Table.2 and Fig. 1.

	MAP	AT1117	LB6411
Warming time	10 min	10 min	
Long-term stability	± 0.1 %	± 0.1 %	
Reproducibility after turning of	± 0.2 %	± 0.3 %	±2%
Temperature dependence	< 5.10 ⁻⁴ /°C	< 5.10 ^{−3} /°C	
Dead-time	2.33 µs	autocorrection	~3.5 µs
Gamma-sensitivity	< 3.10 ⁻⁵	< 2.10 ⁻⁴	< 2.10 ⁻⁴
Efficiency for bare Cf-252	3.23 cm ²	1.68 cm ²	1.1 cm ²
Counting rate	> 10 ⁵	> 10 ⁵	> 10 ⁵

Table 2.

The only shortage of AT1117 is no spherical moderator and therefore asymmetry of sensitivity. The LB 6411 problem is long-term instability (Fig.1.).

We contacted with Dr Alfred Klett, Business Element Manager and were very surprised to know it is good device according to Berthold quality system.

CCRI(III)/09-19

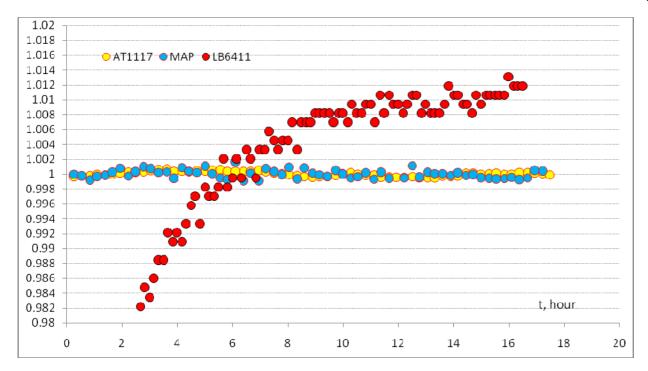


Fig.1. Comparator stability