Review of the VNIIM Activity in the Field of radioactivity. 2001 – 2003

I.A.Kharitonov, S.V.Sepman, A.V.Zanevsky, M.A.Rasko, E.ETereshchenko. D.I.Mendeleyev Institute for Metrology St.Petersburg, Russia

I. Radionuclide Activity Measurement.

1.1. Activity measurements of ²²⁶Ra primary standard mass.

1.2. Environmental samples measurement:

- measurements of photon flux of ²³⁵U standard sources of tube and sphere geometry;

- calculation of virtual mass ²³⁵U in the range 10-1000 g.

1.3. Development of a secondary standard of activity on the basis of semiconductor detectors - definition of factors of cascade summation correction for semiconductor detectors of a great volume.

1.4. Standardization of industrial and medical reference sources.

- measurement of KX and LX – ray fluxes in the range 10-350 keV from medical reference sources;

- restoration of a real photon spectrum of bremsstrahlung radiation from medical β -emitting radionuclides (¹⁴⁷Pm, ²⁰⁴Tl) sources in a range 10-350 keV, from the apparatus spectrum using the method of a response function;

- definition of the coefficient of dependence between the photon flux of KXray, activity and air kerma radionuclides of medical KX-ray sources on the basis radionuclides: ¹⁴⁷Pm, ²⁰⁴Tl, ¹⁵³Gd, ²³⁸Pu, ²⁴¹Am etc;

-routine standardization of 25 radionuclides in point, volume and surface sources.

1.5. Improvement of measurement techniques.

- theoretical calculation of the counting efficiency for $4\pi\gamma$ NaI detector by VC3D Monte-Carlo Code for cascade radionuclides: ¹⁶⁶Ho, ¹⁵²Eu, ¹⁵⁴Eu, ¹³⁴Cs, ¹³³Ba etc;

-measurement of ¹³⁴Cs activity solution with $4\pi\gamma$ NaI well crystal at LNHB;

- designing a new large $4\pi\gamma$ NaI detector of the sandwich type (two crystals 200*100 mm, entrance window-0.5 mm Al) (in progress);

- development of the VC3D Monte-Carlo Code;

-using PENELOPE Monte-Carlo code for theoretical calculation of the counting efficiency of the $4\pi\gamma$ NaI detector

II. International Activities

2.1. Participation in the ICRM'2001 conference held at PTB, Braunschweig, Germany.

2.2. Participation in the BIPM full scale international comparisons of ²³⁸Pu, ²⁰⁴Tl and ⁶⁵Zn solutions.

2.2.1. The VNIIM received ampoule No. A1189/00 with ²³⁸Pu solution.

The ²³⁸Pu activity was measured by two methods: $4\pi a$ -LX-coincidence and the defined solid angle method (DSA). The 4pa-LX-coincidence method is realized on an installation with a proportional 4π -counter for registration of a-particles and scintillation counter with a 1 mm thick crystal NaI (Tl) with beryllium window. LX-photons were registered in the (10-30) keV energy window. The dead time in each channel was (1.2±0.1) µs, the coincidence resolving time was (0.916±0.003) µs. The maximal counting efficiency of a-particles in the 4π -counter was 99.8%.

Special attention was paid to stability of the resolving and dead time during measurements, as the sources were manufactured with activity from $5 \cdot 10^3$ Bq up to 10^4 Bq because of weak intensity of LX-radiation. The stability of operation was tested by measurement of ¹⁹⁸Au activity in gold foil during approximately two half-lives of ¹⁹⁸Au (7 days).

The greatest uncertainty component (0.15 %) was connected with measurement of background in the LX-channel. The combined uncertainty was 0.16%.

In the DSA method a-particles were counted with a ZnS(Ag) detector by thickness less than 100 μ m and diameter of 80 mm. The combined uncertainty of this method was 0.14%.

The measurement results agreed within limits of the estimated uncertainty.

2.2.2. The VNIIM received ampoule No. 30 with ²⁰⁴Tl solution.

The ²⁰⁴Tl activity was measured by a $4\pi\beta$ -counting method in a proportional 4π -counter. The dead time was (3.0±0.1) µs. The corrections for β -particle absorption in the film and source material were measured to be 1.1%.

The decay scheme correction (Auger electrons because of an electron capture branch) was taken from tabular data and is estimated to be 2.0%. The combined uncertainty was 0.4%.

2.2.3. The ⁶⁵Zn solution for international comparison was obtained in ampoule No. Zn0228. Two methods were used to measure its activity: the conventional 4π (KX+e⁻)- γ -coincidence extrapolation method and the KX- γ -coincidence method in small solid angles on an installation with two scintillation crystals NaI (Tl) of different thickness.

In the 4π (KX+e⁻)- γ -coincidence method the Auger electrons and X-rays were registered in a proportional 4π -counter filled with mixture of 90% Ar + 10% CH₄ at a pressure of 0.1 MPa. γ -rays were registered with a NaI(Tl) scintillation crystal 40 mm thick and 40 mm in diameter in the (453-1200) keV energy window. The maximum efficiency was obtained 41%. The efficiency was varied (down to 20%) by adding films and foils to sources, and also by changing the proportional counter voltage. It was noticed that because of peculiar properties of the ⁶⁵Zn decay scheme there is a considerable uncertainty in fitting the linear dependence of measurement result on the counting efficiency in the proportional counter and its extrapolation to 100 %, therefore uncertainty of the result in this method was estimated in 1.25%. In our opinion the KX- γ -coincidence method using two scintillation crystals NaI(Tl):

100 μ m thick with beryllium window (KX-ray detector) and 40 mm thick (γ -ray detector) is more precise in ⁶⁵Zn activity measurement. The main uncertainty component in this method is due to counting statistics, and the complete combined uncertainty of this method is determined in 0.25%. The results of both measurement methods coincided within limits of the estimated uncertainty, but we consider the result obtained by the KX- γ -coincidence method as more reliable and our main result.

2.3. With the BNM-LNHB (France) standardization and determination of the γ -ray emission probabilities for ¹⁵⁴Eu and ²²⁶Ra.

2.4. Participation in the project 236/BY/01 COOMET: "Interlaboratory comparisons of colza standard reference material of the Cs¹³⁷ specific activity"

2.5. Participation in the intercomparisons of β -emitting rate of ³⁶Cl large area source with NIST, INER, KRISS, PTB, CSIR and NMIJ/AIST.