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arithmetic 
weighted 

Mandel-Paule 
Power Moderated Mean 

Estimators for mean 
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biased mean 

large uncertainty 

= not “efficient” 
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low uncertainty 

Bad: low sample variance 
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Remedy against low unc 
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Calculate uncertainty from maximum of 

- propagated sum of stated uncertainties 

- sample variance 
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- measurement uncertainty contains no useful 

information 

- magnitude error on uncertainty is >2x larger than 

magnitude due to metrological reasons 

Best solution is close to arithmetic mean if 

= the “best” with “bad uncertainty data” 

= inefficient with “consistent data” 

Arithmetic mean 
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statistical weight = reciprocal variance associated with xi 
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- measurement uncertainties are correct 

- ‘value’ and ‘uncertainty’ outliers are excluded 

Best solution is close to weighted mean if 

= the “best” with “perfect data” 

= sensitive to “low uncertainty” outliers 

Weighted mean 
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= weighted mean for a consistent data set 

Mandel-Paule mean 
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≈ arithmetic mean for an extremely discrepant data set 

Mandel-Paule mean 
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= intermediate between arithmetic and weighted 

mean for a slightly discrepant data set 

Mandel-Paule mean 
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- measurement uncertainties are informative 

- ‘value’ and ‘uncertainty’ outliers are symmetric 

Best solution is close to Mandel-Paule mean if 

= one of the “best” with “imperfect data” 

if no tendency to underestimate uncertainty 

Mandel-Paule mean 
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S is a typical uncertainty per datum (max arithmetic or M-P unc) 

0<a<2 = power reflects level of trust in uncertainties  

Power Moderated Mean - PMM 
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= Mandel-Paule mean  
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‘understated’ uncertainty? 

PMM: a=2 



20 

N

73

78

83

88

93

98

103

108

113

0 1 2 3 4

k
B

q
 /

 g

= closer to arithmetic mean  

less weight to this point 

PMM: a=1 
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Choice of power a 

power reliability of uncertainties  

a = 0 uninformative uncertainties 

(arithmetic mean) 

 

a = 0 uncertainty variation due to error at least twice  

the variation due to metrological reasons 

(arithmetic mean) 

 

a = 2-3/N informative uncertainties with a tendency of being  

rather underestimated than overestimated 

(intermediately weighted mean) 

 

a = 2 informative uncertainties with a modest error;  

no specific trend of underestimation 

(Mandel-Paule mean) 

 

a = 2 accurately known uncertainties, consistent data 

(weighted mean) 
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arithmetic 
weighted 

Mandel-Paule 
Power Moderated Mean 

Test of Estimators by 
Computer Simulation 
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Efficiency for discrepant data 

arithmetic < , M-P < weighted 
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Reliability of uncertainty 

weighted << M-P <  < arithmetic 
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- measurement uncertainties are informative 

- uncertainties tend to be understated 

- data seem consistent but are not 

Best solution is close to PMM if 

= one of the “very best” with “imperfect data” 

= more realistic uncertainty than Mandel-Paule mean 

= more adjustable to quality of data than M-P mean 

Power Moderated Mean 



26 

generally applicable method 

Outlier identification 
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CCRI(II) is the final arbiter regarding correcting or 

excluding any data from the calculation of the KCRV. 

Statistical tools may be used to indicate data  

that are extreme. 

= a way to protect the KCRV against erroneous data, 

data with understated uncertainty, extreme data 

asymmetrically disposed to the KRCV 

= a way to lower the uncertainty on the KCRV 

Outlier identification 
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- valid for any type of mean, using normalised wi 

- default k = 2.5 

Outlier identification 
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xi excluded from mean 

|ei| > ku(ei),    ei = xi – xref  
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Both options are possible within the method. 

→ outlier rejection should be based on technical grounds 

Outlier or not? 
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generally applicable method 

Degree of equivalence 
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- valid for any type of mean 

Degree of equivalence 

xi included in mean 

xi excluded from mean 

di = xi – xref,    U(di) = 2u(di)  
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The Power Moderated Mean keeps a fine balance 
between efficiency and robustness, while 
providing also a reliable uncertainty. 

Outlier identification and degrees of equivalence are 
readily obtained. 

Conclusions 


