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Executive summary 

CCRI(II) key comparison data consist of a measured value of activity 
concentration, independently obtained, and the associated standard uncertainty 
for each laboratory participating in a key comparison. A method is proposed 
for calculating a key comparison reference value (KCRV), its associated 
standard uncertainty, and degrees of equivalence (DoE) for the laboratories. 

The method allows for technical scrutiny of data, correction or exclusion of 
extreme data, but above all uses an estimator (power-moderated mean, PMM) 
that can calculate an efficient and robust mean from any data set. For mutually 
consistent data, the method approaches a weighted mean, the weights being the 
reciprocals of the variances (squared standard uncertainties) associated with 
the measured values. For data sets suspected of inconsistency, the weighting is 
moderated by augmenting the laboratory variances by a common amount 
and/or decreasing the power of the weighting factors. 

The PMM has the property that for increasingly discrepant data sets there is a 
smooth transition of the KCRV from the weighted mean to the arithmetic 
mean. It is a good compromise between efficiency and robustness, while 
providing also a reliable uncertainty. 

Before applying the method, the data provided by the key comparison 
participants should be scrutinised to see whether any appear to be discrepant. 
Extreme data may also be identified subsequently by the application of a 
suitable statistical criterion. Such data should be considered for exclusion from 
the calculation of the KCRV on relevant technical grounds. 

Then the KCRV, its associated uncertainty and DoEs can meaningfully be 
obtained. DoEs are calculated using the uncertainties provided by the key 
comparison participants, not the augmented uncertainties. 
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1 Introduction 

The CCRI(II) organises key comparisons in which each of N participating laboratories 
independently provides a measured value of an activity concentration xi and an associated 
standard uncertainty ui. Until now in the CCRI(II), the uncertainties ui have generally been 
disregarded for the calculation of a KCRV, the KCRV being calculated as an arithmetic 
(unweighted) mean. 

The CCRI(II) is now considering calculating a KCRV using a method, such as the 
weighted mean, that accounts for the ui. However, the CCRI(II) takes into consideration 
that these uncertainty values are generally imperfect estimates of the combined effect of all 
sources of variability, and therefore also prone to error. 

 

A method is proposed for calculating a key comparison reference value (KCRV), its 
associated standard uncertainty, and degrees of equivalence (DoEs) for the laboratories. 
The method is based on a few fundamental principles: 

- The estimator should be efficient, providing an accurate KCRV on the basis of the 
available data set (xi, ui) and technical scrutiny. 

- The estimator should give a realistic standard uncertainty on the KCRV. 

- The N data are treated on an equal footing, albeit that relative weighting may vary as a 
function of stated uncertainty. The method shall optimise the use of information contained 
in the data. 

- Before evaluation, all data is scrutinised in an initial data screening by (representatives 
of) the CCRI(II), which may choose to exclude or correct data on technical grounds from 
the calculation of the KCRV. 

- Extreme data can be excluded from the calculation of the KCRV on statistical grounds as 
part of the method. The CCRI(II) is always the final arbiter regarding excluding any data 
from the calculation of the KCRV. 

- The estimator should be robust against extreme data, in case such data have not been 
excluded from the data set. It should also adequately cope with discrepant data sets. 

- The method is preferably not complex and conveniently reproducible. 

 

The estimator of choice is the power-moderate weighted mean (PMM), an upgrade of the 
well-established Mandel-Paule mean [1-2], incorporating ideas by Pommé-Spasova [3]. Its 
results are generally intermediate between arithmetic and weighted mean. Annex A gives a 
resume of the rationale behind the choice of estimator on the basis of conclusions drawn 
from simulations. Annex B contains an overview of relevant formulae for the arithmetic 
mean, the classical weighted mean, the Mandel-Paule mean and the PMM. In Annex C, 
formulae are derived for degree of equivalence and outlier identification. 

Section 2 discusses the use of the PMM estimator for the KCRV and its uncertainty. 
Section 3 considers the identification and treatment of data regarded as statistically 
extreme. Section 4 describes the determination of degrees of equivalence. Section 5 
summarises the proposed method. Section 6 gives conclusions. 
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2 The PMM estimator 

The PMM estimator combines aspects of the arithmetic mean, the weighted mean and the 
Mandel-Paule mean. The logical steps leading to this procedure can be read in Annex B. 

In this section, the mathematical steps are shown in order of execution: 

              

1 Calculate the Mandel-Paule mean 
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using s2=0 as initial value, conform to the weighted mean. 

              

2 Calculate the modified reduced observed chi-squared value 
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3 If 2
obs

~ >1, increase the variance s2 and repeat steps 1-2 until 2
obs

~ =1 is obtained. 

              

4 Assess the reliability of the uncertainties provided. Choose a value for the power  
of the uncertainties in the weighting factors: 

 

power reliability of uncertainties  

 = 0 uninformative uncertainties 

(arithmetic mean) 

 

 = 0 uncertainty variation due to error at least twice  
the variation due to metrological reasons 

(arithmetic mean) 

 

 = 2-3/N informative uncertainties with a tendency of 
being  
rather underestimated than overestimated 

(intermediately weighted mean) 

 

 = 2 informative uncertainties with a modest error;  
no specific trend of underestimation 

(Mandel-Paule mean) 

 

 = 2 accurately known uncertainties, consistent data 

(weighted mean) 

 

              

5 Calculate a characteristic uncertainty per datum, based on the variance associated 
with the arithmetic mean, x , or the Mandel-Paule mean, xmp, whichever is larger1. 

                                                           
1 Both variances are equal when 2

obs
~ =1. 



4 

           ))(),(max( mp
22 xuxuNS    (3) 

in which  

           







N

i

i

NN

xx
xu

1

2
2

)1(

)(
)( , 



N

i
ix

N
x

1

1
    and   

1

1
22mp

2 1
)(



 












N

i i su
xu  (4) 

              

6 Calculate the reference value and uncertainty from a power-moderated weighted 
mean 
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in which the normalised weighting factor is 
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3 Treatment of extreme data 

Statistical tools may be used to indicate data that are extreme. An extreme datum is such 
that the magnitude of the difference ei between a measured value xi and a candidate KCRV 
xref exceeds a multiple of the standard uncertainty u(ei) associated with ei: 

           |ei| > ku(ei),    ei = xi – xref, (7) 

where k is a coverage factor, typically between two and four, corresponding to a specified 
level of confidence. 

Irrespective of the type of mean, the variance of the difference is conveniently calculated 
from the modified uncertainties through the normalised weighting factors (see Annex C):  

           )1
1

)(( )( ref
22 

i
i w

xueu                            (xi included in mean) (8) 

           )1
1

)(()( ref
22 

i
i w

xueu                           (xi excluded from mean) (9) 

Preferably, the identification and rejection of extreme data is kept to a minimum, so that 
the mean is based on a large subset of the available data. A default coverage factor of 
k=2.5 is recommended. 

After exclusion of any data, a new candidate KCRV and its associated uncertainty are 
calculated, and on the basis of test (7) possibly further extreme values are identified. The 
process is repeated until there are no further extreme values to be excluded. The CCRI(II) 
is always the final arbiter regarding excluding any data from the calculation of the KCRV. 

In this way, the KCRV can be protected against extreme values that are asymmetrically 
disposed with respect to the KCRV, and the standard uncertainty associated with the 
KCRV is reduced. The approach of using the modified uncertainties limits the number of 
values for which the inequality in expression (7) holds. 
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4 Degrees of equivalence 

The degrees of equivalence, DoE, for the ith laboratory has two components (di, U(di)), 
where, assuming normality, 

           di = xi – xref,    U(di) = 2u(di). (9) 

u(di) is the standard uncertainty associated with the value component di, and U(di), the 
uncertainty component, is the expanded uncertainty at the 95 % level of confidence. 

Given a KCRV xref and the associated standard uncertainty u(xref) obtained from 
expressions (5-6), the corresponding DoEs are determined from the generally valid 
expression for any kind of weighted mean2 (see Annex C): 

           )()21()( ref
222 xuuwdu iii  . (10) 

The DoEs for participants whose data were excluded from the calculation of the KCRV are 
given by essentially the same expression, applying wi = 0: 

           )()( ref
222 xuudu ii  . (11) 

The variance ui
2 associated with xi is not augmented by s2 for the calculation of the DoE, 

since it is the measurement capability of laboratory i, including proper uncertainty 
statement, that is being assessed. 

5 Summary of the method 

1. Carry out a careful examination of the participants’ data. If necessary, correct or 
exclude erroneous data on technical grounds. 

2. Form the weighted mean and the associated standard uncertainty of the remaining data, 
(xi, ui), i = 1, …, N, using Eq. (1) with s2=0. 

3. Test for consistency of the data with the weighted mean by calculating 2
obs

~  using 

Eq. (2), regarding the data as consistent if 1~2
obs  . 

4. If 1~2
obs  , calculate the Mandel-Paule mean of the remaining data. That is, the 

variance s2 in the weighted mean (Eq. 1) is chosen such that 2
obs

~  (Eq. 2) is unity. 

5. Choose a value for the power  based on the reliability of the uncertainties and the 
sample size. 

6.  Calculate the PMM and its standard uncertainty from Eqs. (3-6). 

7. Use the statistical criterion in Eq. (7) to identify any further extreme values, applying 
the normalised weighting factors (Eqs. 8-9). Should the CCRI(II) exclude such data 
from the calculation of the KCRV, repeat steps 2-6 on the remaining data set. 

8. Take the PMM as the KCRV and its associated standard uncertainty as the standard 
uncertainty associated with the KCRV. 

9. Form the DoEs for all participating laboratories (Eqs. 10-11). 

                                                           
2 In the particular case of the classical weighted mean, the expression for u2(di) is identical to ui

2 – u2(xref), 
because wi = u2(xref)/ui

2. The more general expression has to be used for the Mandel-Paule and PMM (s2> 0 
or <2). 
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6 Conclusions 

The method proposed here for calculating a KCRV and its uncertainty is based on a 
weighted mean, in which the relative weighting factors are adjusted to the level of 
consistency in the data set. It applies when the measured values provided by the 
participants in the key comparison are mutually independent. 

The method foresees in protection against erroneous and extreme data through the 
possibility for correction or exclusion of data. Further discrepancy of the data, most 
typically caused by understatement of the uncertainty, is generally well taken into account 
by the estimator. This is established by augmenting the uncertainties and reducing the 
power of uncertainties in the weighting factors. This is done purely for the calculation of 
the KCRV, as the laboratory data remain unaltered when obtaining degrees of equivalence. 

For consistent data with correctly determined uncertainties, the KCRV approaches the 
classical weighted mean. For highly discrepant data with uninformative uncertainties, the 
KCRV approaches the arithmetic mean. There is a smooth transition from the weighted 
mean to the arithmetic mean as the degree of data inconsistency increases. For CCRI(II) 
intercomparison results, typically slightly discrepant data with informative but imperfectly 
evaluated uncertainties, the KCRV is intermediate between the Mandel-Paule mean and 
the arithmetic mean. 

The resulting KCRV should in general combine good efficiency and robustness properties. 
The approach will not perform well if a majority of the data values have significant bias of 
the same sign. The associated uncertainty will in most cases be realistic. The method 
remains vulnerable to mainly small, seemingly consistent data sets with systematically 
understated (or overstated) uncertainties. 
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Annex A.  Rationale behind the choice of estimator  

 

Measurement results show deviations from the "true" value of the measurand. The same is 
also true for the reported uncertainty, which in general is only a rough estimate of the 
combined effect of all sources of variability. 

Computer simulations were performed to evaluate the performance of estimators of the 
mean of data sets, in particular of discrepant data sets for which the variation of the data xi 
exceeds expectation from the stated uncertainties ui. Important criteria were efficiency, a 
measure for the accuracy by which the true value was approached, robustness against 
extreme data, and reliability, a measure for the accuracy of the uncertainty value provided. 

Some conclusions were as follows: 

 

1. If none of the ui is informative, the arithmetic mean is the most efficient. In practice, 
the arithmetic mean is a good choice for data with poorly known uncertainty, i.e. if the 
variation of uncertainties ui due to error in the uncertainty assessment is twice or more 
the variation due to metrological origin. 

2. If the uncertainties ui are informative, an estimator that uses them can be employed to 
improve the efficiency. Some approaches using the ui are better than others. 

3. The classical weighted mean, using the reciprocal of the variance as weighting factor, 
is the most efficient estimator for normally distributed data, only in absence of 
unrepresentative data. Even modest contamination by such data, in particular those 
having extreme values and/or understated uncertainties, results in a too low 
uncertainty estimate. 

4. The Mandel-Paule mean provides a good combination of efficiency and robustness for 
discrepant data that are approximately symmetrically disposed with respect to the 
KCRV. It degrades little with increasing contamination, is only slightly dependent on 
the level of information carried by the ui, and is superior to the classical weighted 
mean when the ui are not very informative. 

5. The PMM yields more reliable uncertainties for discrepant data sets in which 
uncertainties are likely to be underestimated. It uses moderate weighting for small data 
sets, thus being less influenced by unidentified outliers with underestimated 
uncertainties. 

6. In the presence of extreme values, the M-P and PMM estimators approach the result of 
the arithmetic mean. They can easily be complemented with an outlier rejection 
mechanism, which improves their efficiency. For a consistent data set, the M-P mean 
and PMM approach the classical weighted mean. 
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Annex B.  Formulae for KCRV estimators and associated standard uncertainties 

1. Arithmetic mean 

The arithmetic mean is calculated from  
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and its uncertainty, applying the propagation rule, is  
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As the arithmetic mean is of particular interest when the ui are not informative, one can 
replace the individual variances 2

iu  by an estimate of the sample variance  
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As the dispersion of data is determined by chance, the calculated uncertainty of the mean 
can sometimes be unrealistically low, in particular with small data sets showing almost no 
scatter. If the ui are informative with respect to the uncertainty scale, one could take the 
maximum value from both approaches: 
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2. Weighted mean 

The classical weighted mean uses the reciprocal variances as weighting factor. The 
weighted mean xref of the data set and the associated standard uncertainty u(xref) are 
obtained from 
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The weighted mean and its uncertainty are particularly inadequate when applied to 
discrepant data with understated uncertainties. One can look for indications of discrepancy 
by calculating the reduced observed chi-squared value 
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A 2
obs

~ -value (significantly) higher than unity (is) may be an indication of inconsistency. 3 

3. Mandel-Paule mean 

The M-P mean was designed to deal with discrepant data sets, having a reduced observed 
chi-squared value 2

obs
~  larger than unity. For the purpose of establishing a more robust 

mean, the laboratory variances ui
2 are incremented by a further variance s2 to give 

augmented variances u2(xi) = ui
2 + s2. The value of the unexplained variance s2 is chosen 

such that the modified reduced observed chi-squared value, 
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equals one. 

The calculation of the M-P mean and its uncertainty proceeds through the same equations 
as for the weighted mean, replacing the stated variances ui

2 by the augmented variances 
u2(xi) 

           ,)(
1

22ref
2

ref 
 


N

i i

i

su

x
xux     






N

i i suxu 1
22

ref
2

1

)(

1
. (B.10)

As the M-P mean xref occurs in the equation for 2
obs

~ , an iterative procedure is applied to 

find the appropriate value of the variance s2. 

For data sets with 2
obs

~  smaller than 1, the variances are not augmented, s2 = 0, and the 

result is identical to the weighted mean. For an extremely inconsistent set, s2 will be large 
compared with the ui

2 and the Mandel-Paule mean will approach the arithmetic mean. For 
intermediate cases, the influence of those laboratories that provide the smallest 
uncertainties will be reduced and the standard uncertainty associated with the KCRV will 
be larger compared with that for the weighted mean. 

Though much more robust than the weighted mean, the M-P procedure tends to 
underestimate its uncertainty for data sets with predominantly understated uncertainties. 

4. The PMM 

The M-P does not counteract possible errors in the relative uncertainties when the data set 
appears to be consistent, this is when 2

obs
~  is not (much) larger than unity. Data with 

understated uncertainty have a negative effect on the robustness and the calculated 
uncertainty. The PMM estimator allows moderating the relative weighting also for 
seemingly consistent data sets. 

For the M-P mean as well as the classical weighted mean, uncertainties ui are used with a 
power of 2 in the weighting factor. By lowering this power, the influence of understated 
uncertainties can be moderated. A smooth transition from weighted to arithmetic mean can 
be realised by intermixing the uncertainties associated with both. 

Like with the M-P mean, the variances are increased by an unexplained amount s2 to 
ascertain that 2

obs
~  is not larger than one. Then a variance per datum is calculated for an 

                                                           
3 The mean (or expectation) of a variable having a chi-squared distribution with N – 1 degrees of freedom 
is N – 1. Under normality conditions, the expected value of 2

obs
~  is unity. 
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unweighted mean, taking the larger value between the sample variance and the combined 
augmented uncertainties: 
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In the expressions (B.10), the weighting factor 1/(ui
2 + s2) is replaced by 
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in which the power α (0 ≤ α ≤ 2) is the leverage by which the mean can be smoothly varied 
between arithmetic mean (α=0) and M-P mean (α=2). The Mandel-Paule method can be 
regarded as a subset of the PMM method. Reducing has a similar effect to the KCRV 
and its uncertainty as does augmenting the laboratory variances in the M-P method. 

The choice of can be made to reflect the level of trust in the stated uncertainties. For data 
sets with a predominance of understated uncertainties, one obtains a more realistic 
uncertainty on the KCRV by reducing the power . This is particularly recommended with 
small data sets. Larger data sets have a better defined 2

obs
~ , facilitating the identification of 

extreme data and the level of reliability of the ui. As a practical rule, for data sets in which 
the uncertainties ui are informative but frequently understated, one can make the power  
depend on the number of data N via a heuristic formula 
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Table 1.  Estimators of mean 
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Annex C.  Formulae for 'degree of equivalence' and 'outlier identifcation' 

1. Degrees of equivalence 

The degrees of equivalence between pairs of NMIs are not influenced by the estimator used 
for the KCRV. The degree of equivalence of laboratory data with respect to the KCRV 
involves calculation of the difference 

           refii xxd    

           


N

j
xwx

1
jji  (C.1)

and its expanded uncertainty. In the expression C.1, the factor wi is: 

 - the normalised weighting factor (see Table 1) for data included in the mean 

 - zero for data excluded from the calculation of the KCRV 

Data excluded from the calculation of the mean are not correlated with it and the variance 
associated with di is, in this case, the sum of two variances: 
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2 xuudu                        (xi excluded from mean) (C.2)

The data that have been included in the calculation of the mean are correlated with it, and 
the variance of the difference is calculated from 
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2. Outlier identification 

For a consistent data set with reliable standard uncertainties, one could apply a weighted 
mean and use the reciprocal of the variances as weighting factors. Data not complying with 
this consistent set can be recognised if their difference ei from the mean exceeds the 
associated uncertainty by a factor k or more. 
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A similar equation, with opposite sign, holds for data not included in the mean. 
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Typical CCRI(II) intercomparison data contain understated uncertainties, and normal 
criteria for outlier identification would reject many data as extreme. Preferably, the 
identification and rejection of extreme data is kept to a minimum, so that the mean is based 
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on a large subset of the available data. This is easily achieved in the philosophy of the M-P 
mean, even for discrepant data sets, by using the augmented uncertainties 

           )(x - )  )(2-(1  )( ref
222

ii
2 usuweu i                   (Mandel-Paule mean) (C.6)

Similarly, one can apply the power-moderated uncertainty for the PMM method. In all 
cases, the variance equations reduce to the same elegant solutions as in Eqs. (C.4-5), 
expressed as a function of the weighting factor. If the method reduces to an arithmetic 
mean (=0), the weighting factors are equal for all data, irrespective of the stated 
uncertainty. Extreme data are then identified from their difference with the mean only. 
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Errata 

 

On page 11, the equation before C. 3 should read: 
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On page 12, the equation C.6 should read: 
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