Proposals for future CCRI(II) key comparisons of activity

P.J. Allisy-Roberts, G. Ratel and C. Michotte, BIPM

Introduction

A questionnaire was circulated to CCRI(II) Members on 16 March inviting the selection of radionuclides from twenty-four proposed which could be of possible interest for future CCRI(II) activity comparisons. The radionuclides proposed included some for medical use, some of environmental interest and some in use for spectrometer calibration.

At the same time, it was noted that the comparisons of ⁸⁹Sr and ²³⁸Pu were in progress and the results of the latter comparison are now awaited. In addition it was reported that the Working Group for the ²⁰⁴Tl comparison were considering a new trial comparison for this radionuclide once the experimental work was completed, to be followed by a new key comparison once the trial comparison produced consistent results across the different methods.

<u>Results</u>

Responses to the questionnaire have been received from 15 NMIs and Table 1 shows these NMIs' interests. Six radionuclides received support from at least 50 % of the Membership of CCRI(II).

The eight radionuclides which received the strongest support are shown in Table 2 as a shortlist for discussion at the CCRI(II) meeting in May. In this table, the primary measurement methods commonly used to measure the activity of each radionuclide are indicated, together with some challenges which the absolute activity measurements present. Some comments are also made on the additional benefits of the particular selection.

The questionnaire also produced some comment from the NMIs and a discussion paper from the NPL is included in the meeting papers.

Conclusion

Three CCRI(II) key comparisons have been made during the last 2 years, ¹⁵²Eu, ⁸⁹Sr and ²³⁸Pu. The results of the ¹⁵²Eu and ⁸⁹Sr comparisons are being communicated to the participants and will be presented at the ICRM and CCRI(II) meetings. The CCRI(II) is invited to decide how many CCRI(II) key comparisons it can make over the next two years. The BIPM is prepared to act as the pilot laboratory for not more than four comparisons during this period.

In view of the selection of radionuclides made by the CCRI(II) Members, it is proposed that the choice for key comparisons to be made in the immediate future be taken from the radionuclides shown in Table 2. During the discussion of the choice, the half-life and the availability of the radionuclides also need to be considered.

Nuclide	Half life	Reason	SIR	Recent CC	NMIs	Votes
				comp.	interest	
³² P	14.3 d	Medical use			AIST, BIPM, CIEMAT, ENEA, IRMM, KRISS, NIST, NPL, RC	9
⁵⁴ Mn	312. d	Ge calibration	Yes		ANSTO, CSIR, ENEA, IRMM, KRISS, LNHB, NIST, OMH, RC	9
⁶⁰ Co	1926. d	Ge calibration	Yes		ANSTO, NIST	
⁶⁵ Zn	244. d	Ge calibration	Yes		CSIR, ENEA, KRISS, LNHB, NIST, NPL, OMH, RC	8
⁶⁷ Ga	3.26 d	Medical use	Yes		ANSTO, CIEMAT, CSIR, IRD, IRK, NPL	6
⁸⁵ Sr	64.8 d	Ge calibration	Yes		AIST, CSIR, ENEA, IRD, IRK, KRISS, NIST, OMH, RC	9
⁸⁸ Y	107. d	Ge calibration	Yes		CSIR, ENEA, IRK, IRMM, NIST, OMH	6
⁹⁹ Tc ^m	6.01 h	Medical use	Yes		ANSTO, CIEMAT, ENEA, IRD, NPL	5
¹⁰⁹ Cd	463. d	Ge calibration	Yes	1986	IRD, NIST	2
¹¹¹ In	2.80 d	Medical use	Yes		AIST, BIPM, CIEMAT, ENEA, IRD, IRMM, NPL	7+
¹¹³ Sn	115. d	Ge calibration	Yes		AIST, BIPM, IRK, KRISS, LNHB	5
¹²³ I	13.2 h	Medical use	Yes		ANSTO , ENEA, IRD, IRMM, NPL	5+
125 I	59.4 d	Medical use	Yes	1988	BIPM, CIEMAT, LNHB, OMH	4
¹³⁷ Cs	$11.0 \times 10^3 \text{ d}$	Ge calibration	Yes	1982	ANSTO, IRMM	2
¹³⁹ Ce	138. d	Ge calibration	Yes		CSIR, KRISS, LNHB, NIST, OMH, RC	6
¹⁵³ Sm	1.93 d	Medical use	Yes		ANSTO, IRD, LNHB, NIST, NPL	5
¹⁷⁷ Lu	6.65 d	Medical use	Yes		IRK, IRMM, LNHB	3+
¹⁸⁶ Re	3.72 d	Medical use			AIST, ENEA, IRK,IRMM, LNHB, NPL	6
¹⁹² Ir	74.0 d	Medical use	Yes		ANSTO, CIEMAT, CSIR, IRD, IRK, IRMM, KRISS, OMH	8
²⁰¹ Tl	3.04 d	Medical use	Yes		AIST, ANSTO, BIPM, CIEMAT, CSIR, LNHB, NPL	7
²⁰³ Hg	46.6 d	Ge calibration	Yes		AIST, CSIR, IRD, IRK, KRISS, OMH	6
²²⁸ Th	698. d	environmental	Yes		CIEMAT, IRK, NIST, NPL	4
²³⁵ U	7.04×10^8 a	environmental			CIEMAT, ENEA, IRMM, KRISS, OMH	5
²⁴¹ Am	1.58×10 ⁵ d	Ge calibration	Yes		AIST, ANSTO, CIEMAT, CSIR, IRD, IRK, KRISS, LNHB, OMH, RC	10

Table 2 Shortlist of radionuclides for future CCRI(II) key comparisons

Nuclide	Half life / d	NMIs interest	Application	SIR entries / withdrawn	Primary measurement methods	Challenges	Comments	
²⁴¹ Am	1.58×10 ⁵	10	Ge calibration	9	$4\pi\alpha$ (PC or LS) $-\gamma$ coinc.; $4\pi\alpha$ (PC or LS)		Extended SIR ?	
³² P	14.3	9	Medical use	-	$4\pi\beta$ (PC or LS) $-\gamma$ coinc. with tracer;		SIR β effic. curve	
					$4\pi\beta(LS)$		Extended SIR ?	
							Measurement of $T_{1/2}$	
⁵⁴ Mn 312	312.	9	Ge calibration	23/3	$4\pi (x,e_A)(PC \text{ or } LS) -\gamma \text{ coinc.};$	Low-energy x rays		
					4π (x,e _A) LS	LS calculations for EC		
⁸⁵ Sr	64.8	9	Ge calibration	18	$4\pi (x,e_A)(PC \text{ or } LS) -\gamma \text{ coinc.};$	1 µs metastable state	Measurement of p_{γ}	
					4π (x,e _A) LS	LS calculations for EC		
⁶⁵ Zn	244.	8	Ge calibration	13	$4\pi (x,e_A)(PC \text{ or } LS) -\gamma \text{ coinc.}; 4\pi (x,e_A) LS$	Low-energy x rays	Measurement of p_{γ}	
						LS calculations for EC		
						Weak β^+ branch		
¹⁹² Ir 74.0		8	Medical use	11	$4\pi\beta$ (PC) $-\gamma$ coinc.; $4\pi\gamma$ (well-NaI);	Complex decay-scheme	Dispersion of 0.7 % in	
					$4\pi\beta(PC) - 4\pi\gamma$ coinc.; $4\pi\beta\gamma$ (CsI); $4\pi\beta(LS)$		the trial comp.	
¹¹¹ In 2.	2.80	7+	Medical use	8 / 1	$4\pi (x,e_A)(PC \text{ or } LS) -\gamma \text{ coinc.}; 4\pi (x,e_A) LS; \gamma-\gamma \text{ coinc.}; sum peak$	Short half life	¹¹⁴ In ^m impurity	
						LS calculations for EC		
²⁰¹ Tl	3.04	7	Medical use	10 / 1	$4\pi (x,e_A)(PC \text{ or } LS) -\gamma \text{ coinc.}; 4\pi (x,e_A) LS$	Short half life	²⁰² Tl impurity	
						LS calculations for EC	Meas. of p_{γ} and $T_{1/2}$	
⁸⁸ Y	107.	6	Ge calibration	24 / 1	$4\pi (x,e_A)(PC \text{ or } LS) -\gamma \text{ coinc.}; 4\pi (x,e_A) LS;$	LS calculations for EC	Measurement of p_{γ}	
					γ–γ coinc.; sum peak			
¹³⁹ Ce	138.	6	Ge calibration	16 / 1	$4\pi (x,e_A)(PC \text{ or } LS) -\gamma \text{ coinc.}; 4\pi (x,e_A) LS$	LS calculations for EC		
²⁰³ Hg	46.6	6	Ge calibration	12 / 1	$4\pi\beta$ (PC or LS) $-\gamma$ coinc.; $4\pi\beta$ (LS)			