

A COMPARISON IN CONVENTIONAL MASS MEASUREMENTS SIM.M.M-S6 – FINAL REPORT

Francisco García¹, Orlando Pinzón², Saúl García², Raúl Hernández¹, Fernando Leyton¹ ¹CESMEC-LCPN-M (Red Nacional de Metrología), Centro de Estudios, Medición y Certificación de Calidad, CESMEC S.A., Av. Marathon 2595, 781-0552 Macul, Chile, Phone: 56-2-3502185. fgarcia@cesmec.cl; rhernandez@cesmec.cl; fleyton@cesmec.cl

²Centro Nacional de Metrología de Panamá AIP, Edificio 215, Ciudad del Saber, Clayton, Ciudad de Panamá, República de Panamá, Phone: 507-5173100. <u>opinzon@cenamep.org.pa</u>;

Abstract: The present document reports the results of a bilateral comparison in the calibration of mass standards that was carried out between CESMEC (Chile) and CENAMEP AIP (Panamá).

This comparison was carried out in the following nominal values:

200 mg, 1 g, 50 g, 200 g, 1 kg, 2 kg, and 10 kg.

1. INTRODUCTION

In July 2009 CENAMEP AIP and CESMEC agreed to execute a bilateral within the CIPM MRA Appendix B [1,2] framework.

A measurement protocol was agreed [3] and reported to the SIM Mass & Related Quantities Metrology Working Group on September 2009. The SIM.M.M-S6 code was assigned [1].

2. COMPARISON PROCESS

2.1. General Guidelines

The following relevant aspects were stated in the protocol:

- Measurements were done after the acclimatization time as specified in [3] for class E₁.
- The participating laboratories measured the conventional mass of the artifacts according to [3].
- No washing was performed. Before measurements, dust particles were removed from the surface of the standard by a soft brush.
- All weighing were performed in air. Uncertainties were estimated and combined according to [4] and the specific requirements of [3].
- The standards were transported by a courier service.
- Measurement method was direct comparison to a reference weight of the same nominal value with a buoyancy correction applied.

2.2. Comparison Objects

The test objects have the nominal values and densities stated in Table 1.

Nominal Value	Density	Expanded uncertainty of the density value (k = 2)		
10 kg	7950	140		
2 kg	7950	140		
1 kg	7950	140		
200 g	7950	140		
50 g	7950	140		
1 g	7950	140		
200 mg	8600	170		

 Table 1. Density of the comparison objects.

The weights were manufactured by Häfner Gewichte GmbH and their magnetic properties were measured by CESMEC using method B.6.4 of [3]. It was confirmed that the magnetic properties met the requirements for OIML Class E_2 [3].

The weights are always sold by the manufacturer with their conventional mass values within tolerance and in order to make this comparison more challenging to the participant laboratories, some of them were adjusted at the mechanical workshop of CESMEC.

2.2 Comparison round

The circulation of the weights was done in one way, that means, no measurements were executed to estimate the drift of the weights. However, there is evidence that shows that at the measurement uncertainty levels of the participant laboratories there is not significant effect due to travel conditions [5,6,7].

standards.				
Laboratory/ Country	Institute that calibrated the standards used for this comparison	Last calibration date		
CESMEC S.A. / Chile	РТВ	2007-05		
CENAMEP AIP / Panamá	INTI (10 kg) NIST (200 mg- 2 kg)	2008-09 (10 kg) 2008-05 (200 mg - 2 kg)		

Table 2. Participant laboratories and measurementstandards.

3. RESULTS

Results as reported by each laboratory for each nominal value and the expanded uncertainty (k = 2) are presented in Table 3.

Laboratory	Conventional mass value	Expanded Uncertainty of the conventional mass value ($k = 2$)	Measurement date
CENAMEP	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	16 mg 3,0 mg 0,5 mg 0,10 mg 0,03 mg 0,010 mg 0,006 mg	2010-03 2010-03 2010-03 2010-03 2010-03 2010-03 2010-05
CESMEC (Pilot)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	16 mg 3,0 mg 0,5 mg 0,10 mg 0,03 mg 0,010 mg 0,006 mg	2009-08 2009-08 2009-08 2009-08 2009-08 2009-08 2010-05

 Table 3. Results as reported by each participant on July 2,2010

This report was submitted for publication to a metrology congress. On August 17, 2010, at the end of the review process, one referee noticed that the uncertainty contribution of each variable $\left|\frac{\partial m_{ct}}{\partial x_i}u(x_i)\right|$ was different from one laboratory to the other, although the standards and comparators were similar (ANNEX A). The Pilot laboratory reviewed the records and in August 2020 found that there was a mistake in its own calculations that was due to a bad selection of the test weights material, Figure 1; instead of "stainless steel",

"German silver" was selected or "stainless" was not selected. The Pilot Laboratory will apply the "non-conforming" work procedure.

	•	B	2	D	-	-	0	
4	A	В	C	D	E	F	G	Н
	Cliente:	CENTRO NACI	ONAL DE	Orden de Trabajo:	Fecha de calibración:	Sello de Calibración:	N° de Muestra	Intercomparación
_	Customer	METROLOCIA	DE DANIARA	Order number	Calibration date	Stamp		
	Atención:	Saúl García		347022	18-08-2009	1118	N° de certificado:	1118
,							a	
-	Dirocción	E 11 1 1 045 01					Certificate number	
	Direction:	Edicicio 215, Ci	udad del Saber,					
3		Zona 5 Clayton						
				Objeto:			Fecha de emisión:	2009-09-03
Ł				Object:	Set de pesas de 200 mg a	10 kg	Date of Issue:	
5				Informaciór	ı general del calibrand	o		
;	Valor nominal Nominal Value				Forma	Material	Modelo Type	N° de Serie Serial Number
,	Mínimo Máximo		imo			8.XKOB-240	2111108	
3	Valor	Unidad	Valor	Unidad			Fabricante Manufacturer	Código interno Internal code
)	200	mg	200,00	mg	Alambre poligonal Alambre poligonal Alambre poligonal	Plata alemana 🔥 Bronce 🔤	Häfner Gewichte GmbH	N.A.
0	1	g	10,00	kg	Alambre poligonal Cilíndrica	Plata alemana Bronce		Clase metrológica a considerar en la verificación
1					Alambre poligonal Alambre poligonal	Plata alemana Bronce		E1 ^ E2 F1 V
2					Alambre poligonal Cilíndrica Lámina poligonal	Acero al carbón Hierro Hierro fundido blanc		E2

Figure 1

After selecting the right material for the test weights (and using the right density values) the new mass values are those given in Table 4.

Table 4. Corrected Pilot results

Laboratory	Conventional mass value	Expanded Uncertainty of the conventional mass value $(k = 2)$	Measureme nt date
CENAMEP	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	16 mg 3,0 mg 0,5 mg 0,10 mg 0,03 mg 0,010 mg 0,006 mg	2010-03 2010-03 2010-03 2010-03 2010-03 2010-03 2010-05
CESMEC (Pilot)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	16 mg 3,0 mg 0,5 mg 0,10 mg 0,03 mg 0,010 mg 0,006 mg	2009-08 2009-08 2009-08 2009-08 2009-08 2009-08 2010-05

4. **DISCUSSION**

The degrees of equivalence are given by the pair of value: d_{ij} and $U(d_{ij})$ where:

$$d_{ij} = m_{\rm ct}^{(i)} - m_{\rm ct}^{(j)}$$
(1)

 $m_{
m ct}^{(i)}$ is the conventional mass value of the test weight determined by the laboratory ~i

i = p for CENAMEP, Panamá.

i = c for CESMEC, Chile and

$$U(d_{ij}) = 2\sqrt{\left(u^2(m_{ct}^{(c)}) + u^2(m_{ct}^{(p)})\right)}$$
(2)

Where $u(m_{ct}^{(c)})$ and $u(m_{ct}^{(p)})$ represent the uncertainty of the conventional mass of the equipment under test determined by Chile and Panamá respectively.

And the level of measurement agreement is given by the quotient E_n ,

$$E_n = \frac{d_{ij}}{U(d_{ij})} \tag{3}$$

which is also called normalized error:

Table 5 contains the values of degrees of equivalence (E_n) and levels of measurement agreement among participants that can be obtained from Table 3. For all nominal values $|E_n| \le 1$, except for 1 kg and 200 g (note that the high E_n here are due to the error noted In Section 3 above).

Nominal	d_{ij}	$U(d_{ii})/mg$	E_n
Value	mg		
10 kg	-7	17	-0,4
2 kg	-2,1	3,2	-0,7
1 kg	-0,8	0,7	-1,1
200 g	-0,15	0,14	-1,1
50 g	-0,04	0,04	-0,9
1 g	-0,002	0,014	-0,1
200 mg	-0,002	0,008	-0,2

Table 5. Degrees of equivalence and levels ofmeasurement agreement from Table 3.

Table 6 contains the corrected values for the degrees of equivalence and levels of measurement agreement among participants that can be obtained from Table 4. For all nominal values $|E_n| \le 1$,

Nominal	d_{ii} / mg $U(d_{ii})$ / mg		E_n	
Value	-			
10 kg	0	17	0,0	
2 kg	-0,6	3,2	-0,2	
1 kg	-0,1	0,7	-0,1	
200 g	-0,00	0,14	0,0	
50 g	0,00	0,04	0,0	
1 g	-0,002	0,014	-0,1	
200 mg	-0,002	0,008	-0,2	

Table 6. Degrees of equivalence and levels of measurement agreement from Table 4.

5. CONCLUSIONS

It is possible to conclude that this comparison results support CENAMEP's current CMCs declaration in the KCDB [9]. Also provides evidence that CENAMEP is able to reach confident results with smaller uncertainties than those currently declared in the KCDB [9] and CENAMEP may consider expanding the scope of its CMC to include a declaration at 10 kg.

REFERENCES

- [1]International Committee for Weights and Measures. Key and supplementary comparisons. CIPM MRA Appendix B. Available at http://kcdb.bipm.org/AppendixB/.
- [2]International Committee for Weights and Measures. Mutual Recognition Arrangement. October 14, 1999. http://www.bipm.org/utils/en/pdf/mra_2003.pdf.
- [3]International Organization of Legal Metrology. Weights of classes E₁, E₂, F₁, F₂, M₁, M₁₋₂, M₂, M₂₋₃ and M₃ Part 1: Metrological and technical requirements. OIML Publications. [Online] [Cited: July 23, 2009.] http://www.oiml.org/publications/R/R111-1-e04.pdf. OIML R 111-1 Edition 2004 (E).
- [4]Bureau International des Poids et Mesures. Evaluation of measurement data Guide to the expression of uncertainty in measurement. Guides in Metrology. http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf. JCGM 100:2008.
- [5] "A Comparison in Conventional Mass Measurements Between SENCAMER (Venezuela) and CESMEC-LCPN-M (Chile). F. García, Elías Salazar, Raúl Hernández, Luis Rojas, Haygas Kalustian, Fernando Leyton. 4, s.l.: NCSL INTERNATIONAL, 2007, MEASURE, Vol. 2, págs. 60-64.
- [6] Print errata for "A Comparison in Conventional Mass Measurements Between SENCAMER (Venezuela) and CESMEC-LCPN-M (Chile). F. García, Elías Salazar, Raúl Hernández, Luis Rojas, Haygas Kalustian, Fernando Leyton. 1, s.I: NCSL INTERNATIONAL, 2008, MEASURE, Vol. 3, pág. 3.
- [7] J. Nava et al, Interlaboratory Mass Comparison Between Laboratories Belonging to SIM –Sub-Regions Coordinated by CENAM (SIM.7.31a & SIM.7.31b), Simposio de Metrología 2006 Proceedings, CENAM, México. Available at http://www.cenam.mx/memsimp06/index.htm

- [8]International Committee for Weights and Measures. Key and supplementary comparisons. CIPM MRA Appendix C. Available at: http://kcdb.bipm.org/AppendixC/M/CL/M_CL.pdf
- [9]International Committee for Weights and Measures. Key and supplementary comparisons. CIPM MRA Appendix C. Available at: http://kcdb.bipm.org/AppendixC/M/PA/M_PA.pdf