Report on the APMP key comparison of hydrometer calibrations

APMP.M.D-K4

Final report

7 March 2023

K.-C. Lee¹, Y. J. Lee¹, F. Inoue², K. Toda², K. Fujii², Fazrul Mohd Nor³, V. Tulasombut⁴, R. Steyn⁵, K. Fen⁶, C. Sutton⁷, G. Mandal⁸, C. Xu⁹, Marilyn C. Fos¹⁰, Renanta Hayu¹¹

¹ KRISS, Rep. of Korea
 ² NMIJ, Japan
 ³ NMIM, Malaysia
 ⁴ NIMT, Thailand
 ⁵ NMISA, South Africa
 ⁶ NMIA, Australia
 ⁷ MSL, New Zealand
 ⁸ NPLI, India
 ⁹ NIM, China
 ¹⁰ NMLPHIL, Philippines
 ¹¹ SNSU-BSN, Indonesia

Table of Contents

3
3
3
5
5
6
6
6
10
15
15
15
16

Abstract

This report describes the APMP key comparison on the hydrometer calibrations, APMP.M.D-K4. This comparison is an APMP regional key comparison of CIPM key comparison CCM.D-K4.

Three hydrometers in the density range from 640 kg m⁻³ and 1 320 kg m⁻³ were used as travelling standards. Each hydrometer has a nominal density range of 20 kg m⁻³ with a scale division of 0.2 kg m⁻³. Eleven laboratories participated in this comparison. All laboratories except NMISA are from APMP. NMISA from AFRIMETS is also an APMP associate member.

Each participant reported the results of hydrometer calibration using Cuckow's method. The reference temperature for the hydrometer calibration was 20 °C and the surface tension of the reference liquid was given in the protocol for this comparison. KRISS and NMIJ acted as pilot and coordinating laboratories.

The measurement was performed between July 2008 and April 2010. The report from participant was completed in February 2012. The results of this comparison were linked to CCM.D-K4 through the results of KRISS, NMIJ, and NMIA

NPLI, SNSU-BSN, and NMISA withdrew their results while preparing Draft A report of this comparison. The results of two participants, MSL and NIM, were inconsistent. However, because it has been more than 10 years since the measurements were completed, it is difficult to determine that the results reflect the current measurement capabilities of the two participants.

1 Introduction

This comparison is the APMP key comparison of the CIPM comparison CCM.D-K4 [1]. KRISS and NMIJ organized this key comparison as pilot and coordinating laboratories.

The transfer standards involved in the CIPM key comparison CCM.D-K4 were hydrometers in the range between 600 kg m⁻³ and 2 000 kg m⁻³. The measurements were performed from January 2011 to April 2012. The final report was published in 2016.

The main purpose of this APMP key comparison was to compare the experimental results and uncertainty calculations in calibrating hydrometers in the range from 640 kg m⁻³ and 1 320 kg m⁻³ and to link the results with the results in the CIPM key comparison CCM.D-K4.

The measurement of this comparison was performed from July 2008 to April 2010. Three laboratories KRISS, NMIJ, and NMIA participated in CCM.D-K4 acted as linking laboratories. The protocol was essentially equivalent to the protocol of CCM.D-K4.

2 Participants and schedule

Table 1 shows the participants in this comparison and contact persons. Eleven laboratories took part in the comparison. All laboratories except NMISA are from APMP. NMISA from AFRIMETS is an APMP associate member.

Table 2 shows the circulation scheme. Measurement was performed from July 2008 to April 2010. Final report from participant was received at February 2012.

At the beginning of this comparison, it was planned to deliver the travelling standards to the following NMI by a courier service. However, there was a problem that the travelling standards were broken twice during

delivery. In order to prevent any further delay and safely transport the travelling standards, it has been changed to deliver the travelling standards by hand-carry. The cost and time required to travel long distances was a challenge in this comparison. Considering the travelling standards were successfully circulated by a courier service in CCM.D-K4 and other regional comparisons, shipping can be chosen as a delivery method in the next APMP comparisons [1-5].

During the preparation of Draft A report of this comparison, NPLI withdrew the results in 2022, SNSU-BSN and NMISA in 2023.

Institute	Contact person(s)
KRISS, Rep. of Korea	Kwang-Cheol Lee
	Yong Jae Lee
NMIJ, Japan	Futoshi Inoue
	Kunihiko Toda
	Kenichi Fujii (coordinator)
NMIM, Malaysia	Fazrul Mohd Nor
NIMT, Thailand	Chompoonoot Hirunyapruk
	Veera Tulasombut
	Tosapon Pangviwate
NMISA, South Africa	Ronél Steyn
NMIA, Australia	Kitty Fen
MSL, New Zealand	Yin Hsien Fung
	Chris Sutton
NPLI, India	Goutam Mandal
NIM, China	Jintao Wang
	Changhong Xu
NMLPHIL, Philippines	Jose Marco Latosa
	Marilyn C. Fos
SNSU-BSN, Indonesia	Renanta Hayu

Table 1 Participants of APMP.M.D-K4.

Table 2 Circulation scheme.

Institute	Arrival date	Departure date	Report date
KRISS-1	-	Sep. 1, 2008	July 22, 2008
NMIJ	Sep. 1, 2008	Oct. 16, 2008	Oct. 27, 2008
NMIM	Oct. 16, 2008	Dec. 06, 2008	Dec. 31, 2008
NIMT	Dec. 08, 2008	Dec. 13, 2008	Dec. 13, 2008
KRISS-2	Dec. 13, 2008	Mar. 02, 2009	Feb. 26, 2009
NMISA	Mar. 04, 2009	Apr. 14, 2009	-
NMIA	Apr. 14, 2009	May 29, 2009	July 03, 2009
MSL	May 29, 2009	Aug. 14, 2009	Sep. 30, 2009
KRISS-3	Aug. 14, 2009	Sep. 10, 2009	Aug. 23, 2009
NPLI	Sep. 11, 2009	Nov. 14, 2009	-
NIM	Nov. 15, 2009	Jan. 25, 2010	Aug. 13, 2010
NMLPHIL	Jan. 26, 2010	Feb. 24, 2010	Mar. 15, 2010
SNSU-BSN	Feb. 25, 2010	Apr. 28, 2010	-
KRISS-4	Apr. 28, 2010	-	Feb. 06, 2012

3 Transfer standards

Table 3 shows details of travelling standards. Three hydrometers in the density range between 640 kg m⁻³ and 1 320 kg m⁻³ were chosen as travelling standards for this comparison. Each hydrometer has a nominal density range of 20 kg m⁻³ with a scale division of 0.2 kg m⁻³. KRISS provided the three travelling standards.

Range	Serial	Scale division	Mass Total length		Stem diameter	
/ (kg m ⁻³)	number	/ (kg m⁻³)	/ g	/ mm	/ mm	
640 — 660	060124	0.2	99	348	7	
980 — 1 000	060136	0.2	151	346	6	
1 300 — 1 320	060140	0.2	191	349	5	

Table 3 Hydrometers.

4 Comparison protocol

In a hydrometer calibration, the measurand is the correction C evaluated at each calibration point.

$$C = \rho_x - \rho_r \tag{1}$$

Here, ρ_x is the density of the buoyant reference liquid at the reference temperature in which the hydrometer would freely float at the scale mark ρ_r .

In this comparison, the results had to be given at the reference temperature of 20 °C. The cubic expansion coefficient for all hydrometers was assumed to be 25×10^{-6} °C⁻¹ with an uncertainty of 1×10^{-6} °C⁻¹, rectangular distribution.

Participating laboratories should use their routine calibration procedure based on Cuckow's method.

Table 4 shows the calibration points and the reference surface tension of the liquid, in which each hydrometer was intended to be used.

Table 4 Calibration points and the specified reference surface tension of the liquid, in which each hydrometer is intended to be used.

Range	Reading scale	Reference surface tension
/ (kg m ⁻³)	/ (kg m⁻³)	/ (mN m⁻¹)
	640	17
640 — 660	650	17.5
	660	18
	980	34
980 — 1 000	990	34.5
	1 000	35
	1 300	55
1 300 — 1 320	1 310	55
	1 320	55

5 Calibration method and equipment used

According to the protocol, the Cuckow's method was used by all participating NMIs. For each hydrometer, at least five weighing were performed in air and in the working liquid at each calibration point. Scale readings were matched to the liquid level when the center of the line was aligned with the horizontal liquid plane and detected with the specified visual alignment. Table A.1 in appendix shows the equipment used by participating laboratories.

6 Results of check measurements

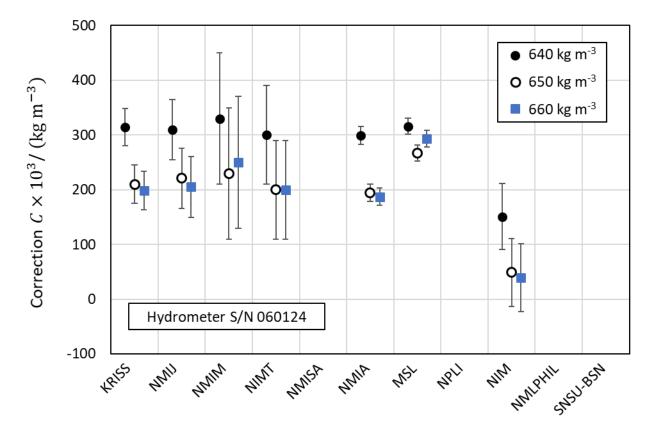
The pilot laboratory measured four times during the measurement period to check the stability of the travelling standards as shown in Table 5. The maximum difference ΔC between four measurements was comparable to the expanded uncertainty of the pilot laboratory. The KRISS values for the comparison have been calculated as mean values of the four measurements and used in the following evaluation.

Nominal value	C_1	$U_{1,95}$	<i>C</i> ₂	$U_{2,95}$	<i>C</i> ₃	U _{3,95}	C_4	U _{4,95}	ΔC
/ (kg m ⁻³)	× 10 ³ /	′ (kg m ⁻³)	× 10 ³ /	′ (kg m ⁻³)	× 10 ³ /	(kg m ⁻³)	× 10 ³ /	′ (kg m ⁻³)	× 10 ³ / (kg m ⁻³)
640	318	34	334	34	292	34	314	34	42
650	204	34	223	35	197	35	217	35	26
660	190	35	203	35	186	35	213	35	26
980	-38	37	-14	36	-43	37	-16	37	29
990	-35	37	-18	37	-32	37	-12	37	23
1 000	-64	38	-37	37	-63	38	-28	37	36
1 300	-507	48	-495	48	-508	48	-480	48	28
1 310	-497	48	-451	48	-492	49	-467	48	45
1 320	-525	48	-493	48	-525	49	-495	49	32

Table 5 KRISS results.

7 Results of participants

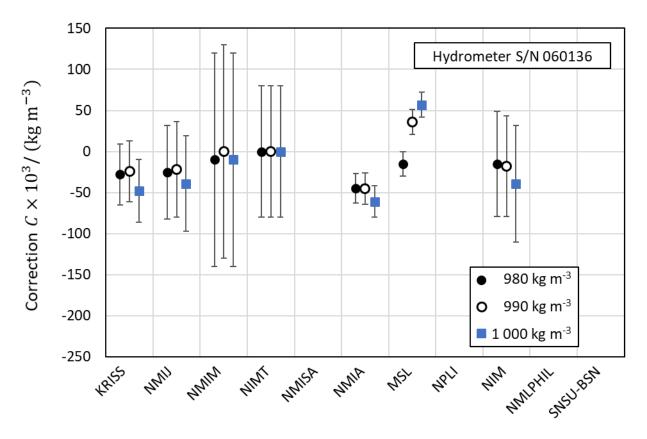
For each hydrometer, five weighing were carried out in air and in the working liquid at each calibration point. Each participant calculated the average value of the correction C at 20 °C and the standard uncertainty at the calibration point. The measurement results reported by each participant are shown from Table 6 to Table 8 and from Fig. 1 to Fig. 3.


An excel sheet was provided to all participating organizations so that they could submit the measurement uncertainty for the corrections in the same format. The *t*-factor $t_{95}(v_{eff})$ was taken from the *t*-distribution for a 95 % confidence level, where v_{eff} is the effective degrees of freedom of the combined standard uncertainty u_c . Each participant reported $U_{95} = t_{95}(v_{eff}) \cdot u_c$ as the expanded uncertainty for the corrections.

The uncertainty budget for each participant is summarized from Table A.2 to Table A.4 in appendix.

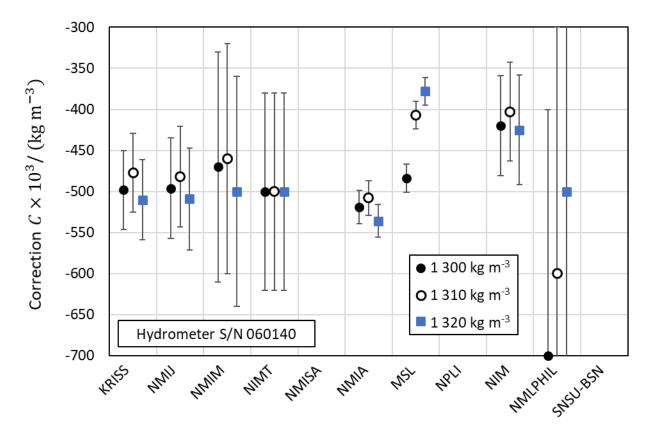
Insti	tute	ρ_r	= 640 kg	$\rho_r =$: 650 k	g m⁻³	$ ho_r=$ 660 kg m ⁻³			
		С	u_c	U_{95}	С	u _c	U_{95}	С	u _c	U_{95}
_		× 1	.0 ³ / (kg	m⁻³)	× 10)³/(kg	m⁻³)	× 10	0 ³ /(kg n	n⁻³)
	KRISS	314	17	34	210	18	35	198	18	35
	NMIJ	310	23	55	221	23	55	205	24	56
N	IMIM	330	60	120	230	60	120	250	60	120
I	NIMT	300	45	90	200	45	90	200	45	90
Ν	MISA	-	-	-	-	-	-	-	-	-
I	NMIA	299	8.0	16	194	8.1	16	187	8.0	16
	MSL	316	7.3	15	267	7.3	15	293	7.3	15
	NPLI	-	-	-	-	-	-	-	-	-
	NIM	151	31	60	49	31	62	39	31	62
NM	LPHIL	-	-	-	-	-	-	-	-	-
SNSU	J-BSN	-	-	-	-	-	-	-	-	-

Table 6 Corrections $C = \rho_{\chi} - \rho_{r}$ reported by participants for the hydrometer 060124 having range between 640 kg m⁻³ and 660 kg m⁻³.


Fig. 1 Corrections $C = \rho_{\chi} - \rho_{r}$ reported by participants for the hydrometer 060124 having range between 640 kg m⁻³ and 660 kg m⁻³.

Institu	ute	$ ho_r$	= 980 k	g m⁻³	ρ_r =	= 990 k	kg m⁻³	$ ho_r=$ 1 000 kg m ⁻³			
		С	u_c	U_{95}	С	u _c	U_{95}	С	u _c	U_{95}	
		×	10 ³ /(kg	m⁻³)	× 10	0 ³ / (kg	; m⁻³)	× 1	× 10 ³ / (kg m ⁻³)		
K	RISS	-28	19	37	-24	19	37	-48	19	38	
Ν	IMIJ	-25	26	57	-22	26	58	-39	26	58	
N	MIM	-10	65	130	0	65	130	-10	65	130	
N	IMT	0	40	80	0	40	80	0	40	80	
NN	/ISA	-	-	-	-	-	-	-	-	-	
Ν	MIA	-45	9.3	18	-45	9.6	19	-61	9.8	19	
	MSL	-15	7.6	15	36	7.6	15	57	7.6	15	
I	NPLI	-	-	-	-	-	-	-	-	-	
	NIM	-15	32	64	-18	31	61	-39	36	71	
NML	PHIL	-	-	-	-	-	-	-	-	-	
SNSU-	BSN	-	-	-	-	-	-	-	-	-	

Table 7 Corrections $C = \rho_{\chi} - \rho_{r}$ reported by participants for the hydrometer 060136 having range between 980 kg m⁻³ and 1 000 kg m⁻³.


Fig. 2 Corrections $C = \rho_{\chi} - \rho_{r}$ reported by participants for the hydrometer 060136 having range between 980 kg m⁻³ and 1 000 kg m⁻³.

Institute	$\rho_r =$	$\rho_r = 2$	$ ho_r=$ 1 310 kg m ⁻³			1 320 kg	; m⁻³		
	С	u _c	U_{95}	С	u _c	U_{95}	С	u _c	U_{95}
	× 10	³ /(kg n	n⁻³)	× 10	³ /(kg	m⁻³)	× 10	³ /(kg m	⁻³)
KRISS	-498	24	48	-477	24	48	-510	25	49
NMIJ	-496	28	61	-482	29	61	-509	29	62
NMIM	-470	69	140	-460	69	140	-500	69	140
NIMT	-500	60	120	-500	60	120	-500	60	120
NMISA	-	-	-	-	-	-	-	-	-
NMIA	-519	10	20	-508	10	21	-536	10	20
MSL	-484	8.3	17	-407	8.3	17	-378	8.4	17
NPLI	-	-	-	-	-	-	-	-	-
NIM	-420	31	61	-403	31	60	-425	34	67
NMLPHIL	-700	150	300	-600	150	300	-500	150	300
SNSU-BSN	-	-	-	-	-	-	-	-	-

Table 8 Corrections $C = \rho_x - \rho_r$ reported by participants for the hydrometer 060140 having range between 1 300 kg m⁻³ and 1 320 kg m⁻³.

Fig. 3 Corrections $C = \rho_{\chi} - \rho_{r}$ reported by participants for the hydrometer 060140 having range between 1 300 kg m⁻³ and 1 320 kg m⁻³.

8 Link to CCM.D-K4 and Degree of Equivalence

The degrees of equivalence for the participant in this comparison were calculated by linking to the KCRV of the CIPM key comparison CCM.D-K4.

Three laboratories, KRISS, NMIJ, and NMIA, which had participated in the CCM.D-K4 acted as linking laboratories. The results reported by the three laboratories in this comparison were consistent if the consistency was checked by applying a chi-squared test [6]. The weighted means \bar{C} of corrections reported by three laboratories were used as reference values in this comparison. Table 9 shows the weighted mean \bar{C} of the correction and its expanded uncertainty $U(\bar{C})$ at each calibration point.

	KRISS		NMIJ		N	MIA		
ρ_r	С	U(C)	С	U(C)	С	U(C)	Ē	$U(\bar{C})$
/ (kg m⁻³)	× 10 ³ /	(kg m⁻³)						
640	314	34	310	55	299	16	302	14
650	210	35	221	55	194	16	199	14
660	198	35	205	56	187	16	190	14
980	-28	37	-25	57	-45	18	-40	16
990	-24	37	-22	58	-45	19	-39	16
1 000	-48	38	-39	58	-61	19	-56	17
1 300	-498	48	-496	61	-519	20	-514	18
1 310	-477	48	-482	61	-508	21	-501	18
1 320	-510	49	-509	62	-536	20	-530	18

Table 9 Weighted means \overline{C} of corrections reported by linking laboratories KRISS, NMIJ, and NMIA.

In the final report of CCM.D-K4, degrees of equivalence for participants at nominal densities of 600 kg m⁻³, 1 000 kg m⁻³, 1 500 kg m⁻³, and 2 000 kg m⁻³ were given. The degree of equivalence in CCM.D-K4 at each nominal density for linking laboratories is reproduced in Table 10. Weighted mean \overline{D}_C of degrees of equivalence for linking laboratories at each nominal density in CCM.D-K4 is also shown in Table 10.

Table 10 Degrees of equivalence of linking laboratories KRISS, NMIJ, and NMIA in CCM key comparison on hydrometer CCM.D-K4 [1].

	K	RISS	I	NMIJ		MIA		
$ ho_r$	D	U(D)	D	U(D)	D	U(D)	\overline{D}_{C}	$U(\overline{D}_C)$
/ (kg m ⁻³)	× 10 ³	/ (kg m⁻³)	× 10 ³	/ (kg m⁻³)	× 10 ³ /	′ (kg m⁻³)	× 10 ³	/ (kg m ⁻³)
600	1	24	8	11	-6	8	-1	6
1 000	11	34	-6	26	-11	18	-6	14
1 500	5	51	-1	30	-9	13	-7	12
2 000	8	71	-9	54	-13	27	-10	23

The degree of equivalence for linking laboratories at each nominal density of this comparison was calculated using a numerical method. 100 000 random samples were generated by assuming a Gaussian distribution with the mean and expanded uncertainty in Table 10. The degree of equivalence at each

nominal density was calculated by using the weighted least square method. From 100 000 degrees of equivalence, mean and standard deviation at each density was obtained. Table 11 shows the degrees of equivalence for linking laboratories at each calibration point in this comparison.

The degrees of equivalence for linking laboratories were consistent when the consistency was checked by using a chi-squared test. The weighted mean \overline{D}_W of the degrees of equivalence for linking laboratories was used as the degree of equivalence for this comparison. The last two columns in Table 11 show the weighted mean \overline{D}_W of the degrees of equivalence for linking laboratories and its expanded uncertainty.

Table 11 Weighted means \overline{D}_W of degrees of equivalence for linking laboratories, KRISS, NMIJ, and NMIA, at several nominal densities. Degree of equivalence for each linking laboratory at nominal density was calculated using the weighted least square method.

	К	RISS	Ν	NMIJ		NMIA			
ρ_r	D	U(D)	D	U(D)	D	U(D)	\overline{D}_W	$U(\overline{D}_W)$	
/ (kg m⁻³)	× 10 ³	/ (kg m⁻³)	× 10 ³	/ (kg m⁻³)	× 10 ³ /	′ (kg m⁻³)	× 10 ³	$\times 10^{3}$ / (kg m ⁻³)	
600	3	22	7	11	-6	8	-1	6	
640	3	21	7	10	-6	7	-2	6	
650	3	21	7	10	-6	7	-2	6	
660	3	20	6	10	-7	7	-2	6	
980	5	18	2	11	-8	6	-5	5	
990	5	18	2	11	-8	6	-5	5	
1 000	5	18	2	11	-8	6	-5	5	
1 300	7	24	-2	17	-9	8	-7	7	
1 310	7	25	-2	17	-9	8	-7	7	
1 320	7	25	-2	17	-9	8	-7	7	
1 500	8	31	-5	21	-10	10	-8	9	
2 000	11	50	-11	34	-12	16	-10	14	

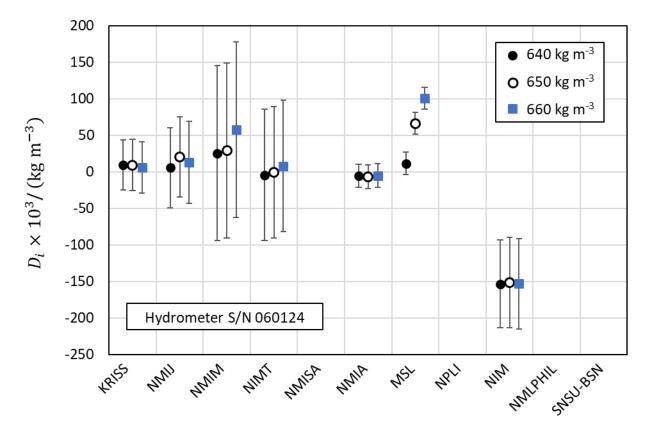
The degree of equivalence D_i for each participant in this comparison is the difference of the correction reported by the participant from reference values calculated using results from linking laboratories as following.

(2)

(3)

$$D_i = C_i - \bar{C} + \bar{D}_W$$

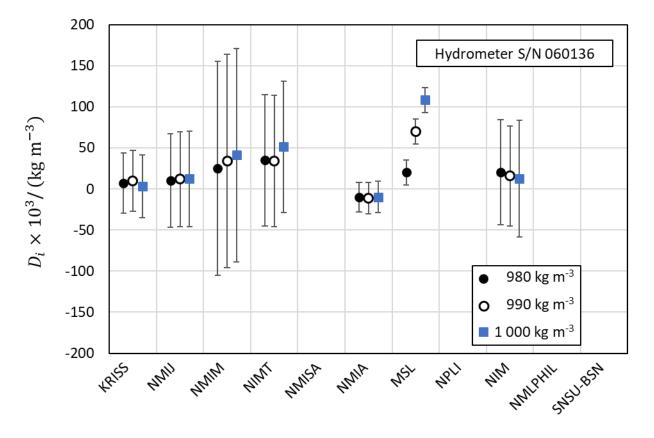
The expanded uncertainty $U(D_i) = 2u(D_i)$ and the standard uncertainty $u(D_i)$ is calculated as


$$u(D_i) = \sqrt{u^2(C_i) + u^2(\overline{C}) + u^2(\overline{D}_W)}$$

The degree of equivalence D_i , the expanded uncertainty of the degree of equivalence $U(D_i)$, and normalized error $E_n = D_i/U(D_i)$ for each participant are shown from Table 12 to Table 14 and from Fig. 4 to Fig. 6.

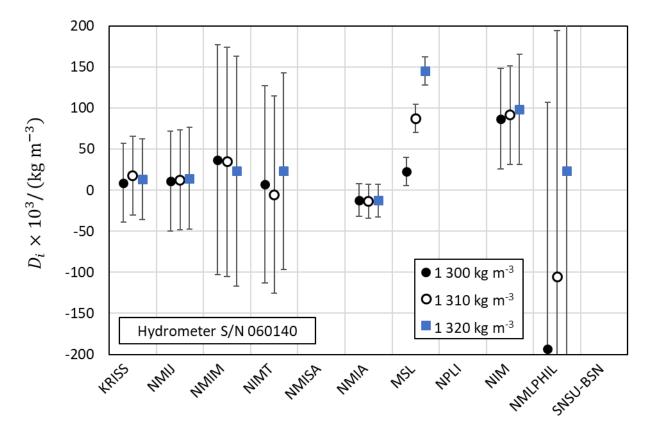
Institute	$ ho_r$:	= 640 kg ı	m⁻³	ρ_r =	= 650 kg	m⁻³	ρ_r =	= 660 kg n	n⁻³
	D	U(D)	E_n	D	U(D)	E_n	D	U(D)	E_n
	× 1	.0 ³ / (kg m	-3)	× 1	0 ³ /(kg n	n⁻³)	× 1	0 ³ / (kg m ⁻	³)
KRISS	10	37	0.3	9	38	0.2	6	38	0.2
NMIJ	6	57	0.1	20	57	0.4	13	58	0.2
NMIM	26	121	0.2	29	121	0.2	58	121	0.5
NIMT	-4	91	0.0	-1	91	0.0	8	91	0.1
NMISA	-	-	-	-	-	-	-	-	-
NMIA	-5	22	-0.2	-7	22	-0.3	-5	22	-0.2
MSL	12	21	0.5	66	21	3.1	101	21	4.7
NPLI	-	-	-	-	-	-	-	-	-
NIM	-153	62	-2.5	-152	64	-2.4	-153	64	-2.4
NMLPHIL	-	-	-	-	-	-	-	-	-
SNSU-BSN	-	-	-	-	-	-	-	-	-

Table 12 Degrees of equivalence for all participants in the APMP.M.D-K4 identified by the hydrometer 060124 having range between 640 kg m⁻³ and 660 kg m⁻³.


Fig. 4 Degrees of equivalence for all participants in the APMP.M.D-K4 identified by the hydrometer 060124 having range between 640 kg m⁻³ and 660 kg m⁻³.

Institute	ρ_r	= 980 kg	m⁻³	$ ho_r$	= 990 kg	; m⁻³	ρ_r =	= 1 000 kg	m⁻³
	D	U(D)	E_n	D	U(D)	E_n	D	U(D)	E_n
	×	10 ³ / (kg m	⁻³)	× 1	10³ / (kg r	n⁻³)	×	10 ³ / (kg m ⁻	⁻³)
KRISS	7	41	0.2	10	41	0.2	3	42	0.1
NMIJ	10	59	0.2	12	60	0.2	12	61	0.2
NMIM	25	131	0.2	34	131	0.3	41	131	0.3
NIMT	35	82	0.4	34	82	0.4	51	82	0.6
NMISA	-	-	-	-	-	-	-	-	-
NMIA	-10	25	-0.4	-11	26	-0.4	-10	26	-0.4
MSL	20	22	0.9	70	23	3.1	108	23	4.7
NPLI	-	-	-	-	-	-	-	-	-
NIM	20	66	0.3	16	63	0.3	12	73	0.2
NMLPHIL	-	-	-	-	-	-	-	-	-
SNSU-BSN	-	-	-	-	-	-	-	-	-

Table 13 Degrees of equivalence for all participants in the APMP.M.D-K4 identified by the hydrometer 060136 having range between 980 kg m⁻³ and 1 000 kg m⁻³.


Fig. 5 Degrees of equivalence for all participants in the APMP.M.D-K4 identified by the hydrometer 060136 having range between 980 kg m⁻³ and 1 000 kg m⁻³.

Institute	$\rho_r =$	= 1 300 kg	m⁻³	$\rho_r =$	1 310 k	g m⁻³	ρ_r =	= 1 320 kg	m⁻³
	D	U(D)	E_n	D	U(D)	E_n	D	U(D)	E_n
	× 1	.0³ / (kg m	⁻³)	× 1	0 ³ / (kg n	n⁻³)	×	10 ³ / (kg m [·]	^{.3})
KRISS	9	52	0.2	17	52	0.3	13	53	0.3
NMIJ	11	64	0.2	12	64	0.2	14	65	0.2
NMIM	37	141	0.3	34	141	0.2	23	141	0.2
NIMT	7	121	0.1	-6	121	0.0	23	121	0.2
NMISA	-	-	-	-	-	-	-	-	-
NMIA	-12	28	-0.4	-14	28	-0.5	-13	28	-0.5
MSL	23	25	0.9	87	25	3.4	145	26	5.7
NPLI	-	-	-	-	-	-	-	-	-
NIM	87	64	1.4	91	63	1.5	98	70	1.4
NMLPHIL	-193	301	-0.6	-106	301	-0.4	23	301	0.1
SNSU-BSN	-	-	-	-	-	-	-	-	-

Table 14 Degrees of equivalence for all participants in the APMP.M.D-K4 identified by the hydrometer 060140 having range between 1 300 kg m⁻³ and 1 320 kg m⁻³.

Fig. 6 Degrees of equivalence for all participants in the APMP.M.D-K4 identified by the hydrometer 060140 having range between 1 300 kg m⁻³ and 1 320 kg m⁻³.

9 Conclusions

This comparison on calibration of high-resolution hydrometer is the APMP regional key comparison of the CIPM comparison CCM.D-K4. The three hydrometers with a density range between 640 kg m⁻³ and 1 320 kg m⁻³ was used as travelling standards. Each hydrometer has a nominal range of 20 kg m⁻³ with a scale division of 0.2 kg m⁻³.

The measurement was performed from July 2008 to April 2010. Final report from participant was in February 2012. Eleven NMIs participated in this comparison. Three laboratories, NPLI, SNSU-BSN, and NMISA, withdrew their results during preparation of the first draft, Draft A.

The results of the comparison were linked to the results of CCM.D-K4 through results of three linking laboratories, KRISS, NMIJ, and NMIA. The results of three linking laboratories were consistent when the consistency was checked by applying a chi-squared test.

The results from two laboratories, MSL and NIM, disagreed at least one calibration point. However, because the measurement was performed more than ten years ago, it is difficult to judge that the result of this comparison shows the current measurement capability of the institution if it has performed efforts to improve the equipment and measurement method.

10 Acknowledgements

The authors would like to acknowledge the kind assistance of all the colleagues in the participating laboratories for helping this comparison to complete successfully. We thank our colleagues who delivered the transfer standards voluntarily to the next participant.

References

[1] S. Lorefice, et al., "CCM key comparison CCM.D-K4 'Hydrometer'", Metrologia 53 (2016) 07003

- [2] S. Lorefice and L. O. Becerra, "Supplement to CCM.D-K4 'Hydrometer' report: linkage of EURAMET.M.D-K4 comparison, SIM.M.D-K4 comparison and the supplementary SIM.M.D-S2 to CCM.D-K4 'Hydrometer'", Metrologia 54 (2017) 07011
- [3] A. Malengo, et al., "EURAMET key comparison EURAMET.M.D-K4.2020: hydrometer calibration comparison from 600 kg/m³ to 2 000 kg/m³", Metrologia 59 (2022) 07005
- [4] S. Lorefice, *et al.*, "EURAMET.M.D-K4/EUROMET project 702: comparison of the calibrations of high-resolution hydrometers for liquid density determinations", *Metrologia* **45** (2008) 07008
- [5] L. O. Becerra, "Final report of comparison of the calibrations of hydrometers for liquid density determination between SIM laboratories SIM.M.D-K4", *Metrologia* **46** (2009) 07007
- [6] M. G. Cox, "The evaluation of key comparison data", Metrologia 39 (2002) 589-595

Appendix

Table A.1 Equipment.

Item	KRISS	NMIJ	NMIM	NIMT	NMIA	MSL	NIM	NMLPHIL
Balance used fo	r weighing in ai	r						
capacity/g	405	520	310	500	1 000/160	205	210	5 100
Resolution/mg	0.1	0.1	0.1	0.1	0.1/0.01	0.1	0.01	1
Balance used fo	r weighing in lic	quid						
capacity/g	230	2 300	310	500	205	205	210	200
Resolution/mg	0.01	0.1	0.1	0.1	0.01	0.1	0.01	0.1
Thermometer fo	or liquid temper	rature	·		·	·		
Resolution/mK	1	1	10	1	2.6	1	1	100
Instruments	Pt 100 Ω ASL F300	Pt 100 Ω ASL F200	ASL F250	ASL F200	Pt 100 Ω HP3458A	Pt 100 Ω ASL F250		Hart
Buoyant liquid	n-Tridecane	n-Tridecane	n-Tridecane	n-Tridecane	n-Nonane	Water- triton	Ethanol	Distilled wate
Alignment	CCD camera manual	Magnifier manual	Eye manual	CCD camera manual	Optical lens manual	Eye manual		

Table A.2 Uncertainty budget reported by participants for the hydrometer 060124 having range between 640 kg m⁻³ and 660 kg m⁻³.

					Val	ue / (10 ⁻³	³ kg m ⁻³)			
Uncertainty sources	KRISS	NMIJ	NMIM	NIMT	NMISA	NMIA	MSL	NPLI	NIM	NMLPHIL	SNSU-BSN
Weighing in air	0.04	0.11	0.40	2.23		0.03	0.32		0.22		
Weighing in liquid	2.75	1.72	0.40	4.04		0.52	0.28		4.48		
Additional weights	0.69	0.65	3.30	2.57		0.52	0.19		2.31		
Volumetric thermal expansion coefficient of hydrometer	0.01	0.02	0.00	1.52		0.03	0.15		0.00		
Stem diameter	0.14	0.09	0.06	1.79		0.11	0.12		0.03		
Air density	0.13	0.62	0.48	3.42		0.01	0.49		0.23		
Liquid density	8.67	5.14	18.02	14.91		2.60	3.18		6.81		
Liquid temperature	0.36	4.05	0.16	5.21		0.32	0.61		0.04		
Surface tension of liquid	6.19	3.73	2.70	10.39		2.50	0.94		0.60		
Gravitational acceleration	0.00	0.07		1.82		0.00	0.00		0.00		
Reading error	8.00	7.04	58.00	2.98		7.00			28.90		
Repeatability	10.00	20.00	1.20	1.82		1.10	6.40		2.21		
Weighing value of suspension		5.50		0.74							
Combined standard uncertainty (k=1)	17	23	61	45		8.0	7.3		31		
Expanded uncertainty U_{95}	34	55	120	90		16	15		60		

Table A.3 Uncertainty budget reported by participants for the hydrometer 060136 having range between 980 kg m⁻³ and 1 000 kg m⁻³.

					Valı	ue / (10 ⁻³	³ kg m ⁻³)			
Uncertainty sources	KRISS	NMIJ	NMIM	NIMT	NMISA	NMIA	MSL	NPLI	NIM	NMLPHIL	SNSU-BSN
Weighing in air	0.40	0.21	0.78	1.91		0.17	0.01		0.26		
Weighing in liquid	4.68	2.65	0.40	2.32		0.77	0.48		7.76		
Additional weights				1.11			0.28				
Volumetric thermal expansion coefficient of hydrometer	0.02	0.05	0.00	1.56		0.03	0.10		0.00		
Stem diameter	0.11	0.00	0.01	1.10		0.04	0.02		0.13		
Air density	0.40	1.18	0.91	2.22		0.04	0.02		0.29		
Liquid density	10.32	7.87	27.99	18.91		3.80	4.65		9.43		
Liquid temperature	0.57	6.21	0.24	11.87		0.49	1.04		0.05		
Surface tension of liquid	8.65	4.72	3.46	6.22		4.20	1.19		0.75		
Gravitational acceleration	0.00	0.00		1.00		0.00	0.00		0.00		
Reading error	8.00	7.32	57.74	0.27		7.00			28.90		
Repeatability	10.00	20.00	6.32	1.56		2.05	5.70		5.59		
Weighing value of suspension		8.53		3.28							
Combined standard uncertainty (k=1)	19	26	65	40		9.3	7.6		32		
Expanded uncertainty U_{95}	38	57	130	80		18	15		64		

Table A.4 Uncertainty budget reported by participants for the hydrometer 060140 having range between 1 300 kg m⁻³ and 1 320 kg m⁻³.

	Value / (10 ⁻³ kg m ⁻³)										
Uncertainty sources	KRISS	NMIJ	NMIM	NIMT	NMISA	NMIA	MSL	NPLI	NIM	NMLPHIL	SNSU-BSN
Weighing in air	0.80	1.13	1.92	3.44		0.76	0.28		0.66	3.29	
Weighing in liquid	6.35	3.53	0.40	3.15		1.00	0.72		7.92	1.98	
Additional weights				1.47						1.49	
Volumetric thermal expansion coefficient of hydrometer	0.03	0.05	0.00	2.08		0.03	0.33		0.01		
Stem diameter	0.05	0.68	0.10	0.87		0.39	0.15		0.38	0.05	
Air density	0.44	2.88	2.22	4.18		0.08	0.41		0.78	0.00	
Liquid density	16.15	10.44	37.12	26.33		5.10	6.12		0.65	57.74	
Liquid temperature	0.76	8.23	0.32	14.45		0.65	1.78		0.13	0.00	
Surface tension of liquid	9.89	5.36	3.93	5.10		4.70	1.36		0.86		
Gravitational acceleration	0.00	0.11		1.52		0.00	0.00		0.00	0.01	
Reading error	8.00	7.00	57.74	0.34		7.00			28.90		
Repeatability	10.00	20.00	3.25	2.07		2.40	5.10		6.52		
Weighing value of suspension		11.51		6.77							
Combined standard uncertainty (k=1)	24	28	69	59		10	8.3		31	150	
Expanded uncertainty U_{95}	48	61	140	120		20	17		61	300	