Final report on key comparison EURAMET.M.P-K1.c in the range 0.7 MPa to 7.0 MPa of gas gauge pressure

EURAMET 1179 KC- EURAMET.M.P-K1.c

Aykurt Altıntaş¹, Ilknur Koçaş², Yasin Durgut², Joseph Bartolo³, Mercede Bergoglio⁴, Lovorka Grgec Bermanec⁵, Alen Bošnjaković⁶, Sanja Burzić⁶, Antoine Condereys⁷, Miruna Dobre⁷, Peter Farar⁸, Paul Hetherington⁹, Nieves Medina¹⁰, Wladimir Sabuga¹¹, Oliver Ott¹¹, Thomas Konczak¹¹, Ion Sandu¹², Janez Setina¹³, Dietmar Steindl¹⁴, Csilla Vámossy¹⁵, Bernard Waller¹⁶, Christian Wuethrich¹⁷, Adam Brzozowski¹⁸, Jan van Geel¹⁹, Sari Saxholm²⁰, Fredrik Arrhén²¹

- ¹ FORCE, Park Alle 345, DK-2605 Brøndby, Denmark
- ² UME, P.O. 54, TR-41470 Gebze / KOCAELI, Turkey
- ³ MCCAA-SMI, Kordin Business Incubation Center, Kordin Industrial Estate, Kordin, PLA 3000, Malta
- ⁴ INRIM, Strada delle Cacce 91, IT-10135 Torino, Italy
- ⁵ FSB-LPM, Faculty of Mechanical Engineering, Ivana Luccia 5, HR-10000 Zagreb, Croatia
- ⁶ IMBiH Institute of Metrology of Bosnia and Herzegovina, Dolina 6, 71000 Sarajevo, Bosnia and Herzegovina
- ⁷ SMD, North Gate office 05A30 Koning Albert II-laan 16 1000 Brussels Belgium
- ⁸ SMU Slovakia Institute of Metrology, Karloveská 63, SK-84255 Bratislava, Slovakia
- ⁹ NSAI NML National Metrology Laboratory, Glasnevin, Dublin 9, Ireland
- ¹⁰ CEM, Alfar 2, Tres Cantos, ES-28019 Madrid, Spain
- ¹¹ PTB, Bundesallee 100, 38116 Braunschweig, Germany
- ¹² INM, National Institute of Metrology, Sos Vitanm Barzesti 11, sect 4, RO-042122 Bucharest, Romania
- ¹³ MIRS/IMT/LMT, Lepi pot 11, SI-1000 Ljubljana, Slovenia
- ¹⁴ BEV, Arltgasse 35, AT-1160 Wien
- ¹⁵ MKEH, Magyar Kereskedelmi, Engedélyezési Hivatal, Németvölgyi út 37-39, HU-1124 Budapest, Hungary
- ¹⁶ NPL, Teddington, Middlesex, UK, TW11 0LW, United Kingdom
- ¹⁷ METAS, Lindenweg 50, CH-3003 Bern-Wabern, Switzerland
- ¹⁸ GUM, 00-139 Warsaw, 2 Elektoralna Str., Poland
- ¹⁹ VSL, Thijsseweg 11, NL-2629 JA Delft, Netherland
- ²⁰ VTT MIKES, Tekniikantie 1, FI-02151 Espoo, Finland
- ²¹ RISE, Box 857, SE-501 15 Borås, Sweden

Abstract

A EURAMET key comparison of the national pressure standards in the range 0.7 MPa to 7.0 MPa of gas gauge pressure was carried out. The circulation of the transfer standard began in November 2011 and lasted until November 2016.

The measurand of the comparison was the effective area of the piston-cylinder assembly determined by gauge pressure measurements in the range from 0.7 MPa to 7.0 MPa.

As the comparison reference value, the weighted mean of the results of the laboratories with primary pressure standards was used.

With this reference value, all the participants who delivered the results demonstrated equivalence respective to the reference value within expanded uncertainties (k = 2) on all the range.

The results of this comparison were linked to CCM key comparison CCM.P-K1.c. Also in relation to the reference values of CCM.P-K1.c, all participants demonstrated agreement within expanded uncertainties (k = 2) at all pressure points.

Content

1		Introduction	4
2		Participants	5
3		Laboratory standards and measurements methods	6
	3.1	Pilot and co-pilot laboratory	6
	3.2	Laboratory with a link to CCM.P-K1c	7
	3.3	Laboratories with a primary definition	8
	3.4	Laboratories with a secondary definition	11
4		Transfer standard	17
5		Measurement instructions	18
	5.1	Measurement points	18
	5.2	2 Calculation of the effective area	18
6		Results	19
	6.1	Stability of the transfer standard	19
	6.2	Results of the participants	22
	6.3	Reference Values (RV)	24
	6.4	Degrees of equivalence	26
7		Linking the EURAMET.M.P-K1.c (EURAMET 1179) KC to CCM.P-K1.c KC	33
	7.1	Stability of the linking standard	33
	7.2	Linking procedure	34
8		Conclusion	42
9		References	43

1 Introduction

At EURAMET TC-M meeting in 2010, it was decided to realize a comparison in gas media and gauge mode in the range 0.7 MPa to 7.0 MPa and to establish a link to the CCM.P-K1.c. There was high interest of National Metrology Institutes (NMI) to participate in this comparison. The project would confirm the calibration and measurement capabilities of the participating laboratories.

FORCE volunteered for the role as Pilot laboratory. UME provided the transfer standard and PTB monitored the transfer standard's performance.

PTB accepted the invitation to join the key comparison in order to link it to the CCM key comparison CCM.P-K1.c.

The comparison was registered as EURAMET key comparison EURAMET.M.P-K1.c in the BIPM KCDB and as EURAMET Project 1179 in the EURAMET projects' database.

The project started with 21 participants, where three of them did not submit results, but three other participants joined during the project.

The transfer standard (TS) was a pressure balance with a piston-cylinder assembly (PCA) and masses produced by DH Instruments, USA. The quantity to be measured was the effective area of the PCA. At each calibration point, the parameter to be compared was the effective area of the piston cylinder assembly determined by each participant and corrected to 20 °C.

Unless otherwise stated, all uncertainties are standard ones with a coverage factor of k = 1.

2 Participants

The list of the participants is given with the time of the measurement in Table 1. EIM (Hellenic Institute of Metrology, Greece), NIS (National Institute of Standard, Egypt) and LCAE-CME (Central Laboratory for Testing and Analysis – Metrology Center, Tunisia) did not send any results.

Laboratory	Country	Responsible	Measurement period	Traceability
UME	Turkey	Ilknur Kocas	08-09-2011 - 14-09-2011	PTB
PTB	Germany	Wladimir Sabuga	19-10-2011 – 25-10-2011	Primary
FORCE	Denmark	Aykurt Altintas	16-11-2011 – 23-11-2011	PTB
BEV	Austria	Dietmar Steindl	14-12-2011 – 19-12-2011	PTB
SMD	Belgium	Antoine Condereys	20-02-2012 - 23-02-2012	PTB
METAS	Switzerland	Christian Wüthrich	18-01-2012 – 23-01-2012	Primary
MCCAA-SMI	Malta*	Joseph Bartolo	12-03-2012 – 21-03-2012	NIST, PTB and LNE
MIRS/IMT/LMT	Slovenia	Janez Setina	03-09-2012 - 07-09-2012	PTB
INM	Romania	Ion Sandu	16-01-2013 – 17-01-2013	PTB
MKEH	Hungary	Csilla Vámossy	11-02-2013 – 18-02-2013	PTB
CEM	Spain	Nieves Medina	26-04-2012 - 03-05-2012	Primary
UME Intermediate measurements	Turkey	Yasin Durgut	13-06-2012 – 18-06-2012	РТВ
FSB-LPM	Croatia	Lovorka Grgec Bermanec	16-07-2012 – 20-07-2012	РТВ
SMU	Slovakia	Peter Farar	05-10-2012 - 01-11-2012	Primary
IMBiH	Bosnia- Herzegovina*	Sanja Burzić	27-11-2012 – 03-12-2012	IMT
INRIM	Italy	M. Bergoglio	05-07-2013 - 12-07-2013	Primary
RISE (formerly SP)	Sweden	Fredrik Arrhén	October 2013	LNE
NPL	United Kingdom	Bernard Waller	09-12-2013 – 08-01-2014	Primary
NSAI NML	Ireland	Paul Hetherington	04-02-2014 - 10-02-2014	PTB
GUM	Poland	A. Brzozowski	04-03-2014 - 19-03-2014	PTB
VSL	Netherland	Jan van Geel	26-03-2014 - 21-04-2014	Primary
PTB Intermediate measurements	Germany	Wladimir Sabuga, Oliver Ott	05-02-2015 – 11-02-2015	Primary
VTT MIKES	Finland	Sari Saxholm	16-11-2015 - 03-12-2015	Primary
PTB Final measurements	Germany	Oliver Ott, Wladimir Sabuga	07-01-2016 - 14-01-2016	Primary
UME Final measurements	Turkey	Yasin Durgut	18-12-2016 – 24-01-2017	PTB

Table 1. List of the laboratories, which took part in the comparison with the responsible person at the time of measurement

Countries marked with * are associate members, rest of the countries are member states of the CIPM.

3 Laboratory standards and measurements methods

All laboratory standards (LS) used were pressure balances equipped with PCAs. All participants applied the cross-float method to compare their standards with the TS.

3.1 Pilot and co-pilot laboratory

FORCE and TÜBITAK UME coordinated the project. TÜBITAK UME, acting as a co-pilot of the comparison, provided the transfer standard.

3.1.1 FORCE

The traceability of the LS is established by calibration by PTB. Calibration and uncertainty calculation are in accordance with EURAMET cg-3 version 1.0 "Calibration of pressure balances" [1].

Manufacturer	Desgranges & Huot
Measurement range in MPa	20
Material of piston	Tungsten carbide
Material of cylinder	Tungsten carbide
Operation mode, free-deformation or controlled-clearance	Re-entrant
Zero-pressure effective area (A_0) at a reference temperature in mm ²	49.024400
The relative uncertainty of A_0 in 10^{-6}	12.5
Pressure distortion coefficient (λ) in MPa ⁻¹	0
The uncertainty of λ in MPa ⁻¹	2.50×10 ⁻⁷
The relative uncertainty of mass pieces in 10 ⁻⁶	5.0
The linear thermal expansion coefficient of the piston (α_p) in °C ⁻¹	4.50×10 ⁻⁶
The linear thermal expansion coefficient of the cylinder (α_c) in °C ⁻¹	4.50×10 ⁻⁶
Reference temperature (t ₀) in °C	20
Local gravity (g) in m/s ²	9.81548
The relative uncertainty of g in 10 ⁻⁶	1
The height difference between LS and TS (<i>h</i> , pos. if LS is higher than TS) in mm	85.5
The uncertainty of <i>h</i> in mm	20

3.1.2 Co-Pilot laboratory UME

The traceability of the LS is established by calibration by PTB. Calibration and uncertainty calculation are in accordance with EURAMET cg-3 version 1.0 "Calibration of pressure balances" [1].

Manufacturer	DH Instruments
Measurement range in MPa	7
Material of piston	Tungsten carbide
Material of cylinder	Tungsten carbide
Operation mode, free-deformation or controlled-clearance	Negative free deformation
Zero-pressure effective area (A_0) at a reference temperature in mm ²	49.015810
The relative uncertainty of A_0 in 10 ⁻⁶	16.2
Pressure distortion coefficient (λ) in MPa ⁻¹	-2.40×10 ⁻⁶
The uncertainty of λ in MPa ⁻¹	8.00×10 ⁻⁷
The relative uncertainty of mass pieces in 10 ⁻⁶	5.0
The linear thermal expansion coefficient of the piston (α_p) in °C ⁻¹	4.50×10⁻ ⁶
The linear thermal expansion coefficient of the cylinder (α_c) in °C ⁻¹	4.50×10⁻ ⁶
Reference temperature (t ₀) in °C	20
Local gravity (g) in m/s ²	9.80231
The relative uncertainty of g in 10 ⁻⁶	8
The height difference between LS and TS (<i>h</i> , pos. if LS is higher than TS) in mm	0
The uncertainty of <i>h</i> in mm	1

3.2 Laboratory with a link to CCM.P-K1c

3.2.1 PTB

The PTB LS used in this KC is a gas-operated pressure balance Model PG-7601 equipped with a 0.5 cm² PCA serial number 0302 produced by DH Instruments. The zero-pressure effective area (A_0) of this PCA is traceable to a group of 5 primary PCAs of 20 cm² and 2 cm² effective areas based on dimensional measurements [2]. The pressure distortion coefficient (λ) is that given by the manufacturer on the basis of the PCA material elastic properties and the Lamé theory. This value of λ was confirmed by the cross-float measurements against the primary pressure balances [2] and [3] whose λ were determined using the finite element method [4] on the experimentally measured elastic constants of their materials [5].

Manufacturer	DH Instruments
Measurement range in MPa	0.7 – 7
Material of piston	Tungsten carbide
Material of cylinder	Tungsten carbide
Operation mode, free-deformation or controlled-clearance	Re-entrant
Zero-pressure effective area (A_0) at a reference temperature in mm ²	49.01928
The relative uncertainty of A_0 in 10 ⁻⁶	7.4
Pressure distortion coefficient (λ) in MPa ⁻¹	-2.35×10⁻ ⁶
The uncertainty of λ in MPa ⁻¹	1.0×10 ⁻⁷
The relative uncertainty of mass pieces in 10 ⁻⁶	0.8
The linear thermal expansion coefficient of the piston (α_p) in °C ⁻¹	4.50×10 ⁻⁶
The linear thermal expansion coefficient of the cylinder (α_c) in °C ⁻¹	4.50×10 ⁻⁶
Reference temperature (t ₀) in °C	20
Local gravity (g) in m/s ²	9.8125330
The relative uncertainty of g in 10 ⁻⁶	0.54
The height difference between LS and TS (<i>h</i> , pos. if LS is higher than TS) in mm	0.15
The uncertainty of <i>h</i> in mm	0.37

3.3 Laboratories with a primary definition

3.3.1 INRIM

Traceability starts from dimensional measurements. A_0 and λ are calculated as reported in EURAMET 1125 report [6].

Manufacturer	DHI
Measurement range in MPa	0.04 - 10
Material of piston	Tungsten carbide
Material of cylinder	Tungsten carbide
Operation mode, free-deformation or controlled-clearance	Negative free deformation
Zero-pressure effective area (A_0) at a reference temperature in mm ²	49.02174
The relative uncertainty of A_0 in 10 ⁻⁶	10
Pressure distortion coefficient (λ) in MPa ⁻¹	-2.35×10 ⁻⁶
The uncertainty of λ in MPa ⁻¹	4.7×10 ⁻⁷
The relative uncertainty of mass pieces in 10 ⁻⁶	2
The linear thermal expansion coefficient of the piston (α_p) in °C ⁻¹	4.50×10 ⁻⁶
The linear thermal expansion coefficient of the cylinder (α_c) in °C ⁻¹	4.50×10 ⁻⁶
Reference temperature (t ₀) in °C	20
Local gravity (g) in m/s ²	9.80533
The relative uncertainty of g in 10 ⁻⁶	1
The height difference between LS and TS (<i>h</i> , pos. if LS is higher than TS) in mm	0
The uncertainty of <i>h</i> in mm	1

3.3.2 METAS

The pressure laboratory of METAS uses almost exclusively primary instruments for the dissemination of the pressure scale. The PCAs used as a reference in this comparison are DH-Instrument type PC-7100/7600-200 like the TS circulated. The traceability to the length is made with two piston-cylinder of 10 cm² measured by the length laboratory of METAS. The calibration chain is built calibrating a pair of 2 cm² piston-cylinder against the pair of 10 cm² piston-cylinder. The 0.5 cm² piston-cylinders are then calibrated against the 2 cm² piston-cylinders.

Manufacturer		DH Instruments	
Measurement range in MPa		11	
Material of piston	Tungsten carbide		
Material of cylinder	Tungsten carbide		
Operation mode, free-deformation or controlled-clearance		Negative free deformation	
Zero-pressure effective area (A_0) at a reference temperature in mm ²	49.01378	49.02041	
The relative uncertainty of A_0 in 10 ⁻⁶	9.5		
Pressure distortion coefficient (λ) in MPa ⁻¹	-2.35×10⁻6		
The uncertainty of λ in MPa ⁻¹		2.50×10 ⁻⁷	
The relative uncertainty of mass pieces in 10 ⁻⁶			
The linear thermal expansion coefficient of the piston (α_p) in °C ⁻¹		×10 ⁻⁶	
The linear thermal expansion coefficient of the cylinder (α_c) in °C ⁻¹		×10 ⁻⁶	
Reference temperature (t ₀) in °C		0	
Local gravity (g) in m/s ²		9.80589	
The relative uncertainty of g in 10 ⁻⁶			
The height difference between LS and TS (h , pos. if LS is higher than TS))	
in mm			
The uncertainty of <i>h</i> in mm		3	
Piston-cylinder serial no.		781	

3.3.3 CEM

CEM performed the comparison by cross-floating using two piston-cylinder assemblies as reference standards whose properties are given below together with measurement conditions. The uncertainties included are standard uncertainties.

CEM obtains its primary traceability from its Mercury Column Manobarometer, which is transferred to piston-cylinder assemblies with different effective areas via a series of cross-float comparisons.

Manufacturer		Desgranges et Huot	
Measurement range in MPa		0.5 – 5	
Material of piston	Tungster	n carbide	
Material of cylinder	Tungsten carbide		
Operation mode, free-deformation or controlled-clearance	Controlled-clearance		
Zero-pressure effective area (A_0) at a reference temperature in mm ²	98.0447	98.0518	
The relative uncertainty of A_0 in 10 ⁻⁶	1	0	
Pressure distortion coefficient (λ) in MPa ⁻¹	6.05×10 ⁻⁷	3.96×10⁻ ⁶	
The uncertainty of λ in MPa ⁻¹		2.1×10 ⁻⁷	
The relative uncertainty of mass pieces in 10 ⁻⁶		1.5	
The linear thermal expansion coefficient of the piston (α_p) in °C ⁻¹		×10 ⁻⁶	
The linear thermal expansion coefficient of the cylinder (α_c) in °C ⁻¹		×10 ⁻⁶	
Reference temperature (t ₀) in °C		20	
Local gravity (g) in m/s ²		9485	
The relative uncertainty of g in 10 ⁻⁶		.5	
The height difference between LS and TS (<i>h</i> , pos. if LS is higher than TS)		h	
in mm		,	
The uncertainty of <i>h</i> in mm		0.5	
Piston-cylinder serial no.		5845	

3.3.4 SMU

SMUs traceability to SI is done by Mercury Column Manobarometer, which is transferred to piston-cylinder assemblies with effective area via a series of cross-float comparisons.

Furthermore the piston-cylinder geometry and its traceability to the SI was evaluated by means of dimensional calibration by SMUs Length Laboratory.

Manufacturer	SMU
Measurement range in MPa	0.2 – 7
Material of piston	Tungsten carbide
Material of cylinder	Tungsten carbide
Operation mode, free-deformation or controlled-clearance	Free deformation
Zero-pressure effective area (A_0) at a reference temperature in mm ²	98.1132
The relative uncertainty of A_0 in 10 ⁻⁶	10
Pressure distortion coefficient (λ) in MPa ⁻¹	1.0×10 ⁻⁶
The uncertainty of λ in MPa ⁻¹	1.0×10 ⁻⁷
The relative uncertainty of mass pieces in 10 ⁻⁶	1
The linear thermal expansion coefficient of the piston (α_p) in °C ⁻¹	5.0×10 ⁻⁶
The linear thermal expansion coefficient of the cylinder (α_c) in °C ⁻¹	5.0×10 ⁻⁶
Reference temperature (t ₀) in °C	20
Local gravity (g) in m/s ²	9.80873
The relative uncertainty of g in 10 ⁻⁶	1
The height difference between LS and TS (<i>h</i> , pos. if LS is higher than TS)	-49.4
The uncertainty of <i>h</i> in mm	1

3.3.5 NPL

Traceability to SI is via dimensioned PCA. A_0 of LS determined through the hierarchy of PCAs (cross-floating) and λ is determined through elastic theory.

Manufacturer	Ruska Corp
Measurement range in MPa	0.1 - 7
Material of piston	Tungsten carbide
Material of cylinder	Tungsten carbide
Operation mode, free-deformation or controlled-clearance	Free deformation
Zero-pressure effective area (A_0) at a reference temperature in mm ²	8.3888
The relative uncertainty of A_0 in 10 ⁻⁶	8
Pressure distortion coefficient (λ) in MPa ⁻¹	0.86×10 ⁻⁶
The uncertainty of λ in MPa ⁻¹	0.12×10 ⁻⁶
The relative uncertainty of mass pieces in 10 ⁻⁶	1(2 for the piston)
The linear thermal expansion coefficient of the piston (α_p) in °C ⁻¹	4.55×10 ⁻⁶
The linear thermal expansion coefficient of the cylinder (α_c) in °C ⁻¹	4.55×10 ⁻⁶
Reference temperature (t ₀) in °C	20
Local gravity (g) in m/s ²	9.81181
The relative uncertainty of g in 10 ⁻⁶	5
The height difference between LS and TS (<i>h</i> , pos. if LS is higher than TS) in mm	-57.6
The uncertainty of <i>h</i> in mm	0.1

3.3.6 VTT MIKES

Traceability to SI is via dimensional calibration by VTT MIKES Length Laboratory. Traceability is disseminated through the hierarchy of PCAs by cross-floating.

Manufacturer		Desgranges et Huot	
Measurement range in MPa	0.1 - 5	0.2 - 16	
Material of piston	Tungste	en carbide	
Material of cylinder	Tungste	en carbide	
Operation mode, free-deformation or controlled-clearance	Re-entrant		
Zero-pressure effective area (A_0) at a reference temperature in mm ²	98.04899	49.026640	
Relative uncertainty of A_0 in 10 ⁻⁶	7.5	10.5	
Pressure distortion coefficient (λ) in MPa ⁻¹	0.00	1.50×10⁻ ⁶	
Uncertainty of λ in MPa ⁻¹	3.00x10 ⁻⁶	1.00×10 ⁻⁷	
The relative uncertainty of mass pieces in 10 ⁻⁶		2.5	
The linear thermal expansion coefficient of the piston (α_p) in °C ⁻¹		0×10 ⁻⁶	
The linear thermal expansion coefficient of the cylinder (α c) in °C ⁻¹		0×10 ⁻⁶	
Reference temperature (t ₀) in °C		20	
Local gravity (g) in m/s ²		19073	
The relative uncertainty of g in 10 ⁻⁶).2	
The height difference between LS and TS (<i>h</i> , pos. if LS is higher than	-114	-110	
TS) in mm	-114	-110	
The uncertainty of <i>h</i> in mm		1.2	
Piston-cylinder serial no.	4012	6804	

3.3.7 VSL

The LS is traceable to a 5 kPa/kg PCA with dimensional calibration from the VSL length department and a 10 kPa/kg PCA calibrated by LNE. Uncertainty and calculations are in accordance with EURAMET cg-3 version 1.0 "Calibration of pressure balances" [1].

Manufacturer	Desgranges & Huot
Measurement range in MPa	0.04 – 8
Material of piston	Tungsten carbide
Material of cylinder	Tungsten carbide
Operation mode, free-deformation or controlled-clearance	Free deformation
Zero-pressure effective area (A_0) at a reference temperature in mm ²	49.02601
The relative uncertainty of A_0 in 10 ⁻⁶	10
Pressure distortion coefficient (λ) in MPa ⁻¹	8.00×10 ⁻⁷
The uncertainty of λ in MPa ⁻¹	4.00×10 ⁻⁸
The relative uncertainty of mass pieces in 10 ⁻⁶	0.6
The linear thermal expansion coefficient of the piston (α_p) in °C ⁻¹	4.50×10 ⁻⁶
The linear thermal expansion coefficient of the cylinder (α_c) in °C ⁻¹	4.50×10⁻ ⁶
Reference temperature (t ₀) in °C	20
Local gravity (g) in m/s ²	9.812407
The relative uncertainty of g in 10 ⁻⁶	0.5
The height difference between LS and TS (<i>h</i> , pos. if LS is higher than TS) in mm	0
The uncertainty of <i>h</i> in mm	1.5

3.4 Laboratories with a secondary definition

3.4.1 SMD

The traceability of the laboratory standard is established by calibration by PTB. Calibration certificate 0054 PTB 09 of 2009-08-17.

Manufacturer	RUSKA
Measurement range in MPa	0.014 – 7
Material of piston	Tungsten carbide
Material of cylinder	Tungsten carbide
Operation mode, free-deformation or controlled-clearance	Free deformation
Zero-pressure effective area (A_0) at a reference temperature in mm ²	8.38582
The relative uncertainty of A_0 in 10 ⁻⁶	14
Pressure distortion coefficient (λ) in MPa ⁻¹	2×10 ⁻⁶
The uncertainty of λ in MPa ⁻¹	0.8×10⁻ ⁶
The relative uncertainty of mass pieces in 10 ⁻⁶	10
The linear thermal expansion coefficient of the piston (α_p) in °C ⁻¹	4.55×10⁻ ⁶
The linear thermal expansion coefficient of the cylinder (α_c) in °C ⁻¹	4.55×10⁻ ⁶
Reference temperature (t_0) in °C	20
Local gravity (g) in m/s ²	9.811461
The relative uncertainty of g in 10 ⁻⁶	1.1
The height difference between LS and TS (<i>h</i> , pos. if LS is higher than TS) in mm	0
The uncertainty of <i>h</i> in mm	2

3.4.2 MCCAA

Traceability is provided through a calibration certificate by Fluke, which is an accredited laboratory with pressure standards traceable to NIST, PTB and LNE, and mass standards calibrated by Troemner Calibration Services traceable to NIST.

Manufacturer	DHI
Measurement range in MPa	0.04 – 10
Material of piston	Tungsten carbide
Material of cylinder	Tungsten carbide
Operation mode, free-deformation or controlled-clearance	Negative free deformation
Zero-pressure effective area (A_0) at a reference temperature in mm ²	49.0192
The relative uncertainty of A_0 in 10 ⁻⁶	8
Pressure distortion coefficient (λ) in MPa ⁻¹	-2.35×10 ⁻⁶
The uncertainty of λ in MPa ⁻¹	2.4×10 ⁻⁷
The relative uncertainty of mass pieces in 10 ⁻⁶	2
The linear thermal expansion coefficient of the piston (α_p) in °C ⁻¹	4.5×10⁻ ⁶
The linear thermal expansion coefficient of the cylinder (α_c) in °C ⁻¹	4.5×10 ⁻⁶
Reference temperature (t ₀) in °C	20
Local gravity (g) in m/s ²	9.79850
The relative uncertainty of g in 10 ⁻⁶	2
The height difference between LS and TS (<i>h</i> , pos. if LS is higher than TS) in mm	0
The uncertainty of <i>h</i> in mm	5

3.4.3 MKEH

Traceability of the LS is to PTB. Certificate No.: PTB 30041/10.

Traceability of the mass is to the Mass Laboratory of MKEH.

Calibration and uncertainty calculation are in accordance with EURAMET cg-3 version 1.0 "Calibration of pressure balances" [1].

Manufacturer	Ruska Instrument
	Corporation
Measurement range in MPa	0.014 – 7
Material of piston	Tungsten carbide
Material of cylinder	Tungsten carbide
Operation mode, free-deformation or controlled-clearance	Free deformation
Zero-pressure effective area (A_0) at a reference temperature in mm ²	8.394230
The relative uncertainty of A_0 in 10 ⁻⁶	9.5
Pressure distortion coefficient (λ) in MPa ⁻¹	2.0×10 ⁻⁶
The uncertainty of λ in MPa ⁻¹	0.8×10 ⁻⁶
The relative uncertainty of mass pieces in 10 ⁻⁶	0.7 - 1.7
The linear thermal expansion coefficient of the piston (α_p) in °C ⁻¹	4.55×10⁻ ⁶
The linear thermal expansion coefficient of the cylinder (α_c) in °C ⁻¹	4.55×10 ⁻⁶
Reference temperature (t ₀) in °C	20
Local gravity (g) in m/s ²	9.808293
The relative uncertainty of g in 10 ⁻⁶	1.2
The height difference between LS and TS (<i>h</i> , pos. if LS is higher than TS)	-3/1
in mm	-34.1
The uncertainty of <i>h</i> in mm	1

3.4.4 BEV

The traceability of the laboratory standard is established by calibration by PTB.

Manufacturer	DH Instruments. Phoenix. USA
Measurement range in MPa	0.04 – 7
Material of piston	Tungsten carbide
Material of cylinder	Tungsten carbide
Operation mode, free deformation or controlled clearance	Negative free
	deformation
Zero-pressure effective area (A_0) at a reference temperature in mm ²	49.01670
The relative uncertainty of A_0 in 10 ⁻⁶	10
Pressure distortion coefficient (λ) in MPa ⁻¹	-2.35×10 ⁻⁶
The uncertainty of λ in MPa ⁻¹	3.00×10 ⁻⁷
The relative uncertainty of mass pieces in 10 ⁻⁶	2
The linear thermal expansion coefficient of the piston (α_p) in °C ⁻¹	4.50×10 ⁻⁶
The linear thermal expansion coefficient of the cylinder (α_c) in °C ⁻¹	4.50×10 ⁻⁶
Reference temperature (t ₀) in °C	20
Local gravity (g) in m/s ²	9.8083779
The relative uncertainty of g in 10 ⁻⁶	0.04
The height difference between LS and TS (<i>h</i> , pos. if LS is higher than TS)	0
in mm	5
The uncertainty of <i>h</i> in mm	1

3.4.5 INM

The INM standard used in this Project was Ruska piston gauge, type 2465-753, with the pistoncylinder unit serial No. V-1621, traceable to PTB - Calibration Certificate No. PTB 30046/12. A_0 , λ and their uncertainties were determined in accordance with EURAMET cg-03 version 1.0 "Calibration of pressure balances" [1]. A digital thermometer measured the temperature of the piston-cylinder unit with a 0.025 °C standard uncertainty. The ambient pressure, ambient temperature and ambient humidity were measured with proper devices and proper uncertainties.

Manufacturer	Ruska
Measurement range in MPa	0.014 - 7
Material of piston	Tungsten carbide
Material of cylinder	Tungsten carbide
Operation mode, free-deformation or controlled-clearance	Free deformation
Zero-pressure effective area (A_0) at a reference temperature in mm ²	8.39247
The relative uncertainty of A_0 in 10 ⁻⁶	21
Pressure distortion coefficient (λ) in MPa ⁻¹	1.51×10 ⁻⁶
The uncertainty of λ in MPa ⁻¹	0.48×10 ⁻⁶
The relative uncertainty of mass pieces in 10 ⁻⁶	2
The linear thermal expansion coefficient of the piston (α_p) in °C ⁻¹	4.50×10 ⁻⁶
The linear thermal expansion coefficient of the cylinder (α_c) in °C ⁻¹	4.50×10 ⁻⁶
Reference temperature (t ₀) in °C	20
Local gravity (g) in m/s ²	9.80540
The relative uncertainty of g in 10 ⁻⁶	4
The height difference between LS and TS (<i>h</i> , pos. if LS is higher than TS)	-2
in mm	_
The uncertainty of <i>h</i> in mm	1

3.4.6 MIRS/IMT/LMT

LS is traceable to PTB. A_0 and λ were determined according to EURAMET cg-3 version 1.0 "Calibration of pressure balances" [1].

Manufacturer	DH Instruments
Measurement range in MPa	/
Material of piston	Tungsten carbide
Material of cylinder	Tungsten carbide
Operation mode, free deformation or controlled clearance	Negative free
Operation mode, nee-deformation of controlled-clearance	deformation
Zero-pressure effective area (A_0) at a reference temperature in mm ²	49.0243
The relative uncertainty of A_0 in 10 ⁻⁶	8
Pressure distortion coefficient (λ) in MPa ⁻¹	-2.40×10 ⁻⁶
The uncertainty of λ in MPa ⁻¹	6.50×10 ⁻⁷
The relative uncertainty of mass pieces in 10 ⁻⁶	2
The linear thermal expansion coefficient of the piston (α_p) in °C ⁻¹	4.50×10 ⁻⁶
The linear thermal expansion coefficient of the cylinder (α_c) in °C ⁻¹	4.50×10 ⁻⁶
Reference temperature (t ₀) in °C	20
Local gravity (g) in m/s ²	9.806128
The relative uncertainty of g in 10 ⁻⁶	0.2
The height difference between LS and TS (<i>h</i> , pos. if LS is higher than TS)	0
in mm	0
The uncertainty of <i>h</i> in mm	1

3.4.7 FSB-LPM

 A_0 and λ and their uncertainties were determined from cross-float results with our LS traceable to PTB (cert No: PTB 30240/11). Dimensional measurements were made with the good agreement, but results were taken from PTB certificate.

Manufacturer	DHI
Measurement range in MPa	0.1 - 7
Material of piston	Tungsten carbide
Material of cylinder	Tungsten carbide
Operation mode, free-deformation or controlled-clearance	Negative free deformation
Zero-pressure effective area (A_0) at a reference temperature in mm ²	49.01892
The relative uncertainty of A_0 in 10 ⁻⁶	16
Pressure distortion coefficient (λ) in MPa ⁻¹	-2.35×10⁻ ⁶
The uncertainty of λ in MPa ⁻¹	3×10 ⁻⁷
The relative uncertainty of mass pieces in 10 ⁻⁶	5
The linear thermal expansion coefficient of the piston (α_p) in °C ⁻¹	4.5×10⁻ ⁶
The linear thermal expansion coefficient of the cylinder (α_c) in °C ⁻¹	4.5×10⁻ ⁶
Reference temperature (t ₀) in °C	20
Local gravity (g) in m/s ²	9.80662
The relative uncertainty of g in 10 ⁻⁶	50
The height difference between LS and TS (<i>h</i> , pos. if LS is higher than TS) in mm	0
The uncertainty of <i>h</i> in mm	5

3.4.8 RISE

PCA is calibrated at LNE/France, which also gives A_0 and λ and their uncertainties in the certificate. The values used in this calibration were evaluated and the uncertainties increased due to historical results.

Manufacturer	Ruska
Measurement range in MPa	0.14 - 7
Material of piston	Tungsten carbide
Material of cylinder	Tungsten carbide
Operation mode, free-deformation or controlled-clearance	Free deformation
Zero-pressure effective area (A_0) at a reference temperature in mm ²	8.390642
The relative uncertainty of A_0 in 10 ⁻⁶	18.7
Pressure distortion coefficient (λ) in MPa ⁻¹	3.91×10 ⁻⁶
The uncertainty of λ in MPa ⁻¹	7.50×10 ⁻⁷
The relative uncertainty of mass pieces in 10 ⁻⁶	5
The linear thermal expansion coefficient of the piston (α_p) in °C ⁻¹	4.55×10⁻ ⁶
The linear thermal expansion coefficient of the cylinder (α_c) in °C ⁻¹	4.55×10⁻ ⁶
Reference temperature (t_0) in °C	20
Local gravity (g) in m/s ² at 1.15 metres above floor.	9.81680066
The relative uncertainty of g in 10 ⁻⁶	0.031
The height difference between LS and TS (<i>h</i> , pos. if LS is higher than TS) in mm	0
The uncertainty of <i>h</i> in mm	1

3.4.9 NSAI NML

The calibration of the transfer standard pressure balance was carried out following the guidelines set out in section 5.4 of EURAMET cg-3 version 1.0 "Calibration of pressure balances" [1]. The reference standard used was a Ruska 2465 pressure balance together with a differential pressure null detector, comprising a differential pressure transducer and an electronic null indicator. The effective area of the pressure balance and the associated mass standards were calibrated by PTB. A_0 and λ and associated uncertainties were calculated as per EURAMET cg-3 version 1.0 "Calibration of pressure balances" [1].

Manufacturer	Ruska
Measurement range in MPa	0.014 - 7
Material of piston	Tungsten carbide
Material of cylinder	Tungsten carbide
Operation mode, free-deformation or controlled-clearance	Free deformation
Zero-pressure effective area (A_0) at a reference temperature in mm ²	8.39040
The relative uncertainty of A_0 in 10^{-6}	24
Pressure distortion coefficient (λ) in MPa ⁻¹	3.10×10⁻ ⁶
The uncertainty of λ in MPa ⁻¹	7.00×10 ⁻⁷
The relative uncertainty of mass pieces in 10 ⁻⁶	5
The linear thermal expansion coefficient of the piston (α_p) in °C ⁻¹	4.55×10⁻ ⁶
The linear thermal expansion coefficient of the cylinder (α_c) in °C ⁻¹	4.55×10⁻ ⁶
Reference temperature (t ₀) in °C	20
Local gravity (g) in m/s ²	9.81387
The relative uncertainty of g in 10 ⁻⁶	1
The height difference between LS and TS (<i>h</i> , pos. if LS is higher than TS)	-62.3
The uncertainty of <i>h</i> in mm	0.3

3.4.10 IMBiH

The traceability of the LS is established by calibration by IMT. Calibration and uncertainty calculation are in accordance with EURAMET cg-3 version 1.0 [1].

	DH Instruments; PG
Manufacturer	7601;
	PC 200 kPa/kg
Measurement range in MPa	0.1 to 7
Material of piston	Tungsten carbide
Material of cylinder	Tungsten carbide
Operation mode, free deformation or controlled clearance	Negative free
	deformation
Zero-pressure effective area (A_0) at a reference temperature in mm ²	49.01900
The relative uncertainty of A_0 in 10 ⁻⁶	16
Pressure distortion coefficient (λ) in MPa ⁻¹	-2.5×10 ⁻⁶
The uncertainty of λ in MPa ⁻¹	5.5×10 ⁻⁷
The relative uncertainty of mass pieces in 10 ⁻⁶	2
The linear thermal expansion coefficient of the piston (α_p) in °C ⁻¹	4.5×10 ⁻⁶
The linear thermal expansion coefficient of the cylinder (α_c) in °C ⁻¹	4.5×10⁻ ⁶
Reference temperature (t ₀) in °C	20
Local gravity (g) in m/s ²	9.80317
The relative uncertainty of g in 10 ⁻⁶	10
The height difference between LS and TS (<i>h</i> , pos. if LS is higher than TS)	0
in mm	U
The uncertainty of <i>h</i> in mm	0.5

3.4.11 GUM

LS PCA is traceable to PTB; the mass set was calibrated at Mass Laboratory in GUM. Uncertainty calculation is in accordance with EURAMET cg-3 version 1.0 "Calibration of pressure balances" [1]. A_0 uncertainty was calculated including uncertainties of following components: laboratory standard, mass, assembly temperature, thermal coefficient, gravity, air density, mass density, height difference, medium density, piston verticality and measurement results. λ uncertainty calculation was based on measurements' results. The standard uncertainties of the estimate $u(A_p)$ were calculated as the uncertainties of the effective area expanded by uncertainty due to deviation from the best fit straight line of $(A(p_i); p_i)$.

	RUSKA Instrument
Manufacturer	Corporation. Houston.
	USA
Measurement range in MPa	0.014 - 7
Material of piston	Tungsten carbide
Material of cylinder	Tungsten carbide
Operation mode, free-deformation or controlled-clearance	Free deformation
Zero-pressure effective area (A_0) at a reference temperature in mm ²	8.38870
The relative uncertainty of A_0 in 10 ⁻⁶	23
Pressure distortion coefficient (λ) in MPa ⁻¹	1.9×10 ⁻⁶
The uncertainty of λ in MPa ⁻¹	3×10 ⁻⁷
The relative uncertainty of mass pieces in 10 ⁻⁶	1.6
The linear thermal expansion coefficient of the piston (α_p) in °C ⁻¹	4.55×10⁻ ⁶
The linear thermal expansion coefficient of the cylinder (α_c) in °C ⁻¹	4.55×10 ⁻⁶
Reference temperature (t ₀) in °C	20
Local gravity (g) in m/s ²	9.8122475
The relative uncertainty of g in 10 ⁻⁶	0.34
The height difference between LS and TS (<i>h</i> , pos. if LS is higher than TS)	74
in mm	77
The uncertainty of <i>h</i> in mm	1

4 Transfer standard

The TS was a PCA of 50 mm² nominal effective area with serial number 440. According to the information provided by the TS owner – UME, the piston and cylinder of TS are made of tungsten carbide. The PCA was operated in a base PG-7601, serial no. 430, and with masses whose conventional masses and densities were given known by the TS owner – UME. The properties of the TS are presented in Table 2.

Transfer Standard	Piston Cylinder
TÜBITAK-UME Inventory Number	08583
Туре	PG-7100/7600-200
DH Instruments Part Number	401564
Serial Number	440
Nominal Area	50 mm ²
Area Thermal Expansion Coefficient ($\alpha_p + \alpha_c$)	9⋅10 ⁻⁶ °C ⁻¹
Conventional mass	199.995 g (<i>u</i> = 1.0 mg)
Mean piston density	8030 kg/m ³ (<i>u</i> = 80 kg/m ³)
Fall rate at 0.3 MPa	< 0.05 mm/min
Fall rate at 7.0 MPa	< 0.50 mm/min
Deceleration (70 rpm to 30 rpm) at 0.3 MPa	> 5 min
Base	
Туре	PG-7601
Part Number	400480
Serial Number	430
TÜBITAK-UME Inventory Number	20272
Terminal	
Туре	PG TERMINAL (PG7000)
Serial Number	N/A
Part Number	401284
Mass Set	
Serial Number	2067
Density of 5 kg, 4.5 kg, 2 kg and 1 kg weights	8000 kg/m ³ (<i>u</i> = 40 kg/m ³)
Density of 500 g, 200 g and 100 g weights	7920 kg/m ³ (<i>u</i> = 40 kg/m ³)
TÜBITAK-UME Inventory Number	01043
Mass Carrying Bell	
Serial Number	654
Conventional mass	299.9719 g (<i>u</i> = 1.0 mg)
Density	$5013 \text{ kg/m}^3 (\mu = 50 \text{ kg/m}^3)$

During the comparison, the TS was performing properly, mostly without technical problems. In January 2015, the piston height position and the rotation speed were not displayed on the terminal. PTB tested the terminal with their base, and it was working correctly. The authorized service centre solved the issue and returned the instrument to PTB. The KC was resumed.

One important issue observed during the comparison refers to the piston rotation speed. In the Technical Protocol [7] of the KC, it was recommended to be (40 to 50) rpm at pressures (0.7 to 4.1) MPa and (30 to 40) rpm at pressures (5.3 to 6.8) MPa. However, as it was found out by SMU and PTB, reported at the EURAMET TC-M annual meeting in Cavtat in 2013, these recommended rotation speeds were too high and affected the measured effective area, particularly at low pressures. Non-linearity of the effective area observed in the results of some participants may deal with this effect of the piston rotation speed.

Traceability of the transfer standard

Certificates have been provided by the owner of the TS – UME for the set of masses, the value of the mass of the piston and the value of the mass of the carrying bell.

5 Measurement instructions

The measurement technique is described in the EURAMET.M.P-K1.c Technical Protocol [7] like the criterions that would need a new cleaning of the piston and the fall rate that had to be achieved in a system leak tight.

5.1 Measurement points

The measurement had to be made from 0.7 MPa up to 7.0 MPa at 8 steps, upward and downward. The measurements had to be repeated five times for a total of 80 measurements.

The results were collected by the pilot laboratory during the time of the comparison. A worksheet was provided for the collection of the results to facilitate the integration in the calculation of the reference value.

5.2 Calculation of the effective area

The effective area A_p is derived from the well-known formula used to calculate the gauge pressure p_e measured by a gas-operated pressure balance at its reference level:

Equation 1

$$p_{\rm e} = \frac{g \sum_{i} \left[m_{i} (1 - \rho_{\rm a} / \rho_{m_{i}}) \right]}{A_{p} \left[1 + (\alpha_{\rm p} + \alpha_{\rm c})(t - 20^{\circ} \text{C}) \right]}$$

where

g is local gravity acceleration;

 m_i are masses of the piston, the weight carrier and the mass pieces placed on the weight carrier;

 ρ_{m_i} are densities of the parts with masses m_i ;

 ρ_{a} is air density;

 $\alpha_{\rm p}$ and $\alpha_{\rm c}$ are thermal expansion coefficients of the piston and cylinder materials, respectively; *t* is PCA temperature.

By reversing the formula and using the pressure measured by the laboratory standard at the reference level of the transfer standard, the effective area at a given pressure is given by:

Equation 2

$$A_p = \frac{g \sum_i \left[m_i (1 - \rho_a / \rho_{m_i}) \right]}{p_e \left[1 + (\alpha_p + \alpha_c)(t - 20^\circ \text{C}) \right]}$$

6 Results

6.1 Stability of the transfer standard

The transfer standard was chosen for the well-known long-term stability of a piston-cylinder made of tungsten carbide. Plastic deformation is not an issue, while the change of shape due to abrasion should be minimal.

Prior to the project, it was agreed that the owner of the TS - UME - would do the measurements for the stability of the TS. The first time the transfer standard was returned to UME for the intermediate check, it was not possible for UME to make measurements as the time allocated for this was used to compensate for the accumulated delay. Only the ATA Carnet was renewed. The second-time UME supposed to make intermediate measurements, UME's LS was in disorder, therefore it was agreed that PTB did the intermediate and the final measurements instead of UME as given in Table 3, Figure 1 and Figure 2. As start measurements for the stability determination, PTB's main results measured 2011 were taken. Measurements were done with special rotational speed as specified in the Technical Protocol [7].

Nominal pressure	PTE	3	PTB2		PTE	33	Maximal difference		
p	<i>A</i> _ρ (20 °C)	Stdev	<i>A</i> _ρ (20 °C)	Stdev	<i>A</i> _ρ (20 °C)	Stdev			
MPa	mm²	ppm	mm ²	ppm	mm ²	ppm	mm ²	ppm	
0.74	49.01447	2.1	49.01412	2.9	49.01436	5.5	0.00035	7.1	
1.08	49.01479	2.0	49.01495	2.2	49.01488	3.4	0.00016	3.3	
1.77	49.01490	1.0	49.01509	1.1	49.01495	2.1	0.00019	3.9	
2.94	49.01499	1.0	49.01502	0.4	49.01498	0.7	0.00004	0.8	
4.10	49.01489	0.7	49.01490	0.3	49.01487	0.2	0.00003	0.6	
5.27	49.01480	0.4	49.01476	0.6	49.01475	0.4	0.00005	1.0	
6.44	49.01464	0.4	49.01463	0.4	49.01461	0.4	0.00003	0.6	
6.79	49.01461	0.3	49.01458	0.1	49.01457	0.4	0.00004	0.8	

Table 3. Effective areas measured by PTB

Figure 1. Stability of the transfer standard. Single values of the effective area measured by PTB in October 2011 (1st measurement), February 2015 (intermediate measurement) and January 2016 (final measurement)

Figure 2. Stability of transfer standard. Mean effective areas measured by PTB in October 2011, February 2015 and January 2016. Vertical bars depict standard deviations of effective area measurements by PTB (Type A uncertainty contribution)

6.1.1 Correction for time-drift

There is no significance of a time-depending behaviour of the TS within the accuracy of the stability measurements: In its entirety, the stability data do not show any correlation between values and corresponding measuring dates. The maximum difference between the effective areas at the nominal pressures is not larger than expected by the statistical spread. Therefore, no correction for a drift was applied.

The standard uncertainty due to long-term instability is estimated from the maximal difference of A_p values given in Table 3, see equation 3.

Equation 3

$$\frac{u(\Delta A_{p,T})}{A_p} = \sqrt{\frac{1}{3} \cdot \left(\frac{\text{Max.Difference}(A_{p,i,\text{PTB},T})}{2 \cdot \text{Average}(A_{p,i,\text{PTB},T})}\right)^2}$$

The standard uncertainties for the pressure steps in increasing order are 2.1 ppm, 1.0 ppm, 1.1 ppm, 0.2 ppm, 0.2 ppm, 0.3 ppm, 0.2 ppm and 0.2 ppm.

These uncertainty values are taken into account as the TS instability contribution in equations 8 and 9.

6.2 Results of the participants

Effective areas and uncertainty values (k = 1) in mm² reported by participants are given in Table 4 and Table 5, respectively.

р	FORCE -	UME -	PTB -		METAS -	SMD -
MPa	Denmark	Turkey	Germany	BEV - Austria	Switzerland	Belgium
0.74	49.01517	49.01525	49.01447	49.01470	49.01453	49.01524
1.08	49.01507	49.01509	49.01479	49.01515	49.01474	49.01571
1.77	49.01519	49.01506	49.01490	49.01505	49.01465	49.01574
2.94	49.01519	49.01497	49.01499	49.01495	49.01450	49.01572
4.10	49.01507	49.01489	49.01489	49.01480	49.01439	49.01559
5.27	49.01503	49.01478	49.01480	49.01465	49.01431	49.01546
6.44	49.01490	49.01463	49.01464	49.01455	49.01412	49.01534
6.79	49.01480	49.01459	49.01461	49.01455	49.01412	49.01522
<i>р</i> MPa	MCCAA - SMI Malta	CEM - Spain	FSB-LPM - Croatia	MIRS/IMT/LMT - Slovenia	SMU - Slovakia	IMBiH - Bosnia and Herzegovina
0.74	49.01434	49.01475	49.01393	49.01556	49.01448	49.01551
1.08	49.01440	49.01480	49.01425	49.01526	49.01465	49.01534
1.77	49.01435	49.01505	49.01442	49.01524	49.01473	49.01536
2.94	49.01416	49.01525	49.01454	49.01515	49.01480	49.01524
4.10	49.01415	49.01520	49.01456	49.01509	49.01466	49.01503
5.27	49.01407	49.01510	49.01450	49.01494	49.01453	49.01484
6.44	49.01393	49.01505	49.01450	49.01478	49.01428	49.01477
6.79	49.01386	49.01505	49.01448	49.01472	49.01420	49.01473
р	INM -	MKEH -	INRIM -	RISE - Sweden	NPL - United	NSAI NML -
MPa	Romania	Hungary	Italy	NISE Sweden	Kingdom	Ireland
0.74	49.01358	49.01433	49.01497	49.01475	49.01533	49.01490
1.08	49.01380	49.01462	49.01507	49.01500	49.01518	49.01485
1.77	49.01367	49.01454	49.01509	49.01488	49.01516	49.01483
2.94	49.01413	49.01457	49.01503	49 01481	10 01 500	
4.10	40.04.404			45.01401	49.01506	49.01476
5.27	49.01431	49.01453	49.01491	49.01473	49.01308	49.01476 49.01471
	49.01431 49.01433	49.01453 49.01445	49.01491 49.01485	49.01473 49.01481	49.01508 49.01497 49.01482	49.01476 49.01471 49.01463
6.44	49.01431 49.01433 49.01439	49.01453 49.01445 49.01435	49.01491 49.01485 49.01468	49.01473 49.01481 49.01467	49.01308 49.01497 49.01482 49.01464	49.01476 49.01471 49.01463 49.01459
6.44 6.79	49.01431 49.01433 49.01439 49.01427	49.01453 49.01445 49.01435 49.01432	49.01491 49.01485 49.01468 49.01464	49.01473 49.01481 49.01467 49.01471	49.01308 49.01497 49.01482 49.01464 49.01458	49.01476 49.01471 49.01463 49.01459 49.01461
6.44 6.79 <i>p</i> MPa	49.01431 49.01433 49.01439 49.01427 GUM - Poland	49.01453 49.01445 49.01435 49.01432 VSL - Netherlands	49.01491 49.01485 49.01468 49.01464 VTT MIKES- Finland	49.01473 49.01481 49.01467 49.01471	49.01308 49.01497 49.01482 49.01464 49.01458	49.01476 49.01471 49.01463 49.01459 49.01461
6.44 6.79 MPa 0.74	49.01431 49.01433 49.01439 49.01427 GUM - Poland 49.01597	49.01453 49.01445 49.01435 49.01432 VSL - Netherlands 49.01521	49.01491 49.01485 49.01468 49.01464 VTT MIKES- Finland 49.01424	49.01473 49.01481 49.01467 49.01471	49.01308 49.01497 49.01482 49.01464 49.01458	49.01476 49.01471 49.01463 49.01459 49.01461
6.44 6.79 <i>p</i> MPa 0.74 1.08	49.01431 49.01433 49.01439 49.01427 GUM - Poland 49.01597 49.01591	49.01453 49.01445 49.01435 49.01432 VSL - Netherlands 49.01521 49.01508	49.01491 49.01485 49.01468 49.01464 VTT MIKES- Finland 49.01424 49.01417	49.01473 49.01481 49.01467 49.01471	49.01308 49.01497 49.01482 49.01464 49.01458	49.01476 49.01471 49.01463 49.01459 49.01461
6.44 6.79 MPa 0.74 1.08 1.77	49.01431 49.01433 49.01439 49.01427 GUM - Poland 49.01597 49.01591 49.01577	49.01453 49.01445 49.01435 49.01432 VSL - Netherlands 49.01521 49.01508 49.01499	49.01491 49.01485 49.01468 49.01464 VTT MIKES- Finland 49.01424 49.01417 49.01424	49.01473 49.01481 49.01467 49.01471	49.01308 49.01497 49.01482 49.01464 49.01458	49.01476 49.01471 49.01463 49.01459 49.01461
6.44 6.79 MPa 0.74 1.08 1.77 2.94	49.01431 49.01433 49.01439 49.01427 GUM - Poland 49.01597 49.01591 49.01577 49.01556	49.01453 49.01445 49.01435 49.01432 VSL - Netherlands 49.01521 49.01508 49.01499 49.01497	49.01491 49.01485 49.01468 49.01464 VTT MIKES- Finland 49.01424 49.01422	49.01473 49.01481 49.01467 49.01471	49.01308 49.01497 49.01482 49.01464 49.01458	49.01476 49.01471 49.01463 49.01459 49.01461
6.44 6.79 <i>p</i> MPa 0.74 1.08 1.77 2.94 4.10	49.01431 49.01433 49.01439 49.01427 GUM - Poland 49.01597 49.01591 49.01556 49.01552	49.01453 49.01445 49.01435 49.01432 VSL - Netherlands 49.01521 49.01508 49.01499 49.01492	49.01491 49.01485 49.01468 49.01464 VTT MIKES- Finland 49.01424 49.01417 49.01422 49.01412	49.01473 49.01481 49.01467 49.01471	49.01308 49.01497 49.01482 49.01464 49.01458	49.01476 49.01471 49.01463 49.01459 49.01461
6.44 6.79 <i>p</i> MPa 0.74 1.08 1.77 2.94 4.10 5.27	49.01431 49.01433 49.01439 49.01427 GUM - Poland 49.01597 49.01591 49.01556 49.01552 49.01529	49.01453 49.01445 49.01435 49.01432 VSL - VSL - Netherlands 49.01521 49.01508 49.01499 49.01492 49.01475	49.01491 49.01485 49.01468 49.01464 VTT MIKES- Finland 49.01424 49.01412 49.01412 49.01412	49.01473 49.01481 49.01467 49.01471	49.01308 49.01497 49.01482 49.01464 49.01458	49.01476 49.01471 49.01463 49.01459 49.01461
6.44 6.79 MPa 0.74 1.08 1.77 2.94 4.10 5.27 6.44	49.01431 49.01433 49.01439 49.01427 GUM - Poland 49.01597 49.01591 49.01556 49.01552 49.01529 49.01524	49.01453 49.01445 49.01435 49.01432 VSL - Netherlands 49.01521 49.01508 49.01499 49.01497 49.01475 49.01475	49.01491 49.01485 49.01468 49.01464 VTT MIKES- Finland 49.01424 49.01417 49.01422 49.01412 49.01412 49.01412	49.01473 49.01481 49.01467 49.01471	49.01308 49.01497 49.01482 49.01464 49.01458	49.01476 49.01471 49.01463 49.01459 49.01461

Table 4. Effective areas in mm² reported by participants

Table 5. Measurement uncertainty	v	(k=1)) in	mm ² r	eported b	v	participants	s
Table 5. Measurement uncertaint	y	(n - 1)	,		cponed b	y	participant	2

р	FORCE -	UME -	PTB -	BFV - Austria	METAS -	SMD -
MPa	Denmark	Turkey	Germany		Switzerland	Belgium
0.74	0.00130	0.00069	0.00061	0.00060	0.00053	0.00108
1.08	0.00117	0.00069	0.00051	0.00060	0.00052	0.00101
1.77	0.00107	0.00069	0.00043	0.00060	0.00051	0.00095
2.94	0.00101	0.00069	0.00040	0.00060	0.00050	0.00093
4.10	0.00098	0.00069	0.00039	0.00060	0.00050	0.00090
5.27	0.00096	0.00069	0.00039	0.00060	0.00050	0.00091
6.44	0.00096	0.00069	0.00039	0.00060	0.00050	0.00092
6.79	0.00095	0.00069	0.00039	0.00060	0.00050	0.00092
р MPa	MCCAA - SMI Malta	CEM - Spain	FSB-LPM - Croatia	MIRS/IMT/LMT - Slovenia	SMU - Slovakia	IMBiH - Bosnia and Herzegovina
0.74	0.00068	0.00060	0.00072	0.00054	0.00062	0.00087
1.08	0.00066	0.00060	0.00073	0.00048	0.00062	0.00087
1.77	0.00065	0.00060	0.00071	0.00046	0.00062	0.00086
2.94	0.00064	0.00060	0.00076	0.00045	0.00062	0.00086
4.10	0.00064	0.00060	0.00068	0.00046	0.00062	0.00086
5.27	0.00063	0.00060	0.00067	0.00047	0.00062	0.00086
6.44	0.00063	0.00060	0.00068	0.00048	0.00062	0.00087
6.79	0.00063	0.00060	0.00067	0.00049	0.00062	0.00087
р MPa	INM - Romania	MKEH - Hungary	INRIM - Italy	RISE - Sweden	NPL - United Kingdom	NSAI NML - Ireland
р МРа 0.74	INM - Romania 0.00142	MKEH - Hungary 0.00072	INRIM - Italy 0.00056	RISE - Sweden 0.00098	NPL - United Kingdom 0.00044	NSAI NML - Ireland 0.00099
р МРа 0.74 1.08	INM - Romania 0.00142 0.00142	MKEH - Hungary 0.00072 0.00062	INRIM - Italy 0.00056 0.00056	RISE - Sweden 0.00098 0.00099	NPL - United Kingdom 0.00044 0.00044	NSAI NML - Ireland 0.00099 0.00083
р МРа 0.74 1.08 1.77	INM - Romania 0.00142 0.00142 0.00147	MKEH - Hungary 0.00072 0.00062 0.00057	INRIM - Italy 0.00056 0.00055	RISE - Sweden 0.00098 0.00099 0.00096	NPL - United Kingdom 0.00044 0.00044 0.00044	NSAI NML - Ireland 0.00099 0.00083 0.00070
р МРа 0.74 1.08 1.77 2.94	INM - Romania 0.00142 0.00142 0.00147 0.00152	MKEH - Hungary 0.00072 0.00062 0.00057 0.00055	INRIM - Italy 0.00056 0.00055 0.00055	RISE - Sweden 0.00098 0.00099 0.00096 0.00096	NPL - United Kingdom 0.00044 0.00044 0.00045	NSAI NML - Ireland 0.00099 0.00083 0.00070 0.00064
<i>p</i> MPa 0.74 1.08 1.77 2.94 4.10	INM - Romania 0.00142 0.00142 0.00147 0.00152 0.00157	MKEH - Hungary 0.00072 0.00062 0.00057 0.00055 0.00056	INRIM - Italy 0.00056 0.00055 0.00055 0.00055	RISE - Sweden 0.00098 0.00099 0.00096 0.00096 0.00102	NPL - United Kingdom 0.00044 0.00044 0.00045 0.00045	NSAI NML - Ireland 0.00099 0.00083 0.00070 0.00064 0.00064
<i>p</i> MPa 0.74 1.08 1.77 2.94 4.10 5.27	INM - Romania 0.00142 0.00142 0.00147 0.00152 0.00157 0.00162	MKEH - Hungary 0.00072 0.00062 0.00057 0.00055 0.00056 0.00057	INRIM - Italy 0.00056 0.00055 0.00055 0.00055 0.00055	RISE - Sweden 0.00098 0.00099 0.00096 0.00096 0.00102 0.00097	NPL - United Kingdom 0.00044 0.00044 0.00045 0.00045 0.00045	NSAI NML - Ireland 0.00099 0.00083 0.00070 0.00064 0.00064
<i>p</i> MPa 0.74 1.08 1.77 2.94 4.10 5.27 6.44	INM - Romania 0.00142 0.00142 0.00147 0.00152 0.00157 0.00162 0.00170	MKEH - Hungary 0.00072 0.00057 0.00055 0.00056 0.00057 0.00058	INRIM - Italy 0.00056 0.00055 0.00055 0.00055 0.00055	RISE - Sweden 0.00098 0.00099 0.00096 0.00096 0.00102 0.00097 0.00098	NPL - United Kingdom 0.00044 0.00044 0.00045 0.00045 0.00045 0.00045	NSAI NML - Ireland 0.00099 0.00083 0.00070 0.00064 0.00064 0.00064
p MPa 0.74 1.08 1.77 2.94 4.10 5.27 6.44 6.79	INM - Romania 0.00142 0.00142 0.00147 0.00152 0.00157 0.00162 0.00170 0.00170	MKEH - Hungary 0.00072 0.00057 0.00055 0.00056 0.00057 0.00058 0.00059	INRIM - Italy 0.00056 0.00055 0.00055 0.00055 0.00055 0.00055 0.00054	RISE - Sweden 0.00098 0.00099 0.00096 0.00096 0.00102 0.00097 0.00098 0.00098	NPL - United Kingdom 0.00044 0.00044 0.00045 0.00045 0.00045 0.00045 0.00045	NSAI NML - Ireland 0.00099 0.00083 0.00070 0.00064 0.00064 0.00064 0.00064
р МРа 0.74 1.08 1.77 2.94 4.10 5.27 6.44 6.79 <i>р</i> МРа	INM - Romania 0.00142 0.00142 0.00147 0.00152 0.00157 0.00162 0.00170 0.00170 GUM - Poland	MKEH - Hungaryy 0.00072 0.00057 0.00055 0.00056 0.00057 0.00058 0.00058 VSL - Netherlands	INRIM - Italy 0.00056 0.00055 0.00055 0.00055 0.00055 0.00055 0.00054 VTT – MIKES Finland	RISE - Sweden 0.00098 0.00099 0.00096 0.00096 0.00102 0.00097 0.00098 0.00098	NPL - United Kingdom 0.00044 0.00044 0.00045 0.00045 0.00045 0.00045	NSAI NML - Ireland 0.00099 0.00083 0.00070 0.00064 0.00064 0.00064 0.00064
р МРа 0.74 1.08 1.77 2.94 4.10 5.27 6.44 6.79 <i>р</i> МРа 0.74	INM - Romania 0.00142 0.00142 0.00147 0.00152 0.00157 0.00157 0.00170 0.00170 GUM - Poland 0.00079	MKEH - Hungaryy 0.00072 0.00057 0.00057 0.00056 0.00057 0.00058 0.00059 VSL - Netherlands	INRIM - Italy 0.00056 0.00055 0.00055 0.00055 0.00055 0.00055 0.00054 VTT – MIKES Finland 0.00070	RISE - Sweden 0.00098 0.00099 0.00096 0.00096 0.00102 0.00097 0.00098 0.00098	NPL - United Kingdom 0.00044 0.00044 0.00045 0.00045 0.00045 0.00045	NSAI NML - Ireland 0.00099 0.00083 0.00070 0.00064 0.00064 0.00064 0.00064
р МРа 0.74 1.08 1.77 2.94 4.10 5.27 6.44 6.79 <i>р</i> МРа 0.74 1.08	INM - Romania 0.00142 0.00142 0.00147 0.00152 0.00157 0.00157 0.00170 0.00170 GUM - Poland 0.00079	MKEH - Hungaryy 0.00072 0.00057 0.00057 0.00056 0.00057 0.00058 0.00058 0.00059 VSL - Netherlands 0.00054 0.00054	INRIM - Italy 0.00056 0.00055 0.00055 0.00055 0.00055 0.00054 VTT – MIKES Finland 0.00070	RISE - Sweden 0.00098 0.00096 0.00096 0.00102 0.00097 0.00098 0.00098	NPL - United Kingdom 0.00044 0.00044 0.00045 0.00045 0.00045 0.00045	NSAI NML - Ireland 0.00099 0.00083 0.00070 0.00064 0.00064 0.00064 0.00064
р МРа 0.74 1.08 1.77 2.94 4.10 5.27 6.44 6.79 <i>р</i> МРа 0.74 1.08 1.77	INM - Romania 0.00142 0.00142 0.00147 0.00152 0.00157 0.00157 0.00170 0.00170 GUM - Poland 0.00079 0.00079	MKEH - Hungaryy 0.00072 0.00057 0.00057 0.00056 0.00057 0.00058 0.00058 0.00059 VSL - Netherlands 0.00054 0.00054	INRIM - Italy 0.00056 0.00055 0.00055 0.00055 0.00055 0.00055 0.00054 VTT – MIKES Finland 0.00070 0.00065	RISE - Sweden 0.00098 0.00099 0.00096 0.00096 0.00102 0.00097 0.00098 0.00098 0.00098 0.00098	NPL - United Kingdom 0.00044 0.00044 0.00045 0.00045 0.00045 0.00045	NSAI NML - Ireland 0.00099 0.00083 0.00070 0.00064 0.00064 0.00064 0.00064
р МРа 0.74 1.08 1.77 2.94 4.10 5.27 6.44 6.79 <i>р</i> МРа 0.74 1.08 1.77 2.94	INM - Romania 0.00142 0.00142 0.00147 0.00152 0.00157 0.00157 0.00170 0.00170 GUM - Poland 0.00079 0.00079 0.00079	MKEH - Hungaryy 0.00072 0.00057 0.00057 0.00056 0.00057 0.00058 0.00058 0.00059 VSL - Netherlands 0.00054 0.00054 0.00054 0.00054	INRIM - Italy 0.00056 0.00055 0.00055 0.00055 0.00055 0.00054 VTT - MIKES Finland 0.00070 0.00065 0.00061	RISE - Sweden 0.00098 0.00099 0.00096 0.00096 0.00097 0.00098 0.00098	NPL - United Kingdom 0.00044 0.00044 0.00045 0.00045 0.00045 0.00045 0.00045	NSAI NML - Ireland 0.00099 0.00083 0.00070 0.00064 0.00064 0.00064 0.00064
р МРа 0.74 1.08 1.77 2.94 4.10 5.27 6.44 6.79 <i>р</i> МРа 0.74 1.08 1.77 2.94 4.10	INM - Romania 0.00142 0.00142 0.00147 0.00152 0.00157 0.00157 0.00170 0.00170 GUM - Poland 0.00079 0.00079 0.00079 0.00079	MKEH - Hungaryy 0.00072 0.00057 0.00057 0.00056 0.00057 0.00058 0.00058 0.00059 VSL - Netherlands 0.00054 0.00054 0.00054 0.00054	INRIM - Italy 0.00056 0.00055 0.00055 0.00055 0.00055 0.00055 0.00054 VTT - MIKES Finland 0.00070 0.00065 0.00061 0.00058 0.00057	RISE - Sweden 0.00098 0.00099 0.00096 0.00096 0.00097 0.00098 0.00098 0.00098	NPL - United Kingdom 0.00044 0.00044 0.00045 0.00045 0.00045 0.00045 0.00045	NSAI NML - Ireland 0.00099 0.00083 0.00070 0.00064 0.00064 0.00064 0.00064
р МРа 0.74 1.08 1.77 2.94 4.10 5.27 6.44 6.79 <i>р</i> МРа 0.74 1.08 1.77 2.94 4.10 5.27	INM - Romania 0.00142 0.00142 0.00147 0.00152 0.00157 0.00157 0.00170 0.00170 0.00170 0.00079 0.00079 0.00079 0.00079 0.00079	MKEH - Hungaryy 0.00072 0.00057 0.00057 0.00056 0.00057 0.00058 0.00058 0.00059 VSL - Netherlands 0.00054 0.00054 0.00054 0.00054 0.00054	INRIM - Italy 0.00056 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00055 0.00054 VTT - MIKES Finland 0.00065 0.00065 0.00058 0.00057 0.00057	RISE - Sweden 0.00098 0.00096 0.00096 0.00097 0.00097 0.00098 0.00098 1 1 1 1 1 1 1 1 1 1 1 1 1	NPL - United Kingdom 0.00044 0.00044 0.00045 0.00045 0.00045 0.00045 0.00045	NSAI NML - Ireland 0.00099 0.00083 0.00070 0.00064 0.00064 0.00064 0.00064
р МРа 0.74 1.08 1.77 2.94 4.10 5.27 6.44 6.79 <i>р</i> МРа 0.74 1.08 1.77 2.94 4.10 5.27 6.44	INM - Romania 0.00142 0.00142 0.00147 0.00152 0.00157 0.00157 0.00170 0.00170 GUM - Poland 0.00079 0.00079 0.00079 0.00079 0.00079	MKEH - Hungaryy 0.00072 0.00057 0.00057 0.00056 0.00057 0.00058 0.00058 0.00059 VSL - Netherlands 0.00054 0.00054 0.00054 0.00054 0.00054 0.00054	INRIM - Italy 0.00056 0.00055 0.00055 0.00055 0.00055 0.00055 0.00054 VTT - MIKES Finland 0.00070 0.00065 0.00061 0.00058 0.00057 0.00057 0.00103	RISE - Sweden 0.00098 0.00099 0.00096 0.00096 0.00097 0.00098 0.00098 0.00098 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NPL - United Kingdom 0.00044 0.00044 0.00045 0.00045 0.00045 0.00045 0.00045	NSAI NML - Ireland 0.00099 0.00083 0.00070 0.00064 0.00064 0.00064 0.00064

6.3 Reference Values (RV)

As reference values (key comparison reference values RV), the effective areas were used calculated by the weighted mean method.

The reference values were calculated based on the measurement results of the participants having primary pressure standards, see Table 1.

6.3.1 Weighted mean

Equation 4

$$A_{p,\text{ref,weighted mean}} = \frac{\sum_{j=1}^{N} \frac{A_{p,j}}{u^2(A_{p,j})}}{\sum_{j=1}^{N} \frac{1}{u^2(A_{p,j})}}$$

where $u^2(A_{p,j})$ is the standard uncertainty associated with the effective area $A_{p,j}$ of laboratory *j*.

The standard uncertainty is given by:

Equation 5

$$u(A_{p,\text{ref,weighted mean}}) = \left[\sum_{j=1}^{N} \frac{1}{u^2(A_{p,j})}\right]^{-0.5}$$

The consistency of the determination of the reference value must be checked using the chisquared test as described by Cox in [8]. Results are considered as consistent if the observed chi-squared value χ^2_{obs} calculated by equation 6 is smaller than the value of chi-square distribution calculated for the degree of freedom v = N-1 at probability Pr = 0.05, $\chi^2(v, Pr)$.

Equation 6

$$\chi_{\text{obs}}^{2} = \sum_{j=1}^{N} \frac{\left(A_{p,j} - A_{p,\text{ref,weighted mean}}\right)^{2}}{u^{2}\left(A_{p,j}\right)}$$

6.3.2 Results

Results for calculation of the reference values are given in Table 6 and in Figure 3.

Table 6. Proposed reference values of effective areas calculated as weighted-means $(A_{p,ref,weighted mean})$ including relative and absolute standard uncertainties, observed chi-squared values (χ^2_{obs}) and values of the chi-square distribution calculated for degree of freedom *v* at the probability Pr = 0.05 $(\chi^2_{\nu=7})$

d	$A_{p,\mathrm{ref},\mathrm{weighted}}$ mean	$rac{u(A_{p,\mathrm{ref}},\mathrm{weighted\ mean})}{A_{p,\mathrm{ref}},\mathrm{weighted\ mean}}$	$oldsymbol{u}ig(A_{p,\mathrm{ref},\mathrm{weighted}}$ mean $ig)$	$\chi^2_{ m obs}$	$\chi^2_{ u=7}$
MPa	mm²	ppm	mm ²		
0.74	49.01483	4.1	0.00020	3.5	14.1
1.08	49.01486	3.9	0.00019	2.2	14.1
1.77	49.01488	3.8	0.00019	2.1	14.1
2.94	49.01487	3.7	0.00018	2.6	14.1
4.10	49.01477	3.7	0.00018	2.9	14.1
5.27	49.01472	3.8	0.00019	1.7	14.1
6.44	49.01457	3.8	0.00019	2.1	14.1
6.79	49.01455	3.8	0.00019	2.3	14.1

As the weighted mean based on the results from the primary laboratories passes the consistency check, we take it as a reference value for the comparison before establishing the link.

These values have been chosen as the reference values $A_{p,RV} = A_{p,ref,weighted mean}$.

6.4 Degrees of equivalence

The degrees of equivalence of the laboratories are expressed by the differences of the laboratories' results from the RV and the expanded (k = 2) uncertainties of these differences.

The difference between the result of laboratory *j* and the key comparison reference value is calculated as:

Equation 7

$$d_j = A_{p,j} - A_{p,RV}$$

The expanded uncertainty (k = 2) of d_j is given, for a laboratory contributing to the reference value, by:

Equation 8

$$U(d_j) = 2 \cdot \sqrt{u^2(A_{p,j}) - u^2(A_{p,\mathrm{RV}}) + u^2(\Delta A_{p,T})}$$

while for a laboratory not contributing to the reference value it is given by:

Equation 9

$$U(d_{j}) = 2 \cdot \sqrt{u^{2}(A_{p,j}) + u^{2}(A_{p,RV}) + u^{2}(\Delta A_{p,T})}$$

where $u(\Delta A_{p,T})$ is the uncertainty value due to TS instability, see section 6.1.1.

The degree of equivalence is the offset respective to the reference value and the associated uncertainty of this offset, see Table 7.

	FORCE -	FORCE - Denmark		UME - Turkey		PTB - Germany	
р	dj	U(d _j)	d	U(d)	dj	$U(d_j)$	
MPa	mm²	mm ²	mm ²	mm ²	mm ²	mm ²	
0.74	0.00034	0.00264	0.00043	0.00145	-0.00035	0.00117	
1.08	0.00021	0.00238	0.00023	0.00144	-0.00007	0.00095	
1.77	0.00031	0.00217	0.00018	0.00144	0.00002	0.00078	
2.94	0.00032	0.00204	0.00009	0.00143	0.00012	0.00071	
4.10	0.00029	0.00199	0.00011	0.00143	0.00012	0.00070	
5.27	0.00031	0.00196	0.00006	0.00144	0.00008	0.00068	
6.44	0.00032	0.00195	0.00006	0.00144	0.00007	0.00068	
6.79	0.00026	0.00194	0.00005	0.00143	0.00006	0.00068	
	BEV - A	Austria	METAS - S	Switzerland	SMD - I	Belgium	
p	d_{j}	U(d _j)	d_j	U(d _j)	d_{j}	$U(d_j)$	
MPa	mm ²	mm ²	mm ²	mm ²	mm ²	mm ²	
0.74	-0.00013	0.00127	-0.00030	0.00099	0.00041	0.00220	
1.08	0.00029	0.00126	-0.00012	0.00096	0.00085	0.00206	
1.77	0.00017	0.00126	-0.00023	0.00095	0.00086	0.00194	
2.94	0.00008	0.00125	-0.00037	0.00093	0.00085	0.00190	
4.10	0.00003	0.00125	-0.00039	0.00093	0.00082	0.00184	
5.27	-0.00007	0.00126	-0.00040	0.00092	0.00074	0.00186	
6.44	-0.00002	0.00126	-0.00045	0.00092	0.00077	0.00188	
6.79	0.00000	0.00126	-0.00043	0.00092	0.00067	0.00188	
	MCCAA - S	SMI Malta	CEM -	Spain	FSB-LPN	- Croatia	
p	dj	$U(d_j)$	dj	U(d _j)	dj	$U(d_j)$	
MPa	mm²	mm²	mm²	mm²	mm²	mm²	
0.74	-0.00048	0.00143	-0.00008	0.00114	-0.00089	0.00150	
1.08	-0.00046	0.00138	-0.00006	0.00114	-0.00061	0.00150	
1.77	-0.00053	0.00135	0.00017	0.00114	-0.00047	0.00146	
2.94	-0.00072	0.00133	0.00038	0.00114	-0.00034	0.00156	
4.10	-0.00062	0.00132	0.00043	0.00114	-0.00021	0.00141	
5.27	-0.00064	0.00132	0.00038	0.00114	-0.00021	0.00140	
6.44	-0.00064	0.00132	0.00048	0.00114	-0.00007	0.00140	
6.79	-0.00069	0.00132	0.00050	0.00114	-0.00007	0.00140	
	MIRS/IM Slove	T/LMT - enia	SMU - S	Slovakia	IMBiH - B Herze	osnia and govina	
p	d_{j}	U(d _j)	d_j	U(d _j)	d_{j}	U(d _j)	
MPa	mm ²	mm²	mm ²	mm²	mm²	mm²	
0.74	0.00073	0.00116	-0.00034	0.00118	0.00068	0.00179	
1.08	0.00040	0.00103	-0.00021	0.00117	0.00048	0.00178	
1.77	0.00036	0.00099	-0.00016	0.00118	0.00048	0.00176	
2.94	0.00027	0.00098	-0.00007	0.00118	0.00037	0.00175	
4.10	0.00032	0.00099	-0.00012	0.00118	0.00025	0.00175	
5.27	0.00023	0.00102	-0.00019	0.00117	0.00013	0.00176	
6.44	0.00021	0.00102	-0.00030	0.00117	0.00019	0.00177	
6.79	0.00017	0.00104	-0.00035	0.00117	0.00018	0.00178	

Table 7. Degrees of equivalence for all the participants, k = 2

	INM - Romania		MKEH - Hungary		INRIM - Italy	
p	d_{j}	U(d _j)	dj	$U(d_j)$	dj	U(d _j)
MPa	mm²	mm²	mm²	mm²	mm²	mm²
0.74	-0.00125	0.00287	-0.00050	0.00150	0.00015	0.00105
1.08	-0.00105	0.00287	-0.00024	0.00130	0.00021	0.00104
1.77	-0.00121	0.00296	-0.00034	0.00120	0.00021	0.00105
2.94	-0.00074	0.00306	-0.00030	0.00116	0.00016	0.00104
4.10	-0.00046	0.00316	-0.00024	0.00118	0.00014	0.00104
5.27	-0.00039	0.00326	-0.00027	0.00120	0.00013	0.00104
6.44	-0.00018	0.00342	-0.00022	0.00122	0.00011	0.00103
6.79	-0.00028	0.00342	-0.00023	0.00124	0.00009	0.00102
	RISE - S	Sweden	NPL - Unite	ed Kingdom	NSAI NMI	L - Ireland
p	d_j	$U(d_j)$	d_j	U(dj)	d_j	U(dj)
MPa	mm ²	mm²	mm ²	mm²	mm ²	mm ²
0.74	-0.00008	0.00201	0.00050	0.00081	0.00007	0.00203
1.08	0.00014	0.00201	0.00032	0.00080	-0.00001	0.00170
1.77	0.00000	0.00196	0.00028	0.00081	-0.00005	0.00145
2.94	-0.00006	0.00195	0.00021	0.00081	-0.00011	0.00133
4.10	-0.00005	0.00207	0.00019	0.00082	-0.00006	0.00133
5.27	0.00010	0.00197	0.00011	0.00081	-0.00009	0.00134
6.44	0.00010	0.00199	0.00006	0.00081	0.00002	0.00134
6.79	0.00016	0.00200	0.00003	0.00081	0.00006	0.00134
	GUM - F	Poland	VSL - Netherlands		VTT MIKES - Finland	
p	dj	$U(d_j)$	dj	$U(d_j)$	d_j	U(dj)
MPa	mm ²	mm ²	mm ²	mm ²	mm ²	mm ²
0.74	0.00114	0.00164	0.00038	0.00102	-0.00059	0.00136
1.08	0.00105	0.00163	0.00023	0.00102	-0.00069	0.00124
1.77	0.00089	0.00163	0.00011	0.00103	-0.00064	0.00116
2.94	0.00069	0.00162	0.00009	0.00103	-0.00065	0.00110
4.10	0.00075	0.00162	0.00015	0.00103	-0.00065	0.00108
5.27	0.00057	0.00162	0.00004	0.00102	-0.00060	0.00204
6.44	0.00067	0.00162	0.00019	0.00102	-0.00049	0.00202
6.79	0.00062	0.00162	0.00027	0.00102	-0.00050	0.00201

Figure 4. The differences d_j with expanded uncertainties $U(d_j)$ at 0.74 MPa.

Figure 5. The differences d_j with expanded uncertainties $U(d_j)$ at 1.08 MPa.

Figure 6. The differences d_j with expanded uncertainties $U(d_j)$ at 1.77 MPa

Figure 7. The differences d_j with expanded uncertainties $U(d_j)$ at 2.94 MPa

Figure 8. The differences d_j with expanded uncertainties $U(d_j)$ at 4.1 MPa

Figure 9. The differences d_i with expanded uncertainties $U(d_i)$ at 5.27 MPa

Figure 10. The differences d_j with expanded uncertainties $U(d_j)$ at 6.44 MPa

Figure 11. The differences d_j with expanded uncertainties $U(d_j)$ at 6.79 MPa

7 Linking the EURAMET.M.P-K1.c (EURAMET 1179) KC to CCM.P-K1.c KC

Key comparisons carried out by regional metrology organizations (RMO) must be linked to the corresponding CCM key comparisons by means of joint participants, see CIPM MRA-D-05 "Measurements comparisons in the CIPM MRA" [9]. In this comparison, we have the opportunity to link this EURAMET.M.P-K1.c (EURAMET 1179) key comparison to CCM.P-K1.c key comparison through PTB.

The procedure is described in "Proposal for linking the results of CIPM and RMO key comparisons" [10].

The link is established through PTB that has taken part in both the EURAMET and CCM key comparisons.

CCM key comparison reference values and results for PTB presented in the CCM.P-K1.c final report [11] are shown below.

7.1 Stability of the linking standard

A laboratory can provide a link between comparisons if its reference standard is stable between the two comparisons. The stability of the reference standard needs to be known to calculate the uncertainty.

PTB has informed that the stability of reference standard 0302 is 2.7 ppm.

In CCM.P-K1.c comparison, PTB used 3 different reference standards:

- Reference standard with serial number 6222 at 0.73 MPa, 1.07 MPa and 1.76 MPa.
- Reference standard with serial number 1310 at 2.93 MPa, 4.10 MPa and 5.27 MPa.
- Reference standard with serial number 0302 at 6.44 MPa and 6.79 MPa.

In EURAMET.M.P-K1.c comparison, PTB used:

- Reference standard with a serial number of DHI 0302 at all pressure points.

For linking purpose, PTB performed an additional comparison between the reference standards used in the comparisons in the range 0.73 MPa to 5.27 MPa. The uncertainty of the linkage between 0302 and 6222 in the range 0.73 MPa to 1.76 MPa is 1.0 ppm, and the uncertainty of the linkage between 0302 and 1310 in the range 2.93 MPa to 5.27 MPa is

1.0 ppm. With these results, the relative uncertainties of these standards due to instability were combined resulting in $u_{\text{stability of linking standard}}$ as given in Table 8.

The reference standard used in CCM.P-K1.c	6222	1310	0302
Reference standard used in EURAMET.M.P-K1.c	0302	0302	0302
Link of standards used	0302-6222	0302-1310	-
$u_{ m stability of linking standard}$ / ppm	2.9	2.9	2.7
Pressure / MPa	0.73, 1.07, 1.76	2.93, 4.10, 5.27	6.44, 6.79

Table 8. The linkage between 0302, 1310 and 6222

7.2 Linking procedure

The relative difference between the CCM PTB result, $A_{p,\text{PTB,CCM}}$, and the RV in the CCM KC, $A_{p,\text{ref,CCM}}$, is calculated according to equation 10.

Equation 10

$$D_{\rm PTB,CCM} = \frac{(A_{p,\rm PTB,CCM} - A_{p,\rm ref,CCM})}{A_{p,\rm ref,CCM}}.$$

The relative deviation of the EURAMET PTB result, $A_{p,PTB,EURAMET}$, from the EURAMET RV, $A_{p,ref,EURAMET}$, is calculated according to equation 11.

Equation 11

$$D_{\text{PTB,EURAMET}} = \frac{(A_{p,\text{PTB,EURAMET}} - A_{p,\text{ref,EURAMET}})}{A_{p,\text{ref,EURAMET}}}.$$

The link between EURAMET.M.P-K1.c and CCM.P-K1.c KC $D_{EURAMET,CCM}$ at each pressure point is given by:

Equation 12

$$D_{\text{EURAMET,CCM}} = D_{\text{PTB,CCM}} - D_{\text{PTB,EURAMET}}$$

The standard uncertainty of the $D_{EURAMET,CCM}$ can be calculated as:

Equation 13

$$u(D_{\text{EURAMET,CCM}}) = \sqrt{u^2 (A_{p,\text{ref,CCM}}) / A_{p,\text{ref,CCM}}^2 + u_{\text{stability of linking standard}}^2}$$

The relative deviation of EURAMET laboratories' results from the CCM RV is calculated according to equation 14.

Equation 14

$$D_{j,\text{CCM}} = d_{j,\text{EURAMET}} + D_{\text{EURAMET,CCM}}$$

where

$d_{i,\text{EURAMET}}$	designates the relative deviation of the EURAMET laboratory result from the
	EURAMET RV,
j	designates laboratories participating in the EURAMET KC,

D_{j,CCM} represents the offset of the EURAMET laboratory *j* result respective to the CCM reference value for a particular pressure.

The uncertainty of the relative deviation from the CCM RV is obtained taking root-of-sum-of-squares of uncertainty of the CCM RV, stability of the PTB linking standard, participants' uncertainty, as well as instabilities of the transfer standards of the EURAMET ($u(\Delta A_{p,T})$) and the CCM ($u(\Delta A_{p,T,CCM})$) KCs, as given by equation 15.

Equation 15

$$U(D_{j,\text{CCM}}) = 2 \cdot \left[u^2 (D_{\text{EURAMET,CCM}}) + u^2 (A_{p,j}) / A_{p,\text{ref,EURAMET}}^2 + u^2 (\Delta A_{p,T}) / A_{p,\text{ref,EURAMET}}^2 + u^2 (\Delta A_{p,T,\text{CCM}}) / A_{p,\text{ref,CCM}}^2 \right]^{0.5}$$

Uncertainty of the CCM RV and stability of the PTB linking standard are included in $u(D_{\text{EURAMET,CCM}})$ as given by equation 13. Uncertainties of participants are taken from Table 5. Instability of the EURAMET TS is given in Section 6.1.1. The relative instability of the CCM TS is given in the CCM.P-K1c Final report [11], page 13, by 3.10⁻⁶ for all pressures.

The degrees of equivalence and their uncertainties are calculated by equations 14 and 15 and are given in Table 9 and Figures 12 to 19. There, D_j means $D_{j,CCM}$ and $U(D_j)$ means $U(D_{j,CCM})$.

	FORCE -	Denmark	UME -	Turkey	PTB - G	iermany
р	Dj	$U(D_j)$	D_j	$U(D_j)$	Dj	$U(D_j)$
MPa	ppm	ppm	ppm	ppm	ppm	ppm
0.74	12.2	55.4	14.0	32.2	-1.9	29.4
1.08	4.9	50.4	5.3	32.2	-0.8	26.0
1.77	8.7	46.3	6.1	32.2	2.8	23.4
2.94	11.3	43.8	6.8	32.2	7.3	22.5
4.10	10.6	42.8	7.0	32.2	7.1	22.3
5.27	9.8	42.3	4.7	32.2	5.2	22.2
6.44	8.8	41.9	3.4	32.2	3.6	22.0
6.79	7.1	41.8	2.9	32.2	3.1	22.0
	BEV - A	Austria	METAS - S	Switzerland	SMD - E	Belgium
p	Di	$U(D_i)$	Di	$U(D_i)$	Di	$U(D_i)$
MPa	ppm	ppm	ppm	ppm	ppm	ppm
0.74	2.7	29.0	-0.8	26.6	13.7	46.7
1.08	6.6	29.0	-1.8	26.2	18.0	44.0
1.77	5.9	29.0	-2.3	25.9	19.9	41.7
2.94	6.4	29.0	-2.7	25.6	22.2	41.0
4.10	5.2	29.0	-3.2	25.6	21.3	39.9
5.27	2.2	29.0	-4.7	25.5	18.7	40.2
6.44	1.7	28.9	-7.0	25.4	17.8	40.6
6.79	2.0	28.9	-6.8	25.4	15.6	40.6
	MCCAA - S	SMI Malta	CEM -	Spain	FSB-LPM	- Croatia
р	Di	U(D _i)	Di	$U(D_i)$	Di	U(D _i)
MPa	ppm	ppm	ppm	ppm	ppm	ppm
0.74	-4.6	31.8	3.8	29.0	-12.9	33.1
1.08	-8.8	31.2	-0.6	29.0	-11.9	33.4
1.77	-8.3	30.7	5.9	29.0	-7.1	32.8
2.94	-9.7	30.4	12.6	29.0	-1.9	34.6
4.10	-8.1	30.3	13.4	29.0	0.4	31.9
5.27	-9.6	30.2	11.4	29.0	-0.8	31.5
6.44	-10.9	30.1	11.9	28.9	0.8	31.5
6.79	-12.1	30.1	12.2	28.9	0.5	31.5
	MIRS/IM Slove	T/LMT - enia	SMU - Slovakia		IMBiH - Bosnia and Herzegovina	
р	Dj	$U(D_j)$	Dj	$U(D_j)$	Dj	$U(D_j)$
MPa	ppm	ppm	ppm	ppm	ppm	ppm
0.74	20.2	26.9	-1.7	29.5	19.3	38.8
1.08	8.8	24.9	-3.6	29.5	10.4	38.6
1.77	9.8	24.3	-0.8	29.5	12.1	38.4
2.94	10.5	24.1	3.4	29.5	12.4	38.3
4.10	11.1	24.4	2.3	29.5	9.8	38.3
5.27	8.2	24.7	-0.3	29.5	6.1	38.3
6.44	6.4	24.8	-3.9	29.4	6.2	38.5
6.79	5.5	25.1	-5.1	29.4	5.6	38.6

Table 9. The degrees of equivalence of EURAMET.M.P-K1.c participants linked to CCM.P-K1c.

	INM - Romania		MKEH -	Hungary	INRIM - Italy	
р	Dj	$U(D_j)$	D_j	$U(D_j)$	D_j	$U(D_j)$
MPa	ppm	ppm	ppm	ppm	ppm	ppm
0.74	-20.2	60.0	-4.8	33.2	8.3	27.4
1.08	-20.9	60.0	-4.2	29.7	4.9	27.4
1.77	-22.3	62.0	-4.5	28.0	6.7	27.4
2.94	-10.2	63.9	-1.3	27.3	8.1	27.3
4.10	-4.8	65.9	-0.3	27.6	7.5	27.3
5.27	-4.4	67.9	-1.9	28.0	6.2	27.4
6.44	-1.5	71.1	-2.4	28.2	4.5	27.1
6.79	-3.8	71.1	-2.7	28.6	3.8	26.9
	RISE - S	Sweden	NPL - Unite	ed Kingdom	NSAI NMI	- Ireland
р	Dj	$U(D_j)$	D_j	$U(D_j)$	D_j	$U(D_j)$
MPa	ppm	ppm	ppm	ppm	ppm	ppm
0.74	3.8	42.9	15.5	23.8	6.8	43.3
1.08	3.5	43.1	7.1	23.8	0.5	37.2
1.77	2.4	42.2	8.1	23.8	1.4	32.5
2.94	3.6	42.1	9.1	23.9	2.6	30.4
4.10	3.7	44.4	8.7	23.9	3.4	30.4
5.27	5.5	42.4	5.7	23.9	1.8	30.5
6.44	4.2	42.7	3.5	23.9	2.5	30.4
6.79	5.2	42.9	2.5	23.9	3.2	30.4
	GUM - F	Poland	VSL - Ne	therlands	VTT MIKE	S - Finland
p	D_j	$U(D_j)$	D_j	$U(D_j)$	D_j	$U(D_j)$
MPa	ppm	ppm	ppm	ppm	ppm	ppm
0.74	28.6	35.8	13.2	27.1	-6.7	32.7
1.08	22.1	35.8	5.2	27.1	-13.5	30.8
1.77	20.5	35.8	4.6	27.1	-10.7	29.3
2.94	18.9	35.8	6.7	27.1	-8.4	28.3
4.10	19.9	35.8	7.7	27.1	-8.6	27.9
5.27	15.2	35.8	4.2	27.1	-8.7	45.0
6.44	15.8	35.7	6.1	27.0	-7.9	44.6
6.79	14.6	35.7	7.4	27.0	-8.3	44.5

Figure 12. The degrees of equivalence D_j with expanded uncertainties $U(D_j)$ at 0.74 MPa

Figure 13. The degrees of equivalence D_j with expanded uncertainties $U(D_j)$ at 1.08 MPa

Figure 14. The degrees of equivalence D_j with expanded uncertainties $U(D_j)$ at 1.77 MPa

Figure 15. The degrees of equivalence D_j with expanded uncertainties $U(D_j)$ at 2.94 MPa

Figure 16. The degrees of equivalence D_i with expanded uncertainties $U(D_i)$ at 4.10 MPa

Figure 17. The degrees of equivalence D_j with expanded uncertainties $U(D_j)$ at 5.27 MPa

Figure 19. The degrees of equivalence D_j with expanded uncertainties $U(D_j)$ at 6.79 MPa

8 Conclusion

The EURAMET key comparison EURAMET.M.P-K1.c in gas media and gauge mode in the range 0.7 MPa to 7.0 MPa was organized by EURAMET with the project no. 1179.

24 laboratories, mainly from EURAMET, participated in the project. Due to either missing resources or failure with their laboratory standard difficulties, 3 participants, EIM, NIS and LCAE-CME, did not submit results.

The transfer standard was a piston-cylinder unit with a nominal effective area of 50 mm², provided with a complete pressure balance and a mass set. The transfer standard and the associated parts were circulated without any major problems. Both the transfer standard's pressure-dependent effective area and the weights were stable within the uncertainty of the check measurements during the project.

The reference values were calculated as the weighted mean of the results submitted by the 8 participating primary laboratories.

PTB measured 3 times in order to determine a potential drift of the transfer standard. There was no need to apply a time-drift correction.

The linkage to CCM.P-K1.c was performed through PTB that has taken part in both the EURAMET and CCM key comparisons.

The results of the participants are consistent with the reference values of CCM.P-K1.c at all pressure points.

9 References

- [1] EURAMET, Technical Committee for Mass, "Calibration of pressure balances", EURAMET cg-3 Version 1.0, ISBN 978-3-942992-02-2, 03/2011.
- [2] Sabuga W., "Pressure measurements in gas media up to 7.5 MPa for the Boltzmann constant redetermination", in "Proceedings of the 5th CCM international conference on pressure and vacuum metrology" and 4th international conference IMEKO TC16", Berlin, 2011, PTB-Mitteilungen, 2011, vol. 121, pp. 247-255.
- [3] Sabuga W., Priruenrom T., Haines R., Bair M., "Design and evaluation of pressure balances with 1[.]10⁻⁶ uncertainty for the Boltzmann constant project", in "*Proceedings* of the 5th CCM international conference on pressure and vacuum metrology and 4th international conference IMEKO TC16", Berlin, 2011, PTB-Mitteilungen, 2011, vol. 121, pp. 256-259.
- [4] Sabuga W., Priruenrom T., Molinar G., Buonanno G., Rabault T., Wongthep P., Pražák D., "FEA calculation of pressure distortion coefficients of gas-operated pressure balances – EURAMET project 1039", in "Proceedings of the 5th CCM international conference on pressure and vacuum metrology and 4th international conference IMEKO TC16", Berlin, 2011, Measurement, 2012, vol. 45, pp. 2464-2468.
- [5] Salama D., Sabuga W., Ulbig P., "Measurement of the elastic constants of pressure balance materials using resonance ultrasound spectroscopy", in "Proceedings of the 5th CCM international conference on pressure and vacuum metrology and 4th international conference IMEKO TC16", Berlin, 2011, Measurement, 2012, vol. 45, pp. 2472-2475.
- [6] Otal P., Morgado I., Steindl D., Medina Martín N., Lefkopoulos A., Altintas A., Grgec Bermanec L., Bursic S., Setina J., Bergoglio M., Spohr I., Wüthrich C., Rantanen M., Vámossy C., Sabuga, W., Koçaş I., "Evaluation of cross-float measurements with pressure balances – Results of EURAMET project 1125", in "*Proceedings of the 5th CCM international conference on pressure and vacuum metrology and 4th international conference IMEKO TC16*", Berlin, 2011, *PTB-Mitteilungen*, 2011, vol. 121, pp. 294-297.
- [7] Altıntaş A., "Pressure standard comparison gas media and gauge mode from 0.7 MPa to 7 MPa", Technical Protocol to EURAMET.M.P-K1.c in the frame of EURAMET project no. 1179, http://kcdb.bipm.org/appendixB/appbresults/EURAMET.M.P-K1.c/EURAMET.M.P-K1.c_Technical_Protocol.pdf, 2011.
- [8] Cox M. G., "The evaluation of key comparison data", *Metrologia*, 2002, vol. 39, pp. 589-595.
- [9] C. MRS-D-05, "Measurements comparisons in the CIPM MRA", March 2016.
- [10] Elster C., Link A., Wolfgang W., "Proposal for the linking the results of CIPM and RMO key comparisons", *Metrologia*, 2003, vol. 40, pp. 189-194
- [11] Final report, CCM Key Comparison 7 MPa, Phase B (CCM.P-K1c), October 2000.