Report of APMP comparison of the activity measurements of Fe-59 (APMP.RI(II)-K2.Fe-59)

Akira Yunoki¹⁾, Yasushi Sato¹⁾, Leena Joseph²⁾, Anuradha Ravindra²⁾, D.B.Kulkarni²⁾, Ming-Chen Yuan³⁾, K. B. Lee⁴⁾, J. M. Lee⁴⁾, Agung Agusbudman⁴⁾, Tae-Soon Park⁴⁾, Paulo Alberto Lima da Cruz⁵⁾, Carlos José da Silva⁵⁾, Akira Iwahara⁵⁾, Ming Zhang⁶⁾, Jun Cheng Liang⁶⁾, Hao Ran Liu⁶⁾, M.J. van Staden⁷⁾, J. Lubbe⁷⁾, M.W. van Rooy⁷⁾, B.R.S. Simpson⁷⁾, Paphon Paukkachane⁸⁾, Natnalin Sastri⁸⁾, Thongchai Soodprasert⁸⁾, Pujadi Marsoem⁹⁾, Hermawan Candra Holnisar⁹⁾ and Gatot Wurdiyanto⁹⁾

¹⁾ National Metrology Institute of Japan, Tsukuba Central 3, 305-8563 Tsukuba, Japan
 ²⁾ Bhabha Atomic Research Centre, Trombay, Mumbai - 400 085, India

³⁾ Institute of Nuclear Energy Research, No. 1000, Jia'anli Wenhua Road, Longtan District, Taoyuan City, Chinese Taipei

⁴⁾ Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea

⁵⁾ Laboratório Nacional de Metrologia das Radiações Ionizantes /Instituto de Radioproteção e Dosimetria, Av Salvador Allende, 3.773-Barra da Tijuca, Rio de Janeiro, Brazil

⁶⁾ National Institute of Metrology, No. 18, Bei San Huan Dong Rd., 100029 Beijing, China

⁷⁾National Metrology Institute of South Africa, Lynnwood Ridge, 0040 Pretoria, South Africa

⁸⁾ Office of Atoms for Peace, 16 Vibhavadi Rangsit Road, Ladyao Subdistrict, Chatuchak District, Bangkok 10900, Thailand

⁹⁾ Pusat Teknologi Keselamatan Dan Metrologi Radiasi, Jl. Lebak Bulus Raya No.49, RT.5/RW.2, Lb. Bulus, Kec. Cilandak, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12440, Indonesia

Abstract

The international comparison of activity measurements of ⁵⁹Fe, APMP.RI(II)-K2.Fe-59, was carried out within the framework of the Asia-Pacific Metrology Programme (APMP). Nine institutes took part in the comparison, and eight institutes of them undertook absolute measurements. One ampoule prepared using the same radioactive solution as that used in the comparison was sent to the BIPM/SIR [1] in order to link the comparison to the BIPM key comparison reference value (KCRV).

1. Introduction

The plan for a regional key comparison of activity measurement of a ⁵⁹Fe solution was discussed at the eighth meeting of APMP/TCRI in Thailand. It was registered as the official Regional Metrology Organization (RMO) key comparison APMP.RI(II)-K2.Fe-59 in 2014. The pilot laboratory was the NMIJ. The ampoules of ⁵⁹Fe solution were distributed in June of 2014 to all the participants. They measured the activity using their own methods and reported the results to the pilot laboratory.

2. Technical protocol

2.1 Measurement

Participants were required to report the activity concentration (in Bq g^{-1}) of the solution. Uncertainty estimations were performed according to GUM [2]. The reference date of the measurement was 1 June 2014 at 0:00:00 UTC.

2.2 Time schedule

The samples were distributed in mid-June 2014 and the deadline for the measurement reports was 15 September 2014. The NMIJ prepared a draft A report in May, 2015. After circulating it among participants of the comparison, the NMIJ revised and submitted it to the BIPM on March, 2016 as draft B. The work flow of the comparison was according to Appendix 3 of CIPM MRA-D-05 "Measurement comparisons in the context of the CIPM MRA".

2.3 Estimation of the comparison results

The result of each participant was estimated by evaluating the parameter E_n according to the following formula [3];

$$E_n = \frac{A_{lab} - A_{ref}}{\sqrt{U_{lab}^2 + U_{ref}^2}},$$

where A_{lab} and U_{lab} are the activity and expanded uncertainty obtained by each participant, respectively, and A_{ref} and U_{ref} are the activity and an expanded uncertainty obtained by the pilot laboratory, respectively.

The results obtained from the APMP comparison will be linked to the KCRV by using the BIPM/SIR result of the NMIJ (pilot laboratory). The link between the APMP.RI(II)-K2.Fe-59 comparison and BIPM.RI(II)-K1.Fe-59 is being published in the Key Comparison Database (KCDB) in parallel with the present report.

3. Source preparation

The original solution of ⁵⁹Fe was provided by PerkinElmer, Inc. The chemical form was FeCl₃ and the activity concentration was approximately 1.2 GBq mL⁻¹ on 14 April 2014. After a quick activity measurement, the original solution was diluted to be approximately 500 kBq g⁻¹ on 1 June 2014 in a 0.1 mol L⁻¹ HCl solution containing 0.1 mg/g FeCl₃ as carrier. The diluted ⁵⁹Fe solution was then transferred into the NMIJ standard type 5 mL ampoules and the BIPM/NIST - type 3.6 mL ampoule. The NMIJ standard type ampoules were sent to the participants in June 2014. The solution in the BIPM/NIST-type ampoule was sent to the BIPM/SIR [1] at the same time. The activity of the solution in each ampoule was measured in well-type pressurized ionization chambers before shipping. The relative standard deviation of the measured activities (kBq g⁻¹) was 0.053 %. Numbers of the ampoules, mass of the solution and the institutes where the ampoules were sent are listed in Table 1.

Ampoule No.	Mass of solution / (g)	Institute
0001	4.996	ANSTO (*1)
0003	4.995	BARC
0004	4.999	INER
0007	5.002	KRISS
0009	4.996	LNMRI/IRD
0010	4.999	NIM
0011	5.002	NMISA
0012	5.002	OAP
0013	5.000	PTKMR-BATAN
0014	4.995	NMIJ
0015	3.602	BIPM

Table 1 Ampoule numbers and mass of solution measured before shipping

*1 The ANSTO did not submit a result and are not mentioned further in this report.

4. Participants

The abbreviations, full names, countries and Regional Metrological Organizations (RMO) of the participants are listed in Table 2.

NMI	Full name of participant	Country	RMO
BARC	Bhabha Atomic Research Centre	India	APMP
INER	Institute of Nuclear Energy Research	Chinese Taipei	APMP
KRISS	Korea Research Institute of Standards and Science	Korea	APMP
LNMRI/IRD	Laboratório Nacional de Metrologia das Radiações Ionizantes (LNMRI)/Instituto de Radioproteção e Dosimetria - IRD/Brazil	Brazil	SIM
NIM	National Institute of Metrology	China	APMP
NMISA	National Metrology Institute of South Africa	South Africa	AFRIMETS
OAP	Office of Atoms for Peace	Thailand	APMP
PTKMR- BATAN	Pusat Teknologi Keselamatan Dan Metrologi Radiasi	Indonesia	APMP
NMIJ	National Metrology Institute of Japan	Japan	APMP

Table 2. Acronym, full name, country and RMO of participant

5. Measurement methods

The standardization methods used in the comparison of APMP.RI(II)-K2.Fe-59 are listed in Table 3.

Institute	Standardization Method (see Appendix 1)
BARC	4P-PC-BP-NA-GR-CO, 4P-LS-BP-NA-GR-CO, 4P-LS-CN-00-00-00
INER	4P-PC-BP-NA-GR-CO
KRISS	4P-LS-BP-NA-GR-CO, 4P-PP-BP-NA-GR-CO
LNMRI/IRD	4P-PC-BP-GH-GR-CO, 4P-LS-BP-NA-GR-CO, 4P-PC-BP-NA-GR-CO
NIM	4P-PC-BP-NA-GR-CO
NMISA	4P-LS-BP-NA-GR-CO
OAP	4P-IC-GR-00-00-00
PTKMR- BATAN	4P-LS-BP-NA-GR-CO
NMIJ	4P-PC-BP-NA-GR-CO

Table 3. The standardization methods used by participants

6. Results

The standardization methods used by the participants, the measured activities, the relative uncertainties associated with the activity measurement and the date of measurements are listed in Table 4; the results are plotted in Figure 1. The half-life of ⁵⁹Fe used for estimating the activity at the reference date was 44.495 days with an uncertainty of 0.008 days [4].

The KRISS reported that ⁶⁰Co was found in the solution, with an activity of 91 Bq g⁻¹ and a standard uncertainty of 7 Bq g⁻¹. The ratio of activity of ⁶⁰Co to ⁵⁹Fe at the reference date was approximately 0.02 %. The NIM reported that ⁵⁵Fe and ⁶⁰Co were found in the solution. The activities were less than 10⁻⁶ of ⁵⁹Fe at the reference date. The NMISA, PTKMR-BATAN and NMIJ found no impurities in the solution. The KRISS, NIM, PTKMR-BATAN and NMIJ used high-purity germanium spectrometers and the NMISA used a NaI(Tl) scintillation spectrometer for assessing impurities. No correction was applied to the reported values because the activities of impurities are much smaller than uncertainties reported by the participants.

The OAP broke ampoule number 12 so weighed the mass of the solution recovered. The reported mass was 4.9991 g whereas the mass of sample which was measured before shipping was 5.002 g. The difference is only 0.06 %, therefore, no correction was applied to the result of the OAP.

The LNMRI/IRD found a problem in the computer that controlled its coincidence counting system after circulation of the Draft A report of the comparison. The problem had resulted in the counting time used being wrong by 4 %. Since the result of the LNMRI/IRD was not obtained by an instrument in full working order, the LNMRI/IRD result was not included in the calculation of the mean or in calculating the comparison reference value.

The PTKMR-BATAN investigated the reason for discrepancy with the results from the other participants, however, no clear reason could be identified.

Only one result can be submitted per laboratory for determining the mean result for the comparison; the results selected, the rationale, the measurement method, expanded uncertainties and E_n values are listed in Table 5 and are plotted in Figure 2. The power-moderated mean [5] of the final results of the participants (excluding the result from the LNMRI/IRD) was 470.8 kBq g⁻¹ and the standard uncertainty was 1.7 kBq g⁻¹ at the reference date. The value obtained by the pilot laboratory is slightly lower than the other participant values and the comparison reference value. The key comparison reference value (x_{ref}) of the BIPM.RI(II)-K1.Fe-59 comparison as agreed by the CCRI in 2017 is 14 639(27) kBq, to which this data will be linked by using the SIR equivalent activity (A_e) value of the NMIJ (Pilot laboratory) of 14 576(23) kBq. The uncertainty budgets of each participant are listed in Table 6.

Institute	Method used (see Appendix 1)	Activity / (kBq g ⁻¹) (*2)	Expanded uncertainty/ $(kBq g^{-1})$ (*2) (k = 2)	Relative expanded uncertainty/ % (k = 2)	Mean date of measurements
	4P-PC-BP-NA-GR-CO	471.72	4.43	0.94	
BARC	4P-LS-BP-NA-GR-CO	473.95	7.20	1.52	14 August, 2014
	4P-LS-CN-00-00-00	473.05	2.74	0.58	
INER	4P-PC-BP-NA-GR-CO	471.8	2.9	0.62	25 July, 2014
	4P-LS-BP-NA-GR-CO	471.0	5.9	1.3	14 July, 2014
KRISS	4P-PP-BP-NA-GR-CO	471.8	6.9	1.5	27 August, 2014
	4P-PC-BP-GH-GR-CO	501.8	7.0	1.4	
	4P-LS-BP-NA-GR-CO	499.4	4.0	0.8	
LNMRI /IRD	4P-PC-BP-NA-GR-CO (Gamma window: 1099 keV)	501.8	6.0	1.2	24 September, 2014
	4P-PC-BP-NA-GR-CO (Gamma window: 1291 keV)	497.72	6.0	1.2	
NIM	4P-PC-BP-NA-GR-CO	471.7	3.2	0.68	1 August, 2014
NMISA	4P-LS-BP-NA-GR-CO	473.6	2.7	0.57	22/23 July, 2014
OAP	4P-IC-GR-00-00-00	482	24	5.0	
PTKMR- BATAN	4P-LS-BP-NA-GR-CO	458.74	7.44	1.62	5 September, 2014
NMIJ	4P-PC-BP-NA-GR-CO	469.9	1.3	0.28	25 June, 2014

 Table 4. Standardization methods of the participants and their results

*2 reference date = 0:00 h UTC of 1st June, 2014

Half-life of 59 Fe = 44.495 d, u = 0.008 d [3]

Institute	Method used (see Appendix 1)	Activity / (kBq g ⁻¹) (*2)	Expanded uncertainty/ $(kBq g^{-1})$ (*2) (k = 2)	Relative expanded uncertainty/ % (k = 2)	$E_{\rm n}$ value
BARC	Arithmetric mean of the results obtained by 4P-PC-BP-NA-GR-CO and 4P-LS-BP-NA-GR-CO	472.84	4.22	0.89	0.67
INER	4P-PC-BP-NA-GR-CO	471.8	2.9	0.62	0.60
KRISS	4P-LS-BP-NA-GR-CO	471.0	5.9	1.3	0.18
LNMRI /IRD	Weighted mean of the results obtained by 4P-PC-BP-GH-GR-CO, 4P-LS-BP-NA-GR-CO, (Gamma window: 1099 keV) and 4P-PC-BP-NA-GR-CO (Gamma window: 1291 keV)	499.8	7.0	1.4	4.2
NIM	4P-PC-BP-NA-GR-CO	471.7	3.2	0.68	0.52
NMISA	4P-LS-BP-NA-GR-CO	473.6	2.7	0.57	1.2
OAP	4P-IC-GR-00-00-00	482	24	5.0	0.50
PTKMR- BATAN	4P-LS-BP-NA-GR-CO	458.74	7.44	1.62	-1.5
NMIJ	4P-PC-BP-NA-GR-CO	469.9	1.3	0.28	
Arithmetic mean of values of the all participants		471.4	3.3	0.71	
Power-moderated mean of values of the participants excluding the LNMRI/IRD		470.8	3.4 (*3)	0.72 (*4)	

Table 5. Final results, method used, expanded uncertainties and E_n values

*3 standard uncertainty

*4 relative standard uncertainty

Figure 1. The measured activities with their expanded uncertainties (as listed in Table 4). The measurement method is indicated.

Figure 2. Laboratory final results with their expanded uncertainties listed in Table 5. Vertical solid lines indicate expanded uncertainties (k=2) of each result. A dotted red horizontal line indicates the power-moderated mean [5] of the final results of the participants, excluding the LNMRI/IRD. A solid red horizontal line indicates the present KCRV of BIPM.RI(II)-K1.Fe-59 as agreed by the CCRI in 2017 of 14 639(27) kBq.

				LNMRI/	LNMRI/		
Item	Function	BARC	INER	IRD	IRD	NIM	NMIJ
No.				(*5)	(*6)		
1	counting statistics	0.39	0.14	0.180	0.180	0.19	0.04(*7)
2	weighing	0.05	0.02	0.050	0.050	0.10	0.08
3	dead time	0.10	0.01	0.003	0.006	0.05	< 0.01
4	background	0.13	0.06	0.490	0.478	0.05	0.01
5	pile up						
6	resolving time	0.18	0.01	0.009	0.016	0.05	0.03
7	Gandy effect		0.06	0.068	0.068	0.10	0.02
8	counting time		0.01			0.01	0.02
9	adsorption					0.06	
10	impurities					< 0.01	
11	tracer						
12	input parameters and statistical model						
13	quenching						
14	interpolation from calibration curve						
15	decay-scheme parameters						
16	half-life $T_{1/2} = 44.495 \text{ d}$	0.02	0.02	0.025	0.024	0.04	0.01
17	self-absorption						
18	extrapolation of efficiency curve	0.07	0.25	0.276	0.270	0.22	0.1
19	other effects						
combined uncertainty (1σ)		0.47	0.31	0.60	0.59	0.34	0.14

Table 6. Uncertainty components and estimated relative values / 10⁻². •: 4P-PC-BP-NA-GR-CO

*5 gamma window: 1099 keV.

*6 gamma window: 1291 keV.

*7 Included in a component of extrapolation of efficiency curve.

Item No.	Function	KRISS
1	counting statistics	0.71
2	weighing	0.1
3	dead time	0.01
4	background	0.1
5	pile up	
6	resolving time	0.02
7	Gandy effect	
8	counting time	0.01
9	adsorption	
10	impurities	0.02(*8)
11	tracer	
10	input parameters and	
12	statistical model	
13	quenching	
14	interpolation from	
14	calibration curve	
15	decay-scheme	
15	parameters	
16	half-life	0.03
10	$T_{1/2} = 44.495 \text{ d}$	0.05
17	self-absorption	
18	extrapolation of	0.1
10	efficiency curve	0.1
19	other effects	
comb	ined uncertainty (1σ)	0.73

 Table 6. Uncertainty components and estimated relative values / 10⁻² (continued).

 ♦: 4P-PP-BP-NA-GR-CO

*8 Considering the impurity of ⁶⁰Co found in the solution.

Item No	Function	BARC	KRISS	LNMRI /IRD	NMISA	PTKMR- BATAN
1	counting statistics	0.19(*9)	0.14(*10)	0.180	0.06(*15)	0.25
2	weighing	0.02	0.05(*11)	0.050	0.01	0.5
3	dead time	0.12		0.002	0.002	0.05
4	background	0.70		0.327	0.1	0.01
5	pile up					
6	resolving time	0.1	0.30(*12)	0.012	0.001	0.02
7	Gandy effect			0.095		
8	counting time				0.001	
9	adsorption				0.01	
10	impurities		0.02(*13)			
11	tracer					
12	input parameters and statistical model					
13	quenching					
14	interpolation from calibration curve					0.05
15	decay-scheme parameters					0.3
16	half-life $T_{1/2} = 44.495 \text{ d}$	0.02	0.01	0.023	0.02	0.02
17	self-absorption					
18	extrapolation of efficiency curve	0.14	0.54(*14)	0.112	0.25(*16)	0.5
19	other effects - satellite pulses				0.03(*17)	
combined uncertainty (1σ)		0.76	0.63	0.40	0.28	0.81

 Table 6. Uncertainty components and estimated relative values / 10⁻² (continued).

 ■: 4P-LS-BP-NA-GR-CO

*9 Included in a component of extrapolation of efficiency curve.

*10 Standard deviation of the mean for the activity determinations for 10 sources and 2 background measurements method.

*11 Gravimetric mass determination uncertainty 0.09% subtracted out the repeatability that was already taken into account in the measurement variability.

- *12 Difference of activity values obtained using different resolving times.
- *13 Measured concentration fraction of ⁶⁰Co impurity.
- *14 Standard deviation of the distribution obtained with different efficiency ranges.
- *15 Statistical analysis of 16 values.
- *16 Alternative fits and gamma-ray windows were used to estimate the extrapolation range, assumed uniform, range/ $(2\sqrt{3})$.

*17 Satellite pulses varied by 10%.

Item		
No.	Function	BARC
1	counting statistics	0.28
2	weighing	0.03
3	dead time	
4	background	0.01
5	pile up	
6	resolving time	
7	Gandy effect	
8	counting time	
9	adsorption	
10	impurities	
11	tracer	0.06
10	input parameters and	
12	statistical model	
13	quenching	
14	interpolation from	
14	calibration curve	
15	decay-scheme	
15	parameters	
16	half-life	0.02
10	$T_{1/2} = 44.495 \text{ d}$	0.02
17	self-absorption	
18	extrapolation of	
10	efficiency curve	
19	other effects	
comb	ined uncertainty (1σ)	0.29

 Table 6. Uncertainty components and estimated relative values / 10⁻² (continued).

 ▲: 4P-LS-CN-00-00-00

 Table 6. Uncertainty components and estimated relative values / 10⁻² (continued).

Item No.	Function	LNMRI /IRD
1	counting statistics	0.180
2	weighing	0.050
3	dead time	0.004
4	background	0.478
5	pile up	
6	resolving time	0.016
7	Gandy effect	0.081
8	counting time	
9	adsorption	
10	impurities	
11	tracer	
12	input parameters and statistical model	
13	quenching	
14	interpolation from calibration curve	
15	decay-scheme parameters	
16	half- life $T_{1/2} = 44.495 \text{ d}$	0.022
17	self-absorption	
18	extrapolation of efficiency curve	0.275
19	other effects	
с	ombined uncertainty (1σ)	0.70

□: 4P-PC-BP-GH-GR-CO

Item No.	Function	OAP
1	counting statistics	0.1
2	weighing	0.1
3	dead time	
4	background	
5	pile up	
6	resolving time	
7	Gandy effect	
8	counting time	
9	adsorption	
10	impurities	
11	tracer	
12	input parameters and statistical model	
13	auenching	
14	interpolation from calibration curve	0.5
15	decay-scheme parameters	
16	half- life $T_{1/2} = 44.495 \text{ d}$	0.02
17	self-absorption	
18	extrapolation of efficiency curve	
19	other effects reference source stability electrometer accuracy calibration factor 	0.3 0.2 2.2
с	ombined uncertainty (1σ)	2.29

 Table 6. Uncertainty components and estimated relative values / 10⁻² (continued).

 O: 4P-IC-GR-00-00-00

6. Preliminary degrees of equivalence

The degree of equivalence of the result of a particular NMI, i, with the key comparison reference value is expressed as the difference D_i between the values

$$D_i = x_i - x_{ref}$$

where x_i and x_{ref} are each participant's result and the comparison reference value obtained by the power moderated mean [5], respectively. The expanded uncertainty (k = 2) of this difference U_i , known as the equivalence uncertainty; hence:

$$U_i = 2u(D_i)$$

When the result of the NMI i is included in the KCRV with a weight w_i , then

$$u^2(D_i) = (1-2w_i) u_i^2 + u^2(x_{\text{ref}}).$$

where u_i is the combined standard uncertainties as reported by each laboratory. However, when the result of the NMI *i* is not included in the KCRV, then

 $u^2(D_i) = u_i^2 + u^2(x_{ref}).$

The preliminary degrees of equivalence for participants in the comparison are presented in Table 7. Final degrees of equivalence, as well as the final Key Comparison Reference Value (KCRV) will be calculated using measurements made in the International Reference System (SIR).

Institute	Difference, <i>D</i> _i (kBq g ⁻¹)	Expanded uncertainty ($k=2$) of the difference, U_i (kBq g ⁻¹)
BARC	2.1	4.9
INER	1.0	4.2
KRISS	0.2	6.2
LNMRI/IRD	29.0	7.8
NIM	0.9	4.3
NMISA	2.8	4.1
OAP	11.2	23.7
PTKMR-BATAN	-12.0	7.5
NMIJ	-0.9	3.6

Table 7. Preliminary degrees of equivalence

7. Conclusion

The APMP key comparison of APMP.RI(II)-K2.Fe-59 radionuclide activity measurements was completed. In total, nine institutes participated in the comparison. The comparison reference value and preliminary degrees of equivalence have been evaluated. The measurement results of eight institutes are linked to the KCRV of the BIPM.RI(II)-K1.Fe-59 through the result of the pilot laboratory.

Acknowledgements

The authors would like to thank all participants in this comparison and the BIPM staff for their continuous efforts in maintaining the SIR.

References

- [1] G. Ratel, The Système International de Référence and its application in key comparisons, <u>Metrologia 44(4) (2007) S7-S16</u>.
- [2] JCGM, <u>Evaluation of measurement data Guide to the expression of uncertainty in</u> <u>measurement, JCGM 100:2008</u>
- [3] ISO, Statistical methods for use in proficiency testing by interlaboratory comparisons, ISO 13528:2005.
- [4] M. -M. Be et al. Monographie BIPM-5, BPM, 2004, Vol. 1 A = 1 to 150, pp.99-103.
- [5] S. Pommé and J Keightley, Determination of a reference value and its uncertainty through a power-moderated mean, *Metrologia* 52 (2015) S200-S212.

Appendix 1 Acronyms used to identify different measurement methods

Each acronym has six components, geometry-detector (1)-radiation (1)-detector (2)-radiation (2)-mode. When
a component is unknown, ?? is used and when it is not applicable 00 is used.

Geometry	acronym	Detector	acronym
4π	4P	proportional counter	PC
defined solid angle	SA	press. prop counter	PP
2π	2P	liquid scintillation counting	LS
undefined solid angle	UA	NaI(Tl)	NA
		Ge(HP)	GH
		Ge-Li	GL
		Si-Li	SL
		CsI	CS
		ionization chamber	IC
		grid ionization chamber	GC
		bolometer	BO
		calorimeter	CA
		PIPS detector	PS
Radiation	acronym	Mode	acronym
positron	РО	efficiency tracing	ET
beta particle	BP	internal gas counting	IG
Auger electron	AE	CIEMAT/NIST	CN
conversion electron	CE	sum counting	SC
bremsstrahlung	BS	coincidence	СО
gamma ray	GR	anti-coincidence	AC
X-rays	XR	coincidence counting with efficiency tracing	СТ
alpha - particle	AP	anti-coincidence counting with efficiency tracing	AT
mixture of various radiation e.g. X and gamma	MX	triple-to-double coincidence ratio counting	TD
		selective sampling	SS

Examples method	acronym
4π (PC) β - γ -coincidence counting	4P-PC-BP-NA-GR-CO
4π (PPC) β - γ -coincidence counting eff. tracing	4P-PP-MX-NA-GR-CT
defined solid angle α -particle counting with a PIPS detector	SA-PS-AP-00-00-00
4π(PPC)AX-γ(GeHP)-anticoincidence counting	4P-PP-MX-GH-GR-AC
$4\pi \operatorname{CsI-\beta}, AX, \gamma \text{ counting}$	4P-CS-MX-00-00-00
calibrated IC	4P-IC-GR-00-00-00
internal gas counting	4P-PC-BP-00-00-IG