EURAMET supplementary comparison of ambient dose equivalent *H**(10) in ¹³⁷Cs and ISO Narrow Beam Series N-60 x-ray beams at low dose rates

EURAMET project No. 1132

BIPM KCDB: EURAMET.RI(I)-S11

Oliver Hupe,

Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany

Néstor Armando Cornejo Díaz,

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas Avda. Complutense, 40; E2.P0.D13, ES - 28040 Madrid, Spain

ABSTRACT

Comparison measurements among national standards laboratories are required to demonstrate their equivalence in the realization and transfer of the quantity ambient dose equivalent, $H^*(10)$, for photon radiation by these laboratories.

The first comparison of the radiation protection quantity $H^*(10)$ with focus on the special needs for calibration of area dosemeters, low dose rates and large fields, started in January 2013 and was completed in December 2014. The comparison was piloted by the PTB as EURAMET project No. 1132 known also as EURAMET.RI(I)-S11.

The operation and results of the comparison are reported here. The transfer instrument was a secondary standard ionization chamber for $H^*(10)$ with a volume of 10000 cm³. The response of this transfer instrument in various photon reference fields (N-60 and 1 mSv/h, S-Cs and 10 µSv/h, S-Cs and 1 mSv/h, radiation quality according to ISO 4037-1:1996 [1]) was compared. Measurements were made by the fourteen participants from the following countries: Germany, Austria, Greece, Norway, Sweden, Finland, Portugal, Spain, Czech Republic, Romania, the Netherlands, Slovenia, Italy and by one international organization. The results obtained by almost all of the participants are consistent with the stated uncertainties.

1 Introduction

The CIPM Mutual Recognition Arrangement (CIPM MRA) is the framework through which National Metrology Institutes demonstrate the international equivalence of measurement standards. In this context, BIPM publishes on its homepage a list of Calibration and Measurement Capabilities (CMC-lists) of the institutes which have signed the MRA. Calibration services can, however, only be included if a quality management system according to ISO standard 17025 is established. However, quality assurance and confidence in the capabilities of other laboratories can be ensured by the successful participation in a comparison in which the degree of equivalence with other national metrology institutes or calibration laboratories is determined.

In the last years the comparison for personal dose equivalent $H_p(10)$ initiated by the Physikalisch-Technische Bundesanstalt (PTB) was performed as a supplementary comparison using the radiation qualities N-15 and 0°, N-20 and 45°, N-30 and 75°, N-60 and 0°, N-120 and 0° [2]. This comparison could be used to some extent for the ambient dose equivalent, $H^*(10)$, as well, because the quantity $H_p(10)$ on the slab phantom for 0° radiation incidence is nearly identical to $H^*(10)$ in the case of unidirectional radiation incidence [3].

It remained that it was quite important to perform an international comparison with the focus on the special needs for calibration of area dosemeters: large radiation fields and low dose rates (10 μ Sv/h and 1 mSv/h) for the radiation qualities S-Cs and N-60 (only at 1 mSv/h) of the ISO narrow spectrum series.

Measurements at S-Cs with 500 nSv/h are very demanding, because of the very low ionization current to be measured when using an ionization chamber. Therefore, only three laboratories were able to participate at these low dose rates and the results are presented as an appendix to the comparison (Annex B).

For this comparison, a secondary standard ionization chamber for $\dot{H}^*(10)$ with a large active volume of 10000 cm³ was used as a transfer instrument [4]. The aim of this comparison was to compare the calibration coefficient of the transfer instrument. The circulation of the chamber was in effect a cloverleaf shape, after sending to three participants, the chamber was sent back to the pilot laboratory for testing.

As already has been noted in EURAMET Project #738 [2], there are technical difficulties at low energy x-ray qualities (below 50 kV, e.g. N-60); this comparison does not address this energy range and a further comparison may be necessary.

The comparison was coordinated by the PTB as the pilot laboratory, which has also evaluated the results. After the approval by the CCRI(I) of the official final report, it should be published in Metrologia. In addition, the results will be sent to BIPM for inclusion as a link in the Key Comparison Data Base (KCDB).

The radiation qualities and doserates selected for the comparison were:

N-60 at 1 mSv/h S-Cs at 10 μ Sv/h S-Cs at 1 mSv/h. All these radiation qualities are according to ISO 4037-1:1996 [1].

The following time schedule, see Table 1, was agreed among the 16 participants. The start of the comparison was January 2013. After the start of the comparison, the VMT/FTMC/LT withdrew, as well as the BIM /BG. In agreement with all others, the SMU/SK was added as new participant. But unfortunately, after performing the measurements, SMU had to withdraw as well. Additionally, the schedule was changed so that IAEA took part at position 18 instead of position 3 as the IAEA was occupied with other duties for that period. All measurements were finished within the planned schedule.

The MKEH/HU had to be excluded after the measurements, as they did not provide the required uncertainty budget.

Time	Participant/Country	Quality control checks	remarks
01 / 2013	PTB / DE		1
02 / 2013	BEV / AT		2
03 /2013	-none-		(schedule changed-> 18)
04 /2013	IRCL/GAEC-EIM / GR		4
05 / 2013		PTB / DE	
06 / 2013	NRPA / NO		5
07 / 2013	SSM / SE		6
08 / 2013	STUK / FI		7
09 / 2013		PTB / DE	
10 / 2013	IST-LPSR-LMRI / PT		8
11 / 2013	CIEMAT / ES		9
12 / 2013	CMI / CZ		10
01 / 2014		PTB / DE	
02 / 2014	SMU /SK		11 BIM / BG withdrew
03 / 2014	IFIN-HH / RO		12
04 / 2014	MKEH / HU		13 excluded
05 / 2014		PTB / DE	
06 / 2014	VSL / NL		14
07 / 2014	IJS / SI		15
08 / 2014	VTM/FTMC/LT		16 withdrew
09 / 2014		PTB / DE	
10 / 2014	ENEA-INMRI / IT		17
11 / 2014	IAEA / Int. Org.		3 (schedule changed)
12 / 2014		PTB / DE	

 Table 1: Schedule

The clover leaf circulation scheme is shown in Figure 1.

1	DE	PTB
2	AT	BEV
4	GR	IRCL/GAEC-
		EIM
5	NO	NRPA
6	SE	SSM
7	FI	STUK
8	PT	IST-LPSR-
		LMRI
9	ES	CIEMAT
10	CZ	CMI
11		
12	RO	IFIN-HH
13	HU	MKEH
14	NL	VSL
15	SI	IJS
16		
17	IT	ENEA-INMRI
18	Int.Org.	IAEA

Figure 1: List of participants and circulation scheme.

Abbr.	Institute	Abbr.	Country
BEV	Bundesamt für Eich- und	AT	Austria
	Vermessungswesen		
CIEMAT	Centro de Investigaciones Energéticas,	ES	Spain
	Medioambientales y Tecnológicas		
CMI	Czech Metrology Institute	CZ	Czech Republic
ENEA-	Istituto Nazionale di Metrologia delle	IT	Italy
INMRI	Radiazioni Ionizzanti		
IAEA	International Atomic Energy Agency	Org.	International
		Int.	Organization
IFIN-HH	Horia Hulubei National Institute of R&D for Physics and Nuclear Engineering	RO	Romania
IJS	Jožef Stefan Institute	SI	Slovenia
IRCL/GAEC-	Ionizing Calibration Laboratory / Greek	GR	Greece
EIM	Atomic Commission-		
	Helenic Institute of Metrology		
IST-LPSR-	Instituto Superior Técnico	PT	Portugal
LMRI			
MKEH	Hungarian Trade Licensing Office	HU	Hungary
NRPA	Norwegian Radiation Protection Authority	NO	Norway
PTB	Physikalisch-Technische Bundesanstalt	DE	Germany
SSM	Swedish Radiation Safety Authority	SE	Sweden
STUK	Radiation and Nuclear Safety Authority	FI	Finland
VSL	Dutch Metrology Institute	NL	The Netherlands

Table 2: List of participants and abbreviations:

2 Measurement conditions

The object of the comparison is the calibration of an ionization chamber in terms of the ambient dose equivalent rate, $\dot{H}^*(10)$. As transfer instrument, a secondary standard chamber for $\dot{H}^*(10)$ [4] was used, see figure 2.

Figure 2: HS10, Secondary standard chamber for $\dot{H}^*(10)$, manufactured by Seibersdorf Labor GmbH.

Figure 3: Holder to mount the chamber on the experimental table.

The uniformity of the doserate distribution across the beam diameter at the measuring point should be about 5% and better [1]. For calibration purposes the chamber must be irradiated completely.

Technical specification of the ionization chamber:

- Ionization chamber HS10, see figure 2.
- Outer diameter of about 274 mm.
- The chamber voltage should be +400 V (chamber wall).
- Special holder for the chamber for mounting on the experimental table, see figure 3.
- BNC connector for current measurement and Lemo connector for the high voltage supply at the end of the stem.
- For the high voltage: Adaptor with a Lemo (FFA.1S.304.CLAC52) connector to a banana plug (4 mm pin plug).

3 Measurement programme and quantity measured by the participants

Each participant calibrated the transfer chamber at the radiation qualities S-Cs and N-60 of the ISO narrow spectrum series [1]. The calibration coefficient in Sv/C is given by:

$$N_H = \frac{\dot{H}^*(10)}{I}$$

- *I* = current measured by the ionization chamber with the current measuring instruments of the participant, corrected for the environmental influences and the leakage current.
- $\dot{H}^*(10)$ = conventional quantity value of the ambient dose equivalent rate determined by the participant.

Measurements were performed at the following radiation qualities and doserates: N-60 at 1 mSv/h and S-Cs at 10 μ Sv/h and S-Cs at 1 mSv/h.

Optional Measurement: S-Cs at 0.5 µSv/h

These measurement results are given as an informative Annex B in the report.

The comparison reference value x_R was determined at each radiation quality (see Appendix A) and for each doserate as the weighted mean of the calibration coefficient N_H given by the participants. Only values from participants with traceability for K_a to their own primary standard contributed to the comparison reference value:

4 Realization of the radiation protection quantity at the participants' laboratory

The common approach is to measure the air kerma in a given point of the radiation field (using a secondary standard calibrated against an own primary standard or against the primary standard of a different NMI) and multiplying the obtained value by a conversion coefficient given by the standards or determined for the particular reference beam. Few participants have used standards calibrated directly in the quantity $H^*(10)$. The methods for the determination of the conventional quantity vale are described in Table 3.

It has to be emphasized that the relation of $H^*(10)/K_a$, the conversion coefficient, has an important dependence with the photon energy. Due to the fact that the reference fields used by each participant's laboratory have different spectra, an additional uncertainty is introduced during the calibration in the quantity $H^*(10)$.

Participant	Quality	<i>h*_κ</i> (10;R,α)	Method for the determination of K_a	Determination of conversion coefficients	traceability
РТВ	N-60 and 0°	1.59	N-60: PTW M23361 (cylindrical, 30 cm ³) as transfer chamber, calibrated against the primary standard.	HPGe-spectrometer, spectrum deconvolution and ICRU report 57 [6] monoenergetic values,	N-60 and S-Cs <i>K</i> _a : PTB
	S-Cs and 0°	1.20*	S-Cs: For the irradiations at the gamma radiation facility, the doserate of the sources were determined	published as PTB-DOS-34 [7]	
		* This value was used for the IC. It has been shown that this factor in ISO 4037- 3:1999 is incorrect and will be adopted to 1.21 in the new version of ISO 4037-3	in advance by measurements with the primary standard chambers. In cases where the doserate were too low to measure with the primary standard chambers, a secondary standard chamber with larger volume was used. This secondary standard chamber has been calibrated against the primary standard at higher doserates. [5]	Conversion coefficient for S-Cs taken from ISO 4037-3:1999 [8]	
BEV	N-60 and 0°	1.59	N-60: Primary standard PKG for K_a at 1350 mm for calibration of LS01. HS10 calibrated at 2500 mm against LS01.	Conversion coefficients taken from ISO 4037-3:1999 [8]	N-60 and S-Cs <i>K</i> _a : BEV
	S-Cs and 0°	1.20	$\breve{S-Cs}$: Primary standard CC01 for K_a used for calibrating TK30 at 1000 mm. HS10 calibrated at 2500 mm against the TK30.		
IRCL/GAEC-EIM	N-60 and 0°	1.59	PTW TW 32002 (LS-01) and PTW W32003 (LS-10) were used for the determination of the reference value.	Conversion coefficients taken from ISO 4037-3:1999 [8]	N-60 and S-Cs <i>K</i> _a : PTB
	S-Cs and 0°	1.20	1 mSv/h with 10 mm Pb absorber		
NRPA	N-60 and 0°	1.59	N-60: Capintec PM-30 for calibration of Exradin A6. HS10 calibrated against Exradin A6	Conversion coefficients taken from PTB-DOS-34 [7]	N-60: <i>K</i> _a : VSL
	S-Cs and 0°	1.20	S-Cs: NE2575, for calibration of Exradin A6. HS10 calibrated against Exradin A6		S-Cs: <i>K</i> a: BIPM
SSM	N-60 and 0°	1.59	Secondary standard ionization chamber Exradin A4 (30 cm^3)	Conversion coefficients taken from ISO 4037-3:1999 [8]	N-60: <i>K</i> _a : PTB
	S-Cs and 0°	1.20			S-Cs: <i>K</i> a: BIPM

Table 3: List of partic	pipants and their method for the	determination of the cor	nventional quantit	y value of <i>H</i> *(10)
-------------------------	----------------------------------	--------------------------	--------------------	------------------------	-----

STUK	N-60 and 0°	1.59	N-60: NE 2575	Conversion coefficients taken from ISO 4037-3:1999 [8]	N-60 and S-Cs <i>K</i> _a : PTB
	S-Cs and 0°	1 20	S-Cs: TM 32002		
IST-LPSR-LMRI	N-60 and 0°	1.59	N-60: PTW TM 32002	Conversion coefficients taken from ISO 4037-3:1999 [8]	N-60: <i>K</i> _a : PTB
	S-Cs and 0°	1.20	S-Cs: LS01 (ÖFZ)		S-Cs: <i>K</i> _a : IST_LPSR_L MRI
LMRI(CIEMAT)	N-60 and 0°	1.59	N-60 Secondary standard ionization chamber NE 2575C	Conversion coefficients taken from ISO 4037-3:1999 [8]	N-60: <i>K</i> _a : PTB
	S-Cs and 0°	1.20	S-Cs: TM 32003 (LS10 with 10 l) S-Cs with 20 mm Pb absorber		S-Cs: <i>K</i> a: NPL
СМІ	N-60 and 0°	1.616	Secondary standard ionization chamber Exradin A4	Conversion coefficient determined by using the effective energy method	N-60 and S-Cs <i>K</i> _a : BIPM
	S-Cs and 0°	1.204	S-Cs (10 µSv/h) Exradin A4 -> ND-100 chamber		
IFIN-HH	N-60 and 0°	1.585 1.197 (1 mSy/b)	Standard instrument: PTW TM 32003 (LS10 with 10 l)	Standard instrument was calibrated in $H^*(10)$, no additional conversion coefficient.	N-60 and S-Cs <i>K</i> _a : PTB <i>H</i> *(10): PTB
	0 03 and 0	1.20 (10 μSv/h)			
VSL	N-60 and 0°	1.59	N-60: Primary air kerma standard chamber (10 cm ³), transfer to lower dose rates done by secondary standard ionization chamber Exradin A5 (100 cm ³)	Conversion coefficients taken from ISO 4037-3:1999 [8]	N-60 and S-Cs <i>K</i> _a : VSL
	S-Cs and 0°	1.20	S-Cs: Primary air kerma standard chamber and three different transfer secondary standard ionization chambers (30 cm ³ , 1000 cm ³ and 10000 cm ³)		
IJS	N-60 and 0°	1.59	Secondary standard ionization chamber TM 32003 (LS10 with 10 I)	Conversion coefficients taken from ISO 4037-3:1999 [8]	N-60 and S-Cs <i>K</i> _a : MKEH
	S-Cs and 0°	1.20	S-Cs with 7 mm Pb and 46 mm Pb absorber		
ENEA-INMRI	N-60 and 0°	1.59	N-60: Primary air kerma standard chamber. Use of transfer chambers for lower dose rates Exradin A4 (30 cm ³) and OFZS LS-01 (1000 cm ³)	Conversion coefficients taken from ISO 4037-3:1999 [8]	N-60: <i>K</i> a: ENEA-INMRI

	S-Cs and 0°	1.20 1.22 (0,5 µSv/h)	Secondary standard ionization chamber PTW TM 32002 (LS-01) Use of transfer chamber for lower dose rates OFZS LS-10	S-Cs: $H^*(10)$:direct calibration of LS-01 at BIPM; h^*_{κ} =1.22 given by BIPM	S-Cs: <i>K</i> _a : BIPM <i>H</i> *(10): BIPM
IAEA	N-60 and 0°		Secondary standard chamber HS01 Secondary standard chamber TM 32003 (LS10 with 10 I	Direct measurement of <i>H</i> *(10)	N-60: <i>H</i> *(10): PTB
	S-Cs and 0°		S-Cs lower dose rates: Secondary standard chamber LS-10 calibrated at BIPM S-Cs with lead attenuator		<i>H</i> *(10): BIPM

5 Measurement results

In Table 4 to 6 the values given in the measuring protocols of the participants are listed.

The uncertainty stated is the expanded measurement uncertainty obtained by multiplying the standard measurement uncertainty by the coverage factor k = 2. It has been determined by each participant in accordance with the "Guide to the Expression of Uncertainty in Measurement (GUM)" [9]. The value of the measurand then normally lies, with a probability of approximately 95 %, within the attributed coverage interval.

 Table 4: Measurement values given by the participants for S-Cs and 1 mSv/h.

S-Cs 1 mSv/h																				
Participant	Date of measurement	Activity of the Cs- 137 -Source	κ _a rate	H*(10) rate	Temperature	Air Pressure	Number of measurements of I_leak	Leakage current, /_leack	Number of measurements of I _meas(net)	Measurement current, /_meas(net)	Ratio of /_leak to /_ meas(net)	Distance source to ionisation chamber	Field size, diameter	Conversion coefficient h*K	Calibration coefficient for air kerma	Uncertainty of calibration coefficient for air kerma (k=2)	Uncertainty of calibration coefficient for air kerma (k = 2)	Calibration coefficient for <i>H</i> *(10)	Uncertainty of calibration coefficient H*(10) (k=2)	Uncertainty of calibration coefficient H*(10) (k = 2)
Abbreviation	yyyy-mm-dd	in GBq	in mGy/h	in mSv/h	in °C	in hPa	No.	in A	No.	in A	1	in m	in cm	in Sv/Gy	in Gy/C	in Gy/C	in %	in Sv/C	in Sv/C	in %
РТВ	2013-01-21	n.i.*	0.827	0.993	20.9	993	2	1.3995E-14	10	7.506E-11	0.00019	2.202	53	1.20	3.0613E+03	n.i.*	n.i.*	3.67E+03	100	2.7
BEV	2013-02-08 - 2013-03-11	45	0.863	1.035	20.0 to 21.5	975 to 1000	13	1.1020E-14	4 x 10	7.8495E-11	0.00014	2.0	52	1.20	3.0526E+03	n.i.*	1.5	3.6631E+03	158	4.3
IRCL/GAEC-EIM	2013-04-24	n.i.*	0.8341	1.001	21.7	996.0	12	2E-15	12	7.45E-11	n.i.*	3.30	91.7	1.2	n.i.*	n.i.*	n.i.*	3.73E+03	180	4.83
NRPA	2013-06-12	863	1.104	1.341	21.32	1000.3	5 x 50	9.15E-14	16 x 50	1.0038E-10	0.0009	8.0	188	n.i.*	3.055E+03	61	2.0	3.71E+03	186	5.0
SSM	2013-07-09	37	0.654	0.7852	19.80	1021.9	2	5.36E-14	10	6.097E-11	0.00088	2.0	80	1.20	3.011E+03	36	1.2	3.614E+03	152	4.2
STUK	2013-08-14	100	0.834	1.001	22.8	1001.0	1	2.300E-14	2	7.623E-11	0.0003	3.0	54	1.20	3.041E+03	60.32	2.0	3.649E+03	163	4.5
IST-LPSR-LMRI	2013-10-22	n.i.*	n.i.*	n.i.*	19.9	1005.8	5	4.10E-15	10	6.59E-11	n.i.*	2	30	1.2	n.i.*	n.i.*	n.i.*	3.680E+03	155	4.21
CIEMAT	2013-11-11	722 Pb filter 20 mm	0.831	0.997	19.77	949.0	4	2.625E-15	10	7.477E-11	3.51E-05	2.716	38.0	1.20	3.086E+03	49.99	1.62	3.704E+03	159	4.30
СМІ	2014-01-02	450	0.838	1.008	21.6	979.2	4	1.05E-14	7.710E-11	7.709E-11	1.36E-04	6.385	135	1.204	3.016E+03	56	1.88	3.631E+03	68	1.88
IFIN-HH	2014-03-20	38.76	0.83	1.00	20.75	1016.0	10	4.6060E-15	10	7.5601E-11	0.00006	1.83	46.24	1.20	3.0690E+03	39.9	1.3	3.6746E+03	114	3.1
VSL	June, 2014	240	0.86	1.03	21.5	102.0	18	5E-15	27	7.9E-11	≤6E-05	4.5	68	1.20	2.994E+03	93	3.1	3.593E+03	183	5.1
IJS	2014-07-09	85	0.831	1.00	23.8	973.0	5	8.0000E-15	5	7.1400E-11	0.00011	1.86	74	1.20	3.059E+03	42	1.4	3.670E+03	155	4.2
ENEA-INMRI	2014-09-25	42	0.800	0.973	20.2	999.1	1246	-3.47E-15	2937	7.47E-11	-0.00005	2.0	36	1.22	2.973E+03	80	2.7	3.62E+03	100	2.8
IAEA	2014-11 - 2015-01	n.i.*	n.i.*	4.5 to 0.02	n.i.*	n.i.*	n.i.*	5.00E-14	n.i.*	n.i.*	n.i.*	3 to 4.5	80	n.i.*	n.i.*	n.i.*	n.i.*	3.663E+03	40	1.1
		* no information av	vailable																	

S-Cs 10 μSv/h																				
Participant	Date of measurement	Activity of the Cs- 137 -Source	κ _a rate	H *(10) rate	Temperature	Air Pressure	Number of measurements of I_leak	Leackage current, /_leak	Number of measurements of /_meas(net)	Measuremen t current, /_meas(net)	Ratio of /_leak to /_ meas(net)	Distance source to ionisation chamber	Field size, diameter	Conversion coefficient h *K	Calibration coefficient for air kerma	Uncertainty of calibration coefficient for air kerma (k =2)	Uncertainty of calibration coefficient for air kerma (k =2)	Calibration coefficient for H*(10)	Uncertainty of calibration coefficient H*(10) (k=2)	Uncertainty of calibration coefficient H*(10) (k=2)
Abbreviation	yyyy-mm-dd	in MBq	in µGy/h	in µSv/h	in °C	in hPa	No.	in A	No.	in A	1	in m	in cm	in Sv/Gy	in Gy/C	in Gy/C	in %	in Sv/C	in Sv/C	in %
РТВ	2013-01-21		8.29	9.954	20.8	993.0	2	1.9879E-14	10	7.572E-13	0.02625	2.180	55	1.20	3.043E+03	n.i.*	n.i.*	3.65E+03	120	3.3
BEV	2013-02-08 - 2013-03-11	442	8.56	10.27	20.0 to 21.5	975 to 1000	13	1.1020E-14	6 x 10	7.7635E-13	0.014	2.0	52	1.20	3.0682E+03	n.i.*	2.1	3.6818E+03	166	4.5
IRCL/GAEC-EIM	2013-04-25	n.i.*	8.79	10.55	21.5	993.0	12	2E-15	12	7.89E-13	n.i.*	2.30	118	10.5	n.i.*	n.i.*	n.i.*	3.71E+03	211	5.67
NRPA	2013-06-13	885	9.509	11.55	21.13	987.7	8 x 50	2.65E-14	17 x 50	8.719E-13	0.030	3.0	70	NA	3.029E+03	61	2.0	3.68E+03	184	5.0
SSM	2013-07-09	1100	7.974	9.569	19.79	1019.6	2	4.366E-14	10	7.862E-13	0.056	3.0	120	1.20	3.004E+03	39	1.3	3.605E+03	151	4.2
STUK	2013-08-14	6	8.30	9.96	22.8	1001.0	1	1.900E-14	2	7.545E-13	0.025	7.400	133	1.20	3.057E+03	80.69	2.6	3.668E+03	176	4.8
IST-LPSR-LMRI	2013-10-21	n.i.*	n.i.*	n.i.*	18.4	1011.0	5	2.70E-15	10	7.88E-13	n.i.*	2	isotropic	1.20	n.i.*	n.i.*	n.i.*	3.708E+03	157	4.23
CIEMAT	2013-11-11	7220 Pb filter 20 mm	8.329	9.994	19.53	946.9	4	-3.363E-15	10	7.471E-13	-4.501E-03	2.575	36.1	1.20	3.097E+03	51.41	1.66	3.716E+03	161	4.34
СМІ	2014-01-06	1800	8.333	10.04	20.5	978.8	4	6.2E-15	7.717E-13	7.655E-13	8.10E-03	4.016	85	1.204	3.032E+03	78	2.56	3.650E+03	94	2.56
IFIN-HH	2014-03-24	429	8.5	10.3	20.6	999.7	10	1.0000E-15	10	7.7800E-13	0.001	2.00	50.53	1.20	3.0504E+03	41.5	1.4	3.6589E+03	112	3.1
VSL	June, 2014	2500	8.8	10.6	21.4	102.0	30	5E-15	45	8.2E-13	≤6E-03	4.7	71	1.20	2.993E+03	93	3.1	3.591E+03	183	5.1
IJS	2014-07-10	85	8.3	9.9	23.2	978.0	3	1.2E-14	3	7.2E-13	0.017	2.03	81	1.20	3.068E+03	44	1.4	3.681E+03	156	4.2
ENEA-INMRI	2014-09-26	1.61E+02	8.93	10.86	20.1	1002.1	890	4.144E-15	4450	8.221E-13	0.0050	1.2	36	1.22	2.98E+03	100	3.5	3.63E+03	130	3.6
IAEA	2014-11 - 2015-01	n.i.*	n.i.*	4.5 to 0.02	n.i.*	n.i.*	n.i.*	5.00E-14	n.i.*	n.i.*	n.i.*	3 to 4.5	80	n.i.*	n.i.*	n.i.*	n.i.*	3.663E+03	40	1.1
		* no information	available																	

Table 5: Measurement values given by the participants for S-Cs and 10 $\mu Sv/h.$

N-60 1 mSv/h																				
Participant	Date of measurement	X-ray tube current	K a rate	H*(10) rate	Temperature	Air Pressure	Number of measurements of /_leak	Leackage current, /_leak	Number of measurements of I _meas(net)	Measurement current, /_meas(net)	Ratio of /_leak to /_ meas(net)	Distance source to ionisation chamber	Field size, diameter	Conversion coefficient h*K	Calibration coefficient for air kerma	Uncertainty of calibration coefficient for air kerma (k=2)	Uncertainty of calibration coefficient for air kerma (k = 2)	Calibration coefficient for <i>H</i> *(10)	Uncertainty of calibration coefficient H*(10) (k=2)	Uncertainty of calibration coefficient H*(10) (k=2)
Abbreviation	yyyy-mm-dd	in mA	in mGy/h	in mSv/h	in °C	in hPa	No.	in A	No.	in A	1	in m	in cm	in Sv/Gy	in Gy/C	in Gy/C	in %	in Sv/C	in Sv/C	in %
РТВ	2013-01-23	0.7	0.618	0.983	19.14	999	6	-4.2260E-15	6	7.740E-11	-0.00005	2.500	40	1.59	2.2191E+03	n.i.*	n.i.*	3.53E+03	110	3.0
BEV	2013-02-08 - 2013-03-11	0.6	0.594	0.945	20.0 - 21.5	975 to 1000	13	1.1020E-14	8 x 10	7.3183E-11	0.00015	2.500	31 resp. 47	1.59	2.2562E+03	n.i.*	1.1	3.5874E+03	165	4.6
IRCL/GAEC-EIM	2013-04-24	n.i.*	0.6465	1.028	21.7	996.0	12	2E-15	12	8.08E-11	n.i.*	3.000	42	1.59	n.i.*	n.i.*	n.i.*	3.54E+03	162	4.58
NRPA	2013-06-17	1.8	0.714	1.136	21.3	999.2	4 x 50	3.55E-14	23 x 50	8.766E-11	0.00040	4.0	64	1.59	2.263E+03	38	1.7	3.60E+03	180	5.0
SSM	2013-07-15	1	0.576	0.916	22.33	1008.7	4	1.2E-14	20	7.072E-11	0.00017	3	58	1.59	2.235.E+03	27	1.2	3.554.E+03	149	4.2
STUK	2013-08-09	1	0.691	1.099	22.7	1008.0	1	2.200E-14	1	8.618E-11	0.0003	3.0	43	1.59	2.229E+03	55.54	2.5	3.543E+03	167	4.7
IST-LPSR-LMRI	2013-10-22	n.i.*	n.i.*	n.i.*	18.9	1005.9	5	0.000E+00	10	1.62E-10	n.i.*	2	40	1.59	n.i.*	n.i.*	n.i.*	3.531E+03	150	4.25
CIEMAT	2013-11-20	0.7	0.637	1.013	19.92	941.7	6	-4.667E-15	5	8.064E-11	-5.787E-05	2.551	40.8	1.59	2.194E+03	29.40	1.34	3.488E+03	147	4.20
СМІ	2013-12-31	0.5	0.689	1.113	20.4	996.3	4	3.88E-14	n.i.*	8.471E-11	4.58E-04	2.125	28	1.616	2.255E+03	42	1.90	3.645E+03	76	2.10
IFIN-HH	29.03.2014	0.8	0.64	1.01	20	1010.4	10	1.0000E-15	10	7.8750E-11	0.00001	3.11	75.14	1.59	2.25E+03	20.9	0.9	3.5584E+03	110	3.0
VSL	June, 2014	2.20	0.64	1.02	19.9	102.0	22	5 × E-15	33	79 E-12	≤6 E-05	4.2	42	1.59	2.254 E+03	50	2.2	3.584 × E+03	165	4.6
IJS	2014-07-11	0.9	0.65	1.03	24.2	973.0	1	1.2E-14	3	7.9E-11	0.00015	2.7	43	1.59	2.240E+02	36	1.6	3.562E+03	153	4.3
ENEA-INMRI	2014-10-01	3	0.64	1.02	20.3	1006.8	356	4.81E-14	1780	8.40E-11	0.00057	3.2	54	1.59	2.111E+03	27	1.3	3.36E+03	140	4
IAEA	2014-11 - 2015 01	n.i.*	n.i.*	2.0 to 0.4	n.i.*	n.i.*	n.i.*	5.00E-14	n.i.*	n.i.*	n.i.*	4 to 4.5	59	n.i.*	n.i.*	n.i.*	n.i.*	3.578E+03	118	3.3
		* no informa	ition availal	ole																

Table 6: Measurement values given by the participants for N-60 and 1 mSv/h.

In the following Figures (4 to 6), the determined calibration coefficients with the stated uncertainties are shown.

Details of reference values and degrees of equivalence are given in Annex A.

The verification of the transfer instrument made at the PTB after a clover leaf of about 3 participants shows the reproducibility of such measurements, see Annex C. The detailed uncertainty budgets of the participants are given in the additional Annex E.

Figure 4: S-Cs and 1 mSv/h; Participants's calibration coefficient and the associated expanded uncertainty (k = 2) determined for the transfer device.

Figure 5: S-Cs and 10 μ Sv/h; Participant's calibration coefficient and the associated expanded uncertainty (k = 2) determined for the transfer device.

Figure 6: N-60 and 1 mSv/h; Participant's calibration coefficient and the associated expanded uncertainty (k = 2) determined for the transfer device. ENEA-INMRI identified the following: "*The ENEA result for the N-60 x-ray quality was affected by a damage in the x-ray tube tungsten anode, identified after the conclusion of the comparison measurement. A bilateral comparison will be organized by ENEA after the repair/replacement of ENEA medium energy x-ray tube.*"

General remarks:

- All participants stated that the uniformity of their fields fulfilled the required 5 %. No additional uncertainty had to be taken into account.
- CMI determined the air kerma to ambient dose equivalent conversion coefficient by the method of effective energy.
- Although it might be thought that the conversion coefficients are strongly correlated between laboratories, there are differences between the photon spectrum in the laboratory's reference beams and the spectra assumed in ISO 4037-3 [8] for the calculation of the conversion coefficient for the quality S-Cs. These differences have not been evaluated and are different for each laboratory. Therefore, it has been assumed that there is no correlation between results due to the uncertainty in the conversion coefficient, for the quality S-Cs.
- ENEA-INMRI and IAEA are traceable to the BIPM and the conversion coefficient 1.22 used by BIPM
- IRLC/GAEA-EIM, IJS, CIEMAT and IAEA are using lead absorber to reduce the doserate, in accordance with ISO 4037-1:1996 [1]. There was no evidence in the comparison results of a systematic difference arising from the use of an attenuator.

6 Conclusion

The first EURAMET supplementary comparison of ambient dose equivalent for photon radiation (EURAMET project No. 1132 and BIPM KCDB: EURAMET.RI(I)-S11) was performed successfully. The results of most of the participants are consistent within the scope of the assigned uncertainties. The measurements were done with the radiation qualities of S-Cs and the N-series according to ISO 4037-1:1996 [1].

For the N-60, one participant shows a deviation; ENEA-INMRI was off the reference value by more than their stated uncertainty. ENEA-INMRI identified the following: "The ENEA result for the N-60 x-ray quality was affected by a damage in the x-ray tube tungsten anode, identified after the conclusion of the comparison measurement. A bilateral comparison will be organized by ENEA after the repair/replacement of ENEA medium energy x-ray tube."

The reproducibility of the measurements carried out with the transfer chamber was established through repeated measurements made at the PTB over the course of the comparison. The results of these measurements showed that the uncertainty contribution could be neglected.

7 Acknowledgements

The authors would like to thank S. Janßen from the PTB for the extensive calibration measurements at the PTB and the logistical tasks for the shipment of the comparison equipment to the participants.

8 References

- [1] International Organization for Standardization. ISO 4037-1:1996 X and gamma reference radiations for calibrating dosemeters and doserate meters and for determining their response as a function of photon energy Part 1: Radiation characteristics and production methods, 1996, Geneva, Switzerland
- [2] Ankerhold, U., Hupe, O., EURAMET supplementary comparison of the personal dose equivalent quantity for photon radiation EURAMET (former EUROMET) project No. 738 BIPM KCDB: EURAMET.RI(I)-S5, Metrologia 49 Tech. Suppl., (2012) 06015
- [3] Ankerhold, U., Ambrosi, P. and Eberle, T., *A chamber for determining the conventionally true value of H*p(10) and H*(10) needed by calibration laboratories. Radiation Protection Dosimetry 96, 133-137 (2001)
- [4] Duftschmid, K. E., Hizo, J. and Strachotinsky, Ch.: A secondary standard ionisation chamber for the direct measurement of ambient dose equivalent H*(10). Radiation Protection Dosimetry 40(1), 35–38 (1992)
- [5] Kessler, C.; Burns, D. T.; Büermann, Ludwig: *Key comparison BIPM.RI(I)-K1* of the air-kerma standards of the PTB, Germany and the BIPM in ⁶⁰Co gamma radiation, Metrologia 51 Tech. Suppl. (2014) 06015
- [6] ICRU Report 57 Conversion coefficients for use in radiological protection against external radiation,1998
- [7] Ankerhold, U., Catalogue of X-ray spectra and their characteristic data ISO and DIN radiation qualities, therapy and diagnostic radiation qualities, unfiltered X-ray spectra –, PTB Bericht, PTB-Dos-34, April 2000, ISBN 3-89701-513-7
- [8] International Organization for Standardization. ISO 4037-3:1999 X and gamma reference radiations for calibrating dosemeters and doserate meters and for determining their response as a function of photon energy – Part 3: Calibration of area and personal dosemeters and the measurement of their response as a function of energy and angle of incidence, 1999, Geneva, Switzerland
- [9] ISO/IEC Guide 98-3:2008; Uncertainty of measurement Part 3: Guide to the Expression of Uncertainty in Measurement (GUM:1995) (Geneva: ISO), BIPM JCGM 100:2008; Guide to the Expression of Uncertainty in Measurement (GUM)
- [10] Cox, M.G. The evaluation of key comparison data. *Metrologia*, Vol.**39**, 589-595 (2002)

Annex A

Introductory text and degrees of equivalence for the response of the transfer instrument for the measurand ambient dose equivalent $H^*(10)$ for photon radiation

EURAMET comparison:

• EURAMET project No. 1132; CCRI Ref No: EURAMET.RI(I)-S11

Measurand: Calibration coefficient of a transfer chamber for ambient dose equivalent in terms of Sv/C. The uncertainties have been determined by each participant and are given in Annex E

The comparison reference value x_R is determined at each radiation quality and for each doserate as the weighted mean of the calibration coefficient N_H given by the participants, where the weights are equal to the reciprocal of the squares of the associated standard uncertainties. Only values from participants with traceability for K_a to their own primary standard have contributed to the comparison reference value. The data analysis was done according to the publication of M. G. Cox [10].

For the determination of the uncertainty, u_R , of the reference value, x_R , the correlations between each participant have been neglected.

For the determination of the uncertainty of the normalized reference value $\frac{x_i}{x_R}$, the correlation of the participants contributing to the reference value was taken into account. Define:

$$f_i = \frac{x_i}{x_R} \tag{A.1}$$

where: x_i is the value provided by the participant *i* and x_R is the comparison reference value calculated as the weighted mean of the x_i values corresponding only to participating primary laboratories, according to the expression:

$$x_{R} = \sum_{i=1}^{N} w_{i} \cdot x_{i} \quad with \quad \left\{ w_{i} = \frac{u^{2}(x_{R})}{u^{2}(x_{i})} \right\}$$
(A.2)

The summation occurs over all primary laboratories. In this particular case N = 4 for S-Cs and N = 3 for N-60.

The general formula for the uncertainty propagation, considering only the first-order terms and the correlation between the variables x_i and x_{ref} in the equation (A:1) is:

$$u^{2}(f_{i}) = \left(\frac{\partial f_{i}}{\partial x_{i}}\right)^{2} u^{2}(x_{i}) + \left(\frac{\partial f_{i}}{\partial x_{R}}\right)^{2} u^{2}(x_{R}) + 2\frac{\partial f_{i}}{\partial x_{i}}\frac{\partial f_{i}}{\partial x_{R}}cov(x_{i}, x_{R})$$
(A.3)

In case of the participating **secondary laboratories**, which did not contribute to the calculation of the comparison reference value, one could consider that x_R and x_i

are independent and non-correlated variables because each institute's measurement was realized independently of the other institute's measurements during the comparison. In this particular case, the covariance between these variables equals zero and the equation (A.3) can be rewritten as:

$$u^{2}(f_{i}) = \left(\frac{\partial f_{i}}{\partial x_{i}}\right)^{2} u^{2}(x_{i}) + \left(\frac{\partial f_{i}}{\partial x_{R}}\right)^{2} u^{2}(x_{R})$$
(A.4)

Using equations (A.1) and (A.4) the following relationship for the variance of f_i is thus obtained in case of secondary laboratories:

$$u^{2}(f_{i}) = f_{i}^{2} \cdot \left[\frac{u^{2}(x_{i})}{x_{i}^{2}} + \frac{u^{2}(x_{R})}{x_{R}^{2}} \right]$$
(A.5)

However, in case of **primary laboratories** contributing to the calculation of the comparison reference value, the covariance between x_R and x_i (i = 1,...,N) should be considered in equation (A.3). In this particular case, taking into account the direct dependence of x_R from the variables x_i (i = 1,...,N) according to the equation (A.2) this covariance can be calculated as:

$$cov(x_i, x_R) = \frac{\partial x_R}{\partial x_i} u^2(x_i) = w_i \cdot u^2(x_i)$$
(A.6)

Thus, from equations (A.1), (A.3) and (A.6) the variance of f_i values corresponding to the *N* primary labs is calculated as:

$$u^{2}(f_{i}) = \frac{x_{i}^{2}}{x_{R}^{2}} \cdot \left[\frac{u^{2}(x_{i})}{x_{i}^{2}} + \frac{u^{2}(x_{R})}{x_{R}^{2}}\right] - 2\frac{x_{i}}{x_{R}^{3}} \cdot w_{i} \cdot u^{2}(x_{i})$$
(A.7)

Substituting $w_i = \frac{u^2(x_R)}{u^2(x_i)}$ in (A.7) the following relationship is obtained:

$$u^{2}(f_{i}) = \frac{x_{i}^{2}}{x_{R}^{2}} \cdot \left[\frac{u^{2}(x_{i})}{x_{i}^{2}} + \frac{u^{2}(x_{R})}{x_{R}^{2}}\right] - 2\frac{x_{i}}{x_{R}^{3}} \cdot u^{2}(x_{R})$$
(A.8)

Transforming the equation (A.8) the following simpler expression is obtained:

$$u^{2}(f_{i}) = f_{i}^{2} \cdot \left[\frac{u^{2}(x_{i})}{x_{i}^{2}} + \frac{u^{2}(x_{R})}{x_{R}^{2}} - \frac{2}{f_{i}} \cdot \frac{u^{2}(x_{R})}{x_{R}^{2}} \right]$$
(A.9)

Participant <i>i</i>	Radiation quality	Normalized calibration coefficient <i>x</i> / <i>x</i> _R	Standard uncertainty $u(x_i/x_R), (k = 1)$	Reference value x _R	Expanded uncertainty of the reference value $U_{\rm R}$ (k = 2)
				10 ⁺³	Sv/C
PTB		1.003	0.010		
BEV		1.000	0.019		
IRCL/GAEC		1.020			
-EIM			0.026		
NRPA		1.014	0.027		
SSM		0.987	0.023		
STUK	S-Cs	0.996	0.024		
IST-LPSR-		1.005			
LMRI	and		0.019	3.662	0.068
CIEMAT		1.012	0.024		
CMI	1 mSv/h	0.992	0.013		
IFIN-HH		1.004	0.018		
VSL		0.981	0.023		
IJS		1.002	0.023		
ENEA-		0.989			
INMRI			0.016		
IAEA		1.000	0.011		

Table A.1: S-Cs and 1 mSv/h Results of the participants and reference values x_{R} .

Participant <i>i</i>	Radiation quality	Normalized calibration coefficient <i>x</i> i/ <i>x</i> _R	Standard uncertainty $u(x_i/x_R), (k = 1)$	Reference value <i>x</i> _R	Expanded uncertainty of the reference value $U_{\rm R}$ (k = 2)
				10 ⁺³	Sv/C
PTB		0.998	0.013		
BEV		1.006	0.020		
IRCL/GAEC-					
EIM		1.015	0.031		
NRPA		1.005	0.027		
SSM		0.985	0.023		
STUK	S-Cs	1.002	0.026		
IST-LPSR-					
LMRI	and	1.013	0.019	3.661	0.075
CIEMAT		1.015	0.024		
CMI	10 µSv/h	0.997	0.016		
IFIN-HH		1.000	0.018		
VSL		0.981	0.023		
IJS		1.006	0.024		
ENEA-					
INMIR		0.992	0.020		
IAEA		1.001	0.012		

Table A.2: S-Cs and 10 μ Sv/h Results of the participants and reference values x_{R} .

Participant <i>i</i>	Radiation quality	Normalized calibration coefficient <i>x</i> _i / <i>x</i> _R	Standard uncertainty $u(x_i/x_R), (k = 1)$	Reference value x _R	Expanded uncertainty of the reference value $U_{\rm R}$ (k = 2)
PTR		0.992	0.010	10	5v/C
BEV		1 009	0.020		
IRCI /GAEC		1.000	0.020		
-EIM		0.994	0.025		
NRPA		1.012	0.028		
SSM		1.000	0.024		
STUK	N-60	0.997	0.026		
IST-LPSR-					
LMRI	and	0.993	0.024	3.555	0.080
CIEMAT		0.981	0.023		
CMI	1 mSv/h	1.025	0.016		
IFIN-HH		1.001	0.019		
VSL		1.008	0.020		
IJS		1.002	0.024		
ENEA-					
INMRI		0.945	0.022		
IAEA		1.006	0.020		

Table A.3: N-60 and 1 mSv/h Results of the participants and reference values $x_{\rm R}$.

Contents of Tables A.1 to A.3:

- The response values x_i , reported by the participant *i*, are given in Tables 4 to 6.
- The response values, normalized to the reference value, x_i/x_R are given in the third column of tables A.1 to A.3.
- The standard uncertainties of the normalized response values, $u(x_i/x_R)$, were calculated according to the equation A.9 and are presented in the fourth column of tables A.1 to A.3.
- The reference value x_{R} is determined for each radiation quality and doserate separately, i.e. four reference values were determined:
 - 1) The comparison reference value x_R is determined at each radiation quality and for each doserate as the weighted mean of the calibration coefficient N_H given by the participants where the weights are equal to the reciprocal of the squares of the associated standard uncertainties, according to the equation A.2.

Only values from participants with traceability for K_a to their own primary standard will contribute to the comparison reference value.

2) The standard uncertainty associated with the reference value has been thus calculated using the following equation: $\frac{1}{u^2(x_R)} = \sum_{i}^{N_c} \frac{1}{u^2(x_i)}$

In Figure A.1 to Figure A.3 the calibration coefficient of the participants with own primary standard relative to the determined comparison reference value x_R is shown. As can be seen by eye, all institutes can contribute to this value within their stated uncertainties.

Figure A.1: S-Cs and 1 mSv/h Calibration coefficient for $H^*(10)$ of the participants with own primary standard relative to the determined comparison reference value x_R and the associated relative standard uncertainty.

Figure A.2: S-Cs and 10 μ Sv/h Calibration coefficient for $H^*(10)$ of the participants with own primary standard relative to the determined comparison reference value x_R and the associated relative standard uncertainty.

Figure A.3: N-60 and 1 mSv/h Calibration coefficient for $H^*(10)$ of the participants with own primary standard relative to the determined comparison reference value x_R and the associated relative standard uncertainty.

In Figure A.4 to Figure A.6 and Table A.4, the degree of equivalence of each participant *i* relative to the comparison reference value, x_{R_i} is given by a pair of terms:

 $d_i = (x_i - x_R)$ and its expanded uncertainty U_i , (k = 2), both presented as relative values with respect to the comparison reference value, x_R .

To calculate the uncertainty of d_i , the general formula for the uncertainty propagation, considering only the first-order terms and the correlation between the variables x_i and x_R has been used:

$$u^{2}(d_{i}) = \left(\frac{\partial d_{i}}{\partial x_{i}}\right)^{2} u^{2}(x_{i}) + \left(\frac{\partial d_{i}}{\partial x_{R}}\right)^{2} u^{2}(x_{R}) + 2\frac{\partial d_{i}}{\partial x_{i}}\frac{\partial d_{i}}{\partial x_{R}}cov(x_{i}, x_{R})$$
(A.10)

In case of the participating secondary laboratories, which did not contribute to the calculation of the comparison reference value the covariance between x_i and x_R has been adopted as zero and the equation (A.10) has been rewritten as:

$$u^{2}(d_{i}) = \left(\frac{\partial d_{i}}{\partial x_{i}}\right)^{2} u^{2}(x_{i}) + \left(\frac{\partial d_{i}}{\partial x_{R}}\right)^{2} u^{2}(x_{R})$$

(A.13)

The following relationship for the variance of d_i is thus used in case of secondary laboratories:

$$u^{2}(d_{i}) = u^{2}(x_{i}) + u^{2}(x_{R})$$
 (A.12)

In case of **primary laboratories** contributing to the calculation of the comparison reference value, the covariance between x_R and x_i (i = 1,...,N) has been considered in equation (A.10).

Thus, from equations (A.6) and (A.10), the variance of d_i values corresponding to the *N* primary labs is:

$$u^{2}(d_{i}) = u^{2}(x_{i}) + u^{2}(x_{R}) - 2w_{i} \cdot u^{2}(x_{i})$$

Substituting $w_i = \frac{u^2(x_R)}{u^2(x_i)}$ in (A.13), the following relationship is obtained:

$$u^{2}(d_{i}) = u^{2}(x_{i}) + u^{2}(x_{R}) - 2\frac{u^{2}(x_{R})}{u^{2}(x_{i})} \cdot u^{2}(x_{i}) = u^{2}(x_{i}) - u^{2}(x_{R})$$
(A.14)

Figure A.4: Degree of equivalence, with the difference $d_i = x_i - x_R$ of each participant *i* relative to the reference value x_R , and the associated expanded

uncertainty relative to the reference value x_{R} , calculated from the standard uncertainties stated by the participants and the uncertainty of the reference value.

Figure A.5: Degree of equivalence, with the difference $d_i = x_i - x_R$ of each laboratory *i* relative to the reference value x_R , and the associated expanded uncertainty relative to the reference value x_R , calculated from the standard uncertainties stated by the participants and the uncertainty of the reference value.

IRLC/GAEA-EIM, IST-LPSR-LMRI, IJS and IAEA are using lead absorber to reduce the doserate.

Figure A.6: Degree of equivalence with the difference $d_i = x_i - x_R$ of each laboratory *i* relative to the reference value x_R , and the associated expanded uncertainty relative to the reference value x_R , calculated from the standard uncertainties stated by the participants and the uncertainty of the reference value.

It can be noted that the ENEA-INMRI is off by more than the stated uncertainty. ENEA-INMRI stated "The ENEA result for the N-60 x-ray quality was affected by a damage in the x-ray tube tungsten anode, identified after the conclusion of the comparison measurement. A bilateral comparison will be organized by ENEA after the repair/replacement of ENEA medium energy x-ray tube."

	S-Cs a	and 1 mSv/h	S-Cs a	and 10 µSv/h	N-60 and 1 mSv/h		
lah <i>i</i>	d¦∕x _R	Uį∕x _R	di∕x _R	U/x _R	di∕x _R	Uį∕x _R	
	in %	in %	in %	in %	in %	in %	
РТВ	0.33	2.0	-0.25	2.6	-0.76	2.1	
BEV	0.04	3.9	0.58	4.0	0.90	4.0	
IRCL/GAEC- EIM	2.0	5.3	1.5	6.1	-0.57	5.1	
NRPA	1.4	5.4	0.50	5.4	1.2	5.5	
SSM	-1.3	4.6	-1.5	4.6	-0.05	4.8	
STUK	-0.35	4.8	0.20	5.2	-0.34	5.2	
IST-LPSR- LMRI	0.50	3.8	1.3	3.8	-0.68	4.8	
CIEMAT	1.2	4.7	1.5	4.9	-1.9	4.7	
CMI	-0.84	2.6	-0.29	3.3	2.5	3.1	
IFIN-HH	0.36	3.6	-0.05	3.7	0.09	3.8	
VSL	-1.9	4.6	-1.9	4.6	0.81	4.0	
IJS	0.23	4.6	0.56	4.7	0.19	4.9	
ENEA-INMRI	-1.1	3.3	-0.84	4.1	-5.5	4.5	
IAEA	0.04	2.2	0.06	2.3	0.64	4.0	

Table A.4: Degree of equivalence of each laboratory *i* with respect to the reference value x_R , given by a pair of terms: the difference $d_i = (x_i - x_R)$ and U_i , its expanded uncertainty (k = 2).

Annex B Optional measurements at S-Cs and 0.5 µSv/h

In this annex the optional measurements at S-Cs and 0.5 µSv/h are shown. These measurements have been performed by three participants. Only PTB has a traceability to an own primary standard for air kerma.

Table B.1: Optional m	easurement values	given by the	participants for	S-Cs and 0.5	uSv/h.
-----------------------	-------------------	--------------	------------------	--------------	--------

S-Cs 0.5 µSv/h																				
Participant	Date of measurement	Activity of the Cs-137 - Source	K _a rate	H *(10) rate	Temperature	Air Pressure	Number of measurements of I_leak	Leackage current, /_leak	Number of measurements of I_meas(net)	Measurement current, /_meas(net)	Ratio of /_leak to /_ meas(net)	Distance source to ionisation chamber	Field size, diameter	Conversion coefficient h*K	Calibration coefficient for air kerma	Uncertainty of calibration coefficient for air kerma (k=2)	Uncertainty of calibration coefficient for air kerma (k=2)	Calibration coefficient for <i>H</i> *(10)	Uncertainty of calibration coefficient H*(10) (k=2)	Uncertainty of calibration coefficient H*(10) (k=2)
Abbreviation	yyyy-mm-dd	in GBq	in µGy/h	in µSv/h	in °C	in hPa	No.	in A	No.	in A	1	in m	in cm	in Sv/Gy	in Gy/C	in Gy/C	in %	in Sv/C	in Sv/C	in %
РТВ	2012-10-05	n.i.*	0.416	0.499	21.2	993	2	1.31E-14	6	3.81E-14	0.344	3.652	91	1.20	3.036E+03	333	11.0	3.643E+03	400	11
IRCL/GAEC-EIM	2013-04-25	0.053	0.42	0.50	21.5	993	12	2E-15	12	3.84E-14	0.052	3.25	167	1.20	n.i.*	n.i.*	n.i.*	3.63E+03	370	10.9
ENEA-INMRI	2014-10-07	0.47 filter of (16 mm Pb + 3 mm Sn + 3 mm Cu + 3.5 mm Al)	0.383	0.466	20.5	1001.9	534	1.708E-15	2047	3.509E-14	0.049	2.8	50	1.22	3.03E+03	210	7	3.69E+03	260	7
		* no informati	on available	e																

Figure B.1: S-Cs and 0.5 μ Sv/h; Participant's calibration coefficient for *H**(10) and the associated expanded uncertainty (*k* = 2) determined for the transfer device.

Table B.2: S-Cs and 0.5	µSv/h Results	of the partici	pants and refe	erence values x _R .
-------------------------	---------------	----------------	----------------	--------------------------------

Participant i	Radiation quality	Normalized response x_i/x_R Standard uncertainty 		Reference value x _R	Expanded uncertainty of the reference value $U_{\rm R}$ (k = 2)
				1	0 ⁺³ Sv/C
РТВ	S-Cs	1.000	-		
IRCL/GAEC- EIM	and	0.997	0.074	3.643	0.401
ENEA- INMRI	0.5 µSv/h	1.013	0.066		

The reference value, x_R , in this case is the x_i value provided by the PTB, as it is the only participant with own primary standard.

Table B.3: Degree of equivalence of each laboratory *i* with respect to the reference value x_R , given by a pair of terms: the difference $d_i = (x_i - x_R)$ and U_i , its expanded uncertainty (k = 2).

	S-Cs and 0.5 µSv/h					
Lab i	<i>d¦x</i> R in %	U⊭x _R in % (k = 2)				
IRCL/GAEC- EIM	-0.26	14.91				
ENEA-INMRI	1.30	13.09				

Annex C

Check of the transfer chamber Repeated measurements of the calibration coefficient for the transfer instrument at the PTB

After receipt of the transfer chamber, each participant checked it as indicated in the comparison protocol. No damage was reported during the comparison.

The reproducibility of the calibration coefficient, studied at the PTB after each clover leaf, is shown in Figure C.1. The values are normalized to that at the beginning of the comparison. The reproducibility is better than 1 % and no systematic behaviour could be observed.

In May 2014 the calibration at N-60 deviated by about 1 % from the previous and the following measurement values. As this behaviour could neither be observed in both the S-Cs measurements nor in later measurements, it is assumed that its origin is the X-ray irradiation facility and not a systematic effect of the transfer instrument. A change of the energy dependent response of the chamber should have been permanent. As it was not possible to solve this inconsistency by measurement at that time, it was decided to proceed with the comparison and to wait for the next quality check of the transfer instrument a PTB. As expected, it was seen that this effect was not reproducible.

For S-Cs and 1 mSv/h:

Mean value: 1.00148 and standard deviation: 0.0011 (relative deviation of 0.11 %). For S-Cs and 10 μ Sv/h:

Mean value: 1.00519 and standard deviation: 0.0036 (relative deviation of 0.36 %). For N-60 and 1 mSv/h:

Mean value: 0.99975 and standard deviation: 0.0051 (relative deviation of 0.51 %).

The long term stability of the leakage current is shown in Figure C.2

Figure C.1: Reproducibility of the calibration coefficient vs. time measured at the PTB irradiation facilities after each clover leaf. The values are normalized to that at the beginning of the comparison.

Figure C.2: Stability of the leakage current vs. time measured at the PTB irradiation facilities after each clover leaf. The measurements have been performed at the facility for the N-60 radiation.

Annex D Addresses of the participants

Pilot laboratory

PTB / DE

Physikalisch-Technische Bundesanstalt Department 6.3 'Radiation protection dosimetry' Working group 6.31 'Photon dosimetry' Bundesallee 100 DE - 38116 Braunschweig Germany

contact person: Dr. Oliver Hupe e-mail: oliver.hupe@ptb.de

Participants

BEV / AT

Bundesamt für Eich- und Vermessungswesen Gruppe Eichwesen (Metrology Service) Arltgasse 35 AT - 1160 Wien Austria

contact person: Dipl. Ing. Andreas Steurer e-mail: andreas.steurer@bev.gv.at

CIEMAT / ES

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas Avda. Complutense, 40; E2.P0.D13 ES - 28040 Madrid Spain

contact person: Dr. Néstor Armando Cornejo Díaz e-mail: nestorarmando.cornejo@ciemat.es

CMI / CZ

Czech Metrology Institute Inspectorate for Ionizing Radiation Radiova 1 CZ - 10200 Praha 10 Czech Republic

contact person: Dr. Vladimir Sochor e-mail: vsochor@cmi.cz

IRCL/GAEC-EIM / GR

Ionizing Calibration Laboratory / Greek Atomic Commission-Helenic Institute of Metrology (IRCL/GAEC-EIM) P.O. Box 60092 GR - 15310 Agia Paraskevi Attiki Greece

contact person: Dr. Costas J. Hourdakis e-mail: khour@gaec.gr

IST-LPSR-LMRI / PT

Instituto Superior Técnico Laboratório de Proteção e Segurança Radiológica Estrada Nacional 10 (km 139,7) PT – 2695-066 Bobadela LRS Portugal

contact person: Dr. João Cardoso e-mail: jcardoso@ctn.tecnico.ulisboa.pt

VSL / NL

Thijsseweg 11 2629 JA Delft <u>postal address:</u> P.O. Box 654, 2600 AR Delft The Netherlands

contact person: Dr. Jacco de Pooter e-mail: jdpooter@vsl.nl

NRPA / NO

Norwegian Radiation Protection Authority P.O. Box 55 NO - 1345 Østerås Norway

contact person: Dr. Per Otto Hetland e-mail: per.otto.hetland@nrpa.no

SSM / SE

Swedish Radiation Safety Authority Dept. of Radiation Protection Solna strandväg 96 SE - 171 16 Stockholm Sweden

contact person: Dr. Linda Persson e-mail: linda.persson@ssm.se
STUK / FI

Radiation and Nuclear Safety Authority Dosimetry laboratory P.O. Box 14 FIN - 00881 Helsinki Finland

contact person: Dr. Arvi Hakanen and Dr. Antti Kosunen e-mail: antti.kosunen@stuk.fi

IJS / SI

Jožef Stefan Institute Laboratory for dosimetry standards Jamova 39 SI – 1000 Ljubljana Slovenia

contact person: Denis Glavic Cindro, M. Sc. e-mail: denis.cindro@ijs.si

IFIN-HH (NIPNE) / RO

Horia Hulubei National Institute of R&D for Physics and Nuclear Engineering Str. Atomistilor no. 407 RO-76900 Bucuresti - Magurele Romania

contact person: Dr. Sorin Bercea e-mail: bercea@nipne.ro

ENEA-INMRI / IT

ENEA –CR Casaccia Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti Via Anguillarese 301 IT-00123 Roma Italy

contact person: Dr. Maurizio Bovi e-mail: maurizio.bovi@enea.it

IAEA / Org. Inter.

Dosimetry and Medical Radiation Physics Section (DMRP) Division of Human Health, International Atomic Energy Agency Wagramer Strasse 5 A-1400 Vienna <u>postal address:</u> P.O. Box 100, A-1400 Vienna Austria

contact person: Dr. L. Czap & Dr. I. Gomola Tel.: 43 1 2600 21660 Fax: 43 1 26007 81662 e-mail: I.czap@iaea.org

ANNEX E

Uncertainty budgets as submitted by the participants

Index

Laboratory	Page
PTB	40
BEV	47
IRCL/GAEC-EIM	49
NRPA	61
SSM	66
STUK	69
IST-LPSR-LMRI	76
CIEMAT	83
CMI	96
IFIN-HH	100
VSL	108
IJS	112
ENEA-INMRI	118
IAEA	127

Physikalisch-Technische Bundesanstalt (PTB)

Appendix B: Uncertainty budgets of the measurements:

B.1: N-60 and 1 mSv/h

N-60 and 1 mSv/	/h ^{Unce}	rtainty budget for calibration of the HS10-218 ionisation chamber within the EURAMET project 1132: Radiation quality N-60 at 1 mSv/h	PB					
Uncertainty budget for calibration of the HS10-218 ionisation chamber within the EURAMET project 1132: Radiation quality N-60 at 1 mSv/h								
The value of H coefficient h _{SK} chamber of the are negligible. the change of calibrating the radiation quali	I*(10) is o . The va e X-ray fa The unce air densit monitor o ty.	determined by the product of air kerma at the reference point and the lue of the air kerma at the reference point is given by the calibrated acility. The uncertainty contributions from humidity, temperature and ertainty contribution due to the shutter time is neglected as well. The ty on the conversion coefficient from air kerma to H*(10) between the chamber and the time of irradiating the device under test can be ne	e conversion monitor I air pressure e influence of ne time of glected at this					
Model Equa	tion:							
N _{HS} =N _K	a*k _{MK} *I _{MK}	_ζ *sqr(rn)/sqr(rp)*h _{SK} *k _{inhom} /(M-Ugr)						
List of Quan	tities:							
Quantity	Unit	Definition						
N _{HS}	Sv/C	Calibration factor of device under test for the measurand H*(10)						
N _{Ka}	Gy/C	Calibration factor of monitor chamber						
к _{мк}		Correction factor for longterm stability of the monitor chamber (AA 5.2-2)	.6300-110:					
I _{MK}	A	Current of the monitor chamber during irradiation of the device un Leackage current is neglected (less than 0.1%)	der test,					
m	mm	Distance between the standard chamber during calibration of the r chamber and focal spot; Uncertainty is taken into account in the un kMK	nonitor ncertainty of					
rp	mm	Distance between device under test and the focal spot						
h _{SK}	Sv/Gy	Conversion coefficient from air kerma to H*(10)						
k _{inhom}		Correction factor for inhomogenity of the radiation field						
М	А	Current of device under test, during irradiation						
Ugr	А	Leackage current of device under test, without additional radiation						
N _{Ka} : K _{MK} :	Typ Valu Exp Cov Typ Valu	e B normal distribution .e: 2.244·10 ⁺⁴ Gy/C aanded Uncertainty: 2 % rerage Factor: 2 e B normal distribution .e: 1						
	Exp Cov	vanded Uncertainty: 0.4 % verage Factor: 2						
I _{MK} :	I _{MK} : Type B normal distribution Value: 7.6543·10 ⁻¹² A Expanded Uncertainty: 0.1 % Coverage Factor: 1							
m:	Typ Valu Half	e B rectangular distribution ue: 2500 mm fwidth of Limits: 0 mm						
Date: 02/15/2013	File: P	TB_N60_1m.smu	Page 1 of 2					

60 and 1 m	Sv/h Uncertainty but the EUF	Idget for calibration	of the H 2: Radia	HS10-21 ation qua	8 ionisati ality N-60	at 1 mS	ber within //h	PB
rp:	Type B recta Value: 2500 Halfwidth of	angular distributic mm Limits: 2 mm	'n					
h _{SK} :	Type B norn Value: 1.59 Expanded U Coverage Fa	nal distribution Sv/Gy Incertainty: 2 % actor: 2						
k _{inhom} :	Type B norn Value: 1 Expanded U Coverage Fa	nal distribution Incertainty: 1 % actor: 2						
M:	Type B norn Value: 7.740 Expanded U Coverage Fa	nal distribution)7·10 ⁻¹¹ A Incertainty: 2.108 actor: 1	5·10 ⁻¹⁴ /	A				
		nal distribution						
Ugr:	Type B norn Value: 4.226 Expanded U Coverage Fa	50·10 ⁻¹⁵ A Incertainty: 1.361 actor: 1	7·10 ⁻¹⁵ /	A				
Ugr: Uncertain N _{HS} :	Type B norm Value: 4.226 Expanded U Coverage Fi ty Budgets: Calibration	factor of device	7·10 ⁻¹⁵ /	A test fo	r the me	easuran	d H*(10)	
Ugr: Uncertain N _{HS} : Quantity	Type B norm Value: 4.226 Expanded U Coverage Fi ty Budgets: Calibration Value	30-10 ⁻¹⁵ A Incertainty: 1.361 actor: 1 factor of device Standard Uncertainty	7·10 ⁻¹⁵ / under Distrik	A test fo bution	r the me Sens Coeff	easuran itivity icient	d H*(10) Uncertainty Contribution	Index
Ugr: Uncertain N _{HS} : Quantity N _{Ka}	Type B norm Value: 4.226 Expanded U Coverage F: ty Budgets: Calibration Value 22440 Gy/C	30-10 ⁻¹⁵ A Incertainty: 1.361 actor: 1 factor of device Standard Uncertainty 224 Gy/C	7·10 ⁻¹⁵ under Distrik	A test fo bution mal	r the me Sens Coeff	easuran itivity icient	d H*(10) Uncertainty Contribution 35 Sv/C	Index
Ugr: Uncertain N _{HS} : Quantity N _{Ka}	Type B norm Value: 4.226 Expanded U Coverage F: ty Budgets: Calibration Value 22440 Gy/C 1.00000	30-10 ⁻¹⁵ A Incertainty: 1.361 actor: 1 factor of device Standard Uncertainty 224 Gy/C 2.00-10 ⁻³	7·10 ⁻¹⁵ under Distrik	A test fo pution mal mal	r the me Sens Coeff 0. 35	easuran itivity icient 16 00	d H*(10) Uncertainty Contribution 35 Sv/C 7.1 Sv/C	43.3 %
Ugr: Uncertain N _{HS} : Quantity N _{Ka} I _{MK}	Type B norm Value: 4.226 Expanded U Coverage F: ty Budgets: Calibration Value 22440 Gy/C 1.00000 7.65430.10 ⁻¹² A	30-10 ⁻¹⁵ A Incertainty: 1.361 actor: 1 factor of device Standard Uncertainty 224 Gy/C 2.00-10 ⁻³ 7.65-10 ⁻¹⁵ A	7·10 ⁻¹⁵	A test fo bution mal mal mal	r the mo Sens Coeff 0. 35 460	easuran itivity icient 16 00 10 ¹²	d H*(10) Uncertainty Contribution 35 Sv/C 7.1 Sv/C 3.5 Sv/C	Index 43.3 % 1.7 % 0.4 %
Jgr: Uncertain N _{HS} : Quantity N _{Ka} I _{MK} I _{MK}	Type B norm Value: 4.226 Expanded U Coverage F: ty Budgets: Calibration Value 22440 Gy/C 1.00000 7.65430·10 ⁻¹² A 2500.0 mm	30-10 ⁻¹⁵ A Incertainty: 1.361 actor: 1 factor of device Standard Uncertainty 224 Gy/C 2.00·10 ⁻³ 7.65·10 ⁻¹⁵ A 0.0 mm	7.10 ⁻¹⁵ under Distrik norr norr norr	A test fo pution mal mal mal	r the mo Sens Coeff 0. 35 460- 0	easuran itivity icient 16 00 10 ¹² .0	d H*(10) Uncertainty Contribution 35 Sv/C 7.1 Sv/C 3.5 Sv/C 0.0 Sv/C	Index 43.3 % 1.7 % 0.4 % 0.0 %
Uncertain N _{HS} : Quantity N _{Ka} k _{MK} I _{MK} rn rp	Type B norm Value: 4.226 Expanded U Coverage Fi ty Budgets: Calibration Value 22440 Gy/C 1.00000 7.65430·10 ⁻¹² A 2500.0 mm 2500.00 mm	50-10 ⁻¹⁵ A Incertainty: 1.361 actor: 1 factor of device Standard Uncertainty 224 Gy/C 2.00·10 ⁻³ 7.65·10 ⁻¹⁵ A 0.0 mm 1.15 mm	7·10 ⁻¹⁵	A test fo pution mal mal mal ngular	r the me Sens Coeff 0. 35 460 0 -2	easuran itivity icient 16 00 10 ¹² .0	d H*(10) Uncertainty Contribution 35 Sv/C 7.1 Sv/C 3.5 Sv/C 0.0 Sv/C -3.3 Sv/C	Index 43.3 % 1.7 % 0.4 % 0.0 % 0.4 %
Uncertain N _{HS} : Quantity N _{Ka} k _{MK} I _{MK} rn rp h _{SK}	Type B norm Value: 4.226 Expanded U Coverage Fr ty Budgets: Calibration Value 22440 Gy/C 1.00000 7.65430·10 ⁻¹² A 2500.0 mm 2500.00 mm 1.5900 Sv/Gy	50-10 ⁻¹⁵ A Incertainty: 1.361 actor: 1 factor of device Standard Uncertainty 224 Gy/C 2.00-10 ⁻³ 7.65-10 ⁻¹⁵ A 0.0 mm 1.15 mm 0.0159 Sv/Gy	7·10 ⁻¹⁵ under Distrik norr norr rectar rectar norr	A test fo bution mal mal mal ngular ngular mal	r the me Sens Coeff 0. 355 460 0 -2 22	easuran itivity icient 16 00 10 ¹² .0 .8 00	d H*(10) Uncertainty Contribution 35 Sv/C 7.1 Sv/C 3.5 Sv/C 0.0 Sv/C -3.3 Sv/C 35 Sv/C	Index 43.3 % 1.7 % 0.4 % 0.0 % 0.4 % 43.3 %
Uncertain N _{HS} : Quantity N _{Ka} K _{MK} I _{MK} I _{MK} rn rp h _{SK} K _{inhom}	Type B norm Value: 4.226 Expanded U Coverage Fr ty Budgets: Calibration Value 22440 Gy/C 1.00000 7.65430·10 ⁻¹² A 2500.0 mm 2500.00 mm 1.5900 Sv/Gy 1.00000	50-10 ⁻¹⁵ A Incertainty: 1.361 actor: 1 factor of device Standard Uncertainty 224 Gy/C 2.00-10 ⁻³ 7.65·10 ⁻¹⁵ A 0.0 mm 1.15 mm 0.0159 Sv/Gy 5.00-10 ⁻³	7.10 ⁻¹⁵ under Distrit norr norr rectar rectar norr norr	A test fo pution mal mal mal ngular ngular mal mal	r the me Sens Coeff 0. 355 460 0 -2 22 22 35	easuran itivity icient 16 00 10 ¹² .0 .0 .8 00 00	d H*(10) Uncertainty Contribution 35 Sv/C 7.1 Sv/C 3.5 Sv/C 0.0 Sv/C -3.3 Sv/C 35 Sv/C 18 Sv/C	Index 43.3 % 1.7 % 0.4 % 0.0 % 0.4 % 43.3 % 10.8 %
Ugr: Uncertain N _{HS} : Quantity N _{Ka} K _{MK} I _{MK} I _{MK} rn rp h _{SK} K _{inhom} M	Type B norm Value: 4.226 Expanded U Coverage Fi ty Budgets: Calibration Value 22440 Gy/C 1.00000 7.65430·10 ⁻¹² A 2500.0 mm 2500.00 mm 1.5900 Sv/Gy 1.00000 77.4070·10 ⁻¹² A	30-10 ⁻¹⁵ A Incertainty: 1.361 actor: 1 factor of device Standard Uncertainty 224 Gy/C 2.00-10 ⁻³ 7.65-10 ⁻¹⁵ A 0.0 mm 1.15 mm 0.0159 Sv/Gy 5.00-10 ⁻³ 21.1-10 ⁻¹⁵ A	7.10 ⁻¹⁵ under Distrik norr norr rectar norr norr norr norr	A test fo pution mal mal ngular mal mal mal mal	r the me Sens Coeff 0. 355 460 0 -2 22 22 355 -46	Easuran itivity icient 16 00 10 ¹² .0 	d H*(10) Uncertainty Contribution 35 Sv/C 7.1 Sv/C 3.5 Sv/C 0.0 Sv/C -3.3 Sv/C 35 Sv/C 18 Sv/C 18 Sv/C -0.96 Sv/C	Index 43.3 % 1.7 % 0.4 % 0.0 % 0.4 % 43.3 % 10.8 % 0.0 %
Uncertain N _{HS} : Quantity N _{Ka} K _{MK} I _{MK} I _{MK} rn rp h _{SK} K _{inhom} M Ugr	Type B norm Value: 4.226 Expanded U Coverage Fi ty Budgets: Calibration Value 22440 Gy/C 1.00000 7.65430·10 ⁻¹² A 2500.0 mm 2500.00 mm 1.5900 Sv/Gy 1.00000 77.4070·10 ⁻¹² A 4.23·10 ⁻¹⁵ A	30-10 ⁻¹⁵ A Incertainty: 1.361 factor of device Standard Uncertainty 224 Gy/C 2.00-10 ⁻³ 7.65-10 ⁻¹⁵ A 0.0 mm 1.15 mm 0.0159 Sv/Gy 5.00-10 ⁻³ 21.1-10 ⁻¹⁵ A	a under Distrik norr norr rectar norr norr norr norr norr norr norr	A test fo pution mal mal ngular ngular mal mal mal mal	r the me Sens Coeff 0. 35 460 -2 22 22 35 -46 -46	Easuran itivity icient 16 00 10 ¹² .0 .0 .0 .0 00 00 10 ¹² 10 ¹²	d H*(10) Uncertainty Contribution 35 Sv/C 7.1 Sv/C 3.5 Sv/C 0.0 Sv/C -3.3 Sv/C -3.3 Sv/C 35 Sv/C 18 Sv/C 18 Sv/C -0.96 Sv/C 0.062 Sv/C	Index 43.3 % 1.7 % 0.4 % 0.0 % 0.4 % 43.3 % 10.8 % 0.0 % 0.0 % 0.0 %
Ugr: Uncertain N _{HS} : Quantity N _{Ka} K _{MK} I _{MK} I _{MK} rn rp h _{SK} K _{inhom} M Ugr N _{HS}	Type B norm Value: 4.226 Expanded U Coverage Fa ty Budgets: Calibration Value 22440 Gy/C 1.00000 7.65430·10 ⁻¹² A 2500.00 mm 1.5900 Sv/Gy 1.00000 77.4070·10 ⁻¹² A 4.23·10 ⁻¹⁵ A 3528.3 Sv/C	S0-10 ⁻¹⁵ A Incertainty: 1.361 actor: 1 factor of device Standard Uncertainty: 1.361 actor: 1 factor of device Standard Uncertainty 224 Gy/C 2.00-10 ⁻³ 7.65-10 ⁻¹⁵ A 0.0 mm 1.15 mm 0.0159 Sv/Gy 5.00-10 ⁻³ 21.1-10 ⁻¹⁵ A 1.36-10 ⁻¹⁵ A 5.3.6 Sv/C	7.10 ⁻¹⁵	A test fo bution mal mal mal mal mal mal mal	r the me Sens Coeff 0. 355 460 0 -2 22 355 -46- 46-	easuran itivity icient 16 00 10 ¹² .0 	d H*(10) Uncertainty Contribution 35 Sv/C 7.1 Sv/C 3.5 Sv/C 0.0 Sv/C -3.3 Sv/C 35 Sv/C 35 Sv/C 18 Sv/C -0.96 Sv/C 0.062 Sv/C	Index 43.3 % 1.7 % 0.4 % 0.0 % 10.8 % 0.0 % 0.0 %
Ugr: Uncertain N _{HS} : Quantity N _{Ka} k _{MK} I _{MK} I _{MK} rn rp h _{SK} k _{inhom} M Ugr N _{HS} Booutts:	Type B norm Value: 4.226 Expanded U Coverage Fi ty Budgets: Calibration Value 22440 Gy/C 1.00000 7.65430·10 ⁻¹² A 2500.0 mm 2500.00 mm 1.5900 Sv/Gy 1.00000 77.4070·10 ⁻¹² A 4.23·10 ⁻¹⁵ A 3528.3 Sv/C	30-10 ⁻¹⁵ A Incertainty: 1.361 actor of device Standard Uncertainty: 1.361 actor of device Standard Uncertainty 224 Gy/C 2.00-10 ⁻³ 7.65-10 ⁻¹⁵ A 0.0 mm 1.15 mm 0.0159 Sv/Gy 5.00-10 ⁻³ 21.1-10 ⁻¹⁵ A 1.36-10 ⁻¹⁵ A 53.6 Sv/C	7.10 ⁻¹⁵ under Distrik norr norr rectar norr norr norr	A test fo pution mal mal mal mal mal mal	r the mo Sens Coeff 0. 35 460 0 -2 22 22 35 -46 -46	easuran itivity icient 16 00 10 ¹² .8 00 00 10 ¹² 10 ¹²	d H*(10) Uncertainty Contribution 35 Sv/C 7.1 Sv/C 3.5 Sv/C 0.0 Sv/C -3.3 Sv/C 35 Sv/C 18 Sv/C -0.96 Sv/C 0.062 Sv/C	Index 43.3 % 1.7 % 0.4 % 0.0 % 0.4 % 0.0 % 0.0 % 0.0 %
Ugr: Uncertain N _{HS} : Quantity N _{Ka} K _{MK} I _{MK} I _{MK} rn rp h _{SK} K _{inhom} M Ugr N _{HS} Results: Quantity	Type B norm Value: 4.226 Expanded U Coverage Fi ty Budgets: Calibration Value 22440 Gy/C 1.00000 7.65430·10 ⁻¹² A 2500.0 mm 2500.00 mm 1.5900 Sv/Gy 1.00000 77.4070·10 ⁻¹² A 4.23·10 ⁻¹⁵ A 3528.3 Sv/C	30-10 ⁻¹⁵ Å Incertainty: 1.361 actor of device Standard Uncertainty: 1.361 actor: 1 factor of device Standard Uncertainty: 224 Gy/C 2.00·10 ⁻³ 7.65·10 ⁻¹⁵ Å 0.0 mm 1.15 mm 0.0159 Sv/Gy 5.00·10 ⁻³ 21.1·10 ⁻¹⁵ Å 1.36·10 ⁻¹⁵ Å 53.6 Sv/C Expande Uncertain	7.10 ⁻¹⁵	A test fo pution mai mai mai mai mai mai mai mai	r the mo Sens Coeff 0. 35 460- 0 -2 22 35 -46- 46- 46-	easuran itivity icient 16 00 10 ¹² .0 	d H*(10) Uncertainty Contribution 35 Sv/C 7.1 Sv/C 3.5 Sv/C 0.0 Sv/C -3.3 Sv/C 35 Sv/C 18 Sv/C 18 Sv/C 0.062 Sv/C 0.062 Sv/C	Index 43.3 % 1.7 % 0.4 % 0.0 % 10.8 % 0.0 % 0.0 %

Date: 02/15/2013	File: PTB_N60_1m.smu	Page 2 of 2

B.2: S-Cs and 10 µSv/h

S-Cs and 10 µSv/h	Unce	ertainty budget for calibration of the HS10-218 ionisation chamber within the EURAMET project 1132: Radiation quality S-Cs at 10 μ Sv/h	PB
Uncertainty EURAMET	/ budge project	et for calibration of the HS10-218 ionisation chambe t 1132: Radiation quality S-Cs at 10 μSv/h	r within the
Value of H*(10 4037-3). The c wall was thick point is given i temperature a) results correction enough t n the pro nd air pre	from the value of air kerma free-in-air and the conversion coefficier in factor for influence of PMMA build-up plate is neglected, because to ensure secondary electron equilibrium. The value for air kerma at stocol of the gamma radiation facility. The uncertainty contributions f essure are negligible.	nt h _{SK} (ISO the chamber the reference from humidity,
Model Equat	tion:		
N _{HS} =Ka	/(I-I ₀)*sqi	$r(r0)/sqr(r)^*h_{SK}^*k_{inhom}^*k_{nu}^*k_p$	
	lunit	Definition	1
Quantity	Su/C	Calibration factor of device under text for the manurand H*(10)	
Ka	Gulo	Air korme rate at the reference point	
r.a	A 4	Current of dovice under test, during irradiation	
	Δ	Leachage current of device under test, without additional radiation	
r0		Nominal distance of the device under test	
r	mm	Distance of the standard chamber during calibration of the source	
h	Sv/Gv	Conversion coefficient from air kerma to H*(10)	
k k	ov/dy	Correction factor for inhomogenity of the radiation field	
k		Correction factor for reproducebility of the radiation held	
k k		Correction for influence of air density	
Ka:	Typ Valu Exp Cov Typ	e B normal distribution ue: 2.3041·10 ⁻⁹ Gy/s vanded Uncertainty: 1.68 % verage Factor: 2 e A summarized an: 7 77044·10 ⁻¹³ A	
	Star	ndard Uncertainty: 0.28 % grees of Freedom: 10	
o:	Typ Mea Stai Deg	re A summarized an: 1.9879·10 ⁻¹⁴ A ndard Uncertainty: 30 % grees of Freedom: 2	
·0:	Cor Valu	nstant ue: 2180 mm	
r:	Typ Valı Halt	e B rectangular distribution ue: 2180 mm fwidth of Limits: 2 mm	
ate: 02/14/2013	File: P	TB_SCS_10u.smu	Page 1 of 2

	the EUR.	Uncertainty budget for calibration of the HS10-218 ionisation chamber within the EURAMET project 1132: Radiation quality S-Cs at 10 µSv/h					the HS10-218 ionisation chamber within Radiation quality S-Cs at 10 μSv/h			
h _{sk} :	Type B norm Value: 1.2 Sv Expanded U Coverage Fa	nal distribution v/Gy ncertainty: 1 % actor: 1								
k _{inhom} :	Type A sumr Mean: 1 Standard Un Degrees of F	marized certainty: 0.002 Freedom: 10								
k _{nu} :	Type B norm Value: 1 Expanded U Coverage Fa	nal distribution ncertainty: 0.005 actor: 1	i							
κ _ρ :	Type B norm Value: 1 Expanded U Coverage Fa	nal distribution ncertainty: 0.000 actor: 2	027							
Uncertain	ty Budgets:		undert	aat fa	r the m		d H*(10)			
Nust	Calibration	factor of device	•	PSI IO		asuran				
N _{HS} : Quantity	Calibration Value	Standard Uncertainty	Distrib	ution	Sens Coeff	itivity icient	Uncerta Contribu	inty Ition	Index	
N _{HS} : Quantity Ka	Calibration Value 2.3041·10 ⁻⁹ Gy/s	Standard Uncertainty 19.4·10 ⁻¹² Gy/s	Distribu	ution nal	Sens Coeff 1.6 [.]	itivity icient 10 ¹²	Uncerta Contribu 31 Sv/	inty ition ′C	Index 26.0 %	
N _{HS} : Quantity Ka I	Calibration Value 2.3041·10 ⁻⁹ Gy/s 777.04·10 ⁻¹⁵ A	Standard Uncertainty 19.4·10 ⁻¹² Gy/s 2.18·10 ⁻¹⁵ A	norm	ution nal	Sens Coeff 1.6 [.] -4.8 [.]	itivity icient 10 ¹² 10 ¹⁵	Uncerta Contribu 31 Sv/ -10 Sv/	inty ition 'C /C	Index 26.0 %	
N _{HS} : Quantity Ka I I	Calibration Value 2.3041·10 ⁻⁹ Gy/s 777.04·10 ⁻¹⁵ A 19.88·10 ⁻¹⁵ A	Standard Uncertainty 19.4·10 ⁻¹² Gy/s 2.18·10 ⁻¹⁵ A 5.96·10 ⁻¹⁵ A	Distribution norm	ution nal nal	Sens Coeff 1.6 [.] -4.8 [.] 4.8 [.]	itivity icient 10 ¹² 10 ¹⁵ 10 ¹⁵	Uncerta Contribu 31 Sv/ -10 Sv/ 29 Sv/	inty ition /C /C	Index 26.0 % 3.0 % 22.9 %	
N _{HS} : Quantity Ka I I ₀ r0	Calibration Value 2.3041·10 ⁻⁹ Gy/s 777.04·10 ⁻¹⁵ A 19.88·10 ⁻¹⁵ A 2180.0 mm	Standard Uncertainty 19.4·10 ⁻¹² Gy/s 2.18·10 ⁻¹⁵ A 5.96·10 ⁻¹⁵ A	norm norm	nal nal	Sens Coeff 1.6· -4.8· 4.8·	itivity icient 10 ¹² 10 ¹⁵ 10 ¹⁵	Uncerta Contribu 31 Sv/ -10 Sv/ 29 Sv/	inty ition /C /C	Index 26.0 % 3.0 % 22.9 %	
N _{HS} : Quantity Ka I I I r0 r	Calibration Value 2.3041·10 ⁻⁹ Gy/s 777.04·10 ⁻¹⁵ A 19.88·10 ⁻¹⁵ A 2180.0 mm 2180.00 mm	Standard Uncertainty 19.4·10 ⁻¹² Gy/s 2.18·10 ⁻¹⁵ A 5.96·10 ⁻¹⁵ A 1.15 mm	Distribution norm norm rectang	ution nal nal nal	Sens Coeff 1.6 [.] -4.8 [.] 4.8 [.]	itivity icient 10 ¹² 10 ¹⁵ 10 ¹⁵	Uncerta Contribu 31 Sv/ -10 Sv/ 29 Sv/ -3.9 Sv	inty ition /C /C /C	Index 26.0 % 3.0 % 22.9 %	
N _{HS} : Quantity Ka I I I ₀ r0 r0 r h _{SK}	Calibration Value 2.3041·10 ⁻⁹ Gy/s 777.04·10 ⁻¹⁵ A 19.88·10 ⁻¹⁵ A 2180.0 mm 2180.00 mm 1.2000 Sv/Gy	Standard Uncertainty 19.4·10 ⁻¹² Gy/s 2.18·10 ⁻¹⁵ A 5.96·10 ⁻¹⁵ A 1.15 mm 0.0120 Sv/Gy	Distribution norm norm norm rectang norm	nal nal gular nal	Sens Coeff 1.6 ⁻ -4.8 ⁻ 4.8 ⁻ -3 30	itivity icient 10 ¹² 10 ¹⁵ 10 ¹⁵ .4 00	Uncerta Contribu 31 Sv/ -10 Sv/ 29 Sv/ -3.9 Sv 37 Sv/	inty ition /C /C /C /C	Index 26.0 % 3.0 % 22.9 % 0.4 % 36.9 %	
N _{HS} : Quantity Ka I I ₀ r0 r h _{SK} k _{inhom}	Calibration Value 2.3041·10 ⁻⁹ Gy/s 7777.04·10 ⁻¹⁵ A 19.88·10 ⁻¹⁵ A 2180.0 mm 2180.00 mm 1.2000 Sv/Gy 1.00000	Standard Uncertainty 19.4·10 ⁻¹² Gy/s 2.18·10 ⁻¹⁵ A 5.96·10 ⁻¹⁵ A 1.15 mm 0.0120 Sv/Gy 2.00·10 ⁻³	norm norm norm rectanç norm	ution nal nal gular nal	Sens Coeff 1.6 ⁻ -4.8 ⁻ 4.8 ⁻ -3 300 37	itivity icient 10 ¹² 10 ¹⁵ 10 ¹⁵ .4 00 00	Uncerta Contribu 31 Sv/ -10 Sv/ 29 Sv/ -3.9 Sv 37 Sv/ 7.3 Sv/	inty ition /C /C /C /C /C /C	Index 26.0 % 3.0 % 22.9 % 0.4 % 36.9 % 1.5 %	
N _{HS} : Quantity Ka I I I ₀ r0 r0 r h _{SK} k _{inhom} k _{nu}	Calibration Value 2.3041·10 ⁻⁹ Gy/s 777.04·10 ⁻¹⁵ A 19.88·10 ⁻¹⁵ A 2180.0 mm 2180.00 mm 1.2000 Sv/Gy 1.00000 1.00000	Standard Uncertainty 19.4·10 ⁻¹² Gy/s 2.18·10 ⁻¹⁵ A 5.96·10 ⁻¹⁵ A 0.0120 Sv/Gy 2.00·10 ⁻³ 5.00·10 ⁻³	norm norm norm rectang norm norm norm	nal nal gular nal nal	Sens Coeff 1.6 ⁻ -4.8 ⁻ 4.8 ⁻ -3 300 37 37	itivity icient 10 ¹² 10 ¹⁵ .4 00 00 00	Uncertai Contribu 31 Sv/ -10 Sv, 29 Sv/ -3.9 Sv 37 Sv/ 7.3 Sv/ 18 Sv/	inty ition /C /C /C /C /C /C /C /C	Index 26.0 % 3.0 % 22.9 % 0.4 % 36.9 % 1.5 % 9.2 %	
NHS: Quantity Ka I Io r0 r Ksk kinhom knu kp	Calibration Value 2.3041·10 ⁻⁹ Gy/s 7777.04·10 ⁻¹⁵ A 19.88·10 ⁻¹⁵ A 2180.0 mm 2180.00 mm 1.2000 Sv/Gy 1.00000 1.00000	Standard Uncertainty 19.4·10 ⁻¹² Gy/s 2.18·10 ⁻¹⁵ A 5.96·10 ⁻¹⁵ A 1.15 mm 0.0120 Sv/Gy 2.00·10 ⁻³ 5.00·10 ⁻³ 135·10 ⁻⁶	norm norm norm norm norm norm norm norm	nal nal nal nal gular nal nal nal	Sens Coeff 1.6 ⁻ -4.8 ⁻ 4.8 ⁻ -3 300 37 37 37	itivity icient 10 ¹² 10 ¹⁵ .4 00 00 00 00 00	Uncerta Contribu 31 Sv/ -10 Sv/ 29 Sv/ -3.9 Sv 37 Sv/ 7.3 Sv/ 18 Sv/ 0.49 Sv	inty ition /C /C /C /C /C /C /C /C /C	Index 26.0 % 22.9 % 22.9 % 0.4 % 36.9 % 1.5 % 9.2 % 0.0 %	
NHS: Quantity Ka I Io r0 r hSK Knom Knu Kp NHS	Calibration Value 2.3041·10 ⁻⁹ Gy/s 777.04·10 ⁻¹⁵ A 19.88·10 ⁻¹⁵ A 2180.0 mm 2180.00 mm 1.2000 Sv/Gy 1.00000 1.00000 1.000000 3651.7 Sv/C	Interfactor of device Standard Uncertainty 19.4·10 ⁻¹² Gy/s 2.18·10 ⁻¹⁵ A 5.96·10 ⁻¹⁵ A 1.15 mm 0.0120 Sv/Gy 2.00·10 ⁻³ 5.00·10 ⁻³ 135·10 ⁻⁶ 60.1 Sv/C	norm norm norm norm norm norm norm norm	al nal nal nal gular nal nal nal nal	Sens Coeff 1.6· -4.8· -3 -3 30 37 37 37 37	itivity icient 10 ¹² 10 ¹⁵ .4 00 00 00 00	Uncerta Contribu 31 Sv/ -10 Sv: 29 Sv/ -3.9 Sv 37 Sv/ 7.3 Sv: 18 Sv/ 0.49 Sv	inty ition /C /C /C /C /C /C /C /C /C /C /C	Index 26.0 % 22.9 % 0.4 % 36.9 % 1.5 % 9.2 % 0.0 %	
N _{HS} : Quantity Ka I Io r0 r h _{SK} K _{inhom} k _{nu} k _p N _{HS}	Calibration Value 2.3041·10 ⁻⁹ Gy/s 777.04·10 ⁻¹⁵ A 19.88·10 ⁻¹⁵ A 2180.00 mm 2180.00 mm 1.2000 Sv/Gy 1.00000 1.00000 1.00000 3651.7 Sv/C	Interfactor of device Standard Uncertainty 19.4·10 ⁻¹² Gy/s 2.18·10 ⁻¹⁵ A 5.96·10 ⁻¹⁵ A 1.15 mm 0.0120 SV/Gy 2.00·10 ⁻³ 5.00·10 ⁻³ 135·10 ⁻⁶ 60.1 Sv/C	norm norm norm norm norm norm norm	ution nal nal gular nal nal nal nal	Sens Coeff 1.6 [.] -4.8 4.8 [.] -3 300 37 37 37	itivity icient 10 ¹² 10 ¹⁵ .4 00 00 00 00	Uncerta Contribu 31 Sv/ -10 Sv. 29 Sv/ -3.9 Sv 37 Sv/ 7.3 Sv/ 18 Sv/ 0.49 Sv	inty ition /C /C /C /C /C /C /C /C /C //C	Index 26.0 % 22.9 % 0.4 % 36.9 % 1.5 % 9.2 % 0.0 %	
N _{HS} : Quantity Ka I Io r0 r0 r kinhom knu kp NHS Results: Quantity	Calibration Value 2.3041·10 ⁻⁹ Gy/s 7777.04·10 ⁻¹⁵ A 19.88·10 ⁻¹⁵ A 2180.0 mm 2180.00 mm 1.2000 Sv/Gy 1.00000 1.00000 1.00000 3651.7 Sv/C	Interfactor of device Standard Uncertainty 19.4·10 ⁻¹² Gy/s 2.18·10 ⁻¹⁵ A 5.96·10 ⁻¹⁵ A 1.15 mm 0.0120 SV/Gy 2.00·10 ⁻³ 5.00·10 ⁻³ 135·10 ⁻⁶ 60.1 Sv/C Expanded Uncertain	norm norm norm norm norm norm norm norm	ution nal nal gular nal nal nal nal nal nal	Sens Coeff 1.6· -4.8· 4.8· -3 300 37 37 37 37 37	itivity icient 10 ¹² 10 ¹⁵ .4 00 00 00 00	Uncerta Contribu 31 Sv/ -10 Sv, 29 Sv/ -3.9 Sv 37 Sv/ 7.3 Sv/ 18 Sv/ 0.49 Sv	inty tition (C (C (C (C (C (C (C (C) (/(C))))))))))	Index 26.0 % 3.0 % 22.9 % 0.4 % 36.9 % 1.5 % 9.2 % 0.0 %	

Page 2 of 2

Generated with GUM Workbench Pro Version 2.4.1.392

Date: 02/14/2013 File: PTB_SCS_10u.smu

B.3: S-Cs and 1 mSv/h

S-Cs and 1 mSv/h	Uncertainty budget for calibration fo the HS10-218 ionisation the EURAMET project 1132: Radiation quality S-Cs at	chamber within 1 mSv/h	PB				
Uncertainty budget for calibration fo the HS10-218 ionisation chamber within the EURAMET project 1132: Radiation quality S-Cs at 1 mSv/h							
Value of H*(10) 4037-3). The co was thick enoug is given in the p	results from the avlue of air kerma free-in-air and the con rrection factor for influence of PMM build-up plate is negle h to ensure secondary electron equilibrium. The value for otocol of the gamma radiation facility.	version coefficie ected, because ti air kerma at the	nt h _{SK} (ISO ne chamber wall reference point				
Model Equati	DN: - _)*car(r0)/car(r)*h*k*k*k						
	nit Definition						
	w/C Calibration factor of device under test for the more	eurand H*(10)					
Ko C	V/C Calibration factor of device under test for the mea	ISUIAIIU H (TU)					
	A Current of device under test, during irradiation						
T.	A Leackage current of device under test, without ac	ditional radiation					
r0 r	Nominal distance of the device under test		<u> </u>				
r r	Distance of the device under test						
how St	//Gv Conversion coefficient from air kerma to H*(10)						
Kinham	Correction factor for inhomogenity of the radiation	field					
kau	Correction factor for reproducebility of source pos	ition					
K _a	Correction for influence of air density						
Ka:	Type B normal distribution Value: 229.77 [.] 10 ⁹ Gy/s Expanded Uncertainty: 1.5 % Coverage Factor: 2						
I:	Type A summarized Mean: 7.50719·10 ⁻¹¹ A Standard Uncertainty: 0.06 % Degrees of Freedom: 10						
I _o :	Type A summarized Mean: 1.399525·10 ⁻¹⁴ A Standard Uncertainty: 33 % Degrees of Freedom: 2						
r0:	Constant Value: 2202 mm						
r:	Type B rectangular distribution Value: 2202 mm Halfwidth of Limits: 2 mm						
h _{SK} :	Type B normal distribution Value: 1.2 Sv/Gy Expanded Uncertainty: 1 % Coverage Factor: 1						
Date: 02/14/2013	File: PTB_SCS_1m.smu		Page 1 of 2				

s and 1 m	Uncertainty bu	dget for calibration	fo the 2: Rad	e HS10-21 diation qua	8 ionisati ality S-Cs	on cham at 1 mS	ber within //h		PB
(inhom:	Type A sumi Mean: 1 Standard Un Degrees of F	marized Icertainty: 0.002 Freedom: 10							
« nu :	Type B norm Value: 1 Expanded U Coverage Fa	nal distribution ncertainty: 0.005 actor: 1							
ς _ρ :	Type B norm Value: 1 Expanded U Coverage Fa	nal distribution ncertainty: 0.000 actor: 2	27						
Incertair	nty Budgets:								
N _{⊣S} : Quantity	Calibration Value	factor of device Standard Uncertainty	Dist	er test fo ribution	r the me Sensi Coeff	asuran tivity icient	d H*(10) Uncerta Contribu	inty tion	Index
Ka	229.77·10 ⁻⁹ Gy/s	1.72·10 ⁻⁹ Gy/s	n	ormal	16.	10 ⁹	28 Sv/	С	30.1 %
1	75.0719·10 ⁻¹² A	45.0.10 ⁻¹⁵ A	n	ormal	-49	10 ¹²	-2.2 Sv	/C	0.2 %
I ₀	14.00·10 ⁻¹⁵ A	4.62·10 ⁻¹⁵ A	n	ormal	49.1	0 ¹²	0.23 Sv	/C	0.0 %
rO	2202.0 mm				- 26				
r	2202.00 mm	1.15 mm	rect	tangular	-3	.3	-3.9 Sv	/C	0.6 %
h _{sk}	1.2000 Sv/Gy	0.0120 Sv/Gy	n	ormal	31	00	37 Sv/	С	53.6 %
k _{inhom}	1.00000	2.00·10 ⁻³	n	ormal	37	00	7.3 Sv/	۲C	2.1 %
k _{nu}	1.00000	5.00·10 ⁻³	n	ormal	37	00	18 Sv/	С	13.4 %
k _ρ	1.000000	135·10 ⁻⁶	n	ormal	37	00	0.50 Sv	/C	0.0 %
N _{HS}	3673.5 Sv/C	50.2 Sv/C							
Results:									
Quantity	Value	Expande Uncertair	ed nty	Cove fact	rage tor		Coverage	•	
NI	3670 Sv/C	2.7 % (rela	ativ)	2.0	00	95%	(t-table 95	.45%)	

Bundesamt für Eich- und Vermessungswesen (BEV)

N60 - 1 mSv/h	Messung der Luftkerma mit Primärnormal PKG bei 25,9 mGy/h in 1350mm mit 7 mA Kalibrierung LS01 bei 25,9 mGy/h in 1350mm mit 7 mA Messung der Luftkerma mit LS01 bei 0,60mGy/h in 2500mm mit 0,6 mA Kalibrierung HS10 bei 0,60mGy/h in 2500mm mit 0,6 mA Abstand größer als 2 m (ISO 4037-3) Konversion von Ka auf Hp(10) (ISO 4037-3)	0.37 0.20 0.20 0.30 1.00 2.00 Summe:	0.14 0.04 0.09 Summe: 1.00 4.00 5.31	0.31 Wurzel:	0.55 2*Wurzel:	1.1 (Ka)
		Wurzel: 2*Wurzel:	2.30 4.6 H*(10)			

Cs-137 - 1 mSv/h	Messung der Luftkerma mit Primärnormal CC01 bei 164 mGy/h in 1000 mm mit Q5 (2,1 TBg)	0.50	0.25			
	Kalibrierung TK30 bei 164 mGy/h in 1000 mm mit Q5 (2,1 TBq)	0.20	0.04			
	Messung der Luftkerma mit TK30 bei 40,5 mGy/h in 2000 mm mit Q5	0.20	0.04			
	Kalibrierung LS01 bei 40,5 mGy/h in 2000 mm mit Q5	0.20	0.04			
	Messung der Luftkerma mit LS01 bei 0,86 mGy/h in 2000 mm mit Q4 (45 GBq)	0.30	0.09			
	Kalibrierung HS10 bei bei 0,86 mGy/h in 2000 mm mit Q4 (45 GBq)	0.30	0.09 Summe:	0.55 Wurzel:	0.74 2*Wurzel:	1.5 (Ka)
	Konversion von Ka auf Hp(10) (ISO 4037-3)	2.00	4.00			
		Summe:	4.55			
		Wurzel:	2.13			
		2*Wurzel:	4.3 H*(10)			

Cs-137 - 10 µSv/h	Messung der Luftkerma mit Primärnormal CC01 bei 164 mGy/h in 1000 mm mit Q5 (2,1 TBg)	0.50	0.25			
·	Kalibrierung TK30 bei 164 mGy/h in 1000 mm mit Q5 (2,1 TBg)	0.20	0.04			
	Messung der Luftkerma mit TK30 bei 40,5 mGy/h in 2000 mm mit Q5	0.20	0.04			
	Kalibrierung LS01 bei 40,5 mGy/h in 2000 mm mit Q5	0.20	0.04			
	Messung der Luftkerma mit LS01 bei 8,59 µGy/h in 2000 mm mit Q6 (442 MBq)	0.60	0.36			
	Kalibrierung HS10 bei bei 8,59 µGy/h in 2000 mm mit Q4 (442 MBg)	0.60	0.36 Summe:	1.09 Wurzel:	1.04 2*Wurzel:	2.1 (Ka)
	Konversion von Ka auf Hp(10) (ISO 4037-3)	2.00	4.00			
		Summe:	5.09			
		Wurzel:	2.26			
		2*Wurzel:	4.5 H*(10)			

Ionizing Calibration Laboratory / Greek Atomic Commission - Helenic Institute of Metrology (IRCL/GAEC-EIM) Table 2 presents the measured $H^*(10)$ values under the irradiation conditions reported in table 1.

Radiation Quality	Air kerma μGy/h	Conversion coefficient h Distance, cm	H*(10) μSv/h	Uncertainty of H*(10) K=2
S-Cs (1mSv/h)	834.1	1.20	1001	4.54 %
S-Cs (10µSv/h)	8.79	1.20	10.55	5.22 %
N-60 (1mSv/h)	646.5	1.59	1028	4.40 %
S-Cs (0.5 μSv/h	0.42	1.20	0.50(2)	6.30 %

Table 2: The irradiation conditions applied for this comparison

5. Uncertainties of the $\dot{H}^*(10)$

Uncertainties are evaluated according to GUM.

Tables 3, 4, 5 and 6 present the uncertainty evaluation processes of the $\dot{H}^{*}(10)$ at S-Cs (1 mSv/h), S-Cs (10 μ Sv/h), N-60 (1 mSv/h and S-Cs (0.5 μ Sv/h), respectively.

All uncertainty components, either type A or B, refer to the relevant uncertainty at k=1. Type B follow rectangular distribution, i.e. $u_B = \delta x/\sqrt{3}$. Uncertainty values less than 0.01% are considered as zero.

		Туре А	Туре В
		%	%
A1	Uncertainty of N_{κ} from PTB		0.60
A2	Stability of N_{K}	0.24	
A3	Electrometer accuracy		0.07
A4	Scale reading / resolution		0.06
A5	Uniformity of radiation beam		0.58
A6	Difference in Cs137 energy spectra		0.10
A7	Temperature & Pressure	0.33	0.08
A8	Difference in Temperature at two places		0.02
A9	Leaksge current		0.00
A10	Recombination loss		0.00
A11	Positioning of std instrument at distance		0.115
A12	Backscatter effect		0.00
A13	Reproducibility of Kair=f(SCD) curve	0.50	
A14	Conversion Coefficients, h _{HR*(1)/K}		2.00
	QUADRATIC SUM	0.65	2.18
	COMBINED UNCERTAINTY	2.27	%
	EXPANDED UNCERTAINTY	4.54	%

 Table 3 : Uncertainty evaluation of H*(10) at S-Cs at 1 mSv/h

A1 : The uncertainty of the calibration coefficient of the LS-01 reference – transfer ionization chamber, as reported in the calibration certificate, at k=1

A2 : The stability of the N_{κ} is taken as the stability of the reference – transfer chamber being used for the $\dot{H}^*(10)$ measurements. The stability of the chamber is the standard uncertainty of the measured current (accumulated charge over 1 min) under fixed geometry, i.e. at 2 m distance from OB2 Cs-137 source

A3 : The uncertainty from the electrometer calibration certificate

A4 : As half of the last digit of the electrometer reading (relevant)

A5 : The uniformity of the radiation beam, as measured from the respective profile (1%). A6 : Takes into account possible differences in Sc-137 spectra between PTB (reference laboratory) and IRCL/GAEC-EIM.

A7 : Takes into account the uncertainties of the calibration coefficient of the thermometer and barometer (type B), fluctuations of temperature & pressure during the measurements (type A) and scale digit resolution (type B).

A8 : The temperature difference between the place of chamber and thermometer

A9 : Takes into account the leakage current contribution to the chamber signal during the measurements.

A10 : the effect of the ion recombination to the measurement (< 0.01%)

A11 : A mis-positioning of the chamber to the correct distance from source (2 mm)

A12 : The influence of the background radiation to the chamber signal during the

measurements, as the ratio of the background pertained at the measurement place and the $H^*(10)$ at the same point.

A13 : The uncertainty corresponds to the reproducibility of Kair=f(d, B, I) curve. i.e. the standard uncertainty of all quality control measurements (see previous sections). A14 : The uncertainty of the $h_{HR^*(1)/K}$ as reported in ISO 4037 is taken as 2%.

		Туре А	Туре В
		%	%
A1	Uncertainty of Nk from IRCL/GAEC-EIM		1.36
A2	Stability of NK	0.30	
A3	Electrometer accuracy		0.07
A4	Scale reading / resolution		0.06
A5	Uniformity of radiation beam		0.58
A6	Difference in Cs137 energy spectra		0.00
A7	Temperature & Pressure	0.33	0.08
A8	Difference in Temperature at two places		0.02
A9	Leaksge current		0.00
A10	Recombination loss		0.00
A11	Positioning of std instrument at distance		0.115
A12	Backscatter effect		0.00
A13	Reproducibility of Kair=f(SCD) curve	0.64	
A14	Conversion Coefficients, $h_{HR^*(1)/K}$		2.00
	QUADRATIC SUM	0.78	2.49
	COMBINED UNCERTAINTY	2.61	%
	EXPANDED UNCERTAINTY	5.22	%

Table 4 : Uncertainty evaluation of $\dot{H}^*(10)$ at S-Cs at 10 μ Sv/h

A1 : The uncertainty of the calibration coefficient of the LS-10 working standard, as reported in the IRCL/GAEC-EIM calibration certificate.

A2, A3, A4. A5: As previous

A6 : Since LS-10 and LS-01 are used in the same beam of the IRCL/GAEC-EIM

A7, A8, A9, A10, A11, A12, A13 and A14 : As previous

		Type A	Туре В
		%	%
A1	Uncertainty of Nk from PTB		0.40
A2	Stability of NK	0.24	
A3	Electrometer accuracy		0.07
A4	Scale reading / resolution	0.00	0.06
A5	Uniformity of radiation beam		0.29
A6	Difference in X ray spectra (HVL)		0.29
A7	Temperature & Pressure	0.33	0.08
A8	Difference in Temperature at two places		0.12
A9	Leakage current		0.00
A10	Recombination loss		0.00
A11	Positioning of std instrument at same distance		0.115
A12	Backscatter effect	NR	0.00
A13	Reproducibility of Kair=f(SCD) curve	0.55	
A14	Conversion Coefficients		2.00
	QUADRATIC SUM	0.69	2.09
	COMBINED UNCERTAINTY	2.20	%
	EXPANDED UNCERTAINTY	4.40	%

Table 5 : Uncertainty evaluation of $\dot{H}^*(10)$ at N-60 at 1 mSv/h

A1 – A14 : as in Table 2.

A5 : Beam profile at the horizontal direction where the tube heel- effect is pronounced (0.5%)

		Туре А	Туре В
		%	%
A1	Uncertainty of Nk from IRCL/GAEC-EIM		1.36
A2	Stability of N_{κ}	0.30	
A3	Electrometer accuracy		0.07
A4	Scale reading / resolution		0.06
A5	Uniformity of radiation beam		0.58
A6	Difference in Cs137 energy spectra		0.00
A7	Temperature & Pressure	0.33	0.08
A8	Difference in Temperature at two places		0.02
A9	Leaksge current		0.00
A10	Recombination loss		0.00
A11	Positioning of std instrument at distance		0.115
A12	Backscatter effect		0.00
A13	Reproducibility of Kair=f(SCD) curve	1.88	
A14	Conversion Coefficients, h _{HR*(1)/K}		2.00
	QUADRATIC SUM	1.93	2.49
	COMBINED UNCERTAINTY	3.15	%
	EXPANDED UNCERTAINTY	6.30	%

Table 6: Uncertainty evaluation of $\dot{H}^*(10)$ at S-Cs at 0.5 μ Sv/h

A1 : The uncertainty of the calibration coefficient of the LS-10 working standard, as reported in the IRCL/GAEC-EIM calibration certificate.

A2, A3, A4. A5: As previous

A6 : Since LS-10 and LS-01 are used in the same beam of the IRCL/GAEC-EIM $\,$

A7, A8, A9, A10, A11, A12, A13 and A14 : As previous

6. Determination of the calibration coefficients of the HS-10 transfer chamber.

6.1 Formalism

The calibration coefficients are determined from the ration of the conventional true $\dot{H}^*(10)$ value and the HS-10 reading corrected for temperature and pressure.

$$N_{H^*(10)} = \frac{\dot{H}^*(10)}{(Q_{av} - Q_{leak}) \cdot k_{P,T}}$$

where

- H*(10) : the ambient dose equivalent dose rate in μSv/min, as determined in previous sections
- Q_{av} : the mean value of the accumulated charge (nC) over 60 sec (12 successive measurements), in nC/min
- Q_{leak} : the mean value of the accumulated leakage charge (nC) over 60 sec (12 successive measurements), as being measured without the presence of radiation, in nC/min (similar procedure is applied as for the H^{*}(10) determination previous next sections)
- k_{PT} : the air density correction (temperature and pressure)

6.2 Experimental set-up

The HS-10 is placed in the center of the radiation beam and exposed to the conditions referred to tables 1 and 2. Photo 1 is a typical set up for the HS-10 calibration at the OB34 irradiator.

Photo 1 : The calibration set up of the HS-10 chamber at the OB34 irradiator

6.3 Calibration coefficients in terms of H*(10) and uncertainties

Table 7 presents the calibration coefficients in terms of $\dot{H}^*(10)$ of the HS-10 transfer chamber.

Radiation Quality	Conventional true Η*(10) μSv/h ⁽¹⁾	HS-10 Current Readings ⁽²⁾	HS-10 Leakage Current, pC/min	Calibration Coefficients, N _{H*(10)} in µSv/nC ⁽³⁾	Uncertainty % k=2
S-Cs (1mSv/h)	1001 ± 45	4.469 nC/min	0.12	3.7 ± 0.2	4.83
S-Cs (10µSv/h)	10.6 ± 0.6	47.45 pC/min	0.12	3.7 ± 0.2	5.67
N-60 (1mSv/h)	1028 ± 45	4.846 nC/min	0.12	3.5 ± 0.2	4.58
S-Cs (0.5 μSv/h	0.50 ± 0.03	2.424 pC/min	0.12	3.6 ± 0.4	10.9

 Table 7 : Calibration results of the HS-10 ionization chamber

(1) : From tables 2. The uncertainties at k=2

(2) : corrected for air density (chamber signal, without subtraction of leakage current)

(3) : The uncertainties at k=2

7. Uncertainties of the calibration coefficients $N_{\dot{H}^*(10)}$

Uncertainties are evaluated according to GUM.

Tables 8, 9, 10 and 11 present the uncertainty evaluation processes of the $N_{\dot{H}^*(10)}$ at S-Cs (1 mSv/h), S-Cs (10 μ Sv/h), N-60 (1 mSv/h and S-Cs (0.5 μ Sv/h), respectively.

All uncertainty components, either type A or B, refer to the relevant uncertainty at k=1. Type B follow rectangular distribution, i.e. $u_B = \delta x/V3$. Uncertainty values less than 0.01% are considered as zero.

		Туре А	Туре В
		%	%
B1	Uncertainty of H*(10)	0.65	2.18
B2	Reproducibility of procedure	0.25	
B3	Stability of measurements	0.02	
B4	Scale reading / resolution	*	0.01
B5	Positioning of test instrument		0.29
B6	Uniformity of radiation beam		0.58
B7	Temperature & Pressure	0.33	0.08
B8	Difference in Temperature at two places		0.02
В9	Leakage current		0.00
B10	Radiation background		0.01
B11	Electrometer accuracy		0.29
	QUADRATIC SUM	0.77	2.29
	COMBINED UNCERTAINTY	2.42	%
B12	EXPANDED UNCERTAINTY	4.83	%

Table 7: Uncertainty evaluation of $N_{H^*(10)}$ at S-Cs at 1 mSv/h

B1 : The uncertainty of the H*(10) as presented in section 5.

B2 : The calibration at each quality was performed a few times (2 or 3 rounds). The standard uncertainty of the calibration coefficients that deduced at each round represents the reproducibility of the procedure.

B3 : The standard uncertainty of the measured current (accumulated charge over 60 sec) with HS-10 ionization chamber in each round. The higher (worst) standard uncertainty in all rounds is entered in B3.

B4 : As half of the last digit of the electrometer reading (relevant)

B5 : A mis-positioning of the chamber to the correct distance from source (5 mm, due to the large chamber volume)

B6 : The uniformity of the radiation beam, as measured for the respective profile, is 1%.

B7 : Takes into account the uncertainties of the calibration coefficient of the thermometer and barometer (type B), fluctuations of temperature & pressure during the measurements (type A) and scale digit resolution (type B).

B8 : The temperature difference between the place of chamber and thermometer is 0.2 $^{\circ}$ C.

B9 : Takes into account the leakage current contribution to the chamber signal during the measurements.

B10 : The influence of the background radiation to the chamber signal during the measurements, as the ratio of the background pertained at the measurement place and the $H^*(10)$ at the same point.

B11 : The accuracy is taken from manufacturer as 0.5 %.

B12 : The expanded uncertainty represents the uncertainty of the calibration coefficient $NH^{*}(10)$ at k=2 (confidence level 95% approximately).

		Type A	Туре В
		%	%
B1	Uncertainty of H*(10)	0.78	2.49
B2	Reproducibility of procedure	0.50	
B3	Stability of measurements	0.16	
B4	Scale reading / resolution	*	0.01
B5	Positioning of test instrument		0.289
B6	Uniformity of radiation beam		0.58
B7	Temperature & Pressure	0.33	0.08
B8	Difference in Temperature at two places		0.02
B9	Leakage current		0.00
B10	Radiation background		0.58
B11	Electrometer accuracy		0.29
	QUADRATIC SUM	1.00	2.65
	COMBINED UNCERTAINTY	2.84	%
B12	EXPANDED UNCERTAINTY	5.67	%

Table 8 : Uncertainty evaluation of $N_{\dot{H}^*(10)}$ at S-Cs at 10 $\mu S\nu/h$

B1 – B12 : as above

		Type A	Type B
		%	%
B1	Uncertainty of H*(10)	0.69	2.09
B2	Reproducibility of procedure	0.18	
B3	Stability of measurements	0.09	
B4	Scale reading / resolution	*	0.01
B5	Positioning of test instrument		0.289
B6	Uniformity of radiation beam		0.289
B7	Temperature & Pressure	0.33	0.08
B8	Difference in Temperature at two places		0.02
B9	Leakage current		0.00
B10	Radiation background		0.01
B11	Electrometer accuracy		0.29
	QUADRATIC SUM	0.79	2.15
	COMBINED UNCERTAINTY	2.29	%
B12	EXPANDED UNCERTAINTY	4.58	%

Table 9 : Uncertainty evaluation of $N_{\dot{H}^*(10)}$ at N-60 at 1 mSv/h

B1 – B12 : as above

B6 : Beam profile at the horizontal direction where the tube heel- effect is pronounced (0.5%)

		Type A	Туре В
		%	%
B1	Uncertainty of H*(10)	1.93	2.49
B2	Reproducibility of procedure	2.00	
B3	Stability of measurements	2.40	
B4	Scale reading / resolution	*	0.13
B5	Positioning of test instrument		0.29
B6	Uniformity of radiation beam		0.58
B7	Temperature & Pressure	0.33	0.08
B8	Difference in Temperature at two places		0.02
B9	Leakage current		3.01
B10	Radiation background		0.58
B11	Electrometer accuracy		0.29
	QUADRATIC SUM	3.69	4.02
	COMBINED UNCERTAINTY	5.45	%
B12	EXPANDED UNCERTAINTY	10.9	%

Table 10 : Uncertainty evaluation	$h of N_{H^{*}(10)}$ at S-Cs at 0.5 μ Sv/h
-----------------------------------	--

B1 – B12 : as above

Norwegian Radiation Protection Authority (NRPA)

APPENDIX 1

1. Uncertainty for ambient dose equivalent calibration

N-60 quality (1 mSv/h):

	K-ray ISO narrow beam N-60			Uncertaintybudget SSDL NRPA						
	Utarbeidet av	Rev. Nr./Dato	Dokument nr.							
	Hans Bjerke	04/15.09.2014	V-3-03-01							
	Course of uncortainty			Quantitu	Ectimate	Deviation	rol of upor	Droh dict	Sama Caaff	
	Source of uncertainty				Estimate	Deviation U _c	rei. st. unce u(x:)	Prob. dist.	Sens. Coeπ. C:	u(x;) %
1	Factors due to radiation	on field, set-up ar	d calibration:		/				-1	
1.1	Differences in energy sp	ectra of radiation b	eams	k _{spec}	1	0.006	0.0060		1	0.60
1.2	Field inhomogeneity			k inhom	1	0.002	0.0020	N	1	0.20
1.3	Uncertainty of the calibra	ation coefficient rep	orted by PSDL	Ν κ [Gy/µC]	0.949	0.008	0.0080	N	1	0.80
1.4	Quadratic sum	tion coefficient			0.949	0.003	0.0018	R	1	0.18
	Combined uncertainty								u _c (y) %	1.04
2	Factors influencing the	e reference stand	ard:	•						
2.1	Calibration factor of elect	trometer		k _{elec}	1	0.0007	0.0005	N	1	0.05
2.2	Leakage current			ΔI [pA]	0.01	0.0007	0.0002	N	1	0.02
2.4	Recombination			k _s	1	0.0040	0.0023	R	1	0.23
2.5	Temperature (K)			k⊤	1	0.0006	0.0006	N	1	0.06
2.6	Pressure (kPa)			k ₽	1	0.0001	0.0001	N	1	0.01
2.7	Humidity			k _h	1	0.0004	0.0002	R	1	0.02
2.8	Chamber orientation				1	0.0015	0.0009	R	1	0.09
2.9	Reproduction of source t	o chamber distanc	e		1	0.0010	0.0006	R	2	0.12
	Combined uncertainty								u.(v) %	0.08
	Combined uncontainty									0.20
3	Factors influencing the	e transfer chambe	er, Exradin A6							
3.1	Calibration factor of elect	trometer		k _{elec}	1		0.0005	Ν	1	0.05
3.2	Ionization current (pA)			I [pA]	5.22	0.0009	0.0002	N	1	0.02
3.3	Leakage current			ΔΙ [pA]	0.01	0.0006	0.0001	R	1	0.01
3.5	Temperature (K)			k _T	1	0.0006	0.0006	N	1	0.20
3.6	Pressure (kPa)			k _P	1	0.0001	0.0001	N	1	0.01
3.7	Humidity			k _⊧	1	0.0004	0.0002	R	1	0.02
3.8	Chamber orientation				1	0.0015	0.0009	R	1	0.09
3.9	Geometrical factor - tran	sfer chamber of dif	f size		1	0.0100	0.0058	R	1	0.58
3.10	Reproduction of source t	o chamber distanc	e		1	0.0010	0.0006	N	2	0.12
	Combined uncertainty								u _c (y) %	0.41
	,									
4	Factors influencing the	e chamber under	test, HS10							
4.1	Calibration factor of elect	trometer		k _{elec}	1		0.0005	N	1	0.05
4.2	Ionization current (pA)			[[pA]	86.2	0.0150	0.0002	N	1	0.02
4.3	Recombination			k _s	1	0.0004	0.0000	R	1	0.00
4.5	Temperature (K)			k ⊤	1	0.0006	0.0006	N	1	0.06
4.6	Pressure (kPa)			k P	1	0.0001	0.0001	N	1	0.01
4.7	Humidity			k h	1	0.0004	0.0002	R	1	0.02
4.8	Chamber orientation				1	0.0015	0.0009	R	1	0.09
4.9	Geometrical factor - chair Reproduction of source t	mber under test of	diff size		1	0.0200	0.0115	R N	2	1.15
4.10	Quadratic sum		<u>c</u>		<u> </u>	0.0010	0.0000		2	1.41
	Combined uncertainty								u _c (y) %	1.19
5	Total uncertainty									0.00
	Combined uncertainty								u.(v) %	2.98
	Expanded uncertainty (k	=2)							α _c (y) /0	3.46
	,	,								
6	Factors influencing do	se equivalent								
6.1	Conversion coefficient h'	$\kappa_{\kappa}(10)$ - Ambient do	ose equivalent	h* _K (10)	1.59	PTB Dos-34	l			1.00
7	Total uncertainty dese	aquivalent								
1	Quadratic sum	equivalent								3.98
	Combined uncertainty								u _c (y) %	2.00
	Expanded uncertainty (k	=2)						CMC:	5.00	3.99

Table 1. Combined uncertainty for the calibration in N-60 field (1 mSv/h).

S-Cs quality (10 µSv/h):

	DIR 101 Cs-137 (10 μSv		Uncertaintybudget SSDL NRPA							
	Utarbeidet av	Rev. Nr./Dato	Dokument nr.							
	Hans Bjerke	03/16.09.2014	V-3-03-01							
	Source of uncertainty			Quantity	Estimate	Deviation	rel. st. unc	Prob. dis	Sens. Co	eff.
				\mathbf{X}_i	x _i	u _c	u(x _i)		c _i	u(x _i) %
1	Factors due to radiation	on field, set-up and	d calibration:	·						
1.1	Differences in energy sp	ectra of radiation be	ams	k _{spec}	1	0.002	0.0012	R	1	0.12
1.2	Field inhomogeneity			k inhom	1	0.002	0.0020	Ν	1	0.20
1.3	Uncertainty of the calibration	ation coefficient repo	orted by PSDL	N _H [Gy/µC]	60.6	0.300	0.0050	Ν	1	0.50
1.4	Constancy of the calibra	ation coefficient			60.6		0.0010	N	1	0.10
	Quadratic sum									0.31
	Combined uncertainty								u _c (y) %	0.56
2	Eactors influencing the	e reference standa	ard:							
21	Calibration factor of aloc	tromotor	iru.	k .	1		0.0005	N	1	0.05
2.1					44.25	0.0015	0.0003	N	1	0.03
2.3	Leakage current			ΔI [p/t]	0.01	0.0015	0.0000	N	1	0.00
2.4	Recombination			k _s	1	0.0040	0.0023	R	1	0.23
2.5	Temperature (K)			k τ	1	0.0006	0.0006	Ν	1	0.06
2.6	Pressure (kPa)			k _p	1	0.0001	0 0001	N	1	0.01
27	Humidity			⊧ k.	1	0.0004	0.0002	R	1	0.02
2.7	Chamber orientation			n n	1	0.0004	0.0002	R	1	0.02
2.9	Reproduction of source	to chamber distance	9		1	0.0020	0.0012	R	2	0.23
	Quadratic sum									0.20
	Combined uncertainty								u _c (y) %	0.44
3	Factors influencing the	e transfer chambe	r, Exradin A6							
3.1	Calibration factor of elec	trometer		k elec	1		0.0055	Ν	1	0.55
3.2	Ionization current (pA)			I [pA]	0.071	0.0002	0.0028	N	1	0.28
3.3	Leakage current			<u>Δ</u> Ι [pA]	0.009	0.0002	0.0028	N P	1	0.28
2.4				n _s	1	0.0040	0.0023	N	1	0.23
3.5				KT	1	0.0006	0.0006	IN N	1	0.06
3.6				K _P	1	0.0001	0.0001	N	1	0.01
3.7	Humidity Chamber arientation			Kh	1	0.0004	0.0002	<u>к</u>	1	0.02
3.8	Reproduction of source t	to chamber distance	2		1	0.0050	0.0029	R	2	0.29
0.0	Quadratic sum		, 		<u> </u>	0.0020	0.0012	<u> </u>	<u> </u>	0.65
	Combined uncertainty								u _c (y) %	0.81
4	Factors influencing the	e chamber under t	test, HS10							
4.1	Calibration factor of elec	trometer		k elec	1		0.0030	Ν	1	0.30
4.2	Ionization current (pA)			I [pA]	0.872	0.0006	0.0007	Ν	1	0.07
4.3	Leakage current			ΔI [pA]	0.009	0.0002	0.0002	N	1	0.02
4.4				n _s	1	0.0040	0.0023	N	1	0.23
4.5				K _T	1	0.0006	0.0006		1	0.06
4.6	Pressure (KPa)			к Р	1	0.0001	0.0001	N	1	0.01
4.7	Humidity			K h	1	0.0004	0.0002	<u>R</u>	1	0.02
4.8	Champer orientation	mbor under test of a	liff cizo		1	0.0015	0.0009	<u>R</u>	1	0.09
4.10	Reproduction of source	to chamber distance	311 3126		1	0.0200	0.0006	N	2	0.12
	Quadratic sum				·	1.00.0			_	1.51
	Combined uncertainty								u _c (y) %	1.23
5	Total uncertainty for a	mbient dose equiv	valent							
	Quadratic sum									2.67
	Combined uncertainty								u _c (y) %	1.63
	Expanded uncertainty (k	(=2)						CMC:	5.00	3.27

Table 2. Combined uncertainty for the calibration in S-Cs field (10 $\mu Sv/h).$

S-Cs quality (1 mSv/h):

	DIR 101 Cs-137 (1 mSv/	/h)		Uncertainty	/budget S	SDL NRPA				
	Utarbeidet av	Rev. Nr./Dato	Dokument nr.							
	Hans Bjerke	03/16.09.2014	V-3-03-01							
	Source of uncertainty			Quantity	Estimate	Deviation	rel. st. unc	Prob. dis	Sens. Co	eff.
				\mathbf{X}_i	x _i	u _c	u(x _i)		c _i	u(x _i) %
1	Factors due to radiation	on field, set-up and	d calibration:			<u> </u>				
1.1	Differences in energy sp	ectra of radiation be	ams	k _{spec}	1	0.002	0.0012	R	1	0.12
1.2	Field inhomogeneity			k inhom	1	0.002	0.0020	Ν	1	0.20
1.3	Uncertainty of the calibra	ation coefficient repo	orted by PSDL	И_Н [Gy/µC]	60.6	0.300	0.0050	Ν	1	0.50
1.4	Constancy of the calibra	tion coefficient			60.6		0.0010	Ν	1	0.10
	Quadratic sum									0.31
	Combined uncertainty								u _c (y) %	0.56
2	Factors influencing the	a rafaranaa atanda								
2	Calibration factor of along		ira:	1 .	4		0.0005	NI		0.05
2.1	Calibration factor of elec	trometer		K _{elec}	1	0.0015	0.0005	N	1	0.05
2.2	Leakage current			Γ[pA]	0.01	0.0015	0.0000	N	1	0.00
2.0	Recombination			k .	1	0.0040	0.0023	R	1	0.00
2.5	Temperature (K)				1	0.0006	0.0006	N	1	0.06
2.0	Proseuro (kPa)			k-	1	0.0000	0.0000	N	1	0.00
2.0	Lumidity			κp L	1	0.0001	0.0001		1	0.01
2.7				ĸh	1	0.0004	0.0002	R D	1	0.02
2.0	Reproduction of source t	to chamber distance)		1	0.0030	0.0029	R	2	0.23
	Quadratic sum		·			010020	010012		_	0.20
	Combined uncertainty								u _c (y) %	0.44
3	Factors influencing the	e transfer chambe	r, Exradin A6							
3.1	Calibration factor of elect	trometer		k elec	1		0.0005	Ν	1	0.05
3.2	Ionization current (pA)			I [pA]	7.85	0.0011	0.0001	Ν	1	0.01
3.3	Leakage current			ΔI [pA]	0.009	0.0040	0.0005	N	1	0.05
3.4	Recombination			K _s	1	0.0040	0.0023	R	1	0.23
3.5	Temperature (K)			k⊤	1	0.0006	0.0006	Ν	1	0.06
3.6	Pressure (kPa)			k P	1	0.0001	0.0001	N	1	0.01
3.7	Humidity			k h	1	0.0004	0.0002	R	1	0.02
3.8	Chamber orientation				1	0.0050	0.0029	<u>R</u>	1	0.29
3.9	Reproduction of source t	to chamber distance	9		1	0.0020	0.0012	R	2	0.23
	Combined uncertainty								u _• (v) %	0.20
	Combined uncertainty								uc() //0	0.43
4	Factors influencing the	e chamber under t	test, HS10							
4.1	Calibration factor of elec	trometer		k elec	1		0.0005	N	1	0.05
4.2	Ionization current (pA)			I [pA]	100.35	0.0040	0.0000	Ν	1	0.00
4.3	Leakage current			ΔΙ [pA]	0.009	0.0020	0.0000	Ν	1	0.00
4.4	Recombination			k s	1	0.0040	0.0023	R	1	0.23
4.5	Temperature (K)			k⊤	1	0.0006	0.0006	Ν	1	0.06
4.6	Pressure (kPa)			k P	1	0.0001	0.0001	Ν	1	0.01
4.7	Humidity			k h	1	0.0004	0.0002	R	1	0.02
4.8	Chamber orientation				1	0.0015	0.0009	R	1	0.09
4.9	Geometrical factor - cha	mber under test of c	liff size		1	0.0200	0.0115	R	1	1.15
4.10	Quadratic sum	to chamber distance	;		1	0.0010	0.0006	N	2	0.12
	Combined uncertainty								u _c (v) %	1 19
	combined uncertainty									1.13
5	Total uncertainty for a	mbient dose equiv	valent							
	Quadratic sum									2.12
	Combined uncertainty								u _c (y) %	1.46
	Expanded uncertainty (k	(=2)						CMC:	5.00	2.91

Table 3. Combined uncertainty for the calibration in S-Cs field (1 mSv/h).

Swedish Radiation Safety Authority (SSM)

Simplified uncertainty budget.

¹³⁷Cs: $N_{K} = \dot{K}_{air} \cdot I_{s} \cdot \mathbf{k}_{ih} \cdot \delta_{pos} \cdot \delta_{s} \cdot \mathbf{k}_{Tp} \cdot \mathbf{k}_{h} \cdot \mathbf{k}_{spek} \cdot e^{(\ln 2/T_{1/2}) \cdot t}$ N-60: $N_{K} = \dot{K}_{air} \cdot I_{s} \cdot \mathbf{k}_{ih} \cdot \delta_{pos} \cdot \mathbf{k}_{Tp} \cdot \mathbf{k}_{h} \cdot \mathbf{k}_{spek} \cdot \mathbf{k}_{NK} \cdot \mathbf{k}_{HVL} \cdot \delta_{K} \cdot$

Quantity	Sensitivity	Probability	¹³⁷ Cs-	¹³⁷ Cs-	N-60 u_i
	cofficient	distribution	1mSv	10μSv <i>u_i</i>	(%)
			$u_i(\%)$	(%)	
\dot{K}_{air}	-	normal	0,325	0,384	0,47
$I_{\rm s}$ uncertainty in	-	normal	0,026	0,26	0,26
electrometer					
calibration					
$k_{T,p}$ korrection for air	-	normal	0,06	0,06	0,06
density					
e ^(-in2/11/2*t) uncertainty in	-	rectangular	0,05	0,05	
half life					
k _{ih} korrection for non-	1,0000	normal	0,3	0,3	0,17
uniformity of the field					
k_h korrection for	1,0000	rectangular	-	-	-
airdenity variation vith					
humidity					
δ_{pos} uncertainty in	1,0000	normal	0,35	0,35	0,06
detector positioning					
δ_s uncertainty in	1,0000	normal	0,11	0,11	-
positioning of the					
radiation source					
k _{spek} korrektion for	1,0000	normal	0,2	0,2	0,1
different field at					
PSDL-SSDL					
k _{NK} korrection for	1,0000	rectangular			0,1
standard stability					
k _{HVL} korrection for	1,0000	rectangular			0,03
HVL stability					
δ_K uncertainty in short	1,0000	rectangular			0,01
time stability of air					
kerma rate in x-ray					
field					
Combined uncertainty		normal	0,614	0,647	0,588
N_{K}					
U		normal	1,23	1,29	1,18
Expanded					
uncertainty <i>k=2</i> for					
N_{K}					

The uncertainty for conversion coefficient h^* is 2%

U	normal	4,2	4,2	4,2
Expanded				
uncertainty <i>k=2</i> for				
N_{H^*}				

Radiation and Nuclear Safety Authority (STUK)

H*(10)

Model function:

Uncertainty budget according to GUM

STUK N-60; 1 mSv h⁻¹

Model function: H = Nk(std)*k(stab,std)*k(unif,std)*k(spect,std)*l(std)* k(pT)*h

No.	quantity or group of quantities	estimated	l value	standard unce	ertainty	%	probability distribution *)	sensitivity	coefficient	contribution to the uncertain	contribution to the standard uncertainty		contribution to the standard uncertainty		contribution to the standard uncertainty		remarks
1	Nk(std)	4.293E+04	Gy C ⁻¹	2.576E+02	Gy C ⁻¹	0.60		2.561E-05	mSv h ⁻¹ Gy ⁻¹ C	6.596E-03	mSv h ⁻¹		Air kerma calibration factor of ionisation chamber NE 2575 S/N 547 (standard) calibrated at PTB in 2009				
2	k(stab,std)	1.000E+00		5.800E-03		0.58	Rectangular (TypeB)	1.099E+00	mSv h ⁻¹	6.376E-03	mSv h ⁻¹		Long-term stability of the standard				
3	k(unif,std)	1.000E+00		5.800E-03		0.58	Rectangular (TypeB)	1.099E+00	mSv h ⁻¹	6.376E-03	mSv h⁻¹		B type uncertainty due to differences in beam uniformity (Primary lab. vs. STUK)				
4	k(spect,std)	1.000E+00		5.800E-03		0.58	Rectangular (TypeB)	1.099E+00	mSv h ⁻¹	6.376E-03	mSv h ⁻¹		B type uncertainty due to differences in beam spectra (Primary lab. vs. STUK).				
5	I(std)	4.473E-12	A	1.21E-14	A	0.27	(TypeA)	2.458E+11	mSv h ⁻¹ A ⁻¹	2.968E-03	mSv h ⁻¹						
6	k(pT)	1.000E+00		8.000E-04		0.08	Rectangular (TypeB)	1.099E+00	mSv h ⁻¹	8.795E-04	mSv h ⁻¹						
7	h(N-60)	1.590E+00	Sv Gy ⁻¹	3.180E-02	Sv Gy ⁻¹	2.00		6.914E-01	mSv h ⁻¹ Sv ⁻¹ Gy	2.199E-02	mSv h ⁻¹		ISO 4037-3:1999				
	H(N-60)	3.054E-07	Sv s ⁻¹														
	H(N-60)	1.099E+00	mSv h ⁻¹	-			-	-		2.566E-02	mSv h ⁻¹	2.33	standard uncertainty, k = 1				
										5.132E-02	mSv h ⁻¹	4.67	standard uncertainty, k = 2				

*) used for the determination of the standard uncertainty

N(N-60) = H(N-60)/[I(tr)*k(setup,tr)*k(tube output)]

No.	quantity or group of quantities	estimated	l value	standard unce	ertainty	%	probability distribution *)	sensitivity	coefficient	contribution to the standard uncertainty		%	remarks
1	l(tr)	8.618E-11	A	8.62E-14	Α	0.10	(TypeA)	4.111E+16	mSv C ⁻¹ A ⁻¹	3.543E+03	mSv C ⁻¹		
2	k(setup,tr)	1.000E+00		2.900E-03		0.29	Rectangular (TypeB)	3.543E+06	mSv C ⁻¹	1.028E+04	mSv C ⁻¹		B type uncertainty due to setup differences between the measurements of the standard and the transfer instruments.
3	k(tube output)	1.000E+00		1.000E-03		0.10	Rectangular (TypeB)	3.543E+06	mSv C ⁻¹	3.543E+03	mSv C ⁻¹		B type uncertainty due to differences in tube output between the measurements of the standard and the transfer instruments.
4	H(N-60)	1.099E+00	mSv h ⁻¹	2.566E-02	mSv h ⁻¹			3.223E+06	mSv C ⁻¹ mSv ⁻¹ h	8.271E+04	mSv C ⁻¹		
	N(N-60)	1.276E+10	mSv (Ah) ⁻¹										
	N(N-60)	3.543E+06	mSv C ⁻¹	-			-	-		8.350E+04	mSv C ⁻¹	2.36	standard uncertainty, k = 1
										1.670E+05	mSv C ⁻¹	4.71	standard uncertainty, k = 2

*) used for the determination of the standard uncertainty

17/01/2014

Arvi Hakanen

Uncertainty budget according to GUM

STUK S-Cs; 0,01 mSv h⁻¹

Model function: H = Nk(std)*k(stab,std)*k(unif,std)*k(spect,std)*I(std)* k(pT)*h

No.	quantity or group of quantities	estimated	l value	standard unce	ertainty	%	probability distribution *)	sensitivity	coefficient	contribution to the standard uncertainty		contribution to the standard uncertainty		contribution to the standard uncertainty		%	remarks
1	Nk(std)	3.138E+03	Gy C ⁻¹	1.883E+01	Gy C ⁻¹	0.60		3.175E-06	mSv h ⁻¹ Gy ⁻¹ C	5.978E-05	mSv h ⁻¹		Air kerma calibration factor of ionisation chamber TM 32002 S/N 83 (standard) calibrated at PTB in 2012				
2	k(stab,std)	1.000E+00		5.800E-03		0.58	Rectangular (TypeB)	9.963E-03	mSv h ⁻¹	5.779E-05	mSv h ⁻¹						
3	k(unif,std)	1.000E+00		2.900E-03		0.29	Rectangular (TypeB)	9.963E-03	mSv h ⁻¹	2.889E-05	mSv h ⁻¹						
4	k(spect,std)	1.000E+00		3.000E-03		0.30	Rectangular (TypeB)	9.963E-03	mSv h ⁻¹	2.989E-05	mSv h ⁻¹		Additional uncertainty due to higher contribution of background spectrum				
5	I(std)	7.349E-13	А	4.56E-15	Α	0.62	(TypeA)	1.356E+10	mSv h ⁻¹ A ⁻¹	6.177E-05	mSv h ⁻¹						
6	k(pT)	1.000E+00		8.000E-04		0.08	Rectangular (TypeB)	9.963E-03	mSv h ⁻¹	7.971E-06	mSv h ⁻¹						
7	h(S-Cs)	1.200E+00	Sv Gy ⁻¹	2.400E-02	Sv Gy ⁻¹	2.00		8.303E-03	mSv h ⁻¹ Sv ⁻¹ Gy	1.993E-04	mSv h ⁻¹		ISO 4037-3:1999				
	H(S-Cs)	2.768E-09	Sv s ⁻¹														
	H(S-Cs)	9.963E-03	mSv h ⁻¹	-			-	-		2.285E-04	mSv h ⁻¹	2.29	standard uncertainty, k = 1				
										4.571E-04	mSv h ⁻¹	4.59	standard uncertainty, k = 2				

*) used for the determination of the standard uncertainty

N(S-Cs) = H(S-Cs)/[I(tr)*k(setup,tr)]

Model function	1:	N(S-Cs) = H(S-	5-Cs) = H(S-Cs)/[l(tr)*k(setup,tr)]														
No.	quantity or group of quantities	estimated	d value	standard unce	ertainty	%	probability distribution *)	sensitivity	coefficient	contribution to the standard uncertainty		contribution to the standard uncertainty		contribution to the standard uncertainty		%	remarks
1	l(tr)	7.545E-13	А	4.75E-15	Α	0.63	(TypeA)	4.861E+18	mSv C ⁻¹ A ⁻¹	2.311E+04	mSv C ⁻¹						
2	k(setup,tr)	1.000E+00		2.900E-03		0.29	Rectangular (TypeB)	3.668E+06	mSv C ⁻¹	1.064E+04	mSv C ⁻¹						
3	H(S-Cs)	9.963E-03	mSv h ⁻¹	2.285E-04	mSv h ⁻¹			3.682E+08	mSv C ⁻¹ mSv ⁻¹ h	8.413E+04	mSv C ⁻¹						
	N(S-Cs)	1.320E+10	mSv (Ah)-1														
	N(S-Cs)	3.668E+06	mSv C ⁻¹	-			-	-		8.790E+04	mSv C ⁻¹	2.40	standard uncertainty, k = 1				
										1.758E+05	mSv C ⁻¹	4.79	standard uncertainty, k = 2				

*) used for the determination of the standard uncertainty

17/01/2014

Arvi Hakanen

H*(10)

Uncertainty budget according to GUM

STUK S-Cs; 1 mSv h⁻¹

Model function: H = Nk(std)*k(stab,std)*k(unif,std)*k(spect,std)*I(std)* k(pT)*h

No.	quantity or group of quantities	estimated	l value	standard unce	ertainty	%	probability distribution *)	sensitivity	coefficient	contribution to the standard uncertainty		%	remarks
1	Nk(std)	3.132E+03	Gy C ⁻¹	1.879E+01	Gy C ⁻¹	0.60		3.197E-04	mSv h ⁻¹ Gy ⁻¹ C	6.008E-03	mSv h⁻¹		Air kerma calibration factor of ionisation chamber TM 32002 S/N 83 (standard) calibrated at PTB in 2012
2	k(stab,std)	1.000E+00		5.800E-03		0.58	Rectangular (TypeB)	1.001E+00	mSv h ⁻¹	5.807E-03	mSv h ⁻¹		
3	k(unif,std)	1.000E+00		2.900E-03		0.29	Rectangular (TypeB)	1.001E+00	mSv h⁻¹	2.904E-03	mSv h ⁻¹		
4	k(spect,std)	1.000E+00		2.900E-03		0.29	Rectangular (TypeB)	1.001E+00	mSv h⁻¹	2.904E-03	mSv h ⁻¹		
5	I(std)	7.400E-11	A	8.88E-14	Α	0.12	(TypeA)	1.353E+10	mSv h ⁻¹ A ⁻¹	1.202E-03	mSv h ⁻¹		
6	k(pT)	1.000E+00		8.000E-04		0.08	Rectangular (TypeB)	1.001E+00	mSv h⁻¹	8.010E-04	mSv h ⁻¹		
7	h(S-Cs)	1.200E+00	Sv Gy ⁻¹	2.400E-02	Sv Gy ⁻¹	2.00		8.344E-01	mSv h ⁻¹ Sv ⁻¹ Gy	2.003E-02	mSv h ⁻¹		ISO 4037-3:1999
	H(S-Cs)	2.781E-07	Sv s ⁻¹										
	H(S-Cs)	1.001E+00	mSv h ⁻¹	-			-	-		2.213E-02	mSv h ⁻¹	2.21	standard uncertainty, k = 1
										4.426E-02	mSv h ⁻¹	4.42	standard uncertainty, k = 2

*) used for the determination of the standard uncertainty

N(S-Cs) = H(S-Cs)/[I(tr)*k(setup,tr)]

Model function	1:	N(S-Cs) = H(S-	S-Cs) = H(S-Cs)/[I(tr)*k(setup,tr)]													
No.	quantity or group of quantities	estimated	d value	standard unce	ertainty	%	probability distribution *)	sensitivity	coefficient	contribution to the standard uncertainty		%	remarks			
1	l(tr)	7.623E-11	А	9.15E-14	A	0.12	(TypeA)	4.786E+16	mSv C ⁻¹ A ⁻¹	4.378E+03	mSv C ⁻¹					
2	k(setup,tr)	1.000E+00		2.900E-03		0.29	Rectangular (TypeB)	3.649E+06	mSv C ⁻¹	1.058E+04	mSv C ⁻¹					
3	H(S-Cs)	1.001E+00	mSv h ⁻¹	2.213E-02	mSv h ⁻¹			3.644E+06	mSv C ⁻¹ mSv ⁻¹ h	8.065E+04	mSv C ⁻¹					
	N(S-Cs)	1.314E+10	mSv (Ah) ⁻¹													
	N(S-Cs)	3.649E+06	mSv C ⁻¹	-			-	-		8.145E+04	mSv C ⁻¹	2.23	standard uncertainty, k = 1			
										1.629E+05	mSv C ⁻¹	4.46	standard uncertainty, k = 2			

*) used for the determination of the standard uncertainty

17/01/2014

Arvi Hakanen
Uncertainty budget according to GUM N-60; 1 mSv h⁻¹

Model function: K = Nk(std)*k(stab,std)*k(unif,std)*k(spect,std)*I(std)* k(pT)

No.	quantity or group of quantities	estimated	value	standard unce	rtainty	%	probability distribution *)	sensitivity	coefficient	contribution to the uncertaint	standard ty	%	remarks
1	Nk(std)	4.293E+04	Gy C ⁻¹	2.576E+02	Gy C ⁻¹	0.60		1.610E-05	mGy h ⁻¹ Gy ⁻¹ C	4.148E-03	mGy h ⁻¹		Air kerma calibration factor of ionisation chamber NE 2575 S/N 547 (standard) calibrated at PTB in 2009
2	k(stab,std)	1.000E+00		5.800E-03		0.58	Rectangular (TypeB)	6.914E-01	mGy h ⁻¹	4.010E-03	mGy h ⁻¹		Long-term stability of the standard
3	k(unif,std)	1.000E+00		5.800E-03		0.58	Rectangular (TypeB)	6.914E-01	mGy h ⁻¹	4.010E-03	mGy h ⁻¹		B type uncertainty due to differences in beam uniformity (Primary lab. vs. STUK)
4	k(spect,std)	1.000E+00		5.800E-03		0.58	Rectangular (TypeB)	6.914E-01	mGy h ⁻¹	4.010E-03	mGy h ⁻¹		B type uncertainty due to differences in beam spectra (Primary lab. vs. STUK).
5	I(std)	4.473E-12	A	1.21E-14	A	0.27	(TypeA)	1.546E+11	mGy h ⁻¹ A ⁻¹	1.867E-03	mGy h ⁻¹		
6	k(pT)	1.000E+00		8.000E-04		0.08	Rectangular (TypeB)	6.914E-01	mGy h ⁻¹	5.531E-04	mGy h ⁻¹		
	K(N-60)	1.921E-07	Gy s ⁻¹										
	K(N-60)	6.914E-01	mGy h ⁻¹	-			-	-		8.321E-03	mGy h ⁻¹	1.20	standard uncertainty, k = 1
										1.664E-02	mGy h ⁻¹	2.41	standard uncertainty, k = 2

*) used for the determination of the standard uncertainty

N(N-60) = K(N-60)/[I(tr)*k(setup,tr)*k(tube output)]

Model function	:	N(N-60) = K(N	-60)/[I(tr)*k(s	etup,tr)*k(tube out	put)]								
No.	quantity or group of quantities	estimated	d value	standard unce	ertainty	%	probability distribution *)	sensitivity	v coefficient	contribution to the standard uncertainty		%	remarks
1	l(tr)	8.618E-11	А	8.62E-14	А	0.10	(TypeA)	2.586E+16	mGy C ⁻¹ A ⁻¹	2.229E+03	mGy h ⁻¹		
2	k(setup,tr)	1.000E+00		2.900E-03		0.29	Rectangular (TypeB)	2.229E+06	mGy C ⁻¹	6.463E+03	mGy h ⁻¹		B type uncertainty due to setup differences between the measurements of the standard and the transfer instruments.
3	k(tube output)	1.000E+00		1.000E-03		0.10	Rectangular (TypeB)	2.229E+06	mGy C ⁻¹	2.229E+03	mGy h ⁻¹		B type uncertainty due to differences in tube output between the measurements of the standard and the transfer instruments.
4	K(N-60)	6.914E-01	mGy h ⁻¹	8.321E-03	mGy h ⁻¹			3.223E+06	mGy C ⁻¹ mGy ⁻¹ h	2.682E+04	mGy h ⁻¹		
	N(N-60)	8.023E+09	mGy (Ah) ⁻¹										
	N(N-60)	2.229E+06	mGy C ⁻¹	-			-	-		2.777E+04	mGy C ⁻¹	1.25	standard uncertainty, k = 1
										5.554E+04	mGy C ⁻¹	2.49	standard uncertainty, k = 2

*) used for the determination of the standard uncertainty

17/01/2014

Arvi Hakanen

Ka

Uncertainty budget according to GUM

S-Cs; 0,01 mSv h⁻¹

Model function: K = Nk(std)*k(stab,std)*k(unif,std)*k(spect,std)*l(std)* k(pT)

No.	quantity or group of quantities	estimated	value	standard uncer	rtainty	%	probability distribution *)	sensitivity	coefficient	contribution to the uncertain	standard ty	%	remarks
1	Nk(std)	3.138E+03	Gy C ⁻¹	1.883E+01	Gy C ⁻¹	0.60		2.646E-06	mGy h ⁻¹ Gy ⁻¹ C	4.982E-05	mGy h⁻¹		Air kerma calibration factor of ionisation chamber TM 32002 S/N 83 (standard) calibrated at PTB in 2012
2	k(stab,std)	1.000E+00		5.800E-03		0.58	Rectangular (TypeB)	8.303E-03	mGy h ⁻¹	4.816E-05	mGy h ⁻¹		
3	k(unif,std)	1.000E+00		2.900E-03		0.29	Rectangular (TypeB)	8.303E-03	mGy h ⁻¹	2.408E-05	mGy h ⁻¹		
4	k(spect,std)	1.000E+00		3.000E-03		0.30	Rectangular (TypeB)	8.303E-03	mGy h ⁻¹	2.491E-05	mGy h ⁻¹		Additional uncertainty due to higher contribution of background spectrum
5	I(std)	7.349E-13	A	4.56E-15	Α	0.62	(TypeA)	1.130E+10	mGy h ⁻¹ A ⁻¹	5.148E-05	mGy h ⁻¹		
6	k(pT)	1.000E+00		8.000E-04		0.08	Rectangular (TypeB)	8.303E-03	mGy h ⁻¹	6.642E-06	mGy h ⁻¹		
	K(S-Cs)	2.306E-09	Gy s ⁻¹										
	K(S-Cs)	8.303E-03	mGy h ⁻¹	-			-	-		9.325E-05	mGy h ⁻¹	1.12	standard uncertainty, k = 1
										1.865E-04	mGy h ⁻¹	2.25	standard uncertainty, k = 2

*) used for the determination of the standard uncertainty

Model function: N(S-Cs) = K(S-Cs)/[I(tr)*k(setup,tr)]

No.	quantity or group of quantities	estimated	l value	standard unce	ertainty	%	probability distribution *)	sensitivity	coefficient	contribution to the uncertaint	standard ly	%	remarks
1	l(tr)	7.545E-13	А	4.75E-15	А	0.63	(TypeA)	4.051E+18	mGy C ⁻¹ A ⁻¹	1.926E+04	mGy h ⁻¹		
2	k(setup,tr)	1.000E+00		2.900E-03		0.29	Rectangular (TypeB)	3.057E+06	mGy C ⁻¹	8.864E+03	mGy h ⁻¹		
3	K(S-Cs)	8.303E-03	mGy h ⁻¹	9.325E-05	mGy h ⁻¹			3.682E+08	mGy C ⁻¹ mGy ⁻¹ h	3.433E+04	mGy h ⁻¹		
	N(S-Cs)	1.100E+10	mGy (Ah) ⁻¹										
	N(S-Cs)	3.057E+06	mGy C ⁻¹	-			-	-		4.035E+04	mGy C ⁻¹	1.32	standard uncertainty, k = 1
										8.069E+04	mGy C ⁻¹	2.64	standard uncertainty, k = 2

*) used for the determination of the standard uncertainty

17/01/2014

Arvi Hakanen

Ka

Uncertainty budget according to GUM S-Cs; 1 mSv h⁻¹

Model function: K = Nk(std)*k(stab,std)*k(unif,std)*k(spect,std)*I(std)* k(pT)

No.	quantity or group of quantities	estimated	value	standard unce	ertainty	%	probability distribution *)	sensitivity	coefficient	contribution to the uncertain	contribution to the standard uncertainty		remarks
1	Nk(std)	3.132E+03	Gy C ⁻¹	1.879E+01	Gy C ⁻¹	0.60		2.664E-04	mGy h ⁻¹ Gy ⁻¹ C	5.006E-03	mGy h⁻¹		Air kerma calibration factor of ionisation chamber TM 32002 S/N 83 (standard) calibrated at PTB in 2012
2	k(stab,std)	1.000E+00		5.800E-03		0.58	Rectangular (TypeB)	8.344E-01	mGy h ⁻¹	4.840E-03	mGy h ⁻¹		
3	k(unif,std)	1.000E+00		2.900E-03		0.29	Rectangular (TypeB)	8.344E-01	mGy h ⁻¹	2.420E-03	mGy h ⁻¹		
4	k(spect,std)	1.000E+00		2.900E-03		0.29	Rectangular (TypeB)	8.344E-01	mGy h ⁻¹	2.420E-03	mGy h ⁻¹		
5	I(std)	7.400E-11	А	8.88E-14	А	0.12	(TypeA)	1.128E+10	mGy h ⁻¹ A ⁻¹	1.001E-03	mGy h ⁻¹		
6	k(pT)	1.000E+00		8.000E-04		0.08	Rectangular (TypeB)	8.344E-01	mGy h ⁻¹	6.675E-04	mGy h ⁻¹		
	K(S-Cs)	2.318E-07	Gy s ⁻¹										
	K(S-Cs)	8.344E-01	mGy h ⁻¹	-			-	-		7.851E-03	mGy h ⁻¹	0.94	standard uncertainty, k = 1
										1.570E-02	mGy h ⁻¹	1.88	standard uncertainty, k = 2
*) used for the	determinetion of the store	do rel un contointe											

*) used for the determination of the standard uncertainty

Model function: N(S-Cs) = K(S-Cs)/[I(tr)*k(setup,tr)]

No.	quantity or group of quantities	estimated	d value	standard unce	ertainty	%	probability distribution *)	sensitivity	coefficient	contribution to the uncertair	e standard ity	%	remarks
1	l(tr)	7.623E-11	А	9.15E-14	А	0.12	(TypeA)	3.989E+16	mGy C ⁻¹ A ⁻¹	3.649E+03	mGy h ⁻¹		
2	k(setup,tr)	1.000E+00		2.900E-03		0.29	Rectangular (TypeB)	3.041E+06	mGy C ⁻¹	8.818E+03	mGy h ⁻¹		
3	K(S-Cs)	8.344E-01	mGy h ⁻¹	7.851E-03	mGy h ⁻¹			3.644E+06	mGy C ⁻¹ mGy ⁻¹ h	2.861E+04	mGy h ⁻¹		
	N(S-Cs)	1.095E+10	mGy (Ah) ⁻¹										
	N(S-Cs)	3.041E+06	mGy C ⁻¹	-			-	-		3.016E+04	mGy C ⁻¹	0.99	standard uncertainty, k = 1
										6.032E+04	mGy C ⁻¹	1.98	standard uncertainty, k = 2

*) used for the determination of the standard uncertainty

17/01/2014

Arvi Hakanen

Ka

Instituto Tecnológico e Nuclear (IST-LPSR-LMRI)

Cs-137_1:

The uncertainty budget of the true value is presented in the table below,

UNCERTAIN	TY BUDGET OF	TRUE VALUE					
Name of uncertainty component	Estimation	Probability distribution	Standard uncertainty	Sensitivity coefficient	Unit	Contribution to standard uncertainty	Unit
Calibration coefficient, N _{Ka} [Gy/C] Measurement, M	3,172E+03	normal	1,4E+01	5,482E-11	Sv.C/Gy	7,675E-10	
[C] Pressure, <i>P</i> [hPa]	4,593E-11 1014,2	normal rectangular	6,771E-15 0,05	3,786E+03 -1,715E-10	Sv/C Sv/hPa	2,564E-11 -8,574E-12	
Temperature, <i>T</i> [ºC] Dimension of	18,7	rectangular	0,03	5,959E-10	Sv/K	1,788E-11	Sv
radiation field, a	1,000	rectangular	0,0003	1,739E-07	Sv	5,217E-11	
Humidity <i>, H</i>	1,000	rectangular	0,0004	1,739E-07	Sv	6,956E-11	
Distance, <i>d</i> Conversion coefficient, CC	200,000	rectangular	4,593E-14	3,786E+03	Sv/C	1,739E-10	
[Sv/Gy]	1,20	normal	2,400E-02	1,449E-07	Gy	3,478E-09	
						3,567E-09	Sv

This implies an uncertainty of 2.1 % (k = 1) on the true value of ambient dose equivalent.

Cs-137_2:

The uncertainty budget of the true value is presented in the table below,

UNCERTAIN	TY BUDGET OF	TRUE VALUE					
Name of uncertainty component	Estimation	Probability distribution	Standard uncertainty	Sensitivity coefficient	Unit	Contribution to standard uncertainty	Unit
Calibration coefficient, N _{Ka} [Gy/C] Measurement, M	2,576E+04	normal	7,5E+01	5,824E-10	Sv.C/Gy	4,368E-08	
[C] Pressure, <i>P</i> [hPa]	4,880E-10 1018,3	normal rectangular	1,713E-14 0,05	3,074E+04 -1,473E-08	Sv/C Sv/hPa	5,267E-10 -7,366E-10	Sv
Temperature, <i>T</i> [⁰C] Dimension of radiation field, <i>a</i>	19,8 1,000	rectangular rectangular	0,03 0,0003	5,121E-08 1,500E-05	Sv/K Sv	1,536E-09 4,500E-09	5.
Humidity <i>, H</i>	1,000	rectangular	0,0004	1,500E-05	Sv	6,001E-09	
Distance, <i>d</i> Conversion coefficient, CC	200,000	rectangular	4,880E-13	3,074E+04	Sv/C	1,500E-08	
[Sv/Gy]	1,20	normal	2,400E-02	1,250E-05	Gy	3,000E-07	-
						3,037E-07	Sv

This implies an uncertainty of 2.1 % (k = 2) on the true value of ambient dose equivalent.

N-60:

The uncertainty budget of the true value is presented in the table below. Due to the fact that the true value on X ray measurements are presented in the dosimetric quantity divided by the monitor units (MU), so it is presented always in Sv/UM, the uncertainty budget is in fact three, one for standard measurements, other for monitor unit measurements and on for the true value.

Quantity X:	Estimation	Probability distribution	Standard	Sensitivity coefficient	Contribution to standard uncertainty u:(v)	Unit
Standard	~	normal		C/		С
measurement,						
M _{padrão} (C)	1,316E-08		7,165E-12	0,98806	7,0798E-12	J
Pressure, P (hPa)	1024,45	rectangular	0,05	-1,26958E-11	-6,3479E-13	
Temperature, T		rectangular]
(°C)	19,7		0,03	4,44126E-11	1,3324E-12	J
Distance, d (cm)	200	rectangular	3,949E-11	0,98806	3,9019E-11	
Humidity, h	1	rectangular	0,0004	1,30062E-08	5,2025E-12	
	У				4,0023E-11	

Uncertainty budget of standard measurements:

This implies an uncertainty of 0.61 % (k = 2) on the measurements with the standard.

Uncertainty budget of MU measurements:

Quantity	Estimation	Probability distribution	Standard	Sensitivity coefficient	Contribution to standard uncertainty	Unit
Xi	Xi		uncertainty	Ci	u _i (y)	
Measurements with monitor		normal				V
chamber, <i>MUM</i> (V)	1,165		5,977E-04	0,98806	5,9055E-04	
		rectangular		-1,12324E-		
Pressure, P (hPa)	1024,45		0,05	03	-5,6162E-05	
Temperature, T		rectangular				
(°C)	19,7		0,03	3,92933E-03	1,1788E-04	
Humidity <i>, h</i>	1	rectangular	0,0004	1,15070	4,6028E-04	
	у				7,6004E-04	

This implies an uncertainty of 0.13 % (k = 2) on the measurement of monitor units (MU).

Uncertainty budget of H* true value:

Quantity	Estimation	Probability distribution	Standard	Sensitivity coefficient	Contribution to standard uncertainty	Unit
X _i	Xi		uncertainty	Ci	u _i (y)	
		normal				Sv/UM
Measurement (C/UM)	1,1303E-08		3,5148E-11	4,00E+04	1,405E-06	
Calibration coefficient, N _K		normal				
(Gy/C)	2,514E+04		1,01E+02	1,7972E-08	1,807E-06	
Conversion coefficient CC		normal				
(Sv/Gy)	1,59		0,032	2,8412E-04	9,035E-06	
	у				9,3204E-06	

This implies an uncertainty of 4.2 % (k = 2) on the true value of ambient dose equivalent.

Cs-137_1:

Measurements with HS chamber: Date of measurements: 21-10-2013

The uncertainty budget for the measurements with HS chamber at 2 meters distance is presented in the table below,

Uncertainty	budget of HS cha	mber measureme	nts				
Unncertainty		Probability	Standard	Sensitivity		Contribution to	-
component	estimation	distribution	uncertainty	coefficient	unit	standard uncertainty	unit
Measurement,	A 726E 11	normal	9 27/E 1/	0.068E.01	Gy/C	9 247E 14	
w [e]	4,7201-11	normai	0,2/41-14	9,9082-01	Gy/C	8,2471-14	
Pressure, P							
[hPa]	1011,0	rectangular	0,05	-4,659E-14	Gy/hPa	-2,330E-15	
Temperature, T [ºC]	18,4	rectangular	0,03	1,616E-13	Gy/K	4,847E-15	o
Radiation field							C/min
dimension, a	1,000	rectangular	0,0003	4,711E-11	Gv	1,413E-14	
,		5			,	,	
Humidity H	1 000	rectangular	0.0003	4 711F-11	Gv	1 413F-14	
numary, n	1,000	rectangular	0,0005	1,7 112 11	C,	1,1152 11	
Distance d	200.000	rectangular	4 726E-14	9 968F-01	Gy	1 711E-11	
	200,000	recturigului	4,720L-14	J,J03L-01	Jy	+,/110-14	
						9,720E-14	C/min

This implies an uncertainty of 0.21 % (k = 1) on measurements with HS chamber.

The uncertainty of the calibration coefficient will be calculated in the following way,

Calibration coefficient	3.708E+03	Sv/C	
Ambient dose equivalent	0.1790 x 10 ⁻⁰⁶	Sv/min	
Uncertainty of ambient dose equivalent	3.759 x 10 ⁻⁰⁹	Sv/min	
Measurement of HS chamber	48.272 x 10 ⁻¹²	C/min	
Uncertainty of measurement of HS chamber	1.014 x 10 ⁻¹³	C/min	
UNCERTAINTY OF CALIBRATION COEFFICIENT	7.826 x 10⁺⁰¹	Sv/C	
RELATIVE UNCERTAINTY	2.1	%	
EXPANDED UNCERTAINTY OF CALIBRATION COEFFICIENT	1.565 x 10 ⁺⁰²	Sv/C	
RELATIVE EXPANDED UNCERTAINTY	4.2	%	

Cs-137_2:

The uncertainty budget for the measurements with HS chamber at 2.5 meters distance is presented in the table below,

Uncertainty	budget of HS cha	mber measureme	nts				
Unncertainty	octimation	Probability	Standard	Sensitivity	unit	Contribution to	
component	estimation	uistribution	uncertainty	coencient	unit	stanuaru uncertainty	unit
Measurement,							
<i>M</i> [C]	2,645E-09	normal	1,314E-12	1,007E-00	Gy/C	1,323E-12	
Pressure, P							
[hPa]	1005,8	rectangular	0,05	-2,649E-12	Gy/hPa	-1,324E-13	
Temperature, T [ºC]	19.9	rectangular	0.03	9.091E-12	Gv/K	2.727E-13	
Radiation field	- / -	0.1	-,	-,	- //	, -	C/min
dimension a	1 000	rectangular	0.0003	2 664F-09	Gv	7 992F-13	
unichibitit, u	1,000	rectangular	0,0005	2,0012 05	C,	,,55EE 15	
Humidity H	1 000	rectangular	0 0002	2 664E 00	Gy	7 002E 12	
numury, n	1,000	rectungului	0,0005	2,0042-05	Gy	7,5521-15	
Distance d	250.000	ractangular	2 6455 12	1 0075 00	Circ	2 6645 12	
Distance, u	250,000	rectungular	2,045E-12	1,007E-00	бу	2,004E-12	
						3,197E-12	C/min

This implies an uncertainty of 0.12 % (k = 1) on measurements with HS chamber.

The uncertainty of the calibration coefficient will be calculated in the following way,

Calibration coefficient	3.680E+03	Sv/C
Ambient dose equivalent	0.01525 x 10 ⁻⁰³	Sv/min
Uncertainty of ambient dose equivalent	3.203 x 10 ⁻⁰⁷	Sv/min
Measurement of HS chamber	4.143 x 10 ⁻⁰⁹	C/min
Uncertainty of measurement of HS chamber	4.971 x 10 ⁻¹²	C/min

UNCERTAINTY OF CALIBRATION COEFFICIENT RELATIVE UNCERTAINTY	7.744 x 10 ⁺⁰¹ 2.1	Sv/C %
EXPANDED UNCERTAINTY OF CALIBRATION COEFFICIENT	1.549 x 10⁺⁰²	Sv/C
RELATIVE EXPANDED UNCERTAINTY	4.2	%

N-60:

Measurements with HS chamber:

The uncertainty budgets associated with the measurements with HS chamber at 2 meters distance are presented in the tables below,

Quantity <i>X</i> i	Estimation <i>x_i</i>	Probability distribution	Standard uncertainty	Sensitivity coefficient <i>c</i> i	Contribution to standard uncertainty u _i (y)
HS chamber	9 7265-09	normal	1 070F-12	1 00358	1 0862E-12
pressure, P	1005,85	rectangular	0,05	-9,70356E-12	-4,8518E-13
temperature, T	18,9	rectangular	0,03	3,34200E-11	1,0026E-12
distânce, d	200	rectangular	2,918E-11	1,00358	2,9281E-11
humidity, h	1	rectangular	0,0004	9,76033E-09	3,9041E-12
	У				2,9628E-11

Uncertainty budget of HS chamber measurements:

This implies an uncertainty of 0.30 % (k = 1) on measurements with HS chamber.

Uncertainty budget of MU measurements:

Quantity	Estimation	Probability distribution	Standard	Sensitivity coefficient	Contribution to standard uncertainty
X _i	X _i		uncertainty	Ci	u _i (y)
Measurements with		normal			
monitor chamber, M_{UM}	0,779		3,442E-04	1,00220	3,4500E-04
pressure, P	1005,85	rectangular	0,05	-7,76437E-04	-3,8822E-05
temperature, T	18,5	rectangular	0,03	2,67780E-03	8,0334E-05
humidity <i>, h</i>	1	rectangular	0,0004	0,78098	3,1239E-04
	у				4,7389E-04

This implies an uncertainty of 0.06 % (k = 1) on measurements with monitor chamber.

The measurements of HS chamber are normalized to the monitor units of the X radiation quality. The uncertainty of the measurements of HS chamber is,

M _{HS_X} =	1,248E-08 C/UN	/
Uncertainty of M_{HS} x:	3,877E-11 C/UN	1

This implies an uncertainty of 0.31 % (k = 1) on measurements with HS chamber.

The uncertainty of the calibration coefficient will be calculated in the following way,

Calibration coefficient	3.531E+03	Sv/C
Ambient dose equivalent	0.044099 x 10 ⁻⁰³	Sv/UM
Uncertainty of ambient dose equivalent	9.261 x 10 ⁻⁰⁷	Sv/UM
Measurement of HS chamber	1.248 x 10 ⁻⁰⁸	C/UM
Uncertainty of measurement of HS chamber	3.877 x 10 ⁻¹¹	C/UM
UNCERTAINTY OF CALIBRATION COEFFICIENT	7.501 x 10⁺⁰¹	Sv/C
UNCERTAINTY OF CALIBRATION COEFFICIENT RELATIVE UNCERTAINTY	7.501 x 10⁺⁰¹ 2.2	Sv/C %
UNCERTAINTY OF CALIBRATION COEFFICIENT RELATIVE UNCERTAINTY	7.501 x 10⁺⁰¹ 2.2	Sv/C %
UNCERTAINTY OF CALIBRATION COEFFICIENT RELATIVE UNCERTAINTY EXPANDED UNCERTAINTY OF CALIBRATION COEFFICIENT	7.501 x 10 ⁺⁰¹ 2.2 1.500 x 10 ⁺⁰²	Sv/C % Sv/C

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (LMRI-CIEMAT)

3.3 Conventional true values and its uncertainties

The conventional true values of the ambient dose equivalent rate, $\dot{H}^*(10)$, were determined using the following equations:

$$\dot{H}^{*}(10) = h_{K}^{*}(10, \mathbf{Q}) \cdot \dot{K}_{a}$$
 (1),

$$\dot{K}_{a} = I \cdot N_{K} \cdot \prod_{i} k_{i}$$
⁽²⁾

where:

$$h_{K}^{*}(10, \mathrm{Q})$$
 is the conversion coefficient from air kerma to ambient dose equivalent for S-Cs,
 $h_{K}^{*}(10, \mathrm{S-Cs})$, or for X ray N-60, $h_{K}^{*}(10, \mathrm{N-60})$.

 \dot{K}_{a} is the reference value or conventional true value of the air kerma rate.

- *I* is the net ionization current (corrected for leakage currents), measured with the reference instrument.
- N_K is the air kerma calibration coefficient of the secondary standard (reference instrument), for a chamber air temperature of 20 °C, an ambient air pressure of 1013,25 hPa, and a relative humidity of 50%.
- k_i are the correction factors, described in 3.3.1 and 3.3.2.

3.3.1 Conventional true value for S-Cs quality

In the framework of this comparison, the following correction factors, k_{i} in equation (2) have been considered:

- k_{TP} is the air density correction factor, for reference air temperature and pressure (293,15 K and 101,325 kPa, respectively),
- $k_{\rm h}$ is the air humidity correction to the reference relative humidity of 50 %,
- $k_{\rm stab}$ is the correction factor for the long term stability of the reference instrument,
- $k_{\rm s}$ is the correction factor for recombination losses,
- k_{pos} is the correction factor for the positioning of the secondary standard ionization chamber.

The values of the parameters that appear in equations (1) and (2) and the corresponding uncertainties are shown in table 3, according to the requirements of the GUM [3]. Because both the standard and the transfer instrument used the same current measurement system, including the thermometer and the barometer, some non-statistical components of uncertainty cancel. These components have not been included in the uncertainty budget.

Doromotors	Voluos	Uncertainties (k = 1)		
T al ameters	values	100 s _i	100 <i>u</i> _i	
$N_K (\times 10^3 \text{ Gy/C})$	3,163	-	0,75	
h_{K}^{*} (10,S-Cs)	1,20	-	2,00	
k_{TP}		-	0,05	
$k_{ m h}$	1,0000	-	0,04	
$k_{ m stab}$	1,0000	0,24	-	
$k_{ m pos}$	1,0000	-	0,04	
1.	0,9987	-	0,11	
Ks	0,9985	-	0,11	
I		0,01	0,05	
1		0,06	0,14	
Quadratic summation		0,24	2,14	
Quadratic summation		0,25	2,15	
Combined relative standard		2,	15	
uncertainty (in %)		2,	16	

 Table 3: Parameters for the determination of ambient dose equivalent rates in ¹³⁷Cs beams and their estimated relative standard uncertainties.

Notes:

- s_i represents the relative standard uncertainty estimated by statistical methods, type A
- u_i represents the relative standard uncertainty estimated by other means, type B
- The first row of " k_s ", "I", "quadratic summation" and "combined relative standard uncertainty" corresponds to the comparison reference value of 1 mSv/h, while the second row corresponds to the comparison reference value of 10 μ Sv/h,

The reference values of the ambient dose equivalent rates, determined at ¹³⁷Cs beams of the CIEMAT, using the equations (1), and (2), are summarized in table 4, whereas the measured values of air kerma rates are summarized in table 5. The corresponding expanded uncertainties were calculated from the uncertainty budget in table 3. The standard uncertainties were multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95%.

During the measurements with the standard chamber the air pressure was in the range from 94,71 kPa to 94,98 kPa, while the air temperature was in the range from 19,47 °C to 19,99 °C. The air relative humidity was 43 %.

Table 4: Reference values of $\dot{H}^*(10)$

$\dot{H}^{*}(10)$	Relative uncertainty $(k = 2)$
$9,970 \times 10^{-4}$ Sv/h	$4,30 \times 10^{-2}$
$9,994 \times 10^{-6}$ Sv/h	$4,32 \times 10^{-2}$

Table5: Reference values of \dot{K}_{a}

$\dot{K}_{ m a}$	Relative uncertainty $(k = 2)$
$8,308 \times 10^{-4} \text{ Gy/h}$	$1,60 \times 10^{-2}$
$8,329 \times 10^{-6}$ Gy/h	$1,62 \times 10^{-2}$

3.3.2 Conventional true value for N-60 quality

In the framework of this comparison, the following correction factors, k_{i} in equation (2) have been considered:

k _{TP}	is the air density correction factor, for reference air temperature and pressure (293,15 K and 101,325 kPa, respectively),
$k_{ m h}$	is the air humidity correction to the reference relative humidity of 50 %,
k_Q	is the correction factor applied to the calibration coefficient of the reference instrument, relative to the quality N-40,
$k_{\rm stab}$	is the correction factor for the long term stability of the reference instrument.

The values of these parameters and the corresponding uncertainties are shown in table 6, according to the requirements of the GUM [3]. As in the case of S-Cs quality, the measurements with the standard chamber and the transfer instrument were carried out with the same electrometer, and with the same thermometer and barometer. For that reason some non-statistical components of uncertainty cancel and have not been included in the uncertainty budget.

The reference value of the ambient dose equivalent rate, determined at N-60 reference beam of the CIEMAT, using the equations (1) and (2), is given in table 7. The measured value of air kerma rate is presented in table 8. The corresponding expanded uncertainties were calculated from the uncertainty budget in table 6. The standard uncertainties were multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95%.

During the measurements with the standard chamber the air pressure was stable in a value of 94,164 kPa, while the air temperature was in the range from 20,04 $^{\circ}$ C to 20,09 $^{\circ}$ C. The air relative humidity was 42 %.

Dovomotovs	Values	Uncertainties $(k = 1)$		
rarameters	values	100 s _i	100 <i>u</i> i	
$N_K \ge k_Q (\times 10^4 \text{Gy/C})$	4,322	-	0,60	
$h_{\!K}^{st}\left(10,{ m N} ext{-}60 ight)$	1,59	-	2,00	
k_{TP}		-	0,11	
$k_{ m h}$	1,0000	-	0,05	
$k_{ m stab}$	1,0000	0,21	-	
Ι		0,03	0,10	
Quadratic summation		0,21	2,09	
Combined relative standard uncertainty (in %)		2,	10	

Table 6: Parameters for the determination of ambient dose equivalent rates in X-Ray N-60beam and their estimated relative standard uncertainties.

Notes:

- *s*_i represents the relative standard uncertainty estimated by statistical methods, type A
- u_i represents the relative standard uncertainty estimated by other means, type B

Table 7: Reference value of $\dot{H}^*(10)$

$\dot{H}^{*}(10)$	Relative uncertainty $(k = 2)$
$1,013 \times 10^{-3} Sv/h$	$4,20 \times 10^{-2}$

Table 8: Reference value of \dot{K}_{a}

\dot{K}_a	Relative uncertainty $(k = 2)$
$6,369 \times 10^{-4} Gy/h$	1,31 × 10 ⁻²

4. DESCRIPTION OF THE CALIBRATION MEASUREMENTS

The calibrations were made by using the sequential method, in which the standard chamber and the transfer chamber HS10 were placed alternately with their reference points of measurements at the same calibration point on the central axis of the beam (see figures 1 and 2). The measuring conditions were those specified in the technical protocol of the comparison [4].

The transfer chamber was positioned with the stem perpendicular to the beam axis and the white mark, on the chamber wall, oriented to the source. The reference point of measurements for positioning the chamber HS10 in the beams was taken as the geometrical centre of the spherical chamber cavity. The radiation fields used throughout the calibrations were circular in cross-section and their sizes were sufficient to irradiate the whole of the chamber. The chambers were placed at the reference points, with the collecting voltage applied, at least two hours before the beginning of measurements in order to guarantee the temperature equilibrium.

During calibrations the transfer chamber was operated at a polarising potential of 400 volts. This was applied to the chamber so that the chamber wall was positive with respect to the inner central electrode (the collecting electrode). The ionization current of the transfer chamber was determined using the same electrometer as was used with the standard chamber.

The chamber background current was measured before and after the chamber was exposed to the source of radiation. The average of background current was determined and subtracted from the measured ionization current produced in the chamber when exposed to the source of radiation. The measured ionization currents were normalized to the reference values of chamber air temperature and pressure (293,15 K and 101,325 kPa, respectively).

(*a*)

(b)

Figure 1: Calibration arrangement in S-Cs beams at CIEMAT. a) Standard chamber. b) Transfer chamber.

(*a*)

(b)

Figure 2: Calibration arrangement in N-60 beam at CIEMAT. a) Standard chamber. b) Transfer chamber.

5. DETERMINATION OF THE CALIBRATION COEFFICIENTS

The calibration coefficients, N_H (in Sv/C), were determined by evaluating the ratio:

$$N_{H} = \frac{H^{*}(10)}{I}$$
(3)

where

 $\dot{H}^{*}(10)$ is the conventional true value of the ambient dose equivalent rate measured with the reference instrument (in Sv/s),

I is the ionization current measured with the transfer chamber, corrected for leakage current and the reference air pressure and temperature (101,325 kPa and 293,15 K, respectively), expressed in A.

The ionization current of the transfer chamber was determined with the electrometer used for the measurement of the conventional true value of the ambient dose equivalent rate with the secondary standard chamber. The environmental variables where measured also with the same instruments.

The current measured with the transfer chamber was not corrected for humidity, neither for lack of saturation.

5.1 ISO radiation quality: S-Cs

• ...

The table 9 lists the relevant values associated to the obtained calibration coefficients, N_{H} , for both ambient dose equivalent rates, at the stated reference conditions (293,15 K and 101,325 kPa), whereas the table 10 contains the information regarding the corresponding air kerma calibration coefficients, N_{K} . The uncertainty values were obtained from the uncertainty budget in table 11. The standard uncertainties were multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95%.

Table 9: Ambient dose equivalent calibration coefficients, N_H, and their uncertainties

Reference comparison values	N _H	Uncertainty	(<i>k</i> = 2)
${\dot H}^{st}ig(10ig)$	(Sv/C)	(Sv/C)	(%)
1 mSv/h	$3,704 \times 10^{3}$	$1,59 \times 10^{2}$	4,3
10 uSv/h	$3,716 \times 10^{3}$	$1,61 \times 10^{2}$	4,3

Reference values	Air kerma rates	N_K	Uncertainty	(<i>k</i> = 2)
$\dot{H}^{*}(10)$	\dot{K}_a	(Gy/C)	(Gy/C)	(%)
1 mSv/h	$8{,}308\times10^{4}~Gy/h$	$3,086 \times 10^{3}$	$5,0 \times 10^{1}$	1,6
10 uSv/h	$8,329 \times 10^{-6} \ Gy/h$	$3,097 \times 10^{3}$	$5,1 \times 10^{1}$	1,7

Table 10: Air kerma calibration coefficients, N_K, and their uncertainties

Table 11: Estimated relative standard uncertainties of the calibration coefficients, N_H and N_K ,for the two ambient dose equivalent rate values

Relative standard uncertainty ⁽¹⁾	100 $s_i^{(2)}$	100 <i>u</i> _i
Positioning	-	0,09
Air density correction (temperature and pressure)	-	0,05
Ionization current of the transfer chember	0,01	0,05
ionization current of the transfer chamber	0,07	0,12
Relative standard uncertainty of $\dot{H}^*(10)^{(3)}$	-	2,15
Relative standard uncertainty of <i>II</i> (10)	-	2,16
Relative standard uncertainty of $\dot{\mathbf{k}}^{(3)}$	-	0,80
Relative standard uncertainty of K _a	-	0,81
P olative standard uncertainty of $N_{(in \theta_i)}$	2,3	15
Relative standard uncertainty of $N_H(th 76)$	2,1	17
Relative standard uncertainty of N_{F} (in %)	0,8	81
Relative standard uncertainty of tv _k (<i>in 70</i>)	0,8	83

 The first row of "Ionization current of the transfer chamber", "Relative standard uncertainty of *H*^{*}(10)", "Relative standard uncertainty of *K_a*", "Relative standard uncertainty of *N_H*", and "Relative standard uncertainty of *N_K*" corresponds to the comparison reference value of 1 mSv/h, while the second row corresponds to the comparison reference value of 10 µSv/h.

(2) s_i represents the relative standard uncertainty estimated by statistical methods, type A u_i represents the relative standard uncertainty estimated by other means, type B

(3) Values obtained from tables 4 and 5.

During the measurements with the transfer chamber the air temperature, pressure and relative humidity were in the following ranges:

$\dot{H}^{*}(10)$	Temperature (°C)	Pressure (kPa)	Relative humidity (%)
1 mSv/h	19,60 - 19,88	94,88 - 94,91	43
10 uSv/h	19,44 – 19,70	94,68 - 94,69	44

5.2 ISO radiation quality: N-60

The table 12 lists the relevant values associated to the obtained calibration coefficient, N_H , at the stated reference conditions (293,15 K and 101,325 kPa), whereas the table 13 contains the information regarding the corresponding air kerma calibration coefficient, N_K . The uncertainty values were obtained from the uncertainty budget in table 14. The standard uncertainties were multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95%.

Table 12: Ambient dose equivalent calibration coefficient, N_H , and its uncertainty

Reference comparison value	N_H	Uncertainty	k = 2
$\dot{H}^{*}(10)$	(Sv/C)	(Sv/C)	(%)
1 mSv/h	$3,488 \times 10^{3}$	$1,47 \times 10^{2}$	4,2

Table 13: Air kerma calibration coefficient, N_K, and its uncertainty

Reference value	Air kerma rate	N_K	Uncertainty	/ (<i>k</i> = 2)
$\dot{H}^{*}(10)$	\dot{K}_a	(Gy/C)	(Gy/C)	(%)
1 mSv/h	$6,369 \times 10^{-4} Gy/h$	$2,194 \times 10^{3}$	$2,9 \times 10^1$	1,3

During the measurements with the transfer chamber the air temperature, pressure and relative humidity were in the following ranges:

$\dot{H}^{*}(10)$	Temperature (°C)	Pressure (kPa)	Relative humidity (%)
1 mSv/h	19,91 – 19,94	94,164 - 94,168	42

Relative standard uncertainty	100 $s_i^{(1)}$	100 <i>u</i> _i
Positioning	-	0,03
Air density correction (temperature and pressure)	-	0,11
Ionization current of the transfer chamber	0,01	0,01
Relative standard uncertainty of $\dot{H}^{*}(10)^{(2)}$	-	2,10
Relative standard uncertainty of $\dot{K}_a^{(2)}$	-	0,66
Relative standard uncertainty of N_H (in %)	2,10	
Relative standard uncertainty of N_K (in %)	0,67	

Table 14: Estimated relative standard uncertainties of the calibration coefficients, N_H and N_K,

(1) s_i represents the relative standard uncertainty estimated by statistical methods, type A u_i represents the relative standard uncertainty estimated by other means, type B

(2) Values obtained from tables 7 and 8.

6. REFERENCES

- [1] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION: X and gamma reference radiation for calibrating dosemeters and dose rate meters and for determining their response as a function of photon energy. Part 3: Calibration of area and personal dosemeters and the measurement of their response as a function of energy and angle of incidence. ISO 4037-03 (1999).
- [2] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION: X and gamma reference radiation for calibrating dosemeters and dose rate meters and for determining their response as a function of photon energy. Part 1: Radiation characteristics and production methods. ISO 4037-01 (1996).
- [3] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION: Uncertainty of measurement - Part 3: Guide to the Expression of Uncertainty in Measurement (GUM:1995) (Geneva: ISO), BIPM JCGM 100:2008; Guide to the Expression of Uncertainty in Measurement (GUM) ISO/IEC Guide 98-3 (2008).
- [4] HUPE, O.: EURAMET supplementary comparison of the ambient dose equivalent rate for photon radiation. Technical Protocol. EURAMET project No. 1132, BIPM KCDB: EURAMET.R(I)-S11 (2013).

Czech Metrology Institute (CMI)

Annex: Uncertainty budget

N60, 1 mSv/h

Determination	of a reference va	due of H*(10)
		(/

a)	Determination of a reference value of H*(10)					
No.	Quantity or group	Estimated value	Standard	Contribution to the resulting	Remarks	
	of quantities		uncertainty	standard uncertainty		
1	Calibration coeff.	1.041E6 Gy/C	0.6 %	0.6 %		
2	Ionization current	1.839E-13 A	0.47 %	0.47 %		
3	Leakage current	4E-16 A	63 %	0.14 %		
4	Air temperature	20.3°C	0.15 %	0.15 %		
5	Air pressure	996.2 hPa	0.1 %	0.1 %		
6	Air humidity	22 %	0.1 %	0.1 %		
7	Distance F-D	2.125 m	0.05 %	0.1 %		
8	Effective energy	47.2 keV	0.5 %	0.45 %	$C_{ICRU} = 1.616$	
	$\dot{H}^{*}(10)$	3.094E-7 Sv/s		0.92 %	k=1	
				1.85 %	k=2	

b) Calibration of a transfer chamber HS(10)

No.	Quantity or group of quantities	Estimated value	Standard uncertainty	Contribution to the resulting standard uncertainty	Remarks
1	<i>H</i> ⁺ *(10)	3.094E-7 Sv/s	0.92 %	0.92 %	
2	Ionization current	8.475E-11 A	0.40 %	0.40 %	
3	Leakage current	3.88E-14 A	13.5 %	0.06 %	
4	Air temperature	20.4 °C	0.15 %	0.15 %	
5	Air pressure	996.3 hPa	0.1 %	0.1 %	
6	Air humidity	22 %	0.1 %	0.1 %	
7	Distance F-D	2.125 m	0.1 %	0.2 %	
	N _H	3.645E3 Sv/C		1.05 %	k=1
				2.10 %	k=2

¹³⁷Cs, 1 mSv/h

No.	Quantity or group	Estimated value	Standard	Contribution to the resulting	Remarks	
	of quantities		uncertainty	standard uncertainty		
1	Calibration coeff.	1.077E6 Gy/C	0.6 %	0.6 %		
2	Ionization current	2.161E-13 A	0.47 %	0.47 %		
3	Leakage current	-4.3E-15 A	10 %	0.2 %		
4	Air temperature	21.6°C	0.15 %	0.15 %		
5	Air pressure	978.8 hPa	0.1 %	0.1 %		
6	Air humidity	22 %	0.1 %	0.1 %		
7	Distance F-D	6.385 m	0.01 %	0.02 %		
8	Effective energy	661 keV			$C_{ICRU} = 1.204$	
	<i>H</i> [*] (10)	2.799E-7 Sv/s		0.82 %	k=1	
				1.63 %	k=2	

a) Determination of a reference value of H*(10)

b) Calibration of a transfer chamber HS(10)

No.	Quantity or group of quantities	Estimated value	Standard uncertainty	Contribution to the resulting standard uncertainty	Remarks
1	<i>H</i> [*] (10)	2.799E-7 Sv/s	0.82 %	0.82 %	
2	Ionization current	7.710E-11 A	0.40 %	0.40 %	
3	Leakage current	1.05E-14 A	35 %	0.05 %	
4	Air temperature	21.6 °C	0.15 %	0.15 %	
5	Air pressure	979.2 hPa	0.1 %	0.1 %	
6	Air humidity	22 %	0.1 %	0.1 %	
7	Distance F-D	6.385 m	0.03 %	0.06 %	
	N _H	3.631E3 Sv/C		0.94 %	k=1
				1.88 %	k=2

137 Cs, 10 μ Sv/h:

	-/ =						
No.	Quantity or group	Estimated value	Standard	Contribution to the resulting	Remarks		
	of quantities		uncertainty	standard uncertainty			
1	Calibration coeff.	1.077E6 Gy/C	0.6 %	0.6 %			
2	Ionization current	2.154E-12 A	0.40 %	0.40 %			
3	Leakage current	-7.6E-15 A	6.8 %	0.02 %			
4	Air temperature	21.7°C	0.15 %	0.15 %			
5	Air pressure	982.2 hPa	0.1 %	0.1 %			
6	Air humidity	23 %	0.1 %	0.1 %			
7	Distance F-D	2.037 m	0.05 %	0.1 %			
		2.328E-6 Gy/s		0.76 %	k=1		
	K						
				151%	k=2		

a) Determination of a reference value of air kerma rate

b) Calibration of the comparator

No.	Quantity or group	Estimated value	Standard	Contribution to the resulting	Remarks
	of quantities		uncertainty	standard uncertainty	
1		2.328E-6 Gy/s	0.76 %	0.76 %	
	K				
2	Ionization current	7.801E-10 A	0.40 %	0.40 %	
3	Leakage current	3.0E-14 A	15 %	0 %	
4	Air temperature	21.0 °C	0.15 %	0.15 %	
5	Air pressure	985.2 hPa	0.1 %	0.1 %	
6	Air humidity	23 %	0.1 %	0.1 %	
7	Distance F-D	2.037 m	0.05 %	0.1 %	
	N_K	2.985E3 Gy/C		0.89 %	k=1
				1.78 %	k=2

c) Determination of a reference value of H*(10)

No.	Quantity or group	Estimated value	Standard	Contribution to the resulting	Remarks
	of quantities		uncertainty	standard uncertainty	
1	Calibration coeff.	2.985E3 Gy/C	0.89 %	0.89 %	
2	Ionization current	8.087E-13 A	0.50 %	0.50 %	
3	Leakage current	3.33E-14 A	8 %	0.33 %	
4	Air temperature	21.6°C	0.15 %	0.15 %	
5	Air pressure	985.2 hPa	0.1 %	0.1 %	
6	Air humidity	23 %	0.1 %	0.1 %	
7	Distance F-D	4.016 m	0.025 %	0.05 %	
8	Effective energy	661 keV			$C_{ICRU} = 1.204$
	$\dot{H}^{*}(10)$	2.787E-9 Sv/s		1.09 %	k=1
				2.19 %	k=2

d) Calibration of a transfer chamber HS(10)

No.	Quantity or group	Estimated value	Standard	Contribution to the resulting	Remarks
	of quantities		uncertainty	standard uncertainty	
1	$\dot{H}^{*}(10)$	2.787E-9 Sv/s	1.09 %	1.09 %	
2	Ionization current	7.717E-13 A	0.50 %	0.50 %	
3	Leakage current	6.2E-15 A	50 %	0.40 %	
4	Air temperature	20.5 °C	0.15 %	0.15 %	
5	Air pressure	978.8 hPa	0.1 %	0.1 %	
6	Air humidity	23 %	0.1 %	0.1 %	
7	Distance F-D	4.016 m	0.025 %	0.05 %	
	N_H	3.650E3 Sv/C		1.28 %	k=1
				2.56 %	k=2

Horia Hulubei National Institute of R&D for Physics and Nuclear Engineering (IFIN-HH)

The standard instrument

A) The standard instrument

The standard instrument used for this comparison is an UNIDOS T 10021 electrometer with the TM 32003 ionization chamber (Volume= 10 l) (See fig. 2). Using this standard instrument, the reference value is obtained.

The IFIN-HH standard instrument traceability is assured by calibration at PTB (Calibration Certificate No PTB-6.3-4065479/10.09.2013 and 6.25-40/13K/17.09.2013).

According it's Calibration Certificate, for the ambient dose equivalent rate (at 10 mm depth) (H*(10)), the relative expanded uncertainty is of 3% for k=2.

For the air kerma rate (\dot{K}_a), the relative expanded uncertainty is of 1.2 % for k=2.

For Quality radiation N-60, the relative expanded uncertainty is of 0.8 % for k=2 (for Gy) and 3% for k=2 (for Sv)

Fig. 2 Ionisation chamber type TM 32003

Results

The irradiations were performed on the irradiation bench, using a collimated beam produced by a 137-Cs radioactive source (serial number 337).

Reference point of the ionization chamber: Geometrical centre of the chamber.

The radioactive source-detector distance (SDD) is the distance between the radioactive source and the geometrical center of the spherical chamber.

The alignment of the chamber in the gamma beam was performed by using the mark point (MP) on the exterior surface of the chamber

Climatic conditions:

- Temperature: 20.1 to 20.9° C
- Air pressure: 1013.2 to 1016 hPa
- Rel. humidity: 44 to 55%

For the irradiations, the position of the geometrical center of the chamber was established on the bench, as the intersection of the three laser beams.

Then, the ionization chamber was placed on the bench, in such a manner that it's geometrical center was in the intersection of the three laser beams.

The focal spot of horizontal laser beam was on the MP of the chamber.

Fig. 3 Ionisation chamber type TM 32003

During these measurements, a good reproducibility of the values of the measured quantity was obtained, which means that the positioning of the source was reproducible and that the ionization chamber was placed, each time, at the same SDD.

The air temperature and pressure were measured, at the beginning and at the end of each $\dot{H}^*(10)$ measurement. For each variation of the values of the temperature and pressure, the suitable corrections are applied; the corresponding uncertainties, of the measurement were calculated for k=2.

For each value of \dot{H} (equivalent dose rate) 10 values (statistically independent) were recorded and the mean value (\dot{H}) was calculated,

$$\dot{H} = \frac{\sum_{i=1}^{n} \dot{H}_{i}}{n} \cdot k_{TP} \tag{1}$$

Were: \dot{H}_{i} – the recorded values of the equivalent dose rate

n-numbers of the recorder values

 $k_{TP}\;$ - correction factor for temperature and pressure

 k_{TP} correction factor was calculated using eq. (2):

$$k_{\rm TP} = \frac{1013.25}{P} * \frac{(273.15+T)}{293.15}$$
(2)

Where: T – temperature P – Pressures

The components of the measurement uncertainty are:

a) The standard uncertainty (s_n) of the measurements made using the standard instrument (s_n):

$$s_{n} = \frac{1}{\bar{H}} \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (H_{i} - \bar{H})^{2}}$$
(3)

Where: - \dot{H}_i the recorded value of \dot{H}

- n the number of the recorded values for each measurement
- \vec{H} the mean value of the recorded values for each measurement
- b) The calibration uncertainty of the standard instrument used for comparison, (u_{cc}) according the Calibration Certificate:

$$u_{cc} = \frac{1}{2} U_{calib} \tag{4}$$

- Where: U_{calib} the uncertainty of the standard instrument, according the Calibration Certificate, for k=2.
 - c) The uncertainty due to the electrometer: 0.2 % for k=2
 - d) The uncertainty due to the resolution of the displayed values of the standard instrument (u_{res}) :

$$u_{res} = \frac{1}{\sqrt{3}} \frac{R_{et}}{\overline{H}} \tag{5}$$

- Where: R_{et} the resolution of the displayed values of the standard instrument; $\dot{H}^{*}(10)$ - the mean value of the ambient dose equivalent rate
 - e) The uncertainty due to the instruments used for the measurement of the air temperature and pressure $(u_{kTP CE})$:

$$u_{\text{kTP CE}} = k_{\text{TP,m}} * \sqrt{\frac{u_{\text{P}}^2}{P_{\text{m}}^2} + \frac{u_{\text{T}}^2}{(273.15 + T_{\text{m}})^2}}$$
(6)

Where:

 $K_{T,P,m}$ - the correction factor for T and P, calculated for the measured values

 u_T - the measurement uncertainty for the temperature, from the calibration certificate of the instrument for k=1;

 u_{P} - the measurement uncertainty for the pressure, from the calibration certificate of the instrument, for $k{=}1$

 P_m - he measured value of the pressure (hPa)

 T_m - the measured value of the temperature (⁰C)

f) The uncertainty due to the display resolution of the instruments used for the measurement of the temperature and the pressure (u_{kTPrez})

$$u_{kTP rez} = k_{TP,m} * \sqrt{\frac{\delta_P^2}{P_m^2} + \frac{\delta_T^2}{(273.15 + T_m)^2}}$$
(7)

Where:

- K_{TP,m} the correction factor for T and P, calculated for the measured values of T and P
- δ_P the resolution for displaying the pressure value,
- δ_T the resolution for displaying the temperature value,
- P_m the measured value of the pressure (hPa)
- T_m the measured value of the temperature (⁰C)
- g) The uncertainty due to the variation of the ambient temperature and the pressure during the measurements (u_{varTP}),

$$u_{\text{var TP}} = k_{\text{TP,m}} * \sqrt{\frac{\Delta_p^2}{P_m^2} + \frac{\Delta_T^2}{(273.15 + T_m)^2}}$$
 (8)

Where:

- K_{T,P,m} the correction factor for T and P, calculated for the measured values
- Δp pressure variation during the measurements of H;
- ΔT temperature variation during measurements
- P_m the measured value of P (hPa)
- T_m the measured value of $T(^0C)$
- h) When the ionization chamber is placed on the irradiation bench, a maximum positioning error (ε) is assumed; the value of this error was of 2 mm
 The uncertainty due to the positioning of the standard instrument (u_{distance}):

$$u_{\text{distance}} = \frac{d^2}{\sqrt{3}} * \left(\frac{1}{(d-\varepsilon)^2} - \frac{1}{(d+\varepsilon)^2}\right)$$
(9)

Where:

- d = the distance (SDD)
- ε = the error for the positioning
- i) The uncertainty for to the positioning of the standard instrument due to the calibration of the instrument for the distance (according the Calibration Certificate):

$$u_{\text{distanta CC}} = \frac{d^2}{\sqrt{3}} * \left(\frac{1}{(d-u_d)^2} - \frac{1}{(d+u_d)^2}\right)$$
(10)

Where:

- d distance (m)
- u_d the uncertainty of the calibration of the instrument (as give in the calibration certificate) for k=1 according the Calibration Certificate,

The expanded uncertainty of the measurements results obtained with the standard instrument is:

$$u_{SSD} = \sqrt{s_n^2 + u_{cc}^2 + u_{rez}^2 + u_{kTPCC}^2 + u_{kTPrez}^2 + u_{varTP}^2 + u_d^2 + u_{dCC}^2}$$
(11)

B. Ionization chamber type HS 10

In the picture below the ionization chamber type HS 10 in the laser beams for alignment is presented.

The ionization chamber type HS 10 was connected to the 10021UNIDOS Webline electrometer.

Fig. 4 Ionisation chamber type HS 10, in the laser beams for positioning

The calibration factor (in Sv/C) given by:

$$N_H = \frac{H^*(10)}{I}$$
(12)

Where:

- I the ionization current measured by the ionisation chamber with the UNIDOS Webline type 10021
- $\dot{H}^{*}(10)$ the reference value of the ambient dose equivalent rate conventional quantity value of the ambient dose equivalent rate

Leackage current (I_{leack}) -

For each value of I_{leack} 10 values (statistically independent) were recorded and the mean value was calculated:

$$\bar{I}_{leack} = \frac{\sum_{1}^{10} I_{leack}}{10}$$
(13)

Measurement current, I_{meas(net)}

The net ionization current is calculated from the mean measured current (I_{mas}) , by substracting the mean leackage current

$$I_{meas(net)} = \bar{I}_{meas} - \bar{I}_{leack}$$
 (14)

 I_{mas} , the mean measured current is calculated as the mean of 10 statistically independent dispayes values.

The components of the measurement uncertainty are:

a) The standard uncertainty of the measurements performed using the standard instrument (s_n):

$$s_{n} = \frac{1}{\bar{I}} \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (I_{i} - \bar{I})^{2}}$$
(15)

Where:

- \bar{I} is the mean value of the recorded values for each measurement
- I_i is measurement of the ionization current
- *n* numbers of the measurements
- b) The uncertainty due to the electrometer: 0.2 % for k=2
- c) The uncertainty due to the resolution of the displayer values of the standard instrument (u_{res}):

$$u_{res} = \frac{1}{\sqrt{3}} \frac{R_{elec}}{\bar{I}} \tag{16}$$

- Where: R_{elec} the resolution of the displayed values of the electrometer (instrument); \dot{I} the mean value of the ionization current
 - d) The uncertainty due to the instruments used for the measurement of the air temperature and pressure $(u_{kTP CE})$:

$$u_{\text{kTP CE}} = k_{\text{TP,m}} * \sqrt{\frac{u_{\text{P}}^2}{P_{\text{m}}^2} + \frac{u_{\text{T}}^2}{(273.15 + T_{\text{m}})^2}}$$
(17)

Where:

K_{T,P,m} the correction factor for T and P, calculated for the measured values

 u_T the measurement uncertainty for the temperature, from the calibration certificate of the instrument for k=1;

 u_{P} the measurement uncertainty for the pressure, from the calibration certificate of the instrument, for k=1

 P_m the measured value of the pressure (hPa)

 T_m the measured value of the temperature (⁰C)

e) The uncertainty due to the display resolution of the instruments used for the measurement of the temperature and the pressure (u_{kTPrez})

$$u_{kTP rez} = k_{TP,m} * \sqrt{\frac{\delta_P^2}{P_m^2} + \frac{\delta_T^2}{(273.15 + T_m)^2}}$$
(18)

Where:

- $K_{TP,m}$ the correction factor for T and P, calculated for the measured values of T and P
- δ_P the resolution for displaying the pressure value,
- $\delta_{\rm T}$ the resolution for displaying the temperature value,
- P_m the measured value of the pressure (hPa)
- T_m the measured value of the temperature (^{0}C)

f) The uncertainty due to the variation of the ambient temperature and the pressure- during the measurements (u_{varTP}) ,

$$u_{\text{var TP}} = k_{\text{TP,m}} * \sqrt{\frac{\Delta_p^2}{P_m^2} + \frac{\Delta_T^2}{(273.15 + T_m)^2}}$$
(19)

Where:

- K_{T,P,m} the correction factor for T and P, calculated for the measured values
- Δp the pressure variation during the measurements of D;
- ΔT the temperature variation during measurements
- P_m the measured value of P (hPa)
- T_m the measured value of T(0 C)
- g) The uncertainty due to the positioning of the standard instrument (u_{distance}):

$$u_{\text{distance}} = \frac{d^2}{\sqrt{3}} * \left(\frac{1}{(d-\varepsilon)^2} - \frac{1}{(d+\varepsilon)^2}\right)$$
(20)

Where:

- d= distance (SDD)
- ϵ = the error for the positioning
- h) The uncertainty due to the positioning of the standard instrument due to the calibration of the instrument for the distance measurement (according the Calibration Certificate):

$$u_{\text{distanta CC}} = \frac{d^2}{\sqrt{3}} * \left(\frac{1}{(d-u_d)^2} - \frac{1}{(d+u_d)^2}\right)$$
(21)

Where:

- d distance (m)
- u_d the uncertainty of the calibration of the instrument (as give in the calibration certificate) for k=1 according the Calibration Certificate,

The uncertainty is the expanded measurement for ionization chamber HS10

$$u_{HS10} = \sqrt{s_n^2 + u_{electr}^2 + u_{rez}^2 + u_{kTPCC}^2 + u_{kTPrez}^2 + u_{varTP}^2 + u_d^2 + u_{dCC}^2}$$
(22)

The extended uncertainty

$$U = k * \sqrt{u_{SSD}^2 + u_{HS10}^2}$$

VSL (VSL)
Quantity or group of quantities	Estimate	Standard uncertainty	Probability distribution	Uncertainty contribution
Realization of air-Kerma with primary standard		0.48 %	rectangular	0.48 %
Reference measurement with primary standard (statistical)		0.70 %	normal	0.70 %
- Electrometer	20 nC	0.10 %	rectangular	0.10 %
- Temperature	20 °C	0.05 %	rectangular	0.05 %
- Atmospheric pressure	101.3 kPa	0.10 %	rectangular	0.10 %
SDD set-up for calibration of transfer ion- chamber	100 cm	1 mm	rectangular	0.12 %
Calibration measurement with transfer ion- chamber (statistical)		0.15 %	normal	0.15 %
- Recombination	1.000	0.05 %	rectangular	0.05 %
- Electrometer	20 nC	0.10 %	rectangular	0.10 %
- Temperature	20 °C	0.05 %	rectangular	0.05 %
- Atmospheric pressure	101.3 kPa	0.10 %	rectangular	0.10 %
Reference measurement with Exradin A5 (statistical)		0.50 %	normal	0.50 %
- Recombination	1.000	0.05 %	rectangular	0.05 %
- Electrometer	2 nC	0.10 %	rectangular	0.10 %
- Temperature	20 °C	0.05 %	rectangular	0.05 %
- Atmospheric pressure	101.3 kPa	0.10 %	rectangular	0.10 %
ISO 4037-3 conversion coefficient	1.59	2.0 %	rectangular	2.0 %
SDD set-up for calibration of HS10	420 cm	3 mm	rectangular	0.10 %
Measurement with HS10 (statistical)		0.05 %	normal	0.05 %
- Beam homogeneity	100 %	0.10 %	rectangular	0.10 %
- Scattered radiation	1.000	0.10 %	rectangular	0.10 %
- Recombination	1.000	0.05 %	rectangular	0.05 %
- Electrometer	20 nC	0.10 %	rectangular	0.10 %
- Temperature	20 °C	0.05 %	rectangular	0.05 %
- Pressure	101.3 kPa	0.10 %	rectangular	0.10 %
Combined uncertainty (k=1)	·	·	·	2.27 %
Expanded uncertainty (k=2)				4.6 %

Table 1: Relative uncertainty in the ambient dose equivalent calibration coefficient for radiation quality N-60 (1 mSv/h).

Quantity or group of quantities	Estimate	Standard uncertainty	Probability distribution	Uncertainty contribution
Realization of reference air-Kerma		1.50 %	rectangular	1.50 %
Correction for decay of Cs-137 ($T_{\frac{1}{2}}$)	30.05 y	0.08 y	rectangular	0.18 %
Correction for air absorption, μ	0.01002/m	0.001	rectangular	0.11 %
ISO 4037-3 conversion coefficient	1.20	2.0 %	rectangular	2.0 %
SDD set-up for calibration of HS-10	450 cm	3 mm	rectangular	0.10 %
Measurement with HS-10 (statistical)		0.05 %	normal	0.05 %
- Beam homogeneity	100 %	0.10 %	rectangular	0.10 %
- Scattered radiation	1.000	0.10 %	rectangular	0.10 %
- Recombination	1.000	0.05 %	rectangular	0.05 %
- Electrometer	20 nC	0.10 %	rectangular	0.10 %
- Temperature	20 °C	0.05 %	rectangular	0.05 %
- Pressure	101.3 kPa	0.10 %	rectangular	0.10 %
Combined uncertainty (k=1)				2.52 %
Expanded uncertainty (<i>k</i> =2)				5.1 %

Table 2: Relative uncertainty in the ambient dose equivalent calibration coefficient for radiation quality S-Cs (1 mSv/h).

Quantity or group of quantities	Estimate	Standard uncertainty	Probability distribution	Uncertainty contribution
Realization of reference air-Kerma		1.50 %	rectangular	1.50 %
Correction for decay of Cs-137 ($T_{\frac{1}{2}}$)	30.05 y	0.08 y	rectangular	0.18 %
Correction for air absorption, μ	0.01002/m	0.001	rectangular	0.11 %
ISO 4037-3 conversion coefficient	1.20	2.0 %	rectangular	2.0 %
SDD set-up for calibration of HS-10	470 cm	3 mm	rectangular	0.10 %
Measurement with HS-10 (statistical)		0.05 %	normal	0.05 %
- Beam homogeneity	100 %	0.10 %	rectangular	0.10 %
- Scattered radiation	1.000	0.10 %	rectangular	0.10 %
- Recombination	1.000	0.05 %	rectangular	0.05 %
- Electrometer	2 nC	0.15 %	rectangular	0.15 %
- Temperature	20 °C	0.05 %	rectangular	0.05 %
- Pressure	101.3 kPa	0.10 %	rectangular	0.10 %
Combined uncertainty (k=1)				2.52 %
Expanded uncertainty (<i>k</i> =2)				5.1 %

Table 2: Relative uncertainty in the ambient dose equivalent calibration coefficient for radiation quality S-Cs (10 μ Sv/h).

Jožef Stefan Institute (IJS)

Institut "Jožef Stefan", Ljubljana, Slovenija

 $\begin{array}{l} M-\text{ionization chamber current in radiation field} \\ M(b)-\text{background ionization chamber current} \\ N_{Kair}-\text{ calibration factor for LS-01 ionization chamber (Gy/As)} \\ F_{ad}-\text{air density correction} \\ F_{l.t.s.}-\text{long term stability} \\ F_{s.t.s.}-\text{short term stability (X-ray)} \\ h^*{}_K(10)-\text{conversion coefficient (Sv/Gy)} \end{array}$

The secondary standard ionization chamber LS-01 was placed in the central beam of radiation to be measured, at the distance D from the centre of the source in order to achieve the required geometry and dose rates.

In the case of S-Cs source the beam was attenuated with lead absorbers.

The Pb absorber thicknes, ambient dose rate $\dot{H}^*(10)$ and distance D from focus of the source for the three radiation qualities are shown in table 1.

Table 1:	Absorber thicknes,	ambient	dose	rate	and	distance	from	focus	of the	source	for	the
	three radiation qual	ities.										

Source	Absorber thicknes (mm Pb)	Η̈́ * (10) (μSv/h)	Distance (cm)
S-Cs	7	997	186
S-Cs	46	9,9	203
N-60	/	1031	270

The principal components of the uncertainty are listed in Tables 2 to 4.

Quantity	Estimated value	Absolute uncertainty	Unit	Probability distribution	Relative standard uncertainty	Sensitivity coeficcient	Contribution to combined standard uncertainty
M-M(b)	831	0,4	µGy/h	normal	0.0005	1	0,0005
N _{Kair}	24970	12	Gy/As	normal	0,005	1	0,005
F _{ad}	297	1	°K	square	0,0019	1	0,0019
F _{1.t.s.}	1	0,005	/	square	0,0029	1	0,0029
$h_{K}^{*}(10)$	1,2	0,024	/	square	0,02	1	0,02
distance	1,86	0,003	m	square	0,0009	2	0,0019

Table 2: The uncertainty components for determination of $\dot{H}^*(10)$ for S-Cs, 1 mSv.

Quantity	Estimated value	Absolute uncertainty	Unit	Probability distribution	Relative standard uncertainty	Sensitivity coeficcient	Contribution to combined standard uncertainty
M-M(b)	8,26	0,004	µGy/h	normal	0.0005	1	0,0005
N _{Kair}	24970	12	Gy/As	normal	0,005	1	0,005
F _{ad}	297	1	°K	square	0,0019	1	0,0019
F _{l.t.s.}	1	0,005	/	square	0,0029	1	0,0029
$h_{K}^{*}(10)$	1,2	0,024	/	square	0,02	1	0,02
distance	2,03	0,003	m	square	0,0008	2	0,0017

Table 3: The uncertainty components for determination of $\dot{H}^*(10)$ for S-Cs, 10 μ Sv/h.

Table 4: The uncertainty components for determination of \dot{H} *(10) for N-60, 1 mSv/h

Quantity	Estimated value	Absolute uncertainty	Unit	Probability distribution	Relative standard uncertainty	Sensitivity coeficcient	Contribution to combined standard uncertainty
M-M(b)	649	0,3	µGy/h	normal	0.0005	1	0,0005
N _{Kair}	24970	12	Gy/As	normal	0,005	1	0,005
F _{ad}	297	1	°K	square	0,0019	1	0,0019
F _{1.t.s.}	1	0,005	/	square	0,0029	1	0,0029
F _{s.t.s.}	1	0,005	/	square	0,0029	1	0,0029
$h_{K}^{*}(10)$	1,2	0,024	/	square	0,02	1	0,02
distance	2,70	0,003	m	square	0,0006	2	0,0013

The resulting conventional quantity values of $\dot{H}^*(10)$ are:

S-Cs, 1 mSv/h: $\dot{H} * (10) = 997 \cdot (1 \pm 0.0210) \,\mu$ Sv/h S-Cs, 10 μ Sv/h: $\dot{H} * (10) = 9.91 \cdot (1 \pm 0.0211) \,\mu$ Sv/h N-60, 1 mSv/h: $\dot{H} * (10) = 1031 \cdot (1 \pm 0.0214) \,\mu$ Sv/h

2.3 Description of calibration measurements

After the determination of the conventional quantity value of $\dot{H}^{*}(10)$ for the three radiation qualities, the HS10 secondary standard chamber was placed to the same geometrical points as the LS-01 chamber in the first place.

Institut "Jožef Stefan", Ljubljana, Slovenija

The geometries of experimental setups are shown in Figures 1 and 2.

Figure 1: Geometry for the measurements of the S-Cs at the distance 2 m.

Figure 2: Geometry for the measurements of the narrow spectra N-60 at the distance 2.7 m.

The conventional quantity value of $\dot{H}^*(10)$ was measured with the HS10 secondary standard chamber for the three radiation qualities.

The same N_{Kair} as with the LS-01 in equation Eq. 1 was used.

The ratio of dose rates calculated with both chambers is also the ratio of calibration factors of both ionization chambers.

2.4 Determination of the calibration factor

The principal components of the uncertainty for determination of the calibration factors for the three radiation quality are listed in Tables 5 to 7.

Table 5: The principal components of the uncertainty for determination of calibration factorfor S-Cs, 1 mSv/h.

Quantity	Estimated value	Absolute uncertainty	Unit	Probability distribution	Relative standard uncertainty	Sensitivity coeficcient	Contribution to combined standard uncertainty
M-M(b)	8136	1	µSv/h	normal	0.0001	1	0,0001
F _{ad}	297	1	°K	square	0,0019	1	0,0019
distance	1,86	0,003	m	square	0,0009	2	0,0019
<i>H</i> [*] (10)	997	21	μSv/h	normal	0,0210	1	0,0210

Table 6: The principal components of the uncertainty for determination of calibration factor for S-Cs, $10 \,\mu$ Sv/h.

Quantity	Estimated value	Absolute uncertainty	Unit	Probability distribution	Relative standard uncertainty	Sensitivity coeficcient	Contribution to combined standard uncertainty
M-M(b)	80,7	0,03	µSv/h	normal	0.0004	1	0,0004
F _{ad}	297	1	°K	square	0,0019	1	0,0019
distance	2,03	0,003	m	square	0,0008	2	0,0017
$\dot{H}^{*}(10)$	9,91	0,21	μSv/h	normal	0,0211	1	0,0211

Quantity	Estimated value	Absolute uncertainty	Unit	Probability distribution	Relative standard uncertainty	Sensitivity coeficcient	Contribution to combined standard uncertainty
M-M(b)	11186	8	µsv/h	normal	0.0007	1	0,0007
F _{ad}	297	1	°K	square	0,0019	1	0,0019
distance	1,86	0,003	m	square	0,0009	2	0,0013
$\dot{H}^{*}(10)$	1031	22	µSv/h	normal	0,0214	1	0,0214

Table 7: The principal components of the uncertainty for determination of calibration factor for N-60, 1 mSv/h.

Calibration factors for the three radiation qualities with expaned relative standard uncertainties (with coverage factor k = 2).

Table 8: Calibration factors with expanded relative standard uncertainties (coverage factor k = 2)

Source	<i>H</i> ⁺ *(10) (mSv/h)	N _{H*(10)}	Relative standard uncertainty (k = 2)
S-Cs	1,00	3670	0,042
	0,010	3681	0,042
N-60	1,03	3562	0,043

Calibration factors for the three radiation qualities with expanded standard uncertainties (coverage factor k = 2).

Calibration factor for S-Cs, 1 mSv/h: $N_{H^{*}(10)} = (3670 \pm 155)$ Sv/As Calibration factor for S-Cs, 10 µSv/h: $N_{H^{*}(10)} = (3681 \pm 156)$ Sv/As Calibration factor for N-60, 1 mSv/h: $N_{H^{*}(10)} = (3562 \pm 153)$ Sv/As

Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti (ENEA-INMRI) EVE:

Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti

Pag. 14 of 25

Table 4 - Uncertainty budget for the corrected current Icorr according to GUM (S-Cs ;1 mSv/h)

Model function (see equations (5) and (6)): $I_{corr} = \left[\left(\frac{\Delta V}{\Delta V} \right)^{meas} - \left(\frac{\Delta V}{\Delta C} \right)^{leak} \right] \cdot C_{fh} \cdot k_{\alpha} \cdot k_{scat} \cdot k_{scarm} \cdot k_{cut} \cdot k_{corroc} \cdot k_{dec}$

				stope var	stope				
No.	quantity or group of quantities	estimated value	standard uncertainty	probability distribution	sensitivity coefficient	contribution to the standard uncertainty /A	Type	Remarks	1
T	$(\Delta V/\Delta t)^{meas}_{slope}$ / V s ⁻¹	1.42E-02	1.4E-07	normal	5,26E-09	7,47E-16	A	Linear regression of series of experimental data	
2	$(\Delta V / \Delta t)^{meas}_{slope}$ / V s ⁻¹	1.42E-02	2.1E-05	rectangular	5,26E-09	1,12E-13	В	Characteristics of measuring instrument	T
3	$(\Delta V/\Delta t) \frac{leak}{slope}$ / V s ⁻¹	-6.91E-07	7.6E-07	normal	5,26E-09	3,99E-15	A	Linear regression of series of experimental data	
4	$(\Delta V/\Delta t)^{leak}_{slope}$ / V s ⁻¹	-6.91E-07	1.0E-09	rectangular	5,26E-09	5,45E-18	В	Characteristics of measuring instrument	
5	C _{fb} / F	5.02E-09	2.5E-12	normal	1,49E-02	3,74E-14	В	Calibration certificate issued by INRIM (IT)	
9 119	\mathbf{k}_{p}	1.0140	2.0E-04	normal	7,37E-11	1,49E-14	A	Standard deviation of the mean of series of experimental data	
7	k	1.0140	3.5E-04	rectangular	7,37E-11	2,61E-14	В	Characteristics of measuring instrument	
8	ksat	1.0010	1.0E-03	rectangular	7,46E-11	7,47E-14	В	Previous measurements	
9	kgeom	0.9980	5.0E-03	rectangular	7,48E-11	3,74E-13	В	Previous measurements and literature data	-
10	k _{att}	0666.0	1.0E-03	rectangular	7,48E-11	7,47E-14	В	Previous measurements and literature data	-
11	konog	1.0208	3.1E-03	rectangular	7,32E-11	2,24E-13	В	Previous measurements	
12	kdee	1.0005	5.0E-06	rectangular	7,47E-11	3,74E-16	В	Literature data	-
						4.64E-13		standard uncertainty	
						0.62%	Overall	[k=1	
						9.29E-13	uncertainty	expanded uncertainty	
quantity to						L.24%0		K=2	
pe	I _{corr} / A		7.471	E-11		1.57E-13	Reduced	standard uncertainty	
determined						0.21%	applied for	k=1	
						3.14E-13	the	expanded uncertainty	
						0.42%	companson 2)	k=2	
[] (]	In reference attenuation	conditions	mnonents amo	no the measure	ment with the	FNFA-INMRI standard and th	e HS10 transfe	r chambers (canacity value of the foodback	-

ICI CHAIHUCIS (CAPACITY VALUE UT HIC ICCUDACK capacitor, beam inhomogeneity and chamber finite dimensions). 1

Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti

Pag. 15 of 25

Table 5 - - Uncertainty budget for the corrected current I_{corr} according to GUM (S-Cs; 10 μ Sv/h) Model function (see equations (5) and (6)): $I_{corr} = \left[\left(\frac{\Delta V}{\Delta t} \right)_{nlows}^{meas} - \left(\frac{\Delta V}{\Delta t} \right)_{nlows}^{leak} \right] \cdot C_{fb} \cdot k_{\rho} \cdot k_{sat} \cdot k_{geom} \cdot k_{att} \cdot k_{omog} \cdot k_{dec}$

				stope	adors				1
No.	quantity or group of quantities	estimated value	standard uncertainty	probability distribution	sensitivity coefficient	contribution to the standard uncertainty /A	Type	Remarks	
1	$(\Delta V/\Delta t)_{slope}^{meas}$ / V s	7.98E-04	8.0E-09	normal	1,04E-09	8,26E-18	A	Linear regression of scries of experimental data	
2	$(\Delta V/\Delta t)^{meas}_{slope}$ / V s	¹ 7.98E-04	1.2E-06	rectangular	1,04E-09	1,24E-15	В	Characteristics of measuring instrument	
e	$(\Delta V/\Delta t) \frac{eak}{slope}$ / V s ⁻	¹ 4.16E-06	1.3E-07	normal	1,04E-09	1,33E-16	A	Linear regression of series of experimental data	1
4	$(\Delta V/\Delta t)^{leak}_{slope}$ / V s	¹ 4.16E-06	6.2E-09	rectangular	1,04E-09	6,46E-18	В	Characteristics of measuring instrument	
5	C _{fb} / F	9.97E-10	2.0E-13	normal	8,25E-04	1,64E-16	В	Calibration certificate issued by INRIM (IT)	
و 120	k	1.0115	1.3E-03	normal	8,13E-13	1,09E-15	A	Standard deviation of the mean of series of experimental data	
7	k _o	1.0115	3.5E-04	rectangular	8,13E-13	2,88E-16	В	Characteristics of measuring instrument	
8	ksat	1.0007	1.0E-03	rectangular	8,22E-13	8,22E-16	В	Previous measurements	
6	Keeom	09660	5.0E-03	rectangular	8,25E-13	4,11E-15	В	Previous measurements and literature data	
10	kau	0666.0	1.0E-03	rectangular	8,23E-13	8,22E-16	В	Previous measurements and literature data	
11	komog	1.0195	3.1E-03	rectangular	8,06E-13	2,47E-15	В	Previous measurements	
12	Kdee	1.0004	5.0E-06	rectangular	8,22E-13	4,11E-18	В	Literature data	
						5.21E-15		standard uncertainty	_
						0.63%	Overall	k=1	
						1.04E-14 1.370/	uncertainty	expanded uncertainty	-
quantity to						1.2170 A	Reduced	standard uncertainty	1
be	I _{corr} / A		8.22	E-13		CI-3C0.7	incertainty	Standard unicertanny	-
determined						0.25%	applied for	k=1	-
						4.09E-15	the	expanded uncertainty	_
						0.50%	comparison 2)	k=2	1
1)	in reference attenuation	n conditions							í.
2)	accounting for commo.	n uncertainty co	omponents amo	ong the measure	ement with the	: ENEA-INMRI standard and th	e HS10 transf	er chambers (capacity value of the feedback	
	capacitor, beam inhom	nogeneity and cl	namber finite d	imensions).					

ENEA/2014/63706/METR

2014/11/14

Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti

Pag.16 of 25

Table 6- - Uncertainty budget for the corrected current I_{corr} according to GUM (S-Cs; 0.5 $\mu Sv/h)$

Model function (see equations (5) and (6)): $I_{conv} = \left[\left(\frac{\Delta V}{\Delta V} \right)^{meas} - \left(\frac{\Delta V}{\Delta V} \right)^{leak} \right] \cdot C_{B} \cdot k_{\alpha} \cdot k_{sort} \cdot k_{sorm} \cdot k_{ott} \cdot k_{onmax}$

	Remar
kdec	Type
$^{c} ho$ · ksat · kgeom · katt · komog · i	contribution to the standard uncertainty /A
$slope \int C_{fb} \cdot J$	sensitivity coefficient
$slope - \left(\frac{\Delta t}{\Delta t}\right)$	probability distribution
$I_{corr} = \left[\left(\frac{\Delta t}{\Delta t} \right) \right]$	standard uncertainty
s (5) and (6)):	estimated value
el function (see equation:	quantity or group of quantities
po	

_				1			1						-		_	1			-		ור
Remarks	Linear regression of series of experimental data	Characteristics of measuring instrument	Linear regression of series of experimental data	Characteristics of measuring instrument	Calibration certificate issued by INRIM (IT)	Standard deviation of the mean of series of experimental data	Characteristics of measuring instrument	Previous measurements	Previous measurements and literature data	Previous measurements and literature data	Previous measurements	Literature data	standard uncertainty	k=1	expanded uncertainty	k=2	standard uncertainty	[=]	expanded uncertainty	k=2	
Type	A	В	A	В	В	A	В	В	В	В	В	В		Overall	uncertainty		Reduced	uncertainty applied for	the	comparison 2)	
contribution to the standard uncertainty /A	3,69E-19	5,53E-17	3,00E-16	2,65E-18	7,02E-18	7,02E-18	1,23E-17	3,51E-17	1,75E-16	3,51E-17	1,05E-16	1,75E-19	3.71E-16	1.06%	7.42E-16	2.11%	3.09E-16	0.88%	6.18E-16	1.76%	
sensitivity coefficient	1,03E-09	1,03E-09	1,03E-09	1,03E-09	3,52E-05	3,46E-14	3,46E-14	3,51E-14	3,51E-14	3,51E-14	3,49E-14	3,51E-14									
probability distribution	normal	rectangular	normal	rectangular	normal	normal	rectangular	rectangular	rectangular	rectangular	rectangular	rectangular					3-14				
standard uncertainty	3.6E-10	5.4E-08	2.9E-07	2.6E-09	2.0E-13	2.0E-04	3.5E-04	1.0E-03	5.0E-03	1.0E-03	3.0E-03	5.0E-06					3.51E				
estimated value	3.58E-05	3.58E-05	1.71E-06	1.71E-06	9.97E-10	1.0130	1.0130	1.0007	0.9990	0.9990	1.0068	1.0006									conditions
quantity or group of quantities	$(\Delta V / \Delta t)$ ^{meas} / V s ⁻¹	$(\Delta V/\Delta t)_{slope}^{meas}$ / V s ⁻¹	$(\Delta V/\Delta t)^{leak}_{slope}$ / V s ⁻¹	$(\Delta V/\Delta t)^{leak}_{slope}$ / V s ⁻¹	C_{fb} / F	Кр	k	k _{sat}	kgeom	k _{att}	komog	k _{clea}					I _{corr} / A	100000			n reference attenuation c
No.	1	2	3	4	5	9 121	7	8	9	10	11	12				quantity to	be	determined			1) ii

2) accounting for common uncertainty components among the measurement with the ENEA-INMRI standard and the HS10 transfer chambers (capacity value of the feedback capacitor, beam inhomogeneity and chamber finite dimensions).

Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti

Pag. 17 of 25

Table 7- - Uncertainty budget for the corrected current I_{corr} according to GUM (N-60; 1 mSv/h) Model function (see equations (5) and (6)): $I_{corr} = \left[\left(\frac{\Delta V}{\Lambda t} \right)^{meas} - \left(\frac{\Delta V}{\Lambda t} \right)^{leak} \right] \cdot C_{fb} \cdot k_{\rho} \cdot k_{sat} \cdot k_{geom} \cdot k_{att} \cdot k_{omog} \cdot k_{dec}$

				Islope V and	slope				I.
No.	quantity or group of quantities	estimated value	standard uncertainty	probability distribution	sensitivity coefficient	contribution to the standard uncertainty /A	Type	Remarks	
1	$(\Delta V/\Delta t)^{meas}_{slope}$ / V s ⁻¹	2.74E-03	2.7E-08	normal	3,07E-08	8,41E-16	A	Linear regression of series of experimental data	- T
2	$(\Delta V/\Delta t)^{meas}_{slope}$ / V s ⁻¹	2.74E-03	4.1E-06	rectangular	3,07E-08	1,26E-13	В	Characteristics of mcasuring instrument	T
m	$(\Delta V/\Delta t)^{leak}_{slope}$ / V s ⁻¹	1.61E-06	8.8E-09	normal	3,07E-08	2,71E-16	А	Lincar regression of series of experimental data	1
4	$(\Delta V/\Delta t)_{slope}^{leak}$ / V s ⁻¹	1.61E-06	2.4E-09	rectangular	3,07E-08	7,40E-17	B	Characteristics of measuring instrument	
S	C _{th} / F	2.99E-08	3.0E-12	normal	2,81E-03	8,40E-15	B	Calibration certificate issued by INRIM (IT)	-
9 122	k	1.0090	2.0E-04	normal	8,33E-11	1,68E-14	A	Standard deviation of the mean of series of experimental data	
7	k,	1.0090	3.5E-04	rectangular	8,33E-11	2,94E-14	B	Characteristics of measuring instrument	- 1
8	k _{sat}	1.0011	1.0E-03	rectangular	8,40E-11	8,40E-14	В	Previous measurements	-
6	keem	0666.0	5.0E-03	rectangular	8,41E-11	4,20E-13	В	Previous measurements and literature data	
10	katt	0666'0	1.0E-03	rectangular	8,41E-11	8,40E-14	В	Previous measurements and literature data	T
11	Komor	1.0080	3.0E-03	rectangular	8,34E-11	2,52E-13	В	Previous measurements	- 1
6	Somo)		5.21E-13		standard uncertainty	-
						0.62%	Overall	k=1	
						1.04E-12	uncertainty	expanded uncertainty	_
2 N 200						1.24%		k=2	
quanuty to be	Icorr / A		8.40	E-11		1.77E-13	Reduced	standard uncertainty	_
determined						0.21%	applied for	[k=1	_
						3.53E-13	the	expanded uncertainty	
						0.42%	comparison 2)	k=2	
1	in reference attenuation	1 conditions							
2)	accounting for common	n uncertainty co	mponents amo	ong the measure	ment with the	ENEA-INMRI standard and th	ne HS10 transl	fer chambers (capacity value of the feedback	
î	capacitor, beam inhom	ogeneity and ch	namber finite d	imensions).					

ENEA/2014/63706/METR

Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti

Pag. 18 of 25

Table 8 - Uncertainty budget for the calibration coefficients N_k and $N_{\rm H*}$ according to GUM (S-Cs; 1 mSv/h)

 $\mathbf{B} \quad NH* = \frac{\dot{H}^*(10)}{l_{corr} \cdot k_{dist}}$ and A) $N_k = \frac{\dot{K}_a}{I_{corr} \cdot k_{dist}}$ Model functions:

A)							
No.	quantity or group of quantities	estimated value	standard uncertainty	probability distribution	sensitivity coefficient	contribution to the standard uncertainty / A	Remarks
1	$K_a / mGy h^{-1}$	8.00E-01	1.1E-02	normal	3,72E+03	3,95E+01	previous measurements
2	Icorr / A	7.47E-11	1.6E-13	normal	3,98E+13	6,24E+00	Linear regression of series of experimental data
3	dist / cm	2.00E+02	1.0E-01	rectangular	2,97E+01	2,97E+00	
						4.01E+01	standard uncertainty
quantity to			707	E±02		1.35E-02	k=1
determined	Nk / OY C		16.7	CUT1		8.03E+01	expanded uncertainty
						2.70E-02	k=2
B)							
1	$H^* / mSv h^{-1}$	9.73E-01	1.3E-02	normal	3,72E+03	5,00E+01	previous measurements
2	Icorr / A	7.47E-11	1.6E-13	normal	4,85E+13	7,60E+00	Linear regression of series of experimental data
3	dist / cm	2.00E+02	1.0E-01	rectangular	3,62E+01	3,62E+00	
						5.07E+01	standard uncertainty
quantity to	N_/ Cv. C ⁻¹		1092	E±03		1.40E-02	k=1
determined) AC / HAT		20.0	L-100		1.01E+02	expanded uncertainty

ENEA/2014/63706/METR

k=2

2.80E-02

E

Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti

Pag. 19 of 25

Table 9- Uncertainty budget for the calibration coefficients N_k and N_{H^*} according to GUM (S-Cs; 10 $\mu Sv/h$).

$\mathbf{B} NH* = \frac{\dot{H}^*(10)}{I_{corr} \cdot k_{dist}}$
and
A) $N_k = \frac{\dot{K}_a}{I_{corr} \cdot k_{dist}}$
Model functions:

					12	24				I				
A)	No.	1	2	3		quantity to	determined		B)	1	2	3		quantity to
	quantity or group of quantitics	$K_a / \mu Gy h^{-1}$	I _{corr} / A	dist / cm		N / C. U				$H^{*}/\mu Sv h^{-1}$	I _{corr} / A	dist / cm		
	estimated value	8.93E+00	8.22E-13	1.20E+02		2.98E				1.09E+01	8.22E-13	1.20E+02	-	
	standard uncertainty	1.6E-01	2.1E-15	1.0E-01						2.98				1.9E-01
	probability distribution	normal	normal	rectangular		6±03				normal	normal	rectangular		
	sensitivity coefficient	3,34E+02	3,62E+15	4,97E+01						3,34E+02	4,42E+15	6,05E+01		
	contribution to the standard uncertainty / A	5,19E+01	7,45E+00	4,97E+00	5.26E+01	1.77E-02	1.05E+02	3.53E-02		6,50E+01	9,08E+00	6,05E+00	6.59E+01	1.82E-02
	Remarks	previous measurements	Linear regression of series of experimental data		standard uncertainty	k=1	expanded uncertainty	k=2		previous measurements	Linear regression of series of experimental data		standard uncertainty	k=1

ENEA/2014/63706/METR

2014/11/14

expanded uncertainty

1.32E+02 3.63E-02

3.63E+03

 $N_{\rm H}$ / Sv C^{-1}

determined be

k=2

Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti

Pag.20 of 25

Table 10 - Uncertainty budget for the calibration coefficients Nk and NH* according to GUM (S-Cs; 0.5 µSv/h).

$\mathbf{B} N_{H*} = \frac{\dot{H}^*(10)}{I_{corr} \cdot k_{dist}}$
and
$\mathbf{A} N_k = \frac{\dot{K}_a}{I_{corr} \cdot k_{dist}}$
functions:

A) 33 2 1 No.	quantity to be determined B I H [*] /
	N _k / H*/
quantity or group of quantities K _a / μGy h ⁻¹ I _{corr} / A dist / cm	Gy C ⁻¹ µSv h ⁻¹
estimated value 3.83E-01 3.51E-14 2.80E+02	4.66E-01
standard uncertainty 1.3E-02 3.1E-16 1.0E-01	3.03I 1.6E-02
probability distribution normal normal rectangular	3+03 normal
sensitivity coefficient 7,91E+03 8,63E+16 2,16E+01	7,92E+03
contribution to the standard uncertainty / A 1,00E+02 2,67E+01 2,16E+00	1.04E+02 3.43E-02 2.08E+02 6.85E-02 1,24E+02
Remarks previous measurements Lincar regression of scries of experimental data	k=1 k=1 expanded uncertainty k=2 Linear regression of series of experimental data

2014/11/14

Linear regression of series of experimental data Linear regression of series of experimental data

standard uncertainty k=1 expanded uncertainty

2.56E+02

6.93E-02

3.46E-02

3.69E+03

 $N_{\rm H}$ / Sv C⁻¹

quantity to be determined

2,64E+00 1.28E+02

3,25E+01

1,05E+17 2,64E+01

rectangular

3.1E-16 1.0E-01

3.51E-14 2.80E+02

0 0

I_{corr} / A dist / cm k=2

Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti

Pag.21 of 25

Table 11 - Uncertainty budget for the calibration coefficients Nk and NH* according to GUM (N-60 1 mSv/h).

$N_{H*} = \frac{\dot{H}^{*}(10)}{I_{corr} \cdot k_{dist}}$
B)
and
A) $N_k = \frac{\dot{K}_a}{I corr \cdot k dist}$
Model functions:

1				1	-	1	1	H	If	
	Remarks	previous measurements	Linear regression of scrics of experimental data		standard uncertainty	k=1	expanded uncertainty	k=2		Linear regression of scries of experimental data
	contribution to the standard uncertainty / A	1.25E+01	4.43E+00	1.33E+00	1.33E+01	0.63%	2.66E+01	1.26%		1.98E+01
	sensitivity coefficient	3.31E+03	2.51E+13	1.33E+01						5.26E+03
	probability distribution	normal	normal	rectangular		2012	COL			normal
	standard uncertainty	3.77E-03	1.76E-13	1.00E-01			7111.7			3.77E-03
	estimated value	6.39E-01	8.40E-11	3.17E+02						6.39E-01
	quantity or group of quantities	$K_a / mGy h^{-1}$	I _{con} / A	dist / cm		1-00- N				K. / mGv h ⁻¹
(V)	No.		2	3		quantity to	determined		B)	
				1	ı∠o					

7.04E+01	2.10%	1.41E+02	4.19%	
	2 26E±03	CO. TOC. C		
	ر ۲۰۰۰ ۲۰۰۱ ا	2		
5	quantity to	determined		

expanded uncertainty

k=2

standard uncertainty

k=1

Linear regression of series of experimental data Linear regression of series of experimental data Linear regression of series of experimental data

7.06E+00 2.12E+00 6.72E+01

4.00E+13 2.12E+01

normal

1.76E-13 1.00E-01

 I_{corr} / A dist / cm h/Sv Gy⁻¹

2 3 4

2.11E+03

3.18E-02

1.59

rectangular normal

3.17E+02 8.40E-11

International Atomic Energy Agency (IAEA)

Uncertainties

Uncertainty budget of calibration in terms of H*(10) in Cs-137 beam				
Determination of ambient dose equivalent rate by HS01 #102	Туре А	Туре В		
	Uncertainty	(%)		
Calibration from PSDL in terms of H*(10)		0.50		
Long term stability of the secondary standard		0.06		
Temperature measurements		0.03		
Pressure measurements		0.01		
Current measurements including range and time base	0.05	0.05		
corrections				
Chamber positioning		0.03		
Repeatability (QA measurements of output)	0.1			
Uncertainty in step 1	0.11	0.51		
Transfer chamber	Uncertainty (%)			
Beam non-uniformity difference (3.0- 4.5) m SDD.		0.20		
Temperature measurements		0.03		
Pressure measurements		0.01		
Chamber positioning		0.03		
Current measurements including range and time base	0.03	0.05		
corrections				
Uncertainty in step 2	0.00	0.21		
Uncertainty (steps 1 + 2)	0.11	0.55		
Combined relative uncertainty	0.56	I		
Expanded relative uncertainty		1.12	%	

Uncertainty budget of calibration in terms of H*(10) in Cs-13	37 beam		
Determination of ambient dose equivalent rate by LS01 #115	Туре А	Туре В	
	Uncertainty (%)		
Calibration from PSDL in terms of K _{air}		0.20	
Long term stability of the secondary standard		0.05	
Temperature measurements		0.03	
Pressure measurements		0.01	
Current measurements including range and time base corrections	0.4	0.05	
Chamber positioning		0.03	
Repeatability (QA measurements of output)	0.1		
H*(10)/Kair conversion coefficient (ISO 4037 Part 3)		2.00	
Uncertainty in step 1	0.41	2.01	
Transfer chamber	Uncertainty (%)	/	
Beam non-uniformity difference (3.0- 4.5) m SDD.		0.20	
Temperature measurements		0.03	
Pressure measurements		0.01	
Chamber positioning		0.03	
Current measurements including range and time base corrections	0.4	0.05	
Uncertainty in step 2	0.40	0.21	
Uncertainty (steps 1 + 2)	0.57	2.02	
Combined relative uncertainty	2 10		
Expanded relative uncertainty		4.21	%

Uncertainty budget of dosimeter irradiation free in air in ter in ISO N series X-ray beams from 40 kV to 300 kV	rms of H*(10)		
Determination of ambient dose equivalent rate by HS01 #102	Туре А	Туре В	
	Uncertainty (%)		
Calibration from PSDL in terms of H*(10)		1.50	
Long term stability of the secondary standard		0.60	
Beam non uniformity difference PTB-DOL		0.20	
Pressure measurements		0.01	
Temperature measurements		0.03	
Ionization current	0.10	0.05	
Uncertainty in step 1	0.10	1.63	_
Transfer chamber	Uncertainty (%)		
Beam non uniformity difference (4.0- 4.5) m SDD.		0.20	
Temperature measurements		0.03	
Pressure measurements		0.01	
Chamber positioning		0.03	
Current measurements including range and time base corrections	0.03	0.05	
Uncertainty in step 2	0.03	0.21	
Uncertainty (steps 1 + 2)	0.10	1.64	
Combined relative uncertainty	1.65		
Expanded relative uncertainty		3.3	%

Uncertainty budget of dosimeter irradiation free in air in ter in ISO N series X-ray beams from 40 kV to 300 kV	ms of H*(10)		
Determination of ambient dose equivalent rate by LS01 #114	Туре А	Type B	
	Uncertainty	ncertainty (%)	
Calibration from PSDL in terms of K _{air}		0.40	
Long term stability of the secondary standard		0.70	
Beam non uniformity difference PTB-DOL		0.20	
Temperature measurements		0.03	
Pressure measurements		0.01	
Current measurements including range and time base corrections	0.40	0.05	
Chamber positioning		0.03	
Repeatability (QA measurements of output)	0.10		
H*(10)/Kair conversion coefficient (ISO 4037 Part 3)		2.00	
Uncertainty in step 1	0.41	2.17	
Transfer chamber	Uncertainty (%)		
Beam non uniformity difference (4.0- 4.5) m SDD.		0.20	
Temperature measurements		0.03	
Pressure measurements		0.01	
Chamber positioning		0.03	
Current measurements including range and time base	0.40	0.05	
corrections			
Uncertainty in step 2	0.40	0.21	
Uncertainty (steps 1 + 2)	0.57	2.18	+
Combined relative uncertainty	2.25		
Expanded relative uncertainty		4.50	%

Uncertainty budget of calibration in terms of H*(10) in Cs-137 beam					
with two lead attenuators	with two lead attenuators				
Determination of ambient dose equivalent rate by LS10 #130					
calibrated in terms of air kerma	Type A	В			
	Uncertainty	(%)	r		
Calibration from PSDL in terms of K _{air}		0.23			
Long term stability of the secondary standard		0.06			
Beam nonuniformity difference BIPM-DOL		0.20			
Temperature measurements		0.03			
Pressure measurements		0.01			
Current measurements including range and time base corrections	0.4	0.05			
Chamber positioning		0.03			
Repeatability (QA measurements of output)	0.1				
H*(10)/Kair conversion coefficient (ISO 4037 Part 3)		2.00			
Uncertainty in step 1	0.41	2.03			
	Uncertainty				
Transfer chamber	(%)				
Temperature measurements		0.03			
Pressure measurements		0.01			
Chamber positioning		0.03			
Current measurements including range and time base corrections	0.4	0.05			
Uncertainty in step 2	0.40	0.07			
Uncertainty (steps 1 + 2)	0.57	2.03			
Combined relative uncertainty 2.11					
Expanded relative uncertainty		4.21	%		