Update of the BIPM comparison BIPM.RI(II)-K1.Ra-223 of activity measurements of the radionuclide ²²³Ra to include the 2021 result of the POLATOM (Poland)

Romain Coulon¹, Carine Michotte¹, Sammy Courte¹, Manuel Nonis¹, Tomasz Ziemek², Justyna Marganiec-Gałązka², Edyta Lech², Pawel Saganowski², Zbygniew Tymiński², Anna Listkowska²

 1 Bureau International des Poids et Mesures, Pavillon de Breteuil, F-92312 Sèvres Cedex, France.

² National Centre for Nuclear Research Radioisotope Centre POLATOM (POLATOM), 05-400 Otwock, Poland.

E-mail: romain.coulon@bipm.org, cmichotte@bipm.org

Abstract Since 2014, 4 laboratories have submitted 4 samples of ²²³Ra to the International Reference System (SIR) for activity comparison at the Bureau International des Poids et Mesures (BIPM), with comparison identifier BIPM.RI(II)-K1.Ra-223. Recently, the POLATOM (Poland) participated in the comparison and the key comparison reference value (KCRV) has been updated. The degrees of equivalence between each equivalent activity measured in the SIR and the updated KCRV have been calculated and the results are given in the form of a table. A graphical presentation is also given.

1. Introduction

The SIR for activity measurements of γ -ray-emitting radionuclides was established in 1976. Each national metrology institute (NMI) may request a standard ampoule from the BIPM that is then filled with 3.6 g of the radioactive solution. For radioactive gases, a different standard ampoule is used. Each NMI completes a submission form that details the standardization method used to determine the absolute activity of the radionuclide and the full uncertainty budget for the evaluation. The ampoules are sent to the BIPM where they are compared with standard sources of ²²⁶Ra using pressurized ionization chambers. Details of the SIR method, experimental set-up and the determination of the equivalent activity $A_{\rm e}$, are all given in [1]. From its inception until 31 December 2021, the SIR has been used to measure 1033 ampoules to give 788 independent results for 72 different radionuclides. The SIR makes it possible for national laboratories to check the reliability of their activity measurements at any time. This is achieved by the determination of the equivalent activity of the radionuclide and by comparison of the result with the key comparison reference value determined from the results of primary standardizations. These comparisons are described as BIPM continuous comparisons and the results form the basis of the BIPM key comparison database (KCDB) of the Comité International des Poids et Mesures Mutual Recognition Arrangement (CIPM MRA) [2]. The comparison described in this report is known as the BIPM.RI(II)-K1.Ra-223 key comparison. The results of earlier participations in this key comparison were published previously [3].

2. Participants

Laboratory details are given in Table 1, with the earlier submissions being taken from [3]. The dates of measurement in the SIR given in Table 1 are used in the KCDB and all references in this report.

NMI or labora- tory	Previous acronyms or other insti- tutes	Full name	Country	RMO	Date of SIR mea- surement yyyy-mm-dd
LNE- LNHB	LMRI, LPRI, BNM- LNHB	Laboratoire National de métrologie et d'Essais -Laboratoire National Henri Becquerel	France	EURAMET	2018-03-15
NPL	-	National Physical Labora- tory	United King- dom	EURAMET	2014-06-04
POLATOM	IBJ, RC	National Centre for Nu- clear Research Radioiso- tope Centre POLATOM	Poland	EURAMET	2021-09-10
PTB	-	Physikalisch-Technische Bundesanstalt	Germany	EURAMET	2014-07-08

Table 1: Details of the participants in the BIPM.RI(II)-K1.Ra-223.

3. NMI standardization methods

Each NMI that submits ampoules to the SIR has measured the activity either by a primary standardization method or by using a secondary method, for example a calibrated ionization chamber. In the latter case, the traceability of the calibration needs to be clearly identified to ensure that appropriate correlations are taken into account.

A brief description of the standardization methods used by the laboratories, the activities submitted, the relative standard uncertainties and the half-life used by the

Final report, December 2022

participants are given in Table 2. The uncertainty budget for the new submission is given in Appendix D attached to this report; previous uncertainty budgets are given in the earlier K1 report [3]. The list of acronyms used to summarize the methods is given in Appendix E.

The half-life used by the BIPM is 11.43(3) days as published in BIPM Monographie 5 vol. 6 [4].

NMI or labora- tory	Method used and the acronym	$\begin{array}{c} {\bf Activity} \\ A_i/{\bf kBq} \end{array}$	Relativ standar uncerta	rd	Reference date	Half-life /d
			/10 ⁻² A	В	yyyy-mm- dd	
LNE- LNHB	TDCR (4P-LS-BP-00-00- TD)	1239.1	0.01	0.19	2018-03-15 12:00 UT	
NPL	$4\pi LS-\gamma$ coincidence (4P-LS- MX-GH-GR-CO)	1193.2	0.1	0.26	2014-05-08 12:00 UT	
POLATOM	TDCR (4P-LS-MX-00-00- TD)	919.9	0.06	0.364	2021-09-10 12:00 UT	11.43(3) [4]
РТВ	CIEMAT/NIST (4P-LS- MX-00-00-CN) TDCR (4P-LS-MX-00-00- TD [5])	4149.0 ^a	0.04	0.22 ^b	2014-07-01 00:00 UT	11.43(3)

Table 2:	Standardization	methods of [*]	the participan	ts for ²²³ Ra.
----------	-----------------	-------------------------	----------------	---------------------------

^a The final result is the weighted mean of the results of the two methods.

^b The relative combined uncertainty (0.23 %) of the TDCR result is adopted for the final result. This is larger than the internal and external relative uncertainties of the weighted mean

Details regarding the solutions submitted are shown in Table 3, including any impurities, when present, as identified by the laboratories. When given, the standard uncertainties on the evaluations are shown.

Table 3:	Details	of each	solution	of ²²³ Ra	submitted.
----------	---------	---------	----------	----------------------	------------

NMI or	Chemical	Solvent conc.	Carrier	Density	Relative activity of
laboratory	composi-		conc.		any impurity ^c
	tion				
/ SIR year		$/(\mathrm{mol}\mathrm{dm}^{-3})$	$/(\mu g g^{-1})$	$/({\rm gcm^{-3}})$	
LNE-LNHB	Barium in	HCl: 1 NaCl:	Ba: 22	1.016	None detected
2018	HCl with	0.054			
	NaCl				
NPL 2014	²²³ Ra in HCl ^a	1	-	1.02	None detected
POLATOM	$RaCl_2$ in	HCl: 0.005	$RaCl_2$	1	None detected ^b
2021	HCl, NaCl	NaCl: 0.11			
	and sodium	sodium cit-			
	$citrate^d$	rate:0.03			

NMI or	Chemical	Solvent conc.	Carrier	Density	Relative activity of
laboratory	composi-		conc.		any impurity ^c
	tion				
/ SIR year		$/(\mathrm{mol}\mathrm{dm}^{-3})$	$/(\mu \mathrm{g}\mathrm{g}^{-1})$	$/({ m gcm^{-3}})$	
PTB 2014	223 RaCl ₂ ,	unknown but	unknown but	approx.	$^{227}\text{Ac:} < 0.03$ %
	NaCl,	low concentra-	low concen-	1.000	
	sodium	tion	tration		
	citrate di-				
	hydrate,				
	$\operatorname{calcium}$				
	chloride di-				
	hydrate in				
	$\mathrm{HCl}^{\mathrm{e}}$				

... Continuation of Table 3.

^{a 223}Ra in equilibrium with progeny

^b Radioactive solution was measured on gamma spectrometer using HPGe detector. No impurities were detected in the solution.

^c The ratio of the activity of the impurity to the activity of ²²³Ra at the reference date

^d Xofigo®(radium Ra-223 dichloride) injection was used. Chemical composition was taken from drug prescribing information.

^e Chemical composition for the ampoule submitted to the SIR was taken from manufacturer's information. For absolute activity determination a dilution step was required using a carrier solution with a carrier concentration of 0.5% BaCl₂·2H₂O in 1 mol/L HCl(aq.). The dilution step was confirmed by liquid scintillation measurements when the activity was lower after about 2-3 weeks.

4. Results

All the submissions to the SIR since its inception in 1976 are maintained in a dedicated database [6]. The latest submission has added 1 ampoule for the activity measurements for ²²³Ra giving rise to 4 ampoules in total.

The SIR equivalent activity, A_{ei} , for each ampoule received from each NMI, i, including both previous and new results, is given in Table 4. The relative standard uncertainties arising from the measurements in the SIR are also shown. This uncertainty is additional to that declared by the NMI $(u(A_i))$ for the activity measurement shown in Table 2. Although submitted activities are compared with a given source of ²²⁶Ra, all the SIR results are normalized to the radium source number 5 [1]. Table 4 also shows the comparison results selected for the KCRV as explained in section 4.1.

NMI or labo-	m_i	A_i	226 Ra	$A_{\mathbf{e}i}$	Relative	u _{ci}	$A_{\mathbf{e}i}$ for
ratory			source		uncert.		KCRV
					from		
					SIR		
/ SIR year	$/\mathbf{g}$	/kBq		/kBq	/10 ⁻⁴	/kBq	/kBq
LNE-LNHB	3.674 7	1239.1	2	54400	11	120	$54\ 400(120)$
2018							
NPL 2014	3.623 95	1193.2	1	54740	46 ^a	300	54 740(300)
POLATOM	3.637	919.9	2	55055	10	210	$55\ 060(210)$
2021	40(30)						
PTB 2014	3.629 9	4149.0	2	54590	16 ^a	150	54 590(150)

Table 4: Results of SIR measurement of ²²³Ra.

^a uncertainty dominated by the contribution from the decay correction

4.1. The key comparison reference value

In May 2013, the CCRI(II) decided to calculate the key comparison reference value (KCRV) by using the power-moderated weighted mean [7] rather than an unweighted mean, as had been the policy. This type of weighted mean is similar to a Mandel-Paule mean in that the NMIs' uncertainties may be increased until the reduced chi-squared value is one. In addition, it allows for a power α smaller than two in the weighting factor. As proposed in [7], α is taken as 2 - 3/N where N is the number of results selected for the KCRV. Therefore, all SIR key comparison results can be selected for the KCRV with the following provisions:

- (a) only results for solutions standardized by primary techniques are accepted, with the exception of radioactive gas standards (for which results from transfer instrument measurements that are directly traceable to a primary measurement in the laboratory may be included);
- (b) each NMI or other laboratory may only use one result (normally the most recent result or the mean if more than one ampoule is submitted);
- (c) results more than 20 years old are included in the calculation of the KCRV but are not included in data shown in the KCDB or in the plots in this report, as they have expired;
- (d) possible outliers can be identified on a mathematical basis and excluded from the KCRV using the normalized error test with a test value of 2.5 and using the modified uncertainties;
- (e) results can also be excluded for technical reasons; and
- (f) the CCRI(II) is always the final arbiter regarding excluding any data from the calculation of the KCRV.

Final report, December 2022

Although the KCRV may be modified when other NMIs participate, on the advice of the Key Comparison Working Group of the CCRI(II), such modifications are made only by the CCRI(II) during one of its biennial meetings, or by consensus through elec-

Consequently, using the recent result produces an updated KCRV for ²²³Ra in 2021 of **54 670(140) kBq** with the power $\alpha = 1.25$ that has been calculated using the previously published results, selected as shown in Table 4, for the NPL (2014), PTB (2014), LNE-LNHB (2018), and the present POLATOM (2021) result. This can be compared with the previous KCRV value of 54 530(96) published in 2021 [3].

tronic means (e.g., email) as discussed at the CCRI(II) meeting in 2013.

4.2. Degrees of equivalence

Every participant in a comparison is entitled to have one result included in the KCDB as long as the NMI is a signatory or designated institute listed in the CIPM MRA and the result is valid (i.e., not older than 20 years). No recent submission has been identified as a pilot study so the most recent result of each NMI is normally eligible for inclusion on the KCDB platform of the CIPM MRA [2]. An NMI may withdraw its result only if all other participants agree.

The degree of equivalence of a given measurement standard is the degree to which this standard is consistent with the KCRV [2]. The degree of equivalence is expressed quantitatively in terms of the deviation from the key comparison reference value and the expanded uncertainty of this deviation (k = 2). The degree of equivalence between any pair of national measurement standards is expressed in terms of their difference and the expanded uncertainty of this difference and is independent of the choice of key comparison reference value.

4.2.1. Comparison of a given NMI result with the KCRV

The degree of equivalence of the result of a particular NMI, i, with the key comparison reference value is expressed as the difference D_i between the values

$$D_i = A_{\rm ei} - \rm KCRV \tag{1}$$

and the expanded uncertainty (k = 2) of this difference, U_i , known as the equivalence uncertainty; hence

$$U_i = 2u(D_i) \tag{2}$$

When the result of the NMI i is included in the KCRV with a weight w_i , then

$$u^{2}(D_{i}) = (1 - 2w_{i})u_{i}^{2} + u^{2}(\text{KCRV})$$
(3)

However, when the result of the NMI i is not included in the KCRV, then

$$u^2(D_i) = u_i^2 + u^2(\text{KCRV}) \tag{4}$$

4.2.2. Comparison between pairs of NMI results

The degree of equivalence between the results of any pair of NMIs, i and j, is expressed as the difference D_{ij} in the values

$$D_{ij} = D_i - D_j = A_{ei} - A_{ej} \tag{5}$$

and the expanded uncertainty (k = 2) of this difference, $U_{ij} = 2u(D_{ij})$, where

$$u^{2}(D_{ij}) = u_{i}^{2} + u_{j}^{2} - 2u(A_{ei}, A_{ej})$$
(6)

where any obvious correlations between the NMIs (such as a traceable calibration, or correlations normally coming from the SIR or from the linking factor in the case of linked comparison) are subtracted using the covariance $u(A_{ei}, A_{ej})$ (see [8] for more detail). However, the CCRI decided in 2011 that these pair-wise degrees of equivalence no longer need to be published as long as the methodology is explained.

Table B1 shows the matrix of all the degrees of equivalence as they will appear in the KCDB. It should be noted that for consistency within the KCDB, a simplified level of nomenclature is used with A_{ei} replaced by x_i . The introductory text is that agreed for the comparison. The graph of the results in Table 5, corresponding to the degrees of equivalence with respect to the KCRV (identified as x_R in the KCDB), is shown in Figure C1. This graphical representation indicates in part the degree of equivalence between the NMIs but obviously does not take into account the correlations between the different NMIs. It should be noted that the final data in this paper, while correct at the time of publication, will become out-of-date as NMIs make new comparisons. The formal results under the CIPM MRA [2] are those available in the KCDB.

5. Conclusion

The BIPM continuous key comparison for ²²³Ra, BIPM.RI(II)-K1.Ra-223, currently comprises 4 results. The KCRV has been recalculated to include the result from the POLATOM (Poland). The results have been analyzed with respect to the updated KCRV, providing degrees of equivalence for 4 national metrology institutes. The degrees of equivalence have been approved by the CCRI(II) and are published in the BIPM key comparison database. Other results may be added when other NMIs contribute ²²³Ra activity measurements to this comparison or take part in other linked comparisons.

6. References

- Ratel, G. The Système International de Référence and its application in key comparisons, *Metrologia*, 2007, 44(4), S7-S16.
- [2] CIPM MRA: Mutual recognition of national measurement standards and of calibration and measurement certificates issued by national metrology institutes, International Committee for Weights and Measures, 1999, pp. 45, Technical Supplement revised in October 2003 (pages 38-41).

- [3] Michotte C., Courte S., Nonis M., Coulon R., Judge S., Ratel G., Fréchou C., Cassette P., Keightley J., Kossert K., Nähle O., Final report of the new BIPM comparison BIPM.RI(II)-K1.Ra-223 of activity measurements of the radionuclide ²²³Ra including the 2014 result of the NPL (United Kingdom), the 2014 result of the PTB (Germany) and the 2018 result of the LNE-LNHB (France), *Metrologia*, 2021, **58**, Tech. Suppl., 06007.
- [4] Bé M.-M., Chisté V., Dulieu C., Mougeot X., Chechev V.P., Kuzmenko N.K., Kondev F.G., Luca A., Galán M., Nichols A.L., Arinc A., Pearce A., Huang X., Wang B., *Table of radionuclides*, Monographie BIPM-5, 2011, Vol 6.
- [5] Kossert K., Bokeloh K., Dersch R., Nähle O.J., Activity determination of ²²⁷Ac and ²²³Ra by means of liquid scintillation counting and determination of nuclear decay data, *Applied Radiation and Isotope*, 2015, **95**, 143-152.
- [6] Coulon R., Courte S., Judge S., Michotte C. and Nonis M., Digitalization of the reporting of key comparisons for radionuclide metrology, *Measurement Science and Technology*, 2021, 33 024003.
- [7] Pommé S. and Keightley J., Determination of a reference value and its uncertainty through a power-moderated mean, *Metrologia*, 2015, 52(3), S200.
- [8] Michotte C. and Ratel G., Correlations taken into account in the KCDB, CCRI(II) working document, 2003, CCRI(II)/03-29.

Key comparison BIPM.RI(II)-K1.Ra-223

MEASURAND: Equivalent activity of ²²³Ra

Key comparison reference value: the SIR reference value $x_{\rm R}$ for this radionuclide is 54.670 kBq, with a standard uncertainty, $u_{\rm R}$ equal to 140 kBq (see Section 4.1 of the Final Report). The value x_i is taken as the equivalent activity for a laboratory *i*.

and U_i , its expanded uncertainty (k = 2), both expressed in MBq, and $U_i = 2((1 - 2w_i)u_i^2 + u_R^2)^{1/2}$, where w_i is the weight of The degree of equivalence of each laboratory with respect to the reference value is given by a pair of terms: $D_i = (x_i - x_R)$ laboratory i contributing to the calculation of $x_{\rm R}$.

Appendix B. Table of degrees of equivalence for BIPM.RI(II)-K1.Ra-223

Table B1: The table of degrees of equivalence for BIPM.RI(II)-K1.Ra-223

NMI i	D_i / \mathbf{MBq}	U_i / \mathbf{MBq}
NPL	0.07	0.56
PTB	-0.08	0.35
LNE-LNHB	-0.27	0.32
POLATOM	0.39	0.42

Appendix D. Uncertainty budgets for the activity of $^{223}\mathrm{Ra}$ submitted to the SIR

SIR/SIRTI reporting form - radioactive solution page 3a BIPM.RI(II)-K1 Measurement method TDCR method ACRONYM 4P-LS-MX-00-00-TD Comments: Activity concentration at reference date / kBq g⁻¹ 252.9000 Relative standard uncertainty / 10⁻² 0.37 Date of measurement at the NMI (YYYY-MM-DD) 2021-09-10 The TDCR system For relative methods: Primary methods or standards used for calibration Date of calibration Date of primary measurement Uncertainty budget Relative uncertainty / Evaluation type (A or B) 10⁻² Uncertainty component Comment Counting statisctics and background in % Counting statistics 0.060 A Background Weighing 0.033 B in % Dilution Dead time 0.001 B in % in % Resolving time 0.001 B Pile-up, afterpulse Adsorption 0.040 B in % in % Impurities negligible В Decay correction negligible Decay data Extra-/Inter-polation of efficiency in % curve 0.200 B Quenching, kB value Trace Reproducibility Method 0.300 B in % **Combined standard** uncertainty 0.369

The POLATOM has submitted a detailed uncertainty budget as follows:

Appendix E. Acronyms used to identify different measurement methods

Each acronym has six components, geometry-detector (1)-radiation (1)-detector (2)-radiation (2)-mode. When a component is unknown, ?? is used and when it is not applicable 00 is used.

Geometry	acronym	Detector	acronym
4 π	4P	proportional counter	PC
defined solid angle	SA	press. Prop. Counter	PP
2 π	2P	liquid scintillation counting	LS
undefined solid angle	UA	NaI(Tl)	NA
		Ge(HP)	GH
		Ge(Li)	GL
		Si(Li)	SL
		CsI(Tl)	CS
		ionization chamber	IC
		grid ionization chamber	GC
		Cerenkov detector	CD
		calorimeter	CA
		solid plastic scintillator	SP
		PIPS detector	PS
		CeBr3	СВ

Radiation	acronym	Mode	acronym
positron	РО	efficiency tracing	ET
beta particle	BP	internal gas counting	IG
Auger electron	AE	CIEMAT/NIST	CN
conversion electron	CE	sum counting	SC
mixed electrons	ME	coincidence	СО
bremsstrahlung	BS	anti-coincidence	AC
gamma rays	GR	coincidence counting with	СТ
		efficiency tracing	
x-rays	XR	anti-coincidence counting	AT
		with efficiency tracing	
photons $(x + \gamma)$	PH	triple-to-double coincidence	TD
		ratio counting	
photons + electrons	PE	selective sampling	SS
alpha particle	AP	high efficiency	HE
mixture of various radi-	MX	digital coincidence counting	DC
ation			

Examples of methods	acronym
$4\pi(\text{PC})\beta$ - γ coincidence counting	4P-PC-BP-NA-GR-CO
$4\pi(\text{PPC})\beta$ - γ coincidence counting	4P-PP-MX-NA-GR-CT
eff. trac	
defined solid angle α -particle	SA-PS-AP-00-00-00
counting with a PIPS detector	
4π (PPC)AX- γ (GeHP)-	4P-PP-MX-GH-GR-AC
anticoincidence counting	
$4\pi \text{CsI-}\beta, \text{AX}, \gamma \text{ counting}$	4P-CS-MX-00-00-HE
calibrated IC	4P-IC-GR-00-00-00
internal gas counting	4P-PC-BP-00-00-IG