Update of the BIPM comparison BIPM.RI(II)-K1.Co-60 of activity measurements of the radionuclide ⁶⁰Co to include the 2017 result of the PTB (Germany) and the 2018 result of the TAEK (Turkey)

C.Michotte¹, S.Courte¹, N.Nonis¹, R. Coulon¹, S. Judge¹, K. Kossert², J. Marganiec-Gałązka², O. Nähle², E. Yeltepe³, A. Dirican³

¹ Bureau International des Poids et Mesures, Pavillon de Breteuil, F-92312 Sèvres Cedex, France.

² Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, D-38116 Braunschweig, Germany.

³ Turkish Atomic Energy Authority (TAEK), Lodumlu - Ankara, Turkey.

E-mail: cmichotte@bipm.org

Abstract Since 1976, 28 laboratories have submitted 72 samples of 60 Co to the International Reference System (SIR) for activity comparison at the Bureau International des Poids et Mesures (BIPM), with comparison identifier BIPM.RI(II)-K1.Co-60. Recently, the PTB (Germany) and the TAEK (Turkey) participated in the comparison and the key comparison reference value (KCRV) has been updated to include the PTB result. The degrees of equivalence between each equivalent activity measured in the SIR and the updated KCRV have been calculated and the results are given in the form of a table. A graphical presentation is also given.

1. Introduction

The SIR for activity measurements of γ -ray-emitting radionuclides was established in 1976. Each national metrology institute (NMI) may request a standard ampoule from the BIPM that is then filled with 3.6 g of the radioactive solution. For radioactive gases, a different standard ampoule is used. Each NMI completes a submission form that details the standardization method used to determine the absolute activity of the radionuclide and the full uncertainty budget for the evaluation. The ampoules are sent to the BIPM where they are compared with standard sources of ²²⁶Ra using pressurized ionization chambers. Details of the SIR method, experimental set-up and the determination of the equivalent activity $A_{\rm e}$, are all given in [1].

Final report, Nov 2020

From its inception until 31 December 2019, the SIR has been used to measure 1016 ampoules to give 771 independent results for 72 different radionuclides. The SIR makes it possible for national laboratories to check the reliability of their activity measurements at any time. This is achieved by the determination of the equivalent activity of the radionuclide and by comparison of the result with the key comparison reference value determined from the results of primary standardizations. These comparisons are described as BIPM ongoing comparisons and the results form the basis of the BIPM key comparison database (KCDB) of the Comité International des Poids et Mesures Mutual Recognition Arrangement (CIPM MRA) [2]. The comparison described in this report is known as the BIPM.RI(II)-K1.Co-60 key comparison. The results of earlier participations in this key comparison were published previously [3–8].

2. Participants

Laboratory details are given in Table 1, with the earlier submissions being taken from [3-8]. The dates of measurement in the SIR given in Table 1 are used in the KCDB and all references in this report. The AECL (Atomic Energy of Canada Ltd) is not part of the NMI in Canada but was an invited participant in various SIR comparisons, as in the early years, J.G.V. Taylor of the AECL was a personal member of the predecessor to the CCRI(II).

NMI or labora- tory	Previous acronyms	Full name	Country	RMO	Date of SIR mea- surement yyyy-mm-dd
AECL ^a	-	Atomic Energy of Canada Ltd	Canada	SIM	1980-04-11
					1993-12-20
ANSTO	AAEC	Australian Nuclear Science and Technology Organisa- tion	Australia	APMP	1992-05-13
ASMW	-	Amt für Standardisierung,	former East	-	1976-09-02
		Meßwesen und Warenprü-	Germany		
		fung	5		
BARC	-	Bhabha Atomic Research Centre	India	APMP	1981-09-03
					1994-00-20
					2001-01-10
					2012-01-09
BEV	IRK	Bundesamt fur Eich- und Vermessungswesen	Austria	EURAMET	1998-10-14
					2007-09-27
BIPM	-	Bureau International des			1976-07-22
		Poids et Mesures			
BKFH	OMH, MKEH	Government Office of the Capital City Budapest	Hungary	EURAMET	1977-03-11

Table 1: Details of the participants in the BIPM.RI(II)-K1.Co-60.

NMI or labora- tory	Previous acronyms	Full name	Country	RMO	Date of SIR mea- surement yyyy-mm-dd
					1979-12-13
			~ .		1999-06-11
CIEMAT	-	Centro de Investigaciones Energéticas, Medioambi- entales y Tecnologicas	Spain	EURAMET	1999-11-30
CMI-IIR	UVVVR	Czech Metrological Insti- tute - Inspectorate for Ion- izing Radiation	Czech Re- public	EURAMET	1977-03-25
CNEA			A	CIM	1978-04-18
UNEA	-	comision Nacional de En- ergia Atomica	Argentina		2003 01 17
					2003-01-17 2011-10-24
ENEA- INMRI	-	Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile - Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti	Italy	EURAMET	1991-01-22
IAEA	-	International Atomic En- ergy Agency			1978-04-03
IFIN-HH	-	Institutul National de Cercetare - Dezvoltare in Fizica si Inginerie Nucleara- "Horia Hu- lubei"	Romania	EURAMET	2007-05-10
IRA-	IEB	Institut de Badiophysique	Switzerland	EUBAMET	1979-05-17
METAS		Appliquée - Institut fédéral de métrologie	5 witheritand		2000-12-06
JRC	IRMM, CBNM	EC-JRC Institute for Ref- erence Materials and Mea- surements	European Union	EURAMET	2005-01-27
KRISS	KSRI	Korea Research Institute of Standards and Science	Republic of Korea	APMP	1995-01-18
LNE- LNHB	LMRI, LPRI	Laboratoire National de métrologie et d'Essais -Laboratoire National Henri Becquerel	France	EURAMET	1978-07-17 1986-12-19 1999-10-20
LNMRI- IRD	IEA, IPEN ^b	Laboratorio Nacional de Metrologia das Radiações Ionizantes	Brazil	SIM	1976-10-07

... Continuation of Table 1.

NMI or labora- tory	Previous acronyms	Full name	Country	RMO	Date of SIR mea- surement
NIM	-	National Institute of	China	APMP	1978-10-12
		Metrology			2014-07-01
NIST	NBS	National Institute of Stan-	United	SIM	1980-09-03
		dards and Technology	States		1007 01 24
					2007-08-07
NMIJ	ETL	National Metrology Insti- tute of Japan	Japan	APMP	1976-11-24
		-			2004-03-17
NMISA	NAC, CSIR- NML ^c	National Metrology Insti- tute of South Africa	South Africa	AFRIMETS	1981-07-15
					1992-10-27
					2002-05-30
NPL	-	National Physical Labora- tory	United King- dom	EURAMET	1977-01-05
		v			2000-06-30
NRC	-	National Research Council	Canada	SIM	2012-08-29
POLATOM	IBJ, RC	National Centre for Nu- clear Research Radioiso- tope Centre POLATOM	Poland	EURAMET	2003-06-17
PTB	-	Physikalisch-Technische Bundesanstalt	Germany	EURAMET	1977-09-16
					1988-01-22
					2001-07-02
					2017-05-10
PTKMR	PDS, P3KRBiN	Pusat Teknologi Kesela- matan dan Metrologi Ra- diasi	Indonesia	APMP	1984-06-22
ТАЕК	-	Turkish Atomic Energy Authority	Turkey	EURAMET	2018-01-08

... Continuation of Table 1.

^a federal Crown corporation, not part of the NMI in Canada (see text)

^b IEA, IPEN are other institutes of the country.

^c NAC is another institute of the country.

3. NMI standardization methods

Each NMI that submits ampoules to the SIR has measured the activity either by a primary standardization method or by using a secondary method, for example a calibrated ionization chamber. In the latter case, the traceability of the calibration needs to be clearly identified to ensure that appropriate correlations are taken into account.

A brief description of the standardization methods used by the laboratories, the activities submitted, the relative standard uncertainties and the half-life used by the participants are given in Table 2. The uncertainty budget for the new submission is given in Appendix D attached to this report; previous uncertainty budgets are given in the earlier K1 reports [3–8]. The list of acronyms used to summarize the methods is given in Appendix E.

Since 2003, the half-life used by the BIPM is 1925.5(5) days as published in IAEA TECDOC-619 [9]. The half-life of 1924.8(10) days [10] was used for the earlier results.

NMI or labora- tory	Method used and the acronym	$\begin{array}{c} {\bf Activity} \\ A_i/{\bf kBq} \end{array}$	$\begin{array}{c} \textbf{Relative} \\ \textbf{standard} \\ \textbf{uncertainty} \\ /10^{-2} \end{array}$		Reference date	Half-life /d
			Α	В	yyyy-mm- dd	
AECL	$4\pi\beta$ (PC)- γ coincidence (4P-PC-BP-NA-GR-CO)	1183.4 ^j	0.02	0.02	1980-02-05 17:00 UT	-
		1189.3	0.02	0.02		
	$4\pi\beta$ - γ coincidence (4P-PC- BP-NA-GR-CO)	2069.9	0.05	0.05	1993-10-01 19:00 UT	
ANSTO	$4\pi\beta$ - γ coincidence (4P-PC- BP-NA-GR-C0)	1676	0.1	0.08	1992-04-08 23:00 UT	
ASMW	$4\pi\beta$ (PC)- γ coincidence (4P-PC-BP-NA-GR-CO)	1867.8 ^j	0.04	0.1	1976-06-15 12:00 UT	
		1870.0	0.04	0.1		
BARC	$4\pi\beta$ - γ coincidence (4P-PC- BP-NA-GR-CO)	584.4	0.03	0.25	1981-06-01 06:30 UT	
	$4\pi\beta$ - γ coincidence (4P-PC- BP-NA-GR-CO)	676.1	0.04	0.11	1994-05-01 06:30 UT	
	$4\pi\beta$ - γ coincidence (4P-PC- BP-NA-GR-CO)	1072	0.6	0.3	2000-12-01 06:30 UT	1922
	$4\pi\beta$ (LS)- γ coincidence (4P- LS-BP-NA-GR-CO)	1560	0.29	0.36	2011-03-15 06:30 UT	1925
BEV	Ionization chamber trace- able to the NPL (4P-IC- GR-00-00-00)	2980	0.07	0.58	1998-10-01 12:00 UT	1925.5
	Ionization chamber trace- able to the NPL (4P-IC- GR-00-00-00)	3081	0.08	0.22	2007-10-01 00:00 UT	1925.2 [14]
BIPM	$4\pi\beta$ (PC)- γ coincidence (4P-PC-BP-NA-GR-CO)	2611.2	0.014	0.02	1973-06-06 12:00 UT	-
BKFH	$4\pi\beta$ - γ coincidence (4P-PC- BP-NA-GR-CO)	1345 ^j	0.02	0.32	1977-03-01 12:00 UT	1926(3)
		1345	0.02	0.32		
	$4\pi\beta$ - γ coincidence (4P-PC- BP-NA-GR-CO)	1490	0.1	0.26	1979-12-01 12:00 UT	
	$\begin{array}{ c c c } 4\pi\beta(\mathrm{PC})\text{-}\gamma & \mathrm{coincidence} \\ (4\mathrm{P}\text{-}\mathrm{PC}\text{-}\mathrm{BP}\text{-}\mathrm{NA}\text{-}\mathrm{GR}\text{-}\mathrm{CO}) \end{array}$	1808	0.03	0.25	1999-06-01 12:00 UT	$ \begin{array}{c c} 1925.5(5) \\ [15] \end{array} $

Table 2: Standardization methods of the participants for ⁶⁰Co.

... Continuation of Table 2.

NMI or	Method used and the	Activity	Relativ	ve 🛛	Reference	Half-life
labora-	acronym	A_i/\mathbf{kBq}	standa	rd	date	$/\mathbf{d}$
tory			uncert	ainty		
			/10 ⁻²			
			Α	В	yyyy-mm-	
					dd	
CIEMAT	$4\pi\beta$ (PC)- γ coincidence	364.8 ^a	0.11	0.1	1999-10-05	1925.2
	(4P-PC-BP-NA-GR-CO)				12:00 UT	
	CIEMAT/NIST (4P-LS-					
	BP-00-00-CN)					
CMI-IIR	$4\pi\beta$ - γ coincidence (4P-PC-	37 680	0.05	0.8	1977-02-23	-
	BP-NA-GR-CO)				13:00 UT	
	$4\pi\beta$ - γ coincidence (4P-PC-	4190	0.1	0.3	1978-02-09	1925(4)
	BP-NA-GR-CO)				11:00 UT	
CNEA	$4\pi\beta(\text{PC})-\gamma$ coincidence	785.3	0.05	0.12	1992-01-01	-
	(4P-PC-BP-NA-GR-CO)	L			12:00 UT	
	CIEMAT/NIST (4P-LS-	641.2°	0	.21	2002-10-31	1925.3
	BP-00-00-CN)				00:00 UT	
	PPC coincidence (4P-PP-					
	BP-NA-GR-CO)		0.00		2010.02.05	1005 0(0)
	$4\pi\beta(PC)-\gamma$ coincidence	175.5	0.38	0.37	2010-06-27	1925.2(3)
	(4P-PC-BP-NA-GR-CO)	1541	0.00	0.00	2010 05 10	[14]
	TDCR (4P-LS-BP-00-00-	174.1	0.32	0.33	2010-07-12	
	(TD)	1050	0.0		1000 10 01	
ENEA-	$4\pi\beta(PC)-\gamma$ coincidence	1053	0.2	0.3	1990-12-01	-
	(4P-PC-BP-NA-GR-CO)	1770	0.07	0.19	12:00 01	1005(4)
IAEA	$4\pi\beta$ - γ coincidence and anti-	1770	0.07	0.13	1977-04-01	1925(4)
	$CD CO + D^{22} DD^{22} CD$				12:00 01	
	$AC)^{c}$					
	$A = \frac{1}{4\pi\beta} \propto coincidence (4P, PC)$	3600	0.1	0.3	1078 02 00	1025
	$A^{A}\beta^{-}\gamma$ concluence (41-1 C-	3000	0.1	0.5	1378-02-03	1920
IFIN-HH	$4\pi\beta(PC)$ - γ coincidence	1444j	0.05	0.09	1983-09-01	
11/11/-1111	$(4P-PC-BP-NA-GB-CO)^{e}$	1444	0.00	0.03	1985-09-01 12:00 UT	-
		1424	0.05	0.09	12.00 0 1	
	$4\pi\beta(\text{PC})-\gamma$ coincidence	2149	0.08	0.32	2006-10-06	1925.2(4)
	(4P-PC-BP-NA-GR-CO)			0.02	00:00 UT	102002(1)
IRA-	$4\pi\beta(\text{PC})-\gamma$ coincidence	3007 ^j	0.02	0.1	1979-05-01	-
METAS	(4P-PC-BP-NA-GR-CO)				12:00 UT	
		2982	0.02	0.1		
	Ionization chamber cali-	2518	0.014	0.1	2000-12-01	1925.3(2)
	brated in 1979 by $4\pi\beta$ - γ				12:00 UT	
	coincidence (4P-IC-GR-00-					
	00-00)					
JRC	4π (PPC)-NaI well digital	1412	0.17	0.16	2004-05-01	1925.2(4)
	coincidence (4P-PP-BP-				00:00 UT	[16]
	NA-GR-CO)					
KRISS	$4\pi\beta$ - γ coincidence (4P-PP-	511.6	0.3		1994-10-01	-
	BP-NA-GR-C0)				12:00 UT	

NMI or	Method used and the	Activity	Relativ	/e	Reference	Half-life
labora-	acronym	A_i/\mathbf{kBq}	standa	rd	date	/d
tory		-, -	uncerta	ainty		· ·
			$/10^{-2}$			
			A	В	yyyy-mm- dd	
LNE-	$4\pi\beta$ - γ coincidence (4P-PC-	3303.3 ^j	0.02	0.04	1978-06-15	
LNHB	BP-GL-GR-CO)				12:00 UT	
		3296.3	0.02	0.04		
	$4\pi\beta$ - γ (Ge(Li) coincidence)	1777.5 ^j	0.03	0.05	1986-07-11	
	(4P-PC-BP-GL-GR-CO)				12:00 UT	
		1781.2	0.03	0.05	1000 00 01	
	$4\pi\beta(PC)-\gamma$ coincidence	2838.9	0.05		1999-06-01	1925.2(4)
TNIMDI	(4P-PC-BP-NA-GR-CO)	100 4	0.14	0.04	12:00 UT	
LNMRI-	$4\pi\beta(PC)-\gamma$ coincidence	189.4	0.14	0.04	1976-06-28	-
IRD	(4P-PC-BP-NA-GR-CO)	102.0	0.14	0.04	12:00 01	
	$4 - \rho(\mathbf{DC})$ as a single dense.	193.8	0.14	0.04	1094 10 17	
	$4\pi \beta (PC) - \gamma$ concidence (AP DC RD NA CR CO)	321.0	0.04	0.08	1984-10-17	
	(41 -1 C-D1 -NA-GR-CO)	334 5	0.04	0.08	12.00 0 1	
NIM	$4\pi\beta(\mathbf{PC})$ - α coincidence	1746 2j	0.04	0.00	1978-08-31	
	(4P-PC-BP-NA-GB-CO)	1140.2	0.00	0.2	04.00 UT	
		1746.4	0.05	0.2	01.00 01	
	$4\pi\beta(\text{PC})-\gamma$ coincidence	1049.4	0.21	0.15	2014-06-07	1925.2(3)
	(4P-PC-BP-NA-GR-CO)		-		00:00 UT	[14]
NIST	$4\pi\beta$ - γ coincidence and	2038	0.06	0.15	1980-05-30	-
	anti-coincidence (4P-PC-				17:00 UT	
	BP-NA-GR-CO, 4P-PC-					
	BP-NA-GR-AC)					
	Ionization chamber (4P-IC-	1402	0.03	0.23	1997-01-01	
	GR-00-00-00) ^f				12:00 UT	
	$4\pi\beta$ - γ anti-coincidence (4P-	183	0.03	0.18	2007-01-01	1925.2(3)
	PC-BP-NA-GR-AC)				17:00 UT	[14]
NMIJ	$4\pi\beta(\text{PC})-\gamma$ coincidence	1848 ^j	0.03	0.21	1976-11-01	-
	(4P-PC-BP-NA-GR-CO)	1050	0.00	0.01	12:00 UT	
	4 0(DC)	1859	0.03	0.21	0.004.00.01	1005.0
	$4\pi\rho(PC)-\gamma$ conicidence	1435.7	0.05	0.09	2004-02-01	1925.2
NMISA	$(4\mathbf{r} - \mathbf{r} \mathbf{C} - \mathbf{D}\mathbf{r} - \mathbf{N}\mathbf{A} - \mathbf{G}\mathbf{R} - \mathbf{C}\mathbf{O})$	4650	0.05	0.18	12.00 01	
INMISA	$4\pi \beta(LS) - \gamma$ coincidence (4F-	4009	0.00	0.10	1981-00-19	-
	LS-DI - NA-GII - CO)	5320	0.05	0.18	10.00 0 1	
	$4\pi\beta(\text{LS})$ - γ coincidence (4P-	7066 ^j	0.05	0.13	1992-09-10	1925 4(2)
	LS-BP-NA-GR-CO) ^g	1000	0.011	0.100	12:00 UT	[17]
		20525	0.014	0.133		[[]
	$4\pi\beta(\text{LS})-\gamma$ coincidence (4P-	214	0.02	0.2x	2002-03-28	
	LS-BP-NA-GR-CO) ^g				12:00 UT	
NPL	Ionization chamber cal-	667 ^j	0.03	1.02	1976-12-20	-
	ibrated by $4\pi\beta(PC)-\gamma$				12:00 UT	
	coincidence (4P-IC-GR-00-					
	00-00)					

... Continuation of Table 2.

NMI or labora- tory	Method used and the acronym	$\begin{array}{c} {\bf Activity} \\ A_i/{\bf kBq} \end{array}$	$\begin{array}{c} \textbf{Relative} \\ \textbf{standard} \\ \textbf{uncertainty} \\ /10^{-2} \end{array}$		Reference date	Half-life /d
			A	В	yyyy-mm- dd	
		644	0.03	1.02		
	$4\pi\beta(\text{PPC})-\gamma$ digital coincidence counting (4P-PP-BP-NA-GR-CO)	2290	0.1	0.27	2000-02-01 12:00 UT	
NRC	$4\pi\beta(\text{PP})-\gamma$ anti-coincidence (4P-PP-BP-NA-GR-AC)	298.15	0.03	0.1	2011-11-09 17:00 UT	$ \begin{array}{c c} 1925.2(3) \\ [14] \end{array} $
POLATOM	$4\pi\beta(\text{LS})-\gamma$ coincidence and anti-coincidence (4P-LS-BP-NA-GR-CO, $4\text{P-LS-BP-NA-GR-AC})^{\text{h}}$	177.4	0.27	0.5	2003-04-03 12:00 UT	1925.3 [18]
РТВ	$4\pi\beta$ (PC)- γ coincidence (4P-PC-BP-NA-GR-CO)	3222.6 ^j	0.02	0.07	1977-01-01 12:00 UT	-
		3176.0	0.02	0.07		
	Ionization chamber cal- ibrated by $4\pi\beta(PC)-\gamma$ coincidence (4P-IC-GR-00- 00-00)	100 020	0.02	0.07	1987-09-01 12:00 UT	
	,	18 272	0.02	0.06		
		2036	0.03	0.09		
	Ionization chamber cali- brated by $4\pi\beta$ - γ coinci- dence (4P-IC-GR-00-00-00)	13 760	0.03	0.22	2001-01-01 12:00 UT	1925.3(4)
	$4\pi PC-\gamma$ coincidence (4P- PC-BP-NA-GR-CO) $4\pi LS-\gamma$ coincidence (4P- LS-BP-NA-GR-CO) CIEMAT/NIST (4P-LS- MX-00-00-CN) TDCR (4P-LS-MX-00-00- TD)	2068.7 ⁱ	0.05	0.2	2016-01-01 00:00 UT	1925.3(4)
PTKMR	$4\pi\beta(\text{PC})-\gamma$ coincidence	1014 ^j	0.4		1984-06-01	-
	(4P-PC-BP-NA-GR-CO)	1019	0.4		08:00 UT	
TAEK	Ionisation chamber cali- brated at the PTB in 2012 (4P-IC-GR-00-00-00)	888.7	0.49	1.16	2016-04-01 12:00 UT	1925.3(3)

NMI or	Method	used	and	\mathbf{the}	Activity	Relativ	e	Reference	Half-life
labora-	acronym				A_i/\mathbf{kBq}	standard		date	$/\mathbf{d}$
tory						uncerta	inty		
						$/10^{-2}$			
						Α	В	yyyy-mm-	
								dd	

... Continuation of Table 2.

 $^{\rm a}$ For the CIEMAT/NIST method, a $^{3}{\rm H}$ tracer from LNE-LNHB was used. The result is the weighted mean of the different methods.

^b The activity concentrations measured are 175.6 kBq/g and 175.7 kBq/g respectively. The weighted mean result is used for the comparison.

^c With the Radiochemical Centre, Amersham, UK

^d With the UVVVR

^e see details in [11]

^f calibrated in 1980 by $4\pi\beta$ - γ coincidence and anti-coincidence

 g see details in [12]

^h see details in [13]

ⁱ The final result is the weighted mean of the results of four methods. The relative combined uncertainty (0.20 %) of the TDCR result is adopted for the final result. This is larger than the internal and external relative uncertainties of the weighted mean. Correlations and anti-correlations between the results were not considered

^j Several samples submitted

^x The uncertainty of 0.08 % submitted originally has been increased to include the uncertainty of an additional correction (see section 4 of [4]).

Details regarding the solutions submitted are shown in Table 3, including any impurities, when present, as identified by the laboratories. When given, the standard uncertainties on the evaluations are shown.

NMI or	Chemical	Solvent conc.	Carrier	Density	Relative activity of
laboratory	composi-		conc.		any impurity ^c
	tion				
/ SIR year		$/(\mathrm{mol}\mathrm{dm}^{-3})$	$/(\mu g g^{-1})$	$/({ m gcm^{-3}})$	
AECL 1980	$CoCl_2$ in HCl	0.3	$Co^{++}: 10$	1	-
1993	$CoCl_{2\cdot 6}H_2O$	0.1	$CoCl_2.6H_2O$:	1	-
	in HCl		100		
ANSTO 1992	$CoCl_2$ in HCl	0.1	Co: 47	1	-
ASMW 1976	$CoCl_2$ in HCl	0.1	$CoCl_2$: 20	-	-
BARC 1981	$CoCl_2$ in HCl	0.1	$CoCl_2: 55$	-	-
1994	$Co(NO_3)_2$ in	0.1	$Co(NO_3)_2$:	1	-
	HNO_3		50		
2001	$CoCl_2$ in HCl	0.1	$CoCl_2$: 25	1	-
2012	$CoCl_2$ in HCl	0.1	$CoCl_2$: 20	1	-
BEV 1998	$CoCl_2$ in HCl	0.1	$CoCl_2$: 50	1	-
2007	$CoCl_2$ in HCl	0.1	$CoCl_2$: 50	1	-
BIPM 1976	$CoCl_2$ in HCl	0.1	$CoCl_2: 5$	1	-
BKFH 1977	Co in HCl	0.1	Co: 25	-	-
1979	Co in HCl	0.1	Co: 25	-	-
1999	$CoCl_2$ in HCl	0.1	$CoCl_2$: 25	-	-

Table 3: Details of each solution of 60 Co submitted.

	1	Continua	ation of Table 3.	T	
NMI or	Chemical	Solvent conc.	Carrier	Density	Relative activity of
laboratory	composi-		conc.		any impurity ^c
	tion				
/ SIR year		$/(\mathrm{mol}\mathrm{dm}^{-3})$	$/(\mu g g^{-1})$	$/(g cm^{-3})$	
CIEMAT	$CoCl_2$ in HCl	1	$CoCl_2$: 413	1.019	63 Ni: 0.012 %
1999					
CMI-IIR	$CoCl_2$ in HCl	0.1	$CoCl_2$: 20	1	<0.1 %
1977					
1978	$CoCl_2$ in HCl	0.08	$CoCl_2$: 20	-	<0.1 %
CNEA 1992	$CoCl_{2\cdot 6}H_2O$	0.1	$CoCl_2$: 10	0.999	<0.1 %
	in HCl				
2003	$CoCl_{2\cdot 6}H_2O$	1	$CoCl_2.6H_2O$:	1.015	<0.01 %
	in HCl		150		
2011	$CoCl_{2\cdot 6}H_2O$	0.1	$CoCl_2.6H_2O$:	1	-
	in HCl		90		
ENEA-	$CoCl_{2\cdot 6}H_2O$	0.1	Co ⁺⁺ : 100	0.999	137 Cs: 0.003(1) %
INMRI 1991	in HCl				
					63 Ni:0.026(5) %
IAEA 1978	Co in HCl	0.1	Co: 100	-	-
1978	$CoCl_2$ in HCl	0.08	$CoCl_2$: 10	-	<0.1 %
IFIN-HH	$CoCl_2$ in HCl	0.1	Co: 50	1	-
1983					
2007	$CoCl_2$ in HCl	0.1	CoCl ₂ : 100	1	< 0.01 %
IRA-METAS	Co ⁺⁺ in HCl	0.1	$Co^{++}: 30$	_	-
1979					
2000	Co ⁺⁺ in HCl	0.1	Co++: 25	1.000(7)	-
JRC 2005	CoCl ₂ in HCl	0.1	Co: 50	-	_a
KRISS 1995	CoCl _{2.6} H ₂ O	0.5	CoCl ₂ .6H ₂ O:	1.0061	-
	in HCl		46		
LNE-LNHB	CoCl ₂ in HCl	0.1	CoCl ₂ : 10	0.999	< 0.02 %
1978			2		
1986	CoCl ₂ in HCl	0.1	CoCl ₂ : 10	0.999	< 0.01 %
1999	Co in HCl	0.1	$Co^{++}: 10$	1.001	-
LNMRI-IRD	CoCl ₂ in HCl	0.1	CoCl ₂ : 17.1	_	-
1976	00012	0.1	00012		
1984	Co in HCl	0.2	Co: 0.02	1.003	-
NIM 1978	CoCl ₂ in HCl	0.1	$CoCl_2$: 100	1.0004	-
2014	Co^{++} in HCl	0.1	$Co^{++}: 10$	1.006	-
NIST 1980	Co in HCl	1	Co: 50	1.000 1.015(2)	_
1997	CoCl ₂ in HCl	0.1	C_0Cl_2 : 100	1	-
2007	CoCla in HCl	11	C_0Cl_2 : 130	1 017	57Co 1 5(2)x10 ⁻⁵
NMLI 1976	$CoCl_2$ in HCl	0.1	C_0Cl_2 : 100	-	-
2004	CoCla in HCl	0.1	C_0Cl_2 :00	1.002	_
NMISA 1981	CoCla in HCl	1	C_0Cl_2 : 540	1.002	
1992		1	C_0^{++} 110	1.001	_
1004	$\begin{bmatrix} 0.0012.61120\\ \text{in HC} \end{bmatrix}$	L T		1.0100	
2002			C_0^{++} 110	1.0183	_
2002	$\begin{bmatrix} 0.0012.61120\\ \text{in HC} \end{bmatrix}$			1.0100	
NPL 1077	CoClain HCl	0.1	CoCla: 50	<u> </u>	
2000	C_0C_1 in U_1	0.1	C_0C_{12} , 00	1	-
2000	100012 m HU	0.1	0001_2 ; 20	1	-

. Continuation of Table 3.	ı of Table 3.	Continuation
----------------------------	---------------	--------------

NMI or	Chemical	Solvent conc.	Carrier	Density	Relative activity of
laboratory	composi-		conc.		any impurity ^c
	tion				
/ SIR year		$/(\mathrm{mol}\mathrm{dm}^{-3})$	$/(\mu g g^{-1})$	$/({ m gcm^{-3}})$	
NRC 2012	$CoCl_2$ in HCl	0.1	$CoCl_2$: 230	1.000(3)	_b
POLATOM	$CoCl_2$ in HCl	0.1	Co: 25	1	<0.1 %
2003					
PTB 1977	$CoCl_2$ in HCl	0.1	$CoCl_2: 50$	-	-
1988	$CoCl_2$ in HCl	0.1	$CoCl_2: 50$	1	-
2001	$CoCl_2$ in HCl	0.1	$CoCl_2: 50$	1	-
2017	$CoCl_2$ in HCl	0.1	$CoCl_2: 50$	1	-
PTKMR	$CoCl_{2\cdot 6}H_2O$	1	$CoCl_2.6H_2O$:	0.990(1)	-
1984	in HCl		50.5		
TAEK 2018	$CoCl_2$ in HCl	0.1	$CoCl_2$: 50	1	-

. Continuation of Table 3.

^a Confirmed by measurements carried out at the BIPM

^b None detected

 $^{\rm c}$ the ratio of the activity of the impurity to the activity of 60 Co at the reference date

4. Results

All the submissions to the SIR since its inception in 1976 are maintained in a database known as the "master-file". The latest submission has added 2 ampoules for the activity measurements for ⁶⁰Co giving rise to 72 ampoules in total. The SIR equivalent activity, A_{ei} , for each ampoule received from each NMI, *i*, including both previous and new results, is given in Table 4.

The relative standard uncertainties arising from the measurements in the SIR are also shown. This uncertainty is additional to that declared by the NMI $(u(A_i))$ for the activity measurement shown in Table 2. Although submitted activities are compared with a given source of ²²⁶Ra, all the SIR results are normalized to the radium source number 5 [1]. No recent submission has been identified as a pilot study so the most recent result of each NMI is normally eligible for Appendix B of the MRA [2].

NMI or labo-	m_i	A_i	226 Ra	$A_{\mathbf{e}i}$	Relative	u _{ci}	$A_{\mathbf{e}i}$	for
ratory			source		uncert.		KCRV	
					from			
					SIR			
/ SIR year	$/\mathbf{g}$	/kBq		/kBq	/10 ⁻⁴	/kBq	/kBq	
AECL 1980	$0.941 77^{\rm a}$	1183.4	3	7050	5	4	-	
	$0.946\ 42$	1189.3	3	7051	5	4	-	
1993	0.233 2 ^a	2069.9	4	7064	4	6	7064(6)	
ANSTO 1992	$3.557\ 1$	1676	4	7056	4	10	7056(10)	
ASMW 1976	3.601 0	1867.8	4	7063	4	8	$7062(8)^{d}$	
	$3.605\ 2$	1870.0	4	7061	4	8	-	
BARC 1981	3.599 8	584.4	3	7078	6	19	-	
1994	3.605 8	676.1	3	7076	5	9	1 -	

Table 4: Results of SIR measurement of ⁶⁰Co.

NMI or labo-	m_i	A_i	226 Ra	$A_{\mathbf{e}i}$	Relative	$u_{\mathbf{c},i}$	$A_{\mathbf{e}}$ for KCRV
ratory			source		uncert.	,	
					from		
					SIR		
/ SIR year	$/\mathbf{g}$	/kBq		/kBq	/10 ⁻⁴	/kBq	$/\mathbf{kBq}$
2001	3.614 5	1072	3	7099	5	46	7099(46)
2012	3.603 23	1560	4	7184	5	33] -
BEV 1998	3.618	2980	4	7049	4	42	-
2007	3.606 9	3081	4	7057	4	17	-
BIPM 1976	3.757 9	2611.2	4	7066	4	4	7066(4)
BKFH 1977	3.600 7	1345	4	7048	5	23	-
	3.600 6	1345	4	7043	5	23	-
1979	3.602 1	1490	4	7045	4	20	-
1999	3.612 2	1808	4	7051	5	18	7051(18)
CIEMAT 1999	3.682 16	364.8	2	7090	7	11	7090(11)
CMI-IIR 1977	$3.568\ 43$	37 680	5	7051	4	56	_
1978	3.615 29	4190	4	7054	4	20	7054(20)
CNEA 1992	2.075 43	785.3	3	7126	5	10	-
2003	3.650 37	641.2	3	7050	5^{b}	15] -
2011	3.606 43	175.5	2	7079	9	38	$7070(26)^{e}$
		174.1		7060		33	-
ENEA-INMRI	3.57	1053	3	7065	6	26	7065(26)
1991	0.000.0	1.550			~	4.4	
IAEA 1978	3.699 3	1770	4	7052	5	11	-
1978 ISIN IIII 1009	3.584 18	3600	4	7053	4	20	-
IFIN-HH 1983	3.533 9	1444	4	7066	4	8	-
2007	3.485 4	1424	4	7068	4	8	-
	3.017.39	2149	4	7101	4	24	7101(24)
184-ME1A5 1979	3.629 93	3007	4	1039	4	8	(041(8)*
	3.59967	2982	4	7042	4	8	-
2000	3.598	2518	4	7037	4	8	-
JRC 2005	3.497 98	1412	4	7039	4	17	7039(17)
KRISS 1995	3.585 26	511.6	3	7047	7	22	7047(22)
LNE-LNHB	3.626 37	3303.3	4	7053	4	4	-
1978							
	3.618 76	3296.3	4	7052	4	4	-
1986	3.592 43	1777.5	4	7065	4	5	-
	3.599 83	1781.2	4	7063	4	5	-
1999	3.583 06	2838.9	4	7060	4	4	7060(4)
LNMRI-IRD	3.459 33	189.4	2	7062	9	12	-
1976							
	$3.539\ 01$	193.8	2	7065	8	12	-
1984	3.468 94	327.8	2	7081	6	8	$7077(8)^{d}$
	$3.540\ 29$	334.5	2	7073	6	8	-
NIM 1978	3.605 25	1746.2	4	7046	4	15	-
	3.605 67	1746.4	4	7042	4	15	-
2014	3.611 28	1049.4	3	7052	5	19	7052(19)
NIST 1980	3.666 88	2038	4	7069	4	12	-
1997	3.608 47	1402	4	7085	4	17] -

... Continuation of Table 4.

NMI or labo-	m_i	A_i	226 Ra	$A_{\mathbf{e}i}$	Relative	$u_{\mathbf{c},i}$	$A_{\mathbf{e}}$ for KCRV
ratory			source		uncert.	,	
					from		
					SIR		
/ SIR year	$/\mathbf{g}$	/kBq		/kBq	/10 ⁻⁴	/kBq	$/\mathbf{kBq}$
2007	3.659 57	183	2	7083	8	14	7083(14)
NMIJ 1976	3.607 86	1848	4	7044	4	16	-
	$3.628\ 78$	1859	4	7044	4	16	-
2004	3.633 75	1435.7	4	7050	4	8	7050(8)
NMISA 1981	3.600	4659	5	7064	3	13	-
	3.613	5329	5	7067	3	13	-
1992	3.612	7066	5	7066	3	10	$7066(10)^{d}$
	3.610	20525	5	7065	3	10	-
2002	3.596	214	2	7098 ^c	10	16	-
NPL 1977	3.770 4	667	3	7059	5	72	-
	3.640 7	644	3	7057	5	72	-
2000	3.567 15	2290	4	7053	4	21	7053(21)
NRC 2012	3.605 6	298.15	2	7065	8	9	7065(9)
POLATOM	3.699 87	177.4	2	7040	8	40	7040(40)
2003							
PTB 1977	3.670 0	3222.6	4	7062	5	6	-
	3.616 9	3176.0	4	7060		6	-
1988	3.599 2	100 020	5	7068	3	6	_
	3.603 3	18 272	5	7056	3	5	-
	3.644 5	2036	4	7056	4	7	-
2001	$3.600\ 7(9)$	13760	5	7057	3	16	-
2017	3.600 56	2068.7	4	7057	4	15	7057(15)
PTKMR 1984	3.550	1014	3	7103	5	27	7104(27) ^d
	3.567	1019	3	7105	6	27	-
TAEK 2018	3.584	888.7	3	7048	5	89	-

... Continuation of Table 4.

^a mass of solution before dilution

^b solution contained in a CNEA-type ampoule (see section 4 of [4])

^c not representative of the activity presently disseminated by NMISA (see section 4 of [4])

^d An average value and average uncertainty between all submitted samples is used for the KCDB [19].

^e An average value between all methods has been done.

4.1. The key comparison reference value

In May 2013, the CCRI(II) decided to calculate the key comparison reference value (KCRV) by using the power-moderated weighted mean [20] rather than an unweighted mean, as had been the policy. This type of weighted mean is similar to a Mandel-Paule mean in that the NMIs' uncertainties may be increased until the reduced chisquared value is one. In addition, it allows for a power α smaller than two in the weighting factor. As proposed in [20], α is taken as 2 - 3/N where N is the number of results selected for the KCRV. Therefore, all SIR key comparison results can be selected for the KCRV with the following provisions:

- (a) only results for solutions standardized by primary techniques are accepted, with the exception of radioactive gas standards (for which results from transfer instrument measurements that are directly traceable to a primary measurement in the laboratory may be included);
- (b) each NMI or other laboratory may only use one result (normally the most recent result or the mean if more than one ampoule is submitted);
- (c) results more than 20 years old are included in the calculation of the KCRV but are not included in data shown in the KCDB or in the plots in this report, as they have expired;
- (d) possible outliers can be identified on a mathematical basis and excluded from the KCRV using the normalized error test with a test value of 2.5 and using the modified uncertainties;
- (e) results can also be excluded for technical reasons; and
- (f) the CCRI(II) is always the final arbiter regarding excluding any data from the calculation of the KCRV.

The data set used for the evaluation of the KCRVs is known as the KCRV file and is a reduced data set from the SIR master-file. Although the KCRV may be modified when other NMIs participate, on the advice of the Key Comparison Working Group of the CCRI(II), such modifications are made only by the CCRI(II) during one of its biennial meetings, or by consensus through electronic means (e.g., email) as discussed at the CCRI(II) meeting in 2013.

The BARC (2012) result is considered as an outlier so that their earlier result in 2001 is eligible to be kept in the KCRV. Consequently, using the recent result produces an updated KCRV for ⁶⁰Co in 2020 of **7062.7(27)** kBq with the power $\alpha =$ 1.88 that has been calculated using the previously published results, selected as shown in Table 4, for the ASMW (1976), BIPM (1976), CMI-IIR (1978), IRA-METAS (1979), PTKMR (1984), LNMRI-IRD (1984), ENEA-INMRI (1991), ANSTO (1992), NMISA (NAC, 1992), AECL (1993), KRISS (1995), CIEMAT (1999), LNE-LNHB (1999), BKFH (1999), NPL (2000), BARC (2001), POLATOM (2003), NMIJ (2004), JRC (2005), IFIN-HH (2007), NIST (2007), CNEA (2011), NRC (2012), NIM (2014), and the PTB (2017) result. This can be compared with the previous KCRV values of 7064.6(38) kBq published in 2003 [3], 7061.3(35) kBq published in 2006 [6], 7063.3(40) kBq published in 2010 [7] and 7062.7(27) kBq published in 2017 [8].

4.2. Degrees of equivalence

Every participant in a comparison is entitled to have one result included in the KCDB as long as the NMI is a signatory or designated institute listed in the CIPM MRA,

and the result is valid (i.e., not older than 20 years). Normally, the most recent result is the one included. An NMI may withdraw its result only if all other participants agree.

The degree of equivalence of a given measurement standard is the degree to which this standard is consistent with the KCRV [2]. The degree of equivalence is expressed quantitatively in terms of the deviation from the key comparison reference value and the expanded uncertainty of this deviation (k = 2). The degree of equivalence between any pair of national measurement standards is expressed in terms of their difference and the expanded uncertainty of this difference and is independent of the choice of key comparison reference value.

4.2.1. Comparison of a given NMI result with the KCRV

The degree of equivalence of the result of a particular NMI, i, with the key comparison reference value is expressed as the difference D_i between the values

$$D_i = A_{\rm ei} - \rm KCRV \tag{1}$$

and the expanded uncertainty (k = 2) of this difference, U_i , known as the equivalence uncertainty; hence

$$U_i = 2u(D_i) \tag{2}$$

When the result of the NMI i is included in the KCRV with a weight w_i , then

$$u^{2}(D_{i}) = (1 - 2w_{i})u_{i}^{2} + u^{2}(\text{KCRV})$$
(3)

However, when the result of the NMI i is not included in the KCRV, then

$$u^2(D_i) = u_i^2 + u^2(\text{KCRV}) \tag{4}$$

4.2.2. Comparison between pairs of NMI results

The degree of equivalence between the results of any pair of NMIs, i and j, is expressed as the difference D_{ij} in the values

$$D_{ij} = D_i - D_j = A_{ei} - A_{ej} \tag{5}$$

and the expanded uncertainty (k = 2) of this difference, $U_{ij} = 2u(D_{ij})$, where

$$u^{2}(D_{ij}) = u_{i}^{2} + u_{j}^{2} - 2u(A_{ei}, A_{ej})$$
(6)

where any obvious correlations between the NMIs (such as a traceable calibration, or correlations normally coming from the SIR or from the linking factor in the case of linked comparison) are subtracted using the covariance $u(A_{ei}, A_{ej})$ (see [21] for more detail). However, the CCRI decided in 2011 that these pair-wise degrees of equivalence no longer need to be published as long as the methodology is explained.

Table B1 shows the matrix of all the degrees of equivalence as they will appear in the KCDB. It should be noted that for consistency within the KCDB, a simplified level of nomenclature is used with A_{ei} replaced by x_i . The introductory text is that agreed for the comparison. The graph of the results in Table 5, corresponding to the degrees of equivalence with respect to the KCRV (identified as x_R in the KCDB), is shown in Figure C1. This graphical representation indicates in part the degree of equivalence between the NMIs but obviously does not take into account the correlations between the different NMIs. It should be noted that the final data in this paper, while correct at the time of publication, will become out-of-date as NMIs make new comparisons. The formal results under the CIPM MRA [2] are those available in the KCDB.

5. Conclusion

The BIPM ongoing key comparison for ⁶⁰Co, BIPM.RI(II)-K1.Co-60, currently comprises 14 results. The KCRV has been recalculated including the result from the PTB (Germany). The results have been analyzed with respect to the updated KCRV, providing degrees of equivalence for 14 national metrology institutes. The degrees of equivalence have been approved by the CCRI(II) and are published in the BIPM key comparison database. Other results may be added when other NMIs contribute ⁶⁰Co activity measurements to this comparison or take part in other linked comparisons.

6. References

- Ratel, G. The Système International de Référence and its application in key comparisons, Metrologia, 2007, 44(4), S7-S16.
- [2] CIPM MRA: Mutual recognition of national measurement standards and of calibration and measurement certificates issued by national metrology institutes, International Committee for Weights and Measures, 1999, pp. 45.
- [3] Ratel G. and Michotte C., BIPM comparison BIPM.RI(II)-K1.Co-60 of the activity measurements of the radionuclide ⁶⁰Co, *Metrologia*, 2003, 40, Tech. Suppl., 06007.
- [4] Ratel G., Michotte C., Simpson B.R.S., Iglicki A., Activity measurements of the radionuclide ⁶⁰Co for the CSIR-NML and the CNEA in the BIPM comparison BIPM.RI(II)-K1.Co-60, *Metrologia*, 2003, 40, Tech. Suppl., 06010.
- [5] Ratel G., Michotte C., Broda R., Listkowska A., Activity measurements of the radionuclide ⁶⁰Co for the RC, Poland in the ongoing comparison BIPM.RI(II)-K1.Co-60, *Metrologia*, 2003, 40, Tech. Suppl., 06033.
- [6] Ratel G., Michotte C., Hino Y., Keightley J. and Wätjen, Update of the ongoing comparison BIPM.RI(II)-K1.Co-60 including activity measurements of the radionuclide ⁶⁰Co for the NMIJ, Japan and the IRMM (Geel), *Metrologia*, 2006, 43, Tech. Suppl., 06003.
- [7] Michotte C., Courte S., Ratel G., Sahagia M., Wätjen A.C., Fitzgerald R. and Maringer F-L., Update of the ongoing comparison BIPM.RI(II)-K1.Co-60 including activity measurements of the radionuclide ⁶⁰Co for the IFIN-HH (Romania), NIST (USA) and the BEV (Austria), *Metrologia*, 2010, 47, Tech. Suppl., 06010.
- [8] Michotte C., Ratel G., Courte S., Arenillas P., Balpardo C., Joseph L., Anuradha R., Kulkarni D.B., Galea R. and Moore K., Update of the BIPM comparison BIPM.RI(II)-K1.Co-60 of activity measurements of the radionuclide ⁶⁰Co to include the 2011 result of the CNEA (Argentina), the 2012 results of the BARC (India) and the NRC (Canada), and the 2014 result of the NIM (China), *Metrologia*, 2017, 54, Tech. Suppl., 06002.

- [9] IAEA-TECDOC-619, X-ray and gamma-ray standards for detector calibration, Vienna, IAEA, 1991.
- [10] Rytz A., Mesures de périodes radioactives, Procès-Verbaux des Séances du Comité international des poids et mesures, 1973, 41, 68 (Paris: Off. Lib.).
- [11] Asavinei I., Grigorescu E.L., Lazarovici C., Oncescu M., Mesure absolue de l'activité des radionucléides par la méthode des coincidences $4\pi\beta$ - γ . Corrections de schéma de désintegration, *Congrès MESUCORA-Paris*, 1963, Tome 1, Séance 8.
- [12] Simpson B.R.S. and Meyer B.R., Standardization of 60 Co by the $4\pi LS\beta-\gamma$ coincidence method, NAC Report NAC/93-05, 1993.
- [13] Chyliński A., Radoszewski T., Terlikowska-Droździel T., Jęczmieniowski A., A multimethodic and multiparametric system for standardisation of radionuclides, *Appl. Radiat. Isot.*, 2000, **52**, 663-667.
- [14] Bé M.-M., Chisté V., Dulieu C., Browne E., Chechev V., Kuzmenko N., Helmer R., Nichols A., Schönfeld E., Dersch R., 2006, Table of radionuclides, Monographie BIPM-5, Vol 3., p.210.
- [15] IAEA-TecDoc-619 X-ray and gamma-ray standards for detector calibration (1991) Vienna IAEA.
- [16] BNM-LNHB/CEA Nucléide 2000 Nuclear and Atomic Decay Data Version: 30 June 2004 CD ROM BNM-LNHB Gif-sur-Yvette.
- [17] BNM-CEA/DTA/DAMRI/LPRI Nucléide, Nuclear and Atomic Decay Data Version: 1-98 19/12/98 CD ROM, BNM-LNHB Gif sur Yvette.
- [18] Schötzig U. and Schrader H., Halbwertszeiten und Photonen-Emissionwahrscheinlichkeiten von häufig verwendeten Radionukliden, PTB-Bericht, PTB-Ra-16/5, Braunschweig, September 1998.
- [19] Woods M.J., Reher D.F.G. and Ratel G., Equivalence in radionuclide metrology, Applied Radiation and Isotopes, 2000, 52(3), 313-318.
- [20] Pommé S. and Keightley J., Determination of a reference value and its uncertainty through a power-moderated mean, *Metrologia*, 2015, 52(3), S200.
- [21] Michotte C. and Ratel G., Correlations taken into account in the KCDB, CCRI(II) working document, 2003, CCRI(II)/03-29.

Appendix A. Introductory text for ⁶⁰Co degrees of equivalence

Key comparison BIPM.RI(II)-K1.Co-60

MEASURAND: Equivalent activity of ⁶⁰Co

Key comparison reference value: the SIR reference value $x_{\rm R}$ for this radionuclide is 7062.7 kBq, with a standard uncertainty, $u_{\rm R}$ equal to 2.7 kBq (see Section 4.1 of the Final Report). The value x_i is taken as the equivalent activity for a laboratory *i*.

and U_i , its expanded uncertainty (k = 2), both expressed in kBq, and $U_i = 2((1 - 2w_i)u_i^2 + u_R^2)^{1/2}$, where w_i is the weight of The degree of equivalence of each laboratory with respect to the reference value is given by a pair of terms: $D_i = (x_i - x_R)$ laboratory i contributing to the calculation of $x_{\rm R}$.

Appendix B. Table of degrees of equivalence for BIPM.RI(II)-K1.Co-60

Table	B1:	The	table	of	degrees	of	equivalence	for
BIPM	.RI(II)	-K1.0	Co-60					

NMI i	D_i / \mathbf{kBq}	U_i / \mathbf{kBq}
IRA-METAS	-26	17
NMISA	35	32
POLATOM	-23	80
NMIJ	-13	16
JRC	-24	34
IFIN-HH	38	48
NIST	20	28
BEV	-6	34
CNEA	7	52
BARC	121	66
NRC	2	18
NIM	-11	38
РТВ	-6	30
TAEK	-15	178

Appendix D. Uncertainty budgets for the activity of $^{60}\mathrm{Co}$ submitted to the SIR

Detailed Uncertainty Budget (4P-PC-BP-NA-GR-CO)

Laboratory: PTB;

Radionuclide: Co-60;

Ampoule number: 2016-1384.

Uncertainty components*, in % of the activity concentration, due to

		Remarks	Evaluation Relative type (A or B) sensitivity Factor
counting statistics	_0.105 _		_A
weighing	_0.05		_B
dead time	negligible		_B
background	_0.03		_A
pile-up	_ n.a		
counting time	negligible		_B
adsorption	_0.05		_B
impurities	_<0.03 _	no impurities detected	_B
model and decay data	negligible		B
decay correction	_<0.01_		_B
resolving time	negligible		_B
extrapolation of efficiency curve	_0.026 _		_B
fitting uncertainty	_0.196 _		_B
dilution	_0.02	two dilution steps	_B
combined uncertainty (as quadratic sum of all uncertainty components)	_0.24_+		

^{*} The uncertainty components are to be considered as approximations of the corresponding standard deviations (see also *Metrologia*, 1981, 17, 73 and *Guide to expression of uncertainty in measurement*, <u>http://www.bipm.org/en/publications/guides/</u>

Detailed Uncertainty Budget (4P-LS-BP-NA-GR-CO)

Laboratory: **PTB**;

Radionuclide: Co-60;

Ampoule number: 2016-1384.

Uncertainty components*, in % of the activity concentration, due to

		Remarks	Evaluation type (A or B)	Relative sensitivity Factor
counting statistics	_0.06		_A	
weighing	_0.03		_B	
dead time	_0.20		_B	
background	_0.03		_A	
pile-up	_ n.a			
counting time	negligible		_B	
adsorption	_0.05		_B	
impurities	_<0.03 _	no impurities detected	_B	
model and decay data	negligible		_B	
decay correction	_<0.01_		_B	
resolving time	_0.20		_B	
extrapolation of efficiency curve	_0.01		_B	
fitting uncertainty	_0.14		_B	
dilution	_0.02	two dilution steps	_B	
combined uncertainty (as quadratic sum of all uncertainty components)	_0.33_(

^{*} The uncertainty components are to be considered as approximations of the corresponding standard deviations (see also Metrologia, 1981, 17, 73 and Guide to expression of uncertainty in measurement, http://www.bipm.org/en/publications/guides/

Detailed Uncertainty Budget (4P-LS-MX-00-00-CN)

Laboratory: PTB; Radionuclide: Co-60; Ampoule number: 2016-1384. Uncertainty components*, in % of the activity concentration, due to Remarks Evaluation Relative type (A or B) sensitivity Factor counting statistics 0.07__ _A____ _____ weighing 0.03 _B____ _____ dead time 0.10 _B____ _____ background 0.03 _A____ pile-up _**n.**a. ___ _____ ____ counting time _0.01___ _B____ _____ adsorption _0.05___ _B____ _____ impurities < 0.03 no impurities detected _____B______ tracer and interpolation of efficiency curve _0.05___ _B____ ____ model and decay data 0.16___ _B____ _____ ionization quenching and *kB* value 0.07___ _B____ ____ TDCR value and interpolation of efficiency curve _n.a.___ _____ decay correction < 0.01 _B____ ____ _0.05___ PMT asymmetry B_____ resolving time n.a. -----_____ ____ extrapolation of efficiency curve _n.a. ___ _____ ____ _____ fitting uncertainty _**n.a**. ___ dilution _0.02___ two dilution steps _____B______ combined uncertainty _0.24_ _____ _____ _ ____ (as quadratic sum of all uncertainty components)

^{*} The uncertainty components are to be considered as approximations of the corresponding standard deviations (see also Metrologia, 1981, 17, 73 and Guide to expression of uncertainty in measurement, <u>http://www.bipm.org/en/publications/guides/</u>

Detailed Uncertainty Budget (4P-LS-MX-00-00-TD)

Laboratory: **PTB**;

Radionuclide: Co-60;

Ampoule number: 2016-1384.

Uncertainty components*, in % of the activity concentration, due to

encertaining componentia , in		Remarks	Evaluation type (A or B)	Relative sensitivity Factor
counting statistics	_0.04		_A	
weighing	_0.03		_B	
dead time	_0.03		_B	
background	_0.03		_A	
pile-up	_n.a			
counting time	_0.01		_B	
adsorption	_0.05		_B	
impurities	_<0.03 _	no impurities detected	_B	
tracer and interpolation of efficiency curve	_ n.a			
model and decay data	_0.12		_B	
ionization quenching and <i>kB</i> value TDCR value and	_0.07		_B	
interpolation of efficiency curve	_0.10		_B	
decay correction	_<0.01_		_B	
PMT asymmetry	_0.05		_B	
resolving time	_ n.a			
extrapolation of efficiency curve	_n.a			
fitting uncertainty	_ n.a			
dilution	_0.02	two dilution steps	_B	
combined uncertainty (as quadratic sum of all uncertainty components)	_0.20(

^{*} The uncertainty components are to be considered as approximations of the corresponding standard deviations (see also Metrologia, 1981, 17, 73 and Guide to expression of uncertainty in measurement, http://www.bipm.org/en/publications/guides/

Detailed Uncertainty Budget

Laboratory: <u>TAEK</u>; Radionuclide: <u>Co-60</u>; Ampoule number: <u>2</u>.

Uncertainty components*, in % of the activity concentration, due to

Remarks	Evaluation	Relative

type (A or B) sensitivity

Factor

counting statistics	_ 0.42 _	_current measurementA1
weighing	_ 0.003 _	<u>2 µg precision microbalance</u> <u>B</u> <u>1</u>
dead time		
background		_ included in counting statistics
pile-up		
counting time		
adsorption		Negligible (counting rinsed ampoules with HPGe detector)
impurities		Negligible (not detectable at 20 cm with a HPGe detector)
tracer input parameters		
and statistical model		
quenching interpolation from		
half life ($T_{1/2} = 10975.8 \text{ d}$;	_ 0.0028 _	
u = 29.2 d) self absorption	_ <u>~0</u> _	decay correction during measurement period unc
extrapol.of efficiency curve other effects (if relevant)		
(explain)		7 ref source current meas. uncA 1 zation chamber cal. factor uncB 1
combined uncertainty (as quadratic sum of all	_1 <u>.26</u> ec	uation used is shown below
uncertainty components)	$\mathbf{a} = \frac{A}{m} = \mathbf{k}_{IK}$	C_{geom} . $C_{impurity}$. C_{Decay} . $C_{Duration}$. $\frac{I}{I_R}$. $\frac{A_R}{m}$

^{*} The uncertainty components are to be considered as approximations of the corresponding standard deviations (see also *Metrologia*, 1981, **17**, 73 and *Guide to expression of uncertainty in measurement*, <u>JCGM 100:2008</u>

Appendix E. Acronyms used to identify different measurement methods

Each acronym has six components, geometry-detector (1)-radiation (1)-detector (2)-radiation (2)-mode. When a component is unknown, ?? is used and when it is not applicable 00 is used.

Geometry	acronym	Detector	acronym
4π	4P	proportional counter	PC
defined solid angle	SA	press. Prop. Counter	PP
2π	2P	liquid scintillation counting	LS
undefined solid angle	UA	NaI(Tl)	NA
		Ge(HP)	GH
		Ge(Li)	GL
		Si(Li)	SL
		CsI(Tl)	CS
		ionization chamber	IC
		grid ionization chamber	GC
		Cerenkov detector	CD
		calorimeter	CA
		solid plastic scintillator	SP
		PIPS detector	PS

Radiation	acronym	Mode	acronym
positron	РО	efficiency tracing	ET
beta particle	BP	internal gas counting	IG
Auger electron	AE	CIEMAT/NIST	CN
conversion electron	CE	sum counting	SC
mixed electrons	ME	coincidence	СО
bremsstrahlung	BS	anti-coincidence	AC
gamma rays	GR	coincidence counting with	СТ
		efficiency tracing	
x-rays	XR	anti-coincidence counting	AT
		with efficiency tracing	
photons $(x + \gamma)$	PH	triple-to-double coincidence	TD
		ratio counting	
photons + electrons	PE	selective sampling	SS
alpha particle	AP	high efficiency	HE
mixture of various radi-	MX	digital coincidence counting	DC
ation			

Examples of methods	acronym
$4\pi(\text{PC})\beta$ - γ coincidence counting	4P-PC-BP-NA-GR-CO
$4\pi(\text{PPC})\beta$ - γ coincidence counting	4P-PP-MX-NA-GR-CT
eff. trac	
defined solid angle α -particle	SA-PS-AP-00-00-00
counting with a PIPS detector	
$4\pi(\text{PPC})\text{AX-}\gamma(\text{GeHP})$ -	4P-PP-MX-GH-GR-AC
anticoincidence counting	
$4\pi \text{CsI-}\beta, \text{AX}, \gamma \text{ counting}$	4P-CS-MX-00-00-HE
calibrated IC	4P-IC-GR-00-00-00
internal gas counting	4P-PC-BP-00-00-IG