<u>Update of the BIPM comparison BIPM.RI(II)-K1.Co-57 of</u> activity measurements of the radionuclide ⁵⁷Co to include the 2013 result of the <u>POLATOM (Poland), the 2015 result of the NMISA (South Africa),</u> <u>the 2021 result of the CMI (Czech Republic),</u> and to link the CCRI(II)-S6.Co-57 comparison

C. Michotte¹, S. Courte¹, M. Nonis¹, R. Coulon¹, G. Ratel¹, T. Dziel², A. Muklanowicz², T. Ziemek², M.J. van Staden³, M.W. van Rooy³, J. Lubbe³, J. Sochorová⁴, P. Auerbach⁴, B. Zimmerman^{5,#}

 ¹ Bureau International des Poids et Mesures, Sèvres
 ² National Centre for Nuclear Research Radioisotope Centre POLATOM, 05-400 Otwock, Poland
 ³ National Metrology Institute of South Africa, Cape Town, South Africa
 ⁴ Czech Metrological Institute - Inspectorate for Ionizing Radiation, Czech Republic

⁵ National Institute of Standards and Technology, Gaithersburg, USA

Abstract

Three new participations in the BIPM.RI(II)-K1.Co-57 comparison have been added to the previous results and this has produced a revised value for the key comparison reference value (KCRV), calculated using the power-moderated weighted mean. A link has been made to the CCRI(II)-S6.Co-57 comparison piloted by the International Atomic Energy Agency (IAEA) in 2008 for which one sample of the ⁵⁷Co radioactive solution was sent to the SIR. Two NMIs used the S6 comparison to update their degree of equivalence. The degrees of equivalence between each equivalent activity measured in the International Reference System (SIR) and the KCRV have been calculated and the results are given in the form of a table for the remaining seven NMIs in the BIPM.RI(II)-K1.Co-57 comparison and the three eligible participants in the CCRI(II)-S6.Co-57 comparison. A graphical presentation is also given.

1. Introduction

The SIR for activity measurements of γ -ray-emitting radionuclides was established in 1976. Each national metrology institute (NMI) may request a standard ampoule from the BIPM that is then filled with 3.6 g of the radioactive solution. For radioactive gases, a different standard ampoule is used. Each NMI completes a form that details the standardization method used to determine the absolute activity of the radionuclide and the full uncertainty budget for the evaluation. The ampoules are sent to the BIPM where they are compared with standard sources of ²²⁶Ra using pressurized ionization

[#] Pilot of the 2008 CCRI(II)-S6.Co-57 comparison, as a Consultant to the IAEA

chambers. Details of the SIR method, experimental set-up and the determination of the equivalent activity, A_e , are all given in [1].

From its inception until 31 December 2021, the SIR has measured 1033 ampoules to give 788 independent results for 72 different radionuclides. The SIR makes it possible for national laboratories to check the reliability of their activity measurements at any time. This is achieved by the determination of the equivalent activity of the radionuclide and by comparison of the result with the key comparison reference value determined from the results of primary standardizations. These comparisons are described as BIPM ongoing comparisons and the results form the basis of the BIPM key comparison database (KCDB) of the CIPM Mutual Recognition Arrangement (CIPM MRA) [2]. The comparison described in this report is known as the BIPM.RI(II)-K1.Co-57 key comparison and includes results published previously [3 - 6].

In addition, an international comparison piloted by the International Atomic Energy Agency (IAEA) was held in 2004 for this radionuclide, CCRI(II)-S6.Co-57 [7]. Nine laboratories took part in this comparison from which five are signatories/designated institutes of the MRA. A link to the SIR has been evaluated thanks to the participation of the NIST in both comparisons. The IFIN-HH and LNMRI/IRD had previously participated in the SIR and have updated their results through this CCRI(II) comparison.

2. Participants in the BIPM.RI(II)-K1.Co-57

In addition to the ampoules submitted by the NMISA and the CMI, which replace their earlier SIR submissions, the POLATOM has submitted an ampoule for inclusion in this comparison. The details of the laboratories that have participated in the BIPM.RI(II)-K1 comparison are given in Table 1a, with the earlier submissions being taken from [3 - 6]. In cases where the laboratory has changed its name since the original submission, both the earlier and the current acronyms are given, as it is the latter that is used in the KCDB. The AECL (Atomic Energy of Canada Ltd) is not part of the NMI in Canada but was an invited participant in various SIR comparisons, as in the early years, J.G.V. Taylor of the AECL was a personal member of the predecessor to the CCRI(II). The date of measurement in the SIR is also given in Table 1a and is used in the KCDB and all references in this report.

NMI	Original acronym	Full name	Country	Regional metrology organization	Date of measurement at the BIPM YYYY-MM-DD
NPL		National Physical Laboratory	United Kingdom	EURAMET	1976-12-28
СМІ	UVVVR CMI-IIR	Český Metrologický Institut	Czechia	EURAMET	1977-02-23 1980-01-07 1991-08-20 2021-12-10

Table 1a.	Details of the	participants in	the BIPM.RI(II)	-K1.Co-57
		1 1		

NMI	Original acronym	Full name	Country	Regional metrology organization	Date of measurement at the BIPM YYYY-MM-DD
BKFH	MKEH OMH	Magyar Kereskedelmi Engedélyezési Hivatal	Hungary	EURAMET	1977-06-15 1983-02-09 1996-07-12
ANSTO		Australian Nuclear Science and Technology Organisation	Australia	APMP	1978-01-12
NIST	NBS	National Institute of Standards and Technology	United States	SIM	1978-07-03 1981-03-06 1985-11-13 1999-05-05 2002-04-15 2010-05-21
IAEA		International Atomic Energy Agency	_	_	1979-02-09 1979-02-12
LNE- LNHB	LMRI LPRI BNM- LNHB	Laboratoire national de métrologie et d'essais - Laboratoire national Henri Becquerel	France	EURAMET	1979-04-09 1985-07-09 1990-11-13 1995-07-18 1999-10-18 2007-06-20
IRA	IER	Institut de Radiophysique Appliquée	Switzerland	EURAMET	1980-04-29 1996-09-20 2000-12-04
AECL*		Atomic Energy of Canada Ltd	Canada	_	1980-06-16 1982-05-11
РТВ		Physikalisch- Technische Bundesanstalt	Germany	EURAMET	1983-03-09 2005-03-31
NIRH		National Institute of Radiation Hygiene	Denmark	EURAMET	1985-04-29

Table 1a continued. Details of the participants in the BIPM.RI(II)-K1.Co-57

NMI	Original acronym	Full name	Country	Regional metrology organization	Date of measurement at the BIPM YYYY-MM-DD
NMISA	NAC [§] CSIR- NML	National Metrology Institute, South Africa	South Africa	AFRIMET	1985-10-08 2015-09-15
NMIJ	ETL	National Metrology Institute of Japan	Japan	APMP	1986-02-06 1996-04-05 2004-03-17 2006-09-19
LNMRI/IRD		Laboratorio Nacional de Metrologia das Radiaçoes Ionizantes	Brazil	SIM	1991-02-28
PTKMR	PSPKR P3KRBiN	Pusat Teknologi Keselamatan dan Metrologi Radiasi	Indonesia	APMP	1992-07-02
VNIIM		D.I. Mendeleyev Institute for Metrology	Russian Federation	COOMET	1992-07-10
BEV		Bundesamt für Eich- und Vermessungswesen	Austria	EURAMET	1998-06-24
KRISS		Korea Research Institute of Standards and Science	Republic of Korea	APMP	1999-01-05
IFIN-HH		Institutul de Fizica si Inginerie Nucleara- "Horia Hulubei"	Romania	EURAMET	2008-07-21**
POLATOM	RC	National Centre for Nuclear Research Radioisotope Centre POLATOM	Poland	EURAMET	2013-11-19

 Table 1a continued. Details of the participants in the BIPM.RI(II)-K1.Co-57

* Federal Crown corporation, not part of the NMI in Canada (see text)

**Participation superseded by the participation in the CCRI(II)-S6.Co-57 comparison

[§] NAC is another institute in the country now named iThemba LABS

The NMIs who took part in the CCRI(II) international comparison, CCRI(II)-S6.Co-57 organized by the Comité Consultatif des Rayonnements Ionisants – section II and

piloted by the IAEA in 2008 and who are eligible for the KCDB are shown in Table 1b including the NIST, the linking laboratory.

NMI	Full name	Country	Regional metrology organization
BARC	Bhaba Atomic Research Centre	India	APMP
CMI*	Český Metrologický Institut	Czechia	EURAMET
IFIN-HH	Institutul de Fizica si Inginerie Nucleara - "Horia Hulubei"	Romania	EURAMET
LNMRI/IRD	Laboratorio Nacional de Metrologia das Radiaçoes Ionizantes/ Instituto de Radioproteção e Dosimetria	Brazil	SIM
NIST**	National Institute of Standards and Technology	United States	SIM

Table 1b. Details of the participants in the 2008 CCRI(II)-S6.Co-57 to be linked to BIPM.RI(II)-K1.Co-57 comparison

* Participation superseded by a more recent SIR submission; the full acronym in 2008 was CMI-IIR ** Linking laboratory

3. NMI standardization methods

Each NMI that submits ampoules to the SIR has measured the activity either by a primary standardization method or by using a secondary method, for example a calibrated ionization chamber. In the latter case, the traceability of the calibration needs to be clearly identified to ensure that any correlations are taken into account.

A brief description of the standardization methods, the activities submitted, the relative standard uncertainties (k = 1) and the half-life used by the participants in the SIR are given in Table 2. The uncertainty budgets for the three new submissions are given in Appendix 1a, previous uncertainty budgets are given in the earlier K1 reports [3 –6]. The uncertainty budgets for the eligible participants in the CCRI(II)-S6.Co-57 comparison are given in Appendix 1b. The acronyms used for the measurement methods are given in Appendix 2.

NMI or	Method used and	Half-life	Activity	Reference	Relative	standard
laboratory	acronym (see	/ d	A _i /kBq	date	uncertai	$\frac{10^{-2}}{2}$
	Appendix 2)				by met	thod of
					evalu	
			100.0	YYYY-MM-DD	A	В
NPL	Pressurized IC *	-	428.8	1976-12-20	0.04	2.03
		270	435.5	0 h UT	0.02	1.20#
CMI	$4\pi(e,x)-\gamma$	270	35 740	1977-01-20	0.03	1.30"
	coincidence	270	4 101	1070.09.20	0.10	0.52
		270	4 101	1979-08-30 10 h UT	0.10	0.55
			5 685	1011 01	0.07	0.07
		_	5 085	1991-08-05 12 h UT	0.07	0.07
	$\int d\pi (\mathbf{PC})(\mathbf{e} \mathbf{x}) - \gamma$	271 81(4)	5 406	2021-12-10	0.15	0.46
	coincidence	271.01(1)	5 100	11 h UT	0.15	0.10
	4P-PC-MX-NA-GR-CO					
BKFH	4π(e,x)-γ	271.4(3)	5 516	1977-06-01	0.10	0.49
	coincidence		5 518	12 h UT		
		271.4(3)	3 726	1983-05-01	0.03	0.29
				12 h UT		
		271.79(9)	5 065	1996-07-01	0.03	0.30
		[9]		0 h UT		
ANSTO	$4\pi(e,x)-\gamma$	270.9	8 579	1978-01-15	0.3	0.8
	coincidence		• • • •	0 h UT	0.01	0.70
NIST	Pressurized IC	272.4(1)	2 867	1978-06-19	0.01	0.58
	calibrated in 1978		1 720	17 h UT	0.01	0.00
	by $4\pi(e,x)-\gamma$	272.2(2)	1/38	1981-01-16	0.01	0.39
	coincidence for the		6 1 4 6	21 h U l	0.02	0.21
	nucifide considered	-	0 140	1983-10-28 17 h UT	0.02	0.51
		271 7(2)	16 810	1999_0/1_22	0.04	0.31
		271.7(2)	10 010	1999 04 22 19 h UT	0.04	0.51
		271.74(6)	8 623	2002-04-01	0.05	0.29
				12 h UT		•
	$4\pi(LS)(e,x)-\gamma$ anti-	271.80(5)	125 640	2008-04-01	0.08	0.34
	coincidence			12 h UT		
	4P-LS-PE-NA-GR-AC					
IAEA	NBS Pressurized	272.4(1)	2 805	1978-06-19	0.01	0.58
/NBS	IC *			T/hUT		
IAEA	-	270.9	17 230	1978-12-07	0.07	0.30
/RCC †				12 h UT		

Table 2. Standardization methods of the SIR participants for ⁵⁷Co

* calibrated by 4π(e,x)-γ coincidence for the nuclide considered
 # maximum error instead of standard uncertainty
 † The Radiochemical Centre Ltd, Amersham

NMI or	Method used and	Half-life	Activity	Reference	Relative	standard
laboratory	acronym (see	/ d	A_i/kBq	date	uncertaint	y / 10 ⁻² by
-	Appendix 2)		-		method of	evaluation
				YYYY-MM-DD	А	В
I NE-I NHB	$4\pi(e,x)-\gamma$	_	1 373	1979-02-09	0.05	0.05
LINE-LINIID	coincidence		1 371	0 h UT		
	Pressurized IC *	_	1 538	1985-06-25	0.07	0.26
			1 525	12 h UT		
	$4\pi(e,x)-\gamma$	_	4 447	1990-10-09	0.05	0.01
	coincidence		4 501	12 h UT		
	Pressurized IC *	-	3 146	1995-06-15	0.02	0.15
			3 141	12 h UT		
	$4\pi(e,x)-\gamma$	271.79(9)	2 160	1999-06-25	0.50	< 0.01
	coincidence	[9]		12 h UT		
	4πγ well-type	271.8(5)	3 669 ^a	2007-06-01	0.06	0.46
	crystal 4P- NA-GR-00-00-00		3 653 ^b	12 h UT		
	$4\pi(LS)(e x)-y$ anti-	-	3 667 ^a		0.21	0.11
	coincidence		3 651 ^b			
	4P-LS-MX-NA-GR-AC					
IRA	$4\pi(PC)(e,x)-\gamma$	—	6 416	1980-04-01	0.05	0.30
	coincidence		6 416	0 h UT		
	Pressurized IC	-	2 746	1996-09-01	0.01	0.31
	traceable to the			0 h UT		
	1980 primary	271.79(9)	1 955	2000-12-01	0.04	0.31
	measurement			12 h UT	0.00	0.11
AECL	$4\pi(PC)-\gamma$	—	16 411	1980-03-20	0.03	0.11
	coincidence		15 0/1	1/hUT	0.00	0.15
		—	2 357	1982-03-25	0.08	0.15
	Dreasurized IC		1 002	1/ fl U I 1082 02 01	0.00	0.27
PTB	Pressurized IC	-	4 062	1983-03-01 0 h UT	0.09	0.27
	$4\pi(PC)$ -y and			01101		
	$4\pi(PPC) \approx coinc$					
	for the nuclide					
	considered					
	Pressurized IC	271.83(8)	1289.1	2005-04-01	0.06	0.29
	4P-IC-GR-00-00-00	_//////////////////////////////////////	1284.4	0 h UT	0.00	0
	calibrated in 2003					
	by $4\pi(PPC)e_c-\gamma$					
	4P-PP-MX-NA-GR-CO					
	coinc. for the					
	nuclide considered					

Table 2 continued. Standardization methods of the participants for ⁵⁷Co

* calibrated by $4\pi(e,x)-\gamma$ coincidence for the nuclide considered ^a same ampoule measured by two different methods ^b same ampoule measured by two different methods

NMI or	Method used and	Half-life	Activity	Reference	Relative	standard
laboratory	acronym (see	/ d	A_i/kBq	date	uncertaint	y / 10 ⁻² by
	Appendix 2)		_		method of	evaluation
				YYYY-MM-DD	А	В
NIRH	Pressurized IC	_	54 120	1985-05-01	0.13	1.90
				0 h UT		
NMISA	$4\pi(LS)(e,x)-\gamma$	271.77(10)	58 900	1985-08-27	0.16	0.19
	coincidence	[8]		12 h UT		
	$4\pi(LS)(e,x)-\gamma$	271.80(5)	2 220.1	2015-03-24	0.04	0.21
	coincidence			10 h UT		
	4P-LS-MX-NA-GR-CO		1.010	1006.00.04	0.11	0.00
NMIJ	$4\pi(PC)(e,x)-\gamma$	-	1 913	1986-02-04	0.11	0.23
	coincidence		1 921	12 h UT	0.12	0.00
		—	3 632	1996-03-01	0.12	0.28
	D : 110	071.70	1 771 5	12 h UT	0.00	0.22
	Pressurized IC	271.79	1 //1.5	2004-02-01	0.08	0.32
	traceable to the			0 n 0 1		
	1996 measurement					
	above					
	$4\pi(PC)(e,x)-\gamma$	271.4(3)	1 684	2006-06-01	0.28	0.04
	coincidence			0 h UT		
	4P-PC-MX-NA-GR-CO					
LNMRI	$4\pi(\text{PPC})-\gamma$	—	1 497	1990-10-01	0.39	0.46
/IRD	coincidence		1 510	12 h UT		
PTKMR	_	_	6 776	1992-03-01	0.51	_
			6 948	5h UT		
VNIIM	$4\pi(e,x)-\gamma$	_	4 998	1992-06-10	0.14	0.29
	coincidence			12 h UT		
BEV	Pressurized IC	271.79	1 093	1998-06-01	0.80	0.67
	traceable to the			0 h UT		
	NPL					
KRISS	$4\pi(\text{PPC})-\gamma$	271.77(10)	2 671	1998-09-01	0.11	0.15
	coincidence			0 h UT		
IFIN-HH	$4\pi\beta$ - γ coincidence	271.80(5)	3 254	2008-07-01	0.75	0.19
	method with			0 h UT		
	extrapolation					
	4P-PC-MX-NA-GR-CO	071.00(5)	17 1 40	0010 11 01	0.14	0.40
POLATOM	CO/AC	271.80(5)	17 143	2013-11-01	0.14	0.40
				12 h UT		

Table 2 continued. Standardization methods of the participants for ⁵⁷Co

Details regarding the solutions submitted are shown in Table 3, including any impurities, when present, as identified by the laboratories. When given, the standard uncertainties on the evaluations are shown.

NMI/ SIR	Chemical	Solvent	Carrier:	Density	Relative activity of
year	composition	conc. /	conc.	$/(g \text{ cm}^{-3})$	impurity ^a
		(mol dm ⁻³)	/(µg g ⁻¹)		
NPL 1976	CoCl ₂ in HCl	0.1	CoCl ₂ : 100	_	_
CMI	CoCl ₂ in HCl	0.01	CoCl ₂ :	_	⁵⁶ Co : 0.10(5) %
1977			20 000		~ /
1980		0.08	CoCl ₂ :	_	⁵⁶ Co : 0.098(10) %
			20 000		⁵⁸ Co : 0.0096(10) %
1991		0.1	$CoCl_2: 20$	1	⁵⁶ Co : 0.090(9) %
					⁵⁸ Co : 0.050(5) %
					⁶⁰ Co : 0.0003(2) %
2021				1.000	⁵⁶ Co : 0.0390(31) %
		0.1			⁵⁸ Co : 0.0150(18) %
BKFH	CoCl ₂	0.1	$CoCl_2: 25$	—	⁵⁶ Co : 0.015 (3) %
1977					⁵⁸ Co : 0.020 (4) %
					⁶⁰ Co : 0.025 (5) %
1983					⁵⁶ Co : 0.002 (1) %
					⁵⁸ Co : 0.0015 (8) %
					⁶⁰ Co : 0.050 (15) %
1996					_
ANSTO	CoCl ₂	0.1	CoCl2:	1.00	⁵⁶ Co : 0.093 (30) %
1978	in HCl		100		⁵⁸ Co : 0.010 (30) %
NIST 1978	Solvent: HCl	1	Co:110	1.016(2)	⁵⁶ Co : 0.128(6) %
					⁵⁸ Co : 0.032(2) %
1981			Co: 100	1.016(2)	56 Co: 0.0995(30) %
1007			~ ~ ~ .	1.01.5	5^{5} Co: 0.0285(14) %
1985	CoCl ₂ in HCl	1	$CoCl_2$:	1.016	$^{58}C_0: 0.2(8) \times 10^{-4} \%$
			480		65 Z n : 5 5(3) × 10 ⁻⁴ %
1000			CoClai	1.016(1)	56 Co : 0.035(4) %
1999			1000	1.010(1)	⁵⁸ Co : 0.0093(9) %
2002				1 016(1)	⁵⁶ Co : 0.0132(2) %
2002			200	1.010(1)	⁵⁸ Co : 0.0019(4) %
2010 ^b		0.1	CoCl ₂ : 44	1.000	⁵⁶ Co : 0.056(4) %
					⁵⁸ Co : 0.021(3) %
IAEA	Solvent: HCl	1	Co:110	1.016(2)	56 Co : 0.128(6) %
/NBS 1979					³ °Co : 0.032(2) %
IAEA	_	_	Co: 100	_	${}^{56}Co: 0.011(1) \%$
/RCC 1979					⁵⁸ Co : 0.0010(5) %

Table 3. Details of the s	solution of ⁵⁷ C	o submitted
---------------------------	-----------------------------	-------------

NMI/ SIR	Chemical	Solvent	Carrier:	Density	Relative activity of
year	composition	conc. /	conc.	$/(g \text{ cm}^{-3})$	impurity ^a
		$(\text{mol } dm^{-3})$	$/(\mu g g^{-1})$		560 00000000
LNE-LNHB	CoCl ₂ in HCl	0.1	$CoCl_2: 10$	0.999	50 Co : 0.055(5) %
1979					$^{60}Co: 0.092(7)\%$
1095					56Co : 0.012(2) %
1985					58 Co : 0.015(1) %
1990					⁵⁶ Co : 0.113(2) %
1770					⁵⁸ Co : 0.050(1) %
1995			$CoCl_2:50$	1	56 Co : 0.089(3) %
					58 Co : 0.019(1) %
1999			Co: 10	1.001	50 Co: 0.047(5) %
2007				1 0001	$56C_0: 0.008(1)\%$
2007			$CoCl_2:60$	1.0001	58 Co : 0.0220(0) %
IRA 1980	CoCla in HCl	0.1	$C_0C_{12} \cdot 25$		56 Co : 0.030(5) %
IKA 1760		0.1	$COC1_2 \cdot 25$	_	⁵⁸ Co : 0.0028(5) %
1996			$CoCl_2:60$	_	56 Co: 4.1(8) × 10 ⁻⁴ %
					58 Co : 5.6(11) × 10 ⁻⁵ %
					60 Co : 1.3(4) × 10 ⁻³ %
2000			$CoCl_2: 25$	1.000(7)	56 Co: 7.0(1.3) × 10 ⁻⁴ %
					58 Co : 1.2(0.2) × 10 ⁻⁴ %
AECL	CoCl ₂ in HCl	0.3	$CoCl_2: 10$	1.0	56 Co : 0.11 %
1980					$^{60}Co: 0.029\%$
1092			$C_{2}C_{1} + 20$	1.00	56Co : 0.03(1) %
1982			$COCI_2: 20$	1.00	58 Co : 0.010(5) %
PTB 1983	CoCl ₂ in HCl	0.1	$CoCl_2:50$	1.00	56 Co: 5.1(5) × 10 ⁻³ %
					58 Co : 0.5(2) × 10 ⁻³ %
					60 Co : 0.5(2) × 10 ⁻³ %
2005			$CoCl_2:50$	1.00	56 Co: 1.94(4) × 10 ⁻⁴ %
					58 Co: 4.59(9) × 10 ⁻⁵ %
					65 Zn : 6.9(21) × 10 ⁻⁴ %
NIRH	CoCl ₂ in HCl	0.1	—	_	56 Co : 0.098(2) %
1985					⁵⁶ Co : 0.021(1) %
NMISA	CoCl ₂ in HCl	1	Co: 223	1.0169	⁵⁶ Co : 0.0620(5) %
1985					⁵⁸ Co : 0.0130(4) %
2015	CoCl ₂ in HCl	0.1	Co: 10	1.0	_
NMIJ 1986	CoCl ₂ in HCl	0.1	$CoCl_2:50$	1.000	-
1996				1.00	-
2004			CoCl ₂ :	1.002	-
2006			100		_

Table 3 continued.	Details of the	e solution of	⁵⁷ Co submitted
--------------------	----------------	---------------	----------------------------

NMI/ SIR year	Chemical composition	Solvent conc. / (mol dm ⁻³)	Carrier: conc. /(µg g ⁻¹)	Density /(g cm ⁻³)	Relative activity of impurity ^a
LNMRI /IRD 1991	CoCl ₂ in HCl	0.1	CoCl ₂ : 100	1.003	⁵⁶ Co : < 0.3 %
PTKMR 1992	CoCl ₂ in HCl	1	CoCl ₂ : 10	1	_
VNIIM 1992	CoCl ₂ in HCl	0.1	Co: 10	1.001	⁵⁶ Co : 0.010(2) % ⁵⁸ Co : 0.030(3) %
BEV 1998	CoCl ₂ in HCl	0.1	CoCl ₂ : 50	1	56 Co : 1.5 × 10 ⁻⁵ %
KRISS 1999	CoCl ₂ in HCl	0.1	CoCl ₂ : 60	1.0015	_
IFIN-HH 2008	CoCl ₂ in HCl	0.1	$CoCl_2: 20$	1	⁵⁶ Co : 0.065(36) % ⁵⁸ Co : 0.026(18) %
POLATOM 2013	CoCl ₂ in HCl	0.1	$CoCl_2:55$	1.0	< 0.1 %

Table 3 continued. Details of the solution of ⁵⁷Co submitted

^a The ratio of the activity of the impurity to the activity of ⁵⁷Co at the reference date.

^b Same solution as for the CCRI(II)-S6.Co-57 comparison.

4. **Results**

All the submissions to the SIR since its inception in 1976 are maintained in a database known as the "master-file". The latest submissions have added three ampoules for the activity measurements for 57 Co giving rise to 58 ampoules in total. The SIR equivalent activity, A_{ei} , for each ampoule for the previous and new results is given in Table 4a for each NMI, *i*. The relative standard uncertainty arising from the measurements in the SIR is also shown. This uncertainty is additional to that declared by the NMI for the activity measurement shown in Table 2. Although submitted activities are compared with a given source of 226 Ra, all the SIR results are normalized to the radium source number 5 [1].

No recent submission has been identified as a pilot study so the result of each NMI is normally eligible for inclusion on the KCDB platform of the CIPM MRA [2].

The half-life used by the BIPM is 271.80(5) d from the BIPM Monographie 5 [8]. The same half-life value has been used in the CCRI(II)-S6.Co-57 comparison.

NMI		Mass of	Activity	No. of	SIR	Relative	Combined
/ SIR	year	solution	submitted	Ra	A _{e,i} / kBq	standard	uncertainty
		m_i/g	A_i	source		uncertainty from SIR	$u(A_{\rm e})$ / kBq
NPL	1976	3 624 9	428.8	1	168 000 °	15×10^{-4}	3400
	1770	3.681 2	435.5	1	167 600	13×10^{-4}	3400
CMI		0.957 41 ^d	35 740	4	168 600	$130^{e} \times 10^{-4}$	3100
0	1977				100 000	150 × 10	0100
	1980	3.603 90	4 101	2	168 600	18×10^{-4}	1000
	1991	3.603 5	5 685	2	170 000	$29^{\text{e}} \times 10^{-4}$	500
	2021	3.595 70	5 406	2	168 620	15×10^{-4}	850
BKFH		3.602 6	5 516	2	168 800	19×10^{-4}	900
	1977	3.604 0	5 518		168 700	19×10^{-4}	900
	1983	3.603 0	3 726	2	168 900	$32^{e} \times 10^{-4}$	700
	1996	3.612 6	5 065	2	169 300	10×10^{-4}	500
ANST	0	3.591 23	8 579	2	165 900	$110^{\rm e} \times 10^{-4}$	2300
	1978						
NIST	1978	3.751 63	2 867	2	170 100	$22^{e} \times 10^{-4}$	1100
	1981	3.660 50	1 738	1	169 700	15×10^{-4}	700
	1985	3.602 74	6 146	2	170 300	11×10^{-4}	600
	1999	3.758 6(2)	16 810	3	171 400	14×10^{-4}	600
	2002	3.609 5(2)	8 623	3	171 300	11×10^{-4}	500
	2010	3.570 30	125 640	3	168 900 ^h	9.6×10^{-4}	600
IAEA/	NBS 1979	3.670 63	2 805	1	169 800	14×10^{-4}	1000
IAEA	RCC 1979	3.557 5	17 230	3	168 600	9 × 10 ⁻⁴	500

Table 4a.Results of SIR measurements of 57Co

NMI / SIR year	Mass of solution m _i /g	Activity submitted A _i	No. of Ra source used	SIR A _{e,i} / kBq	Relative standard uncertainty from SIR	Combined uncertainty $u(A_e) / kBq$
LNE-LNHB	3.621 40	1 373	1	168 550	21×10^{-4}	500
1979	3.616 79	1 371		168 160	23×10^{-4}	500
1985	3.600 58	1 538	1	168 030	16×10^{-4}	500
	3.570 64	1 525		167 950		500
1990	3.575 17	4 447	2	169 210	12×10^{-4}	210
	3.618 68	4 501		169 118		220
1995	3.627 1	3 146	2	168 980	13×10^{-4}	340
	3.621 7	3 141		168 820	14×10^{-4}	350
1999	3.587 49	2 160	1	167 400	16×10^{-4}	900
2007	3.590 2	3 669	2	168 690 ^a	11×10^{-4}	800
		3 667		168 590 ^{bc}	11×10^{-4}	400
	3.574 6	3 653	2	168 640 ^a	11×10^{-4}	800
		3 651		168 540 ^{bc}	11×10^{-4}	400
IRA 1980	3.602 0	6 4 1 6	2	167 730	17×10^{-4}	600
	3.601 8	6 4 1 6		167 660	18×10^{-4}	600
1996	3.641 0	2 746	1	168 500	12×10^{-4}	600
2000	3.588 9(1)	1 955	1	168 000	16×10^{-4}	600
AECL	$0.293 \ 35^{\rm f}$	16 411	3	170 440	21×10^{-4}	400
1980	0.269 41	15 071		170 470	21×10^{-4}	400
1982	$0.177\ 194^{\rm f}$	2 357	1	168 840	29×10^{-4}	600
	0.124 928	1 662		169 130	$28^{e} \times 10^{-4}$	600
PTB 1983	3.713 2	4 062	2	168 900	11×10^{-4}	500
2005	3.635 4(9)	1289.1	1	169 490 ^c	18×10^{-4}	600
	3.622 2(9)	1284.4		169 340	14×10^{-4}	500
NIRH 1985	3.425 5	54 120	4	170 400	11×10^{-4}	3200
NMISA 1985	2.777 5 ^g	58 900	4	170 800	8 × 10 ⁻⁴	400
2015	3.523 19	2 220.1	1	170 640	15×10^{-4}	450

 Table 4a continued.
 Results of SIR measurements of 57Co

NMI / SIR year	Mass of solution <i>m_i</i> /g	Activity submitted A_i	No. of Ra source used	SIR A _{e,i} / kBq	Relative standard uncertainty from SIR	Combined uncertainty u(A _e) / kBq
NMIJ 1986	3.608 1	1 913	1	169 500	13×10^{-4}	500
	3.623 1	1 921		169 150	15×10^{-4}	500
1996	3.584 0	3 632	2	167 900	10×10^{-4}	500
2004	3.750 74	1771.5	1	165 200	17×10^{-4}	600
2006	3.619 79	1684.3	1	168 500	14×10^{-4}	500
LNMRI	3.606 28	1 497	1	169 400	13×10^{-4}	1000
/IRD 1991	3.624 70	1 510	1	169 300	14×10^{-4}	1000
PTKMR	3.575	6 776	2	152 420	10×10^{-4}	800
1992	3.666	6 948		152 250	10×10^{-4}	800
VNIIM 1992	3.562 40	4 998	2	167 300	12×10^{-4}	600
BEV 1998	3.642	1 093	1	168 800	19×10^{-4}	1800
KRISS 1999	3.608 16	2 671	1	169 710	13 × 10 ⁻⁴	390
IFIN-HH	3.602 64	3 254	1	171 200	$105^{e} \times 10^{-4}$	2200
2008				169 500 ⁱ	19×10^{-4}	1400
POLATOM 2013	3.664 29	17 143	3	170 180	9 × 10 ⁻⁴	730

 Table 4a continued.
 Results of SIR measurements of ⁵⁷Co

^a activity measurement using 4P-NA-GR-00-00-00

^b activity measurement using 4P-LS-MX-NA-GR-AC; these values are used for the KCRV and the KCDB

^c the mean of the two A_e values is used with an averaged uncertainty as attributed to an individual entry [12] ^d mass and activity after transfer to a NBS-type ampoule at the BIPM, with addition of HCl (0.01 mol/dm³)

^e the uncertainty from the SIR reflects the NMI uncertainty of the impurities

^f mass of solution before dilution

^g mass of solution before dilution. Mass after dilution = 3.59975 g.

^h Result used to link the CCRI(II)-S6 comparison

ⁱ result of a further SIR measurement carried about one year later when the impurity correction in the SIR is reduced by a factor 10. Result used for the KCRV. See [6] for more detail.

The NMISA and CMI SIR measurements were repeated after 120 days and 54 days respectively giving a result in agreement within standard uncertainty. The impurity correction factor for the CMI SIR measurement amounts to 1.015(1) and is dominated by the contribution of ⁵⁶Co. The SIR is more sensitive to ⁵⁶Co, a high-energy gamma-emitter than to ⁵⁷Co by a factor 33.

An international comparison for this radionuclide, CCRI(II)-S6.Co-57 was held in 2008 [7] and the three laboratories from this comparison to be added to the matrix of degrees of equivalence are given in Table 1b, together with the NIST participation that served to link the comparison to the BIPM.RI(II)-K1 comparison. The IFIN-HH and the LNMRI/IRD used the CCRI(II) comparison to update their degree of equivalence from earlier SIR participation. The CMI result in the CCRI(II) comparison is superseded by their recent participation in the SIR.

The results $(A/m)_i$ of the CCRI(II) comparison have been linked to the BIPM.RI(II)-K1.Co-57 comparison through the measurement in the SIR of one ampoule of the CCRI(II) solution standardized by the NIST. The linking factor L_j is defined to be

$$L_j = A_{e,j} / (A/m)_j = 4799.7(46) \text{ mg}$$
 (a)

where the activity (MBq), mass (g) and equivalent activity (kBq) are taken from the row indicated in Table 4a for the NIST (2010). The relative standard uncertainty of L_j is 9.6 × 10⁻⁴, the uncertainty from the SIR measurement of the linking ampoule, also given in Table 4a.

The linked results are evaluated as

$$A_{\rm ei} = (A/m)_i L_j$$

where the primary activity concentration measured by the participants in the CCRI(II)-S6 comparison are taken from the Final report [7] and are shown in Table 4b. The uncertainties for the CCRI(II) comparison results linked to the SIR are comprised of the original uncertainties combined quadratically with the uncertainty in the link.

NMI	Measurement method and acronym (see Appendix 2 and [7])	Activity* concentration measured (A/m) _i / (MBq g ⁻¹)	Standard uncertainty <i>u_i</i> / (MBq·g ⁻¹)	Equivalent SIR activity A _{ei} / kBq	Combined standard uncertainty u _i / kBq
BARC	4P-PC-MX-NA-GR-CO 4P-IC-GR-00-00-00 ^{&}	35.95 36.12	0.12 0.38	172 550	600
CMI- IIR**	4P-PC-MX-NA-GR-AC 4P-IC-GR-00-00-00 [§] 4P-IC-GR-00-00-00 ^{&}	35.35 35.44 36.46	0.06 0.33 0.38	169 670	330
IFIN-HH	4P-PC-MX-NA-GR-CO	35.25	0.27	169 200	1300
LNMRI /IRD	4P-PC-MX-NA-GR-AC 4P-IC-GR-00-00-00 [§]	35.94 35.87	0.12 0.11	172 500	600
NIST	4P-LS-MX-NA-GR-AC 4P-IC-GR-00-00-00 [§]	35.19 35.71	0.12 0.12	168 900	600

Table 4b.Results of the 2008 CCRI(II)-S6 comparison of ⁵⁷Co including the
linking laboratory

*referenced to 12:00 UTC 1 April 2008

** participation superseded by a more recent SIR submission

[§] Ionization chamber calibrated by $4\pi(e,x) - \gamma$ coincidence counting, not used for equivalence

[&] Ionization chamber calibrated by third party or using third-party calibration source, not used for equivalence

4.1 <u>The Key Comparison Reference Value</u>

In May 2013 the CCRI(II) decided to calculate the key comparison reference value (KCRV) using the power-moderated weighted mean [10] rather than an unweighted mean, as had been the policy. This type of weighted mean is similar to a Mandel-Paule mean in that the NMIs' uncertainties may be increased until the reduced chi-squared value is one. In addition, it allows for a power α smaller than two in the weighting factor. As proposed in [10], α is taken as 2 - 3/N where N is the number of results selected for the KCRV. Therefore, all SIR key comparison results can be selected for the KCRV with the following provisions:

- a) only results for solutions standardized by primary techniques are accepted, with the exception of radioactive gas standards (for which results from transfer instrument measurements that are directly traceable to a primary measurement in the laboratory may be included);
- b) each NMI or other laboratory has only one result (normally the most recent result or the mean if more than one ampoule is submitted);
- c) results more than 20 years old are included in the calculation of the KCRV (but are not included in data shown in the KCDB or in the plots in this report as they have expired);

- d) possible outliers can be identified on a mathematical basis and excluded from the KCRV using the normalized error test with a test value of 2.5 and using the modified uncertainties;
- e) results can also be excluded for technical reasons; and
- f) the CCRI(II) is always the final arbiter regarding excluding any data from the calculation of the KCRV.

The data set used for the evaluation of the KCRVs is known as the "KCRV file" and is a reduced data set from the SIR master-file. Although the KCRV may be modified when other NMIs participate, on the advice of the Key Comparison Working Group of the CCRI(II), such modifications are made only by the CCRI(II) during one of its biennial meetings, or by consensus through electronic means (e.g., email) as discussed at the CCRI(II) meeting in 2013.

Consequently, the KCRV for ⁵⁷Co has been calculated to be 168.99(25) MBq with the power $\alpha = 1.8$ on the basis of the SIR results from the NPL, NIST (2010), ANSTO, IRA (1980), AECL (1982), LNMRI/IRD, VNIIM, MKEH (1996), KRISS, PTB (2005), NMIJ (2006), the LNE-LNHB (2007 anti- coincidence method), the IFIN-HH (2009 SIR measurement with a reduced impurity correction), POLATOM (2013), NMISA (2015) and CMI (2021). This can be compared with the previous KCRV values of 168.7(4) MBq published in 2003 [3], 168.77(35) MBq published in 2009 [5], 168.79(32) MBq published in 2012 [6], and and has been approved by the CCRI(II).

4.2 <u>Degrees of equivalence</u>

Every participant in a comparison is entitled to have one result included in the KCDB as long as the NMI is a signatory or designated institute listed in the CIPM MRA, and the result is valid (i.e., not older than 20 years). Normally, the most recent result is the one included. An NMI may withdraw its result only if all other participants agree.

The degree of equivalence of a given measurement standard is the degree to which this standard is consistent with the KCRV [2]. The degree of equivalence is expressed quantitatively in terms of the deviation from the key comparison reference value and the expanded uncertainty of this deviation (k = 2). The degree of equivalence between any pair of national measurement standards is expressed in terms of their difference and the expanded uncertainty of this difference and is independent of the choice of key comparison reference value.

4.2.1 Comparison of a given NMI result with the KCRV

The degree of equivalence of the result of a particular NMI, i, with the key comparison reference value is expressed as the difference D_i between the values

$$D_i = A_{e_i} - \text{KCRV} \tag{1}$$

and the expanded uncertainty (k = 2) of this difference, U_i , known as the equivalence uncertainty; hence

$$U_i = 2u(D_i). \tag{2}$$

When the result of the NMI i is included in the KCRV with a weight w_i , then

$$u^{2}(D_{i}) = (1-2w_{i}) u_{i}^{2} + u^{2}(\text{KCRV}).$$
 (3)

However, when the result of the NMI *i* is not included in the KCRV, then

$$u^{2}(D_{i}) = u_{i}^{2} + u^{2}(\text{KCRV}).$$
(4)

4.2.2 Comparison between pairs of NMI results

The degree of equivalence between the results of any pair of NMIs, i and j, is expressed as the difference D_{ij} in the values

$$D_{ij} = D_i - D_j = A_{e_i} - A_{e_j}$$
(5)

and the expanded uncertainty (k = 2) of this difference, $U_{ij} = 2u(D_{ij})$, where

$$u_{D_{ij}}^{2} = u_{i}^{2} + u_{j}^{2} - 2u(A_{ei}, A_{ej})$$
(6)

where any obvious correlations between the NMIs (such as a traceable calibration, or correlations normally coming from the SIR or from the linking factor in the case of linked comparison) are subtracted using the covariance $u(A_{ei}, A_{ej})$ (see [11] for more detail). However, the CCRI decided in 2011 that these "pair-wise degrees of equivalence" no longer need to be published as long as the methodology is explained.

Table 5 shows the matrix of all the degrees of equivalence as they will appear in the KCDB. It should be noted that for consistency within the KCDB, a simplified level of nomenclature is used with A_{ei} replaced by x_i . The introductory text is that agreed for the comparison. The graph of the results in Table 5, corresponding to the degrees of equivalence with respect to the KCRV (identified as x_R in the KCDB), is shown in Figure 1. This graphical representation indicates in part the degree of equivalence between the NMIs but obviously does not take into account the correlations between the different NMIs. It should be noted that the final data in this paper, while correct at the time of publication, will become out-of-date as NMIs make new comparisons. The formal results under the CIPM MRA [2] are those available in the KCDB.

Conclusion

The BIPM ongoing key comparison for ⁵⁷Co, BIPM.RI(II)-K1.Co-57 currently comprises seven valid results. The key comparison reference value has been updated using the power-moderated weighted mean to include the POLATOM, NMISA and CMI latest results. The SIR results have been analysed with respect to the updated KCRV determined for this radionuclide, providing degrees of equivalence for these seven participants.

The results of three other NMIs that took part in the CCRI(II)-S6.Co-57 comparison in 2008 have been linked to the BIPM ongoing key comparison through one ampoule of the comparison measured in the SIR. These results superseded 2 earlier results from the BIPM.RI(II)-K1.Co-57 comparison. The linked results are included in the

matrix of degrees of equivalence and shown on the graph. This has enabled the table of degrees of equivalence to include ten results in total.

The degrees of equivalence have been approved by the CCRI(II) and are published in the BIPM key comparison database. Further results may be added when other NMIs contribute ⁵⁷Co activity measurements to the ongoing K1 comparison or take part in other linked comparisons.

References

- [1] Ratel G., The Système International de Référence and its application in key comparisons, *Metrologia*, 2007, 44(4), S7-S16.
- [2] CIPM MRA: Mutual recognition of national measurement standards and of calibration and measurement certificates issued by national metrology institutes, International Committee for Weights and Measures, 1999, 45 pp. <u>http://www.bipm.org/en/cipm-mra/</u>.
- [3] Ratel G., Michotte C., BIPM comparison BIPM.RI(II)-K1.Co-57 of activity measurements of the radionuclide ⁵⁷Co, *Metrologia*, 2003, **40**, *Tech. Suppl.*, <u>06028</u>.
- [4] Ratel G., Michotte C., Hino Y., Kossert K., Janßen H., Activity measurements of the radionuclide ⁵⁷Co for the NMIJ, Japan and the PTB, Germany in the ongoing comparison BIPM.RI(II)-K1.Co-57, *Metrologia*, 2005, 42, *Tech. Suppl.*, 06016.
- [5] Michotte C., Ratel G., Courte S. Hino Y., Yunoki A., Bobin C., Moune M., 2009, Activity measurements of the radionuclide ⁵⁷Co for the NMIJ, Japan and the LNE-LNHB, France in the ongoing comparison BIPM.RI(II)-K1.Co-57, <u>Metrologia</u>, 2009, 46, Tech. Suppl., 06005.
- [6] Michotte C., Ratel G., Courte S., Fitzgerald R., Sahagia M., Activity measurements of the radionuclide ⁵⁷Co for the NIST, USA and the IFIN-HH, Romania in the ongoing comparison BIPM.RI(II)-K1.Co-57, *Metrologia*, 2012, 49, *Tech. Suppl.*, 06005.
- [7] Zimmerman B.E. *et al.*, Results of an international comparison for the activity measurement of ⁵⁷Co, *Appl. Radiat. Isot.*, **70**(9), 2012, 1825.
- [8] Bé M.-M., Chisté V., Dulieu C., Browne E., Chechev V., Kuzmenko N., Helmer R., Nichols A., Schönfeld E., Dersch R., 2004, Table of radionuclides, <u>Monographie BIPM-5</u>, Vol 1.
- [9] IAEA-TECDOC-619, 1991, X-ray and gamma-ray standards for detector calibration, Vienna, IAEA.
- [10] Pommé S, Keightley, J., Determination of a reference value and its uncertainty through a power-moderated mean, *Metrologia*, **52**, 2015, S200-S212.
- [11] Michotte C. and Ratel G., Correlations taken into account in the KCDB, CCRI(II) working document, 2003, <u>CCRI(II)/03-29</u>.
- [12] Woods M.J., Reher D.F.G., Ratel G., Equivalence in radionuclide metrology, 2000, *Appl. Radiat. Isotop.*, **52**, 313-318.

Table 5. Table of degrees of equivalence and introductory text for ⁵⁷Co

Key comparison BIPM.RI(II)-K1.Co-57

MEASURAND : Equivalent activity of ⁵⁷Co

<u>Key comparison reference value</u>: the SIR reference value x_R for this radionuclide is 168.99 MBq, with a standard uncertainty u_R of 0.25 MBq (see section 4.1 of the Final repo The value x_i is taken as the equivalent activity for laboratory *i*.

The degree of equivalence of each laboratory with respect to the reference value is given by a pair of terms: $D_i = (x_i - x_R)$ and U_i , its expanded uncertainty (k = 2), both expressed in MBq, and $U_i = 2((1 - 2w_i)u_i^2 + u_R^2)^{1/2}$ when each laboratory has contributed to the calculation of x_R .

Linking CCRI(II)-S6.Co-57 to BIPM.RI(II)-K1.Co-57

The value x_i is the equivalent activity for laboratory *i* participant in CCRI(II)-S6.Co-57 having been normalized using the value of the NIST as the linking laboratory.

The degree of equivalence of laboratory *i* participant in CCRI(II)-S6.Co-57 with respect to the key comparison reference value is given by a pair of terms: $D_i = (x_i - x_R)$ and U_i , its expanded uncertainty (k = 2), both expressed in MBq. The approximation $U_i = 2(u_i^2 + u_R^2)^{1/2}$ is used in the following table as none of these D_i contributed to the KCRV.

Lab <i>i</i>	Di	Ui
	/ MB	Bq
РТВ	0.4	1.1
NMIJ	-0.5	1.1
LNE-LNHB	-0.42	0.93
NIST	-0.1	1.2
POLATOM	1.2	1.5
NMISA	1.65	0.96
СМІ	-0.4	1.7
	-	·
BARC	3.6	1.3

0.2

3.5

2.6

1.3

IFIN-HH

LNMRI/IRD

These statements make it possible to extend the BIPM.RI(II)-K1.Co-57 matrices of equivalence to the participants in CCRI(II)-S6.Co-57.

N.B. The right-hand axis shows approximate values only

Appendix 1a. Uncertainty budgets for the activity of ⁵⁷Co submitted to the SIR

Laboratory: Laboratory of Ra for Nuclear Research;	Detailed U adioactivity Standar	ncertainty Budget rds, Radioisotope Centre POLAT	TOM, National Centre
Radionuclide: 57Co;	Ampoule numb	ber: BW/31/13	
Uncertainty components*, in	% of the activity co	oncentration, due to:	
		Remarks	Evaluation
			type (A or B)
counting statistics	0.136		A
weighing	0.259		В
dead time			
background			
pile-up			
counting time	0.001		В
adsorption		·	
impurities			
tracer			
input parameters and statistical model			
quenching			
interpolation from calibration curve			
decay-scheme parameters			
half life $(T_{1/2} = 271.80 d;$ u = 0.05 d)	0.001		В
self absorption			
extrapolation of efficiency curve	0.3		В
other effects (if relevant) (explain)	0.012	coincidence gate	В
combined uncertainty (as quadratic sum of all uncertainty components)	0.419		

* The uncertainty components are to be considered as approximations of the corresponding standard deviations (see also Metrologia, 1981, 17, 73 and Guide to expression of uncertainty in measurement, ISO, corrected and reprinted 1995).

Detailed Uncertainty Budget

Laboratory: <u>NMISA</u>; Radionuclide: ⁵⁷Co; Ampoule number: <u>NMISA Co-57 SIR 2015</u>.

Uncertainty components*, in % of the activity concentration, due to

		Remarks	Evaluation	Relative
			type (A or B)	Sensitivity
				Factors
counting statistics	0.04	Statistical analysis of 20 values	Α	0.24
weighing	0.05	Mass for source prep.	В	1
	0.005	Mass for ampoule prep.	В	1
	0.002	Dilution	В	1
dead time	0.005	$\tau_D\pm 0.1~\mu s$	В	0.0005
background	0.004	Background square root statistics applied	Α	0.004
counting time	0.001	Calibration of timer	В	1
impurities	0.003	Calculated from certificate values	В	1
half life ($T_{1/2} = 271.80$ days ;				
u = 0.05 days)	0.0003		В	0.016
extrapolation of efficiency curve	0.2	Alternative fits to data	В	1
other effects (if relevant)				
(explain)	0.008	Coincidence resolving time $\tau_R \pm 0.01 \ \mu s$	В	0.004
	0.03	Afterpulse correction	В	0.003
combined uncertainty (as quadratic sum of all uncertainty components)	0.22			

* The uncertainty components are to be considered as approximations of the corresponding standard deviations (see also Metrologia, 1981, 17, 73 and Guide to expression of uncertainty in measurement, ISO, corrected and reprinted 1995).

CMI (2021)

Measurement method4π (PC) X,e-γ coincidenceACRONYM4P-PC-MX-NA-GR-COComments:Activity concentration at reference date / kBq g ⁻¹ 1503.5000Relative standard uncertainty / 10 ⁻² 0.48Date of measurement at the NMI (YYYY-MM-DD)2021-12-01n:
Measurement method4π (PC) X,e-γ coincidenceACRONYM4P-PC-MX-NA-GR-COComments:Activity concentration at reference date / kBq g ⁻¹ 1503.5000Relative standard uncertainty / 10 ⁻² 0.48Date of measurement at the NMI (YYYY-MM-DD)2021-12-01n:
ACRONYM4P-PC-MX-NA-GR-COComments:Activity concentration at reference date / kBq g ⁻¹ 1503.5000Relative standard uncertainty / 10 ⁻² 0.48Date of measurement at the NMI (YYYY-MM-DD)2021-12-01n:
Activity concentration at reference date / kBq g ⁻¹ 1503.5000Relative standard uncertainty / 10 ⁻² 0.48Date of measurement at the NMI (YYYY-MM-DD)2021-12-01n:
reference date / kBq g ⁻¹ 1503.5000 Relative standard uncertainty / 10 ⁻² 0.48 Date of measurement at the NMI (YYYY-MM-DD) 2021-12-01 n:
Relative standard uncertainty / 10-20.48Date of measurement at the NMI (YYYY-MM-DD)2021-12-01n:
uncertainty / 10 ⁻² 0.48 Date of measurement at the NMI (YYYY-MM-DD) 2021-12-01 n:
Date of measurement at the NMI (YYYY-MM-DD) 2021-12-01 n:
the NMI (YYYY-MM-DD) 2021-12-01 n:
For relative methods:
Primary methods or
calibration
Date of calibration
Date of primary
measurement
Uncertainty budget
Kelative uncertainty / Evaluation
Uncertainty component 10 ⁻² type (A or B) Comment
Counting statistics 0.150 A
Background 0.030 B
Weighing 0.010 B
Dilution 0.050 B
Dead time 0.010 B
Resolving time 0.020 B
Pile-up, afterpulse
Ausorption
Decay correction
Decay data
Extra-/Inter-polation of efficiency
curve 0.450 B
Quenching, kB value
Tracer
Reproducibility
Combined standard
Uncertainty 0.480

Appendix 1b. Uncertainty budgets for the activity of ⁵⁷Co in the 2008 CCRI(II)-S6.Co-57 comparison

Uncertainty budget for the **BARC** (4e/x- γ coincidence counting, HV variation; 4P-PC-MX-NA-GR-CO).

Relative standard uncertainties	$u_i \ge 10^4$		
	Evaluated by method		
Contributions due to	Α	В	
Counting statistics	22	-	
Extrapolation of efficiency curve	26	-	
Mass determinations	-	6	
Deadtime	-	2	
Background	-	1	
Half-life	-	-	
Resolving time of coincidence analyzer	-	13	
Quadratic summation	34	14	
Combined standard uncertainty		37	

Uncertainty budget for the **BARC** (4e/x- γ coincidence counting, threshold variation; 4P- PC-MX-NA-GR-CO).

Relative standard uncertainties	$u_i \ge 10^4$		
	Evaluated by method		
Contributions due to	Α	В	
Counting statistics	63	-	
Extrapolation of efficiency curve	8	-	
Mass determinations	-	6	
Deadtime	-	2	
Background	-	1	
Half-life	-	1	
Resolving time of coincidence analyzer	-	17	
Quadratic summation	64	18	
Combined standard uncertainty		66	

Uncertainty budget for the **BARC** ($4\pi\gamma$ ionization chamber; 4P-IC-GR-00-00-00).

Relative standard uncertainties	$u_i \ge 10^4$		
	Evaluated by method		
Contributions due to	Α	В	
Counting statistics	5	-	
Sensitivity factor	-	100	
Current measurement for reference		5	
source	-	3	
Source positioning	-	20	
Source volume	-	20	
Collection efficiency	-	10	
Electrometer non-linearity		10	
Source container wall thickness		15	
Half-life		1	
Quadratic summation	25	106	
Combined standard uncertainty		106	

Uncertainty budget for the CMI (4e/x- γ coincidence counting; 4P- PC-MX-NA-GR-AC).

Relative standard uncertainties	$u_i \ge 10^4$	
	Evaluated by method	
Contributions due to	Α	В
Impurities	-	2
Deadtime	-	5
Weighing	-	1
Extrapolation	-	17
Background	-	1
Quadratic summation	-	18
Combined standard uncertainty	18	

Uncertainty budget for the CMI (CMI $4\pi\gamma$ ionization chamber; 4P-IC-GR-00-00-00).

Relative standard uncertainties	$u_i \ge 10^4$	
	Evaluated by method	
Contributions due to	Α	В
Repeatability	10	-
Background	2	-
Decay correction	-	6
Uncertainty in reference source	-	210
Linearity	-	16
Calibration factor	-	419
Scale resolution	-	4
Half-life	-	0.5
Quadratic summation	10	470
Combined standard uncertainty	470	

Uncertainty budget for the CMI (NPL-CRC ionization chamber; 4P-IC-GR-00-00-00).

Relative standard uncertainties	$u_i \ge 10^4$	
	Evaluated by method	
Contributions due to	Α	В
Repeatability	10	-
Background	2	-
Decay correction	-	6
Calibration factor	-	513
Scale resolution	-	4
Half-life	-	0.5
Quadratic summation	10	513
Combined standard uncertainty		513

Uncertainty budget for the IFIN-HH (4P- PC-MX-NA-GR-CO).

Relative standard uncertainties	$u_i \ge 10^4$	
	Evaluated by method	
Contributions due to	Α	В
Type A evaluations	75	-
Extrapolation	-	11
Dead time	-	5
Resolving time	-	1.4
Background	-	2.1
Impurities	-	10
Weighing	-	10
Quadratic summation	75	19
Combined standard uncertainty		77

Uncertainty budget for the **LNMRI/IRD** ($4\pi e/x-\gamma$ anticoincidence counting; 4P- PC-MX-NA-GR-AC).

Relative standard uncertainties	$u_i \ge 10^4$ Evaluated by method	
Contributions due to	Α	В
Counting statistics	21	-
Fitting procedure	23	-
Weighing	-	10
Half-life	-	2
Background	3	-
Livetime	-	1
Quadratic summation	31	10
Combined standard uncertainty		33

Uncertainty budget for the **LNMRI/IRD** (calibrated ionization chamber; 4P-IC-GR-00-00-00).

Relative standard uncertainties	$u_i \ge 10^4$	
	Evaluated by method	
Contributions due to	Α	В
Repeatability	5	_
Background	0.8	-
Decay correction	-	0.08
Reference source uncertainty		2
Linearity		100
Calibration factor		34
Mass transfer		5
Scale resolution		18
Half-life		0.08
Quadratic summation	5.1	107
Combined standard uncertainty	107	

Uncertainty budget for the **NIST** ($4\pi e/x-\gamma$ anticoincidence counting; 4P- LS-MX-NA-GR-AC).

Relative standard uncertainties	$u_i \ge 10^4$	
	Evaluated by method	
Contributions due to	Α	В
Measurement repeatability	8	-
Background variability	-	5
Extrapolation model	-	30
Live-time	-	10
Source masses	-	5
Dilution factor	-	10
Impurities	-	0.4
Half-life	-	0.01
Quadratic summation	8	34
Combined standard uncertainty		35

Relative standard uncertainties	$u_i \ge 10^4$	
	Evaluated by method	
Contributions due to	Α	В
Repeatability	2.4	-
Calibration factor	-	27
Mass transfer	-	0.05
Re-evaluation of uncertainty from		
original standardization to present	-	18
standardization		
Half-life	-	0.08
Radionuclidic impurities	-	6
Dilution factor	-	9
Quadratic summation	2.4	34
Combined standard uncertainty		34

Uncertainty budget for the **NIST** (4π ionization chamber; 4P-IC-GR-00-00).

Appendix 2. Acronyms used to identify different measurement methods

Each acronym has six components, geometry-detector (1)-radiation (1)-detector (2)-radiation (2)-mode. When a component is unknown, ?? is used and when it is not applicable 00 is used.

Geometry	acronym	Detector	acronym
4π	4P	proportional counter	PC
defined solid angle	SA	press. prop counter	PP
2π	2P	liquid scintillation counting	LS
undefined solid angle	UA	Nal(TI)	NA
		Ge(HP)	GH
		Ge(Li)	GL
		Si(Li)	SL
		CsI(TI)	CS
		ionization chamber	IC
		grid ionization chamber	GC
		Cerenkov detector	CD
		calorimeter	CA
		solid plastic scintillator	SP
		PIPS detector	PS
Radiation	acronym	Mode	acronym
Radiation positron	acronym PO	Mode efficiency tracing	acronym ET
Radiation positron beta particle	acronym PO BP	Mode efficiency tracing internal gas counting	acronym ET IG
Radiation positron beta particle Auger electron	acronym PO BP AE	Mode efficiency tracing internal gas counting CIEMAT/NIST	acronym ET IG CN
Radiation positron beta particle Auger electron conversion electron	acronym PO BP AE CE	Mode efficiency tracing internal gas counting CIEMAT/NIST sum counting	acronym ET IG CN SC
Radiation positron beta particle Auger electron conversion electron mixed electrons	AE CE ME	Mode efficiency tracing internal gas counting CIEMAT/NIST sum counting coincidence	acronym ET IG CN SC CO
Radiation positron beta particle Auger electron conversion electron mixed electrons bremsstrahlung	acronym PO BP AE CE ME BS	Mode efficiency tracing internal gas counting CIEMAT/NIST sum counting coincidence anti-coincidence	acronym ET IG CN SC CO AC
Radiation positron beta particle Auger electron conversion electron mixed electrons bremsstrahlung gamma rays	acronym PO BP AE CE ME BS GR	Mode efficiency tracing internal gas counting CIEMAT/NIST sum counting coincidence anti-coincidence coincidence counting with efficiency tracing	acronym ET IG CN SC CO AC CT
Radiation positron beta particle Auger electron conversion electron mixed electrons bremsstrahlung gamma rays X - rays	acronym PO BP AE CE ME BS GR XR	Mode efficiency tracing internal gas counting CIEMAT/NIST sum counting coincidence anti-coincidence coincidence counting with efficiency tracing anti-coincidence counting with efficiency tracing	acronym ET IG CN SC CO AC CT AT
Radiationpositronbeta particleAuger electronconversion electronmixed electronsbremsstrahlunggamma raysX - raysphotons (x + γ)	acronym PO BP AE CE ME BS GR XR PH	Mode efficiency tracing internal gas counting CIEMAT/NIST sum counting coincidence anti-coincidence coincidence counting with efficiency tracing anti-coincidence counting with efficiency tracing anti-coincidence counting with efficiency tracing anti-coincidence counting with efficiency tracing triple-to-double coincidence ratio counting	acronym ET IG CN SC CO AC CT AT TD
Radiationpositronbeta particleAuger electronconversion electronmixed electronsbremsstrahlunggamma raysX - raysphotons (x + γ)alpha - particle	acronymPOBPAECEMEBSGRXRPHAP	Modeefficiency tracinginternal gas countingCIEMAT/NISTsum countingcoincidenceanti-coincidencecoincidence counting with efficiency tracinganti-coincidence counting with efficiency tracinganti-coincidence counting with efficiency tracingtriple-to-double coincidence ratio countingselective sampling	acronym ET IG CN SC CO AC CT AT TD SS

Examples	method	acronym
4π(PC)β-γ-coincidenc	e counting	4P-PC-BP-NA-GR-CO
4π (PPC) β – γ -coincider	nce counting eff. trac.	4P-PP-MX-NA-GR-CT
defined solid angle α -particle counting with a PIPS detector		SA-PS-AP-00-00-00
4π(PPC)AX-γ(Ge(HP))-anticoincidence counting	4P-PP-MX-GH-GR-AC
4π CsI- β ,AX, γ counting		4P-CS-MX-00-00-HE
calibrated IC		4P-IC-GR-00-00-00
internal gas counting		4P-PC-BP-00-00-IG