<u>Update of the BIPM comparison BIPM.RI(II)-K1.Ce-139 of activity</u> <u>measurements of the radionuclide ¹³⁹Ce to include the 2004 NMIJ result</u> and links for the 2004 regional comparison APMP.RI(II)-K2.Ce-139

G. Ratel*, C. Michotte*, Y. Hino** *BIPM and **NMIJ, Japan

Abstract

Since 1976, ten national metrology institutes (NMIs) and another laboratory have submitted twenty-one samples of known activity of ¹³⁹Ce to the International Reference System (SIR) for activity comparison in the BIPM.RI(II)-K1.Ce-139 comparison at the Bureau International des Poids et Mesures. The activities ranged from about 0.5 MBq to 55 MBq. The key comparison reference value (KCRV) has been recalculated to include the new National Metrology Institute of Japan (NMIJ) result. The degrees of equivalence between each equivalent activity measured in the SIR and the new KCRV have been calculated and the results are given in the form of a matrix for nine NMIs and the BIPM. A graphical presentation is also given. The results of an APMP.RI(II)-K2.Ce-139 comparison held in 2004 have been linked to the SIR results through the submission to the SIR of an ampoule by the pilot laboratory, the NMIJ. This has enabled one NMI to update its 1999 SIR entry and one NMI to update their previously published 1976 CCRI(II) comparison results and three other NMIs to have degrees of equivalence for activity measurements for this radionuclide.

1. Introduction

The SIR for activity measurements of γ -ray-emitting radionuclides was established in 1976. Each national metrology institute (NMI) may request a standard ampoule from the BIPM that is then filled (3.6 g) with the radionuclide in liquid (or gaseous) form. The NMI completes a submission form that details the standardization method used to determine the absolute activity of the radionuclide and the full uncertainty budget for the evaluation. The ampoules are sent to the BIPM where they are compared with standard sources of ²²⁶Ra using pressurized ionization chambers. Details of the SIR method, experimental set-up and the determination of the equivalent activity, A_e , are all given in [1].

Since its inception until 31 December 2004, the SIR has measured 872 ampoules to give 634 independent results for 62 different radionuclides. The SIR makes it possible for national laboratories to check the reliability of their activity measurements at any time. This is achieved by the determination of the equivalent activity of the radionuclide and by comparison of the result with the key comparison reference value

determined from the results of primary realizations. These comparisons are described as BIPM ongoing comparisons and the results form the basis of the CIPM key comparison database (KCDB) of the Mutual Recognition Arrangement (MRA) [2]. The comparison described in this report is known as the BIPM.RI(II)-K1.Ce-139 key comparison. Although the details of the earlier submissions have already been published in the KCDB [3], the KCRV has been updated by the inclusion of the latest result from the NMIJ and consequently all the previously reported data are reproduced in this report for transparency of the calculation.

In addition, a regional key comparison was held in 2004 for this radionuclide, APMP.RI(II)-K2.Ce-139, piloted by the NMIJ. Nine laboratories from three RMOs took part in this comparison, including the NMIJ. Five NMIs made primary standardizations and are eligible to be linked to the BIPM key comparison as listed in Table 1b. Three results are new entries in the KCDB, one NMI has updated their previous SIR result and one has used this regional comparison to update their previously published 1976 CCRI(II)-K2.Ce-139 comparison results [3]. Three other laboratories, the Bhabha Atomic Research Centre (BARC), India, the Office of Atoms for Peace (OAP), Thailand and the Pusat Penelitian & Pengembangan Keselamatan Radiasi & Biomedika Nuklir (P3KRBiN), Indonesia used the comparison results to calibrate their secondary standard instruments for this radionuclide.

2. Participants

Ten NMIs, one other laboratory and the BIPM have submitted twenty-one ampoules for the comparison of ¹³⁹Ce activity measurements since 1976, the most recent submission being an ampoule standardized by the NMIJ in 2004. The laboratory details are given in Table 1a. In cases where the laboratory has changed its name since the original submission, both the earlier and the current acronyms are given, as it is the latter that are used in the KCDB.

Original acronym	NMI	Full name	Country	Regional metrology organization	Date of measurement at the BIPM
BIPM	-	Bureau International des Poids et Mesures	_	_	1976-03-19
KAE	_	Korea Atomic Energy Research Institute	Republic of Korea	APMP	1976-06-04

Table 1a.	Details of the	participants in the	BIPM.RI(II)-K1.Ce-139
-----------	----------------	---------------------	-----------------------

continued overleaf

Original acronym	NMI	Full name	Country	Regional metrology organization	Date of measurement at the BIPM
NAC*	CSIR-	National Metrology	South Africa	SADCMET	1980-11-14
	NML	Laboratory			1982-04-29
					1983-12-01
					1999-03-17
_	NPL	National Physical Laboratory	United Kingdom	EUROMET	1981-10-07
IER	IRA	Institut de	Switzerland	EUROMET	1983-12-22
		Radiophysique Appliquée			2000-12-01
_	ОМН	Országos Mérésügyi Hivatal	Hungary	EUROMET	1984-06-07
UVVVR	CMI-IIR	Český Metrologický Institut/Czech Metrological Institute, Inspectorate for Ionizing Radiation	Czech Republic	EUROMET	1985-03-01
NBS	NIST	National Institute of Standards and Technology	United States	SIM	1988-01-05 1997-01-24
ETL	NMIJ	National Metrology	Japan	APMP	1994-12-05
		Institute of Japan			2004-03-16
LPRI	LNE ^{**} - LNHB	Laboratoire national de métrologie et d'essais -Laboratoire national Henri Becquerel	France	EUROMET	1997-02-26
_	LNMRI	Laboratorio Nacional de Metrologia das Radiaçoes Ionizantes	Brazil	SIM	1997-10-28
_	РТВ	Physikalisch- Technische Bundesanstalt	Germany	EUROMET	1999-12-01

Table 1a continued. Detans of the participants in the DII MINICIPALITY-INICO-157	Table 1a continued.	Details of the	participants in	the BIPM.RI(II)-K1.Ce-139
--	---------------------	----------------	-----------------	----------------	-------------

*another laboratory in the country ** note change of affiliation in 2005.

The six NMIs that took part in the regional comparison, APMP.RI(II)-K2.Ce-139 in 2004 are shown in Table 1b.

NMI	Full name	Country	Regional metrology organization
CSIR-NML	National Metrology Laboratory	South Africa	SADCMET
INER	Institute of Nuclear Energy Research	Chinese Taipei	APMP
KRISS	Korea Research Institute of Standards and Science	Republic of Korea	APMP
NIM	National Institute of Metrology	China	APMP
NMIJ	National Metrology Institute of Japan	Japan	APMP
VNIIM	D.I. Mendeleyev Institute for Metrology	Russian Federation	COOMET

Table 1b. Details of the participants in the 2004 APMP.RI(II)-K2.Ce-139

3. NMI standardization methods

Each NMI that submits ampoules to the SIR has measured the activity either by a primary standardization method or by using a secondary method, for example a calibrated ionization chamber. In the latter case, the traceability of the calibration needs to be clearly identified to ensure that any correlations are taken into account.

A brief description of the standardization methods for each laboratory, the activities submitted and the relative standard uncertainties (k = 1) are given in Table 2. Details concerning the standardization methods and the uncertainty budgets used in the regional comparison are given in [4]. Full uncertainty budgets have been requested as part of the comparison protocol only since 1998. The SIR uncertainty budgets for the previous participants, the IRA and the CSIR-NML, are in [3] while that for the NMIJ is given in Appendix 1 attached to this report.

The half-life used by the BIPM is 137.65 (7) days [5], which is in agreement with the value recommended by the IAEA, 137.640 (23) d [6]. The IAEA half life was used in the 2004 APMP.RI(II)-K2.Ce-139 comparison.

NMI	Method used and acronym (see Appendix 2	Half-life /d	Activity / kBq	Reference date	Relative uncertair by met evalu	standard $ty \times 100$ thod of vation
				YY-MM-DD	A	В
BIPM*	4π(PC) - γ coincidence 4P-PC-00-NA-GR-CO	137.65 (7)	2 493.2 2 493.7	1976-03-15 0 h UT	0.19 0.07	1.17 0.57
KAE	NaI(Tl) γ spectrometry 2P-NA-GR-00-00-00	_	1 687 1 689	1976-05-19 2 h UT	0.83	0.21
CSIR- NML	$4\pi(LS)\beta-\gamma$ coincidence	_	46 640 47 250	1980-10-24 10 h UT	0.19	0.44
	4P-LS-BP-NA-GR-CO		42 670	1982-04-01 10 h UT	0.39	0.33
			55 170 55 350	1983-11-01 12 h UT	0.18	0.42
	$4\pi(LS)(x,e)-\gamma$ coincidence 4P-LS-MX-NA-GR-CO	137.64	13 700	1999-01-12 12 h UT	0.05	0.63
NPL	Pressurized IC [†] 4P-IC-GR-00-00-00	_	2 402	1981-10-05 0 h UT	0.15	0.40
IRA	4π (PC) x_e - γ coincidence 4P-PC-XR-NA-GR-CO	_	2 690	1983-11-15 0 h UT	0.05	0.30
	$4\pi x_{e}$ - γ coincidence 4P-00-XR-NA-GR-CO	137.64 (2)	5 224	2000-12-01 12 h UT	0.54	0.23
ОМН	$4\pi(x,e_x)-\gamma$ coincidence 4P-PP-MX-NA-GR-CO	137.64 (5)	3 616	1984-06-30 12 h UT	0.03	0.35
CMI- IIR	$4\pi(x,e_x)-\gamma$ coincidence 4P-00-MX-NA-GR-CO	137.5	14 820	1985-01-24 12 h UT	0.05	0.23
NIST	Pressurized IC ^{††}	137.64 (2)	1 850	1987-12-03 17 h UT	0.01	0.30
	4P-IC-GR-00-00-00	_	730.9	1997-01-01 12 h UT	0.06	0.24
NMIJ	$4\pi(x,e_x)-\gamma$ coincidence 4P-00-MX-NA-GR-CO	_	538.0	1994-12-01 12 h UT	0.20	0.34
	$4\pi(x,e)-\gamma$ coincidence 4P-PC-MX-NA-GR-CO	137.64	1 111.2 **	2004-03-01 0 h UT	0.17	0.07
LNE- LNHB	4π β-γ coincidence 4P-PC-BP-NA-GR-CO	137.640 (23) d [5]	2 848 2 807	1997-02-01 12 h UT	0.50	0.02

Table 2. Standardization methods of the participants for ¹³⁹Ce

continued overleaf

NMI	Method used and	Half-life	Activity	Reference	Relative	standard
	acronym (see	/d	/ kBq	date	uncertair	$ty \times 100$
	Appendix 3)				by met	thod of
					evalu	ation
				YY-MM-DD	А	В
LNMRI	$4\pi(x,e_x)-\gamma$ coincidence 4P-00-MX-NA-GR-CO	I	1 071	1997-08-01 0 h UT	0.22	0.25
PTB	4π(PC and PPC)EC-γ coincidence 4P-PC-MX-NA-GR-CO 4P-PP-MX-NA-GR-CO	137.66 (6)	5 400	1999-11-01 0 h UT	0.06	0.14

Table 2 continued	. Standardization	methods of the	participants for	¹³⁹ Ce
-------------------	-------------------	----------------	------------------	-------------------

* the two ampoules measured by the BIPM for the CCRI(II)-K2.Ce-139 and measured in the SIR were used to make the link for the CCRI(II) key comparison

** the ampoule measured by the NMIJ for the APMP.RI(II)-K2.Ce-139 and measured in the SIR was used to make the link for the APMP key comparison

[†] calibrated by $4\pi(PC)$ - γ coincidence counting for the nuclide considered ^{††} calibrated by $4\pi(PC)$ - γ coincidence counting for the nuclide considered in 1976.

Details regarding the solution submitted are shown in Table 3, including any impurities, when present, as identified by the laboratories. When given, the standard uncertainties on the evaluations are shown. Recently the BIPM has developed a standard method for evaluating the activity of impurities using a calibrated Ge(Li) spectrometer [7]. The CCRI(II) agreed in 1999 [8] that this method should be followed according to the protocol described in [9] when an NMI makes such a request or when there appear to be discrepancies. No impurity measurement was carried out at the BIPM for ¹³⁹Ce.

NMI	Chemical composition	Solvent conc. / (mol dm ⁻³)	Carrier: conc. /(µg g ⁻¹)	Density /(g cm ⁻³)	Relative activity of impurity [†]
BIPM	CeCl ₃ in HCl*	0.2	CeCl ₃ :20	_	Negligible [3]
KAE	CeCl ₃ in HCl	0.2	CeCl ₃ : 15	_	_
CSIR- NML	CeCl ₃ in HCl	1	Ce ³⁺ : 170	1.037	_
			Ce ³⁺ : 180	1.037	_
			Ce ³⁺ : 409	1.017	_
			Ce ³⁺ : 534	1.023	_

Table 3. Details of the solu	ution of ¹³⁹ Ce submitted
------------------------------	--------------------------------------

Continued overleaf

NMI	Chemical composition	Solvent conc. / (mol dm ⁻³)	Carrier: conc. $/(\mu g g^{-1})$	Density /(g cm ⁻³)	Relative activity of impurity [†]
NPL	CeCl ₃ in HCl	0.1	CeCl_3 : 40	1.0015	_
IRA	Ce ⁺³ in HCl	0.1	Ce ⁺³ : 7.5	-	_
			Ce ⁺³ : 20	1.000 (7)	_
OMH	Ce in HCl	0.1	Ce : 25	-	_
CMI-IIR	CeCl ₃ in HCl	0.08	CeCl ₃ : 30	-	< 0.1 %
NIST	CeCl ₃ in HCl	0.4	Ce : 16	1.005	⁵⁴ Mn: 0.0017 (3) % ⁶⁵ Zn: 0.029 (3) %
		0.77	Ce^{+3} : 100	1.012	—
NMIJ	CeCl ₃ in HCl	0.1	CeCl ₃ : 10	1.00	_
	CeCl ₂ in HCl**	0.1	CeCl ₂ : 100	1.002	_
LNE- LNHB	CeCl ₃ in HCl	0.5	CeCl ₃ : 10	1	_
LNMRI	CeCl ₃ in HCl	1	CeCl ₃ : 30	0.998	_
РТВ	CeCl ₃ in HCl	0.1	$CeCl_3:35$	0.999	_

Table 3 continued. Details of the solution of ¹³⁹Ce submitted

[†] the ratio of the activity of the impurity to the activity of ¹³⁹Ce at the reference date.

* solution used in the CCRI(II)-K2.Ce-139 comparison

** solution used in the APMP.RI(II)-K2.Ce-139 comparison

4. **Results**

All the submissions to the SIR since its inception in 1976 are maintained in a database known as the "mother-file". The activity measurements for ¹³⁹Ce arise from twenty-one ampoules and the SIR equivalent activity for each ampoule, A_{ei} , is given in Table 4a for each NMI, *i*. The dates of measurement in the SIR are given in Table 1.

The relative standard uncertainties arising from the measurements in the SIR are also shown in Table 4a. This uncertainty is additional to that declared by the NMI for the activity measurement shown in Table 2. Although activities submitted are compared with a given source of ²²⁶Ra, all the SIR results are normalized to the radium source number 5 [1].

Measurements repeated at the BIPM after periods of up to 5 months later produced the same comparison results for the KAE, CSIR-NML (1982), OMH, CMI-IIR and for the NMIJ (2004). These measurements confirm the validity of the half-life value used and exclude the possibility of a non-corrected impurity for the low KAE result.

NMI	Mass of	Activity	N° of	SIR	Relative	Combined
	solution	submitted	Ra	A_e / MBq	uncertainty	uncertainty
	m_i / g	A_i / kBq	source		from SIR	$u_{c,i}$ / MBq
			used		4	
BIPM ^a	3.509 17	2 493.2	1	132.28	12×10^{-4}	1.58
	3.506 87	2 493.7		132.38*		0.78
KAE	3.507 70	1 687	1	124.5	12×10^{-4}	1.1
	3.512 37	1 689		124.6		1.1
CSIR-	0.516 35 ^b	46 640	4	134.95	8×10^{-4}	0.66
NML	0.523 13	47 250		134.90		0.66
	0.520 97 ^c	42 670	4	134.20	8×10^{-4}	0.70
	0.253 975 ^d	55 170	4	133.77	8×10^{-4}	0.62
	0.254 797	55 350		133.70		0.62
	3.603	13 700	3	133.10 ^e	8×10^{-4}	0.85
NPL	3.705 3	2 402	2	132.76	11×10^{-4}	0.59
IRA	3.602 0	2 690	2	132.63	11×10^{-4}	0.42
	3.5887(1)	5 224	1	132.93	10×10^{-4}	0.80
OMH	3.600 2	3 616	2	132.02	11×10^{-4}	0.48
CMI-IIR	3.610 9	14 820	3	132.77	8×10^{-4}	0.34
NIST	3.707 2	1 850	1	133.38	13×10^{-4}	0.44
	3.650 63	730.9	1	134.41	14×10^{-4}	0.38
NMIJ	3.610 8	538.0	1	134.22	17×10^{-4}	0.57
	3.563 86	1 111.2	1	132.74**	17×10^{-4}	0.35
LNE-	3.551 0	2 848	2	132.71	10×10^{-4}	0.68
LNHB ^a	3.500 1	2 807		132.75	11×10^{-4}	0.68
LNMRI	3.592 77	1 071	1	132.69	15×10^{-4}	0.48
РТВ	3.739 78	5 400	2	132.66	10×10^{-4}	0.24

Results of SIR measurements of ¹³⁹Ce Table 4a.

^a the mean of the two A_e values is used with an averaged uncertainty, as attributed to an individual entry [10]

^b mass of solution before dilution. Mass after dilution = 3.601 g and 3.604 g respectively

^c mass of solution before dilution. Mass after dilution = 3.872 g ^d mass of solution before dilution. Mass after dilution = 3.675 77 g and 3.615 60 g respectively

^e value superseded in the KCDB by the APMP comparison result

* results used to link the CCRI(II) comparison to the SIR.

** result used to link the APMP comparison to the SIR.

Apart from one earlier result that was withdrawn from the SIR, no recent submission has been identified as a pilot study so the results of each NMI are eligible for Appendix B of the MRA. However, the KAE is neither an NMI nor a designated institute of the Republic of Korea and consequently their result is not eligible for Appendix B. The result for the CSIR-NML has been updated by their participation in the APMP.RI(II)-K2.Ce-139 comparison.

The results of the regional comparison have been published [4]. The five laboratories to be added to the matrix of degrees of equivalence from this publication are those given in Table 1b. The results $(A/m)_i$ for these laboratories are linked to the SIR through the measurement in the SIR of an ampoule of the same solution standardized by the NMIJ. The link is made using a normalization ratio deduced from the line indicated in Table 4a:

$$A_{ei} = (A/m)_{i} \times (A_{e,\text{NMIJ}} / (A/m)_{\text{NMIJ}}) = (A/m)_{i} \times 425.72$$
⁽¹⁾

The details of the links are given in Table 4b. The uncertainties for the regional comparison linked to the SIR are comprised of the original uncertainties together with the uncertainty in the link, 17×10^{-4} , given by the uncertainty of the SIR measurement of the NMIJ ampoule.

The three NMIs that used the comparison results to calibrate their ionization chambers and consequently cannot be linked to the SIR through this comparison, need to make subsequent bi-lateral comparisons for this radionuclide or to send a submission directly to the SIR.

4.1 <u>The key comparison reference value</u>

The key comparison reference value is derived from the unweighted mean of all the results submitted to the SIR with the following provisions:

- a) only primary standardized solutions are accepted, or ionization chamber measurements that are directly traceable to a primary measurement in the laboratory;
- b) each NMI or other laboratory has only one result (normally the most recent result or the mean if more than one ampoule is submitted);
- c) any outliers are identified using a reduced chi-squared test and, if necessary, excluded from the KCRV using the normalized error test with a test value of four;
- d) exclusions must be approved by the CCRI(II).

The reduced data set used for the evaluation of the KCRVs is known as the KCRV file and is the reduced data set from the SIR mother-file. Although the KCRV may be modified when other NMIs participate, on the advice of the Key Comparison Working Group of the CCRI(II), such modifications are only made by the CCRI(II), normally during one of its biennial meetings. In this case, the new result of the NMIJ has been used in preference to their earlier result with the endorsement of the CCRI(II). Consequently, the KCRV for ¹³⁹Ce has been calculated as 132.74 (11) MBq using the results from the BIPM, NPL, OMH, CMI-IIR, NIST(1988), LNE-LNHB, LNMRI,

CSIR-NML(1999), PTB, IRA(2000) and the NMIJ(2004) which has the effect of reducing the value of the KCRV by 10^{-3} in relative terms and the uncertainty on the KCRV from 170 kBq to 110 kBq.

Table 4b.	Results of 2004 regional comparison primary measurements of
	¹³⁹ Ce and links to the SIR

NMI	Measurement method and acronym (see Appendix 2)	Activity * concentration measured $(A/m)_i$ / (Bq mg ⁻¹)	Evaluati category relative uncertai A	ion by y of standard nty \times 100 B	Equivalent SIR activity A _{ei} / kBq	Combined standard uncertainty $u_{c i} / kBq$
CSIR-NML	4π(LS)(x,e)-γ 4P-LS-MX-NA-GR-CO	312.90	0.09	0.52	133 210	740
INER	4π(PC)(x,e)-γ 4P-PC-MX-NA-GR-CO	312.12	0.10	0.30	132 880	480
KRISS	4π(PP)(x,e)-γ 4P-PP-MX-NA-GR-CO	309.80	0.23	0.27	131 890	530
NIM	4π(PC)(x,e)-γ 4P-PC-MX-NA-GR-CO	316.50	0.25	0.45	134 740	740
NMIJ	4π(x,e _x)- γ coincidence 4P-PC-MX-NA-GR-CO	311.80	0.17	0.07	132 740	350
VNIIM	4π(PC)(x,e)-γ 4P-PC-MX-NA-GR-CO	312.54	0.06	0.10	133060	280

*referenced to 2004-03-01 0 h UT

4.2 <u>Degrees of equivalence</u>

Every NMI that has submitted ampoules to the SIR is entitled to have one result included in Appendix B of the KCDB as long as the NMI is a signatory or designated institute listed in the MRA. Normally, the most recent result is the one included. Any NMI may withdraw its result only if all the participants agree.

The degree of equivalence of a given measurement standard is the degree to which this standard is consistent with the key comparison reference value [2]. The degree of equivalence is expressed quantitatively in terms of the deviation from the key comparison reference value and the expanded uncertainty of this deviation (k = 2). The degree of equivalence between any pair of national measurement standards is expressed in terms of their difference and the expanded uncertainty of this difference and is independent of the choice of key comparison reference value.

4.2.1 Comparison of a given NMI with the KCRV

The degree of equivalence of a particular NMI, *i*, with the key comparison reference value is expressed as the difference between the results

$$D_i = A_{ei} - \text{KCRV} \tag{2}$$

and the expanded uncertainty (k = 2) of this difference, U_i , known as the equivalence uncertainty, hence

$$U_i = 2u_{D_i}, \qquad (3)$$

taking correlations into account as appropriate [11].

4.2.2 Comparison of any two NMIs with each other

The degree of equivalence, D_{ij} , between any pair of NMIs, *i* and *j*, is expressed as the difference in their results

$$D_{ij} = D_i - D_j = A_{e_i} - A_{e_j}$$
(4)

and the expanded uncertainty of this difference U_{ij} where

$$u_{D_{ij}}^{2} = u_{i}^{2} + u_{j}^{2} - 2u(A_{e,i}, A_{e,j})$$
(5)

where any obvious correlations between the NMIs (such as a traceable calibration) are subtracted using the covariance $u(A_{ei}, A_{ej})$, as are normally those correlations coming from the SIR.

The uncertainties of the differences between the values assigned by individual NMIs and the key comparison reference value (KCRV) are not necessarily the same uncertainties that enter into the calculation of the uncertainties in the degrees of equivalence between a pair of participants. Consequently, the uncertainties in the table of degrees of equivalence cannot be generated from the column in the table that gives the uncertainty of each participant with respect to the KCRV. However, the effects of correlations have been treated in a simplified way as the degree of confidence in the uncertainties themselves does not warrant a more rigorous approach.

Table 5 shows the matrix of all the degrees of equivalence as they will appear in Appendix B of the KCDB. It should be noted that for consistency within the KCDB, a simplified level of nomenclature is used with A_{ei} replaced by x_i . The introductory text is that agreed for the comparison. The graph of the first column of results in Table 5, corresponding to the degrees of equivalence with respect to the KCRV, is shown in Figure 1 where, following the advice of the CCRI, measurements made prior to 1983 are indicated as black squares. This graphical representation indicates in part the degree of equivalence between the NMIs but does not take into account the correlations between the different NMIs. However, the matrix of degrees of equivalence shown in yellow in Table 5 does take the known correlations into account.

The results of the 1976 CCRI(II)-K2.Ce-139 international comparison have already been linked to those of the SIR through the measurement in the SIR of the BIPM ampoules of the comparison [3]. For completeness, the degrees of equivalence to the

presently updated KCRV are given as the extension of the matrix in Table 5 and as the second set of values in Figure 1. The degrees of equivalence between all pairs of NMIs are also given in Table 5. The correlations associated with the distribution of the same solution in the international comparison have been ignored in the analysis as the overall uncertainties are quite large. The correlation coming from the link to the SIR has been taken into account.

The results of the 2004 APMP.RI(II)-K2.Ce-139 regional comparison, linked through the SIR measurement of the NMIJ, are given as the third extension of the matrix in Table 5 and as the third set of values in Figure 1. The correlations associated with the distribution of the same solution in the regional comparison have been ignored in the analysis as the overall uncertainties are quite large. The correlation coming from the link to the SIR through the NMIJ has been taken into account.

Conclusion

The BIPM ongoing key comparison for ¹³⁹Ce, BIPM.RI(II)-K1.Ce-139 currently comprises ten results as that of the CSIR-NML has been superseded by the regional comparison in which they took part. The results have been analysed with respect to the new KCRV determined for this radionuclide, and with respect to each other. The matrix of degrees of equivalence has been approved by the CCRI(II) and is published in the BIPM key comparison database.

The results of five other NMIs and one international laboratory that took part in the CCRI(II)-K2.Ce-139 comparison in 1976 were linked in 2003 to the BIPM ongoing key comparison through two ampoules of the comparison measured in the SIR. These linked results are included in the matrix of degrees of equivalence approved by the CCRI(II).

The results of five other NMIs that took part in the APMP.RI(II)-K2.Ce-139 comparison in 2004 have been linked to the BIPM ongoing comparison through an ampoule of the comparison solution standardized by the NMIJ and measured in the SIR. These linked results are included in the matrix of degrees of equivalence approved by the CCRI(II) and have enabled one NMI to update its 1999 SIR result and one NMI to update their 1976 CCRI results.

Other results may be added as and when other NMIs contribute ¹³⁹Ce activity measurements to this comparison or take part in other linked comparisons.

Acknowledgements

The authors would like to thank the NMIs for their participation in the regional comparison, Mr Sammy Courte for the recent SIR measurements and Dr P.J. Allisy-Roberts of the BIPM for editorial assistance.

References

- [1] Ratel G. The international reference system for activity measurements of γ emitting radionuclides (SIR), *BIPM Monograph XX*, 2005, (in preparation).
- [2] MRA: Mutual recognition of national measurement standards and of calibration and measurement certificates issued by national metrology institutes, International Committee for Weights and Measures, 1999, 45 pp. <u>http://www.bipm.org/pdf/mra.pdf.</u>
- [3] Ratel G., Michotte C., BIPM comparison BIPM.RI(II)-K1.Ce-139 of activity measurements of the radionuclide ¹³⁹Ce and links for the 1976 international comparison CCRI(II)-K2.Ce-139, <u>2003 Metrologia 40 06012.</u>
- [4] Hino Y., Park T.S., Yuen M.C., Yuandi Y., Simpson B., van Wyngaardt W.M., Kharitonov I.A., 2005, APMP comparison of the activity measurements of Ce-139, APMP/TCRI-II Report Ce-139, <u>CCRI(II)/05-33.</u>
- [5] Taylor J.G.V., Private communication (1975), superseded by Rutledge A.R., Smith L.V., Merritt J.S., AECL report 6692 (1980).
- [6] IAEA-TECDOC-619, X-ray and gamma-ray standards for detector calibration, Vienna, IAEA, 1991.
- [7] Michotte C., Efficiency calibration of the Ge(Li) detector of the BIPM for SIRtype ampoules, <u>*Rapport BIPM*-1999/03, 15 pp</u>.
- [8] *Comité Consultatif pour les Étalons de Mesures des Rayonnements Ionisants* <u>16th meeting (1999), 2001, CCRI(II) 81-82</u>.
- [9] Michotte C., Protocol on the use of the calibrated spectrometer of the BIPM for the measurement of impurities in ampoules submitted to the SIR, <u>CCRI(II)/01-01</u>, 2001, 2 pp.
- [10] Woods M.J., Reher D.F.G. and Ratel G., Equivalence in radionuclide metrology, *Appl. Radiat. Isotop.*, 2000, **52**, 313-318.
- [11] Ratel G., Evaluation of the uncertainty of the degree of equivalence, 2005, <u>Metrologia 42, 140-144.</u>

 Table 5.
 Table of degrees of equivalence and introductory text for ¹³⁹Ce

Key comparison BIPM.RI(II)-K1.Ce-139

MEASURAND : Equivalent activity of ¹³⁹Ce

Key comparison reference value: the SIR reference value for this radionuclide is $x_{R=}$ 132.74 MBq with a standard uncertainty, u_{R} = 0.11 MBq (see Section 4.1 of the Final Report). The value x_{i} is the equivalent activity for laboratory *i*.

The degree of equivalence of each laboratory with respect to the reference value is given by a pair of terms: $D_i = (x_i - x_R)$ and U_i , its expanded uncertainty (k = 2), both expressed in MBq, and $U_i = 2((1 - 2/n)u_i^2 + (1/n^2)\Sigma u_i^2)^{1/2}$ when each laboratory has contributed to the calculation of x_R , with *n* the number of laboratories.

The degree of equivalence between two laboratories is given by a pair of terms: $D_{ij} = D_i - D_j = (x_i - x_j)$ and U_{ij} , its expanded uncertainty (k = 2), both expressed in MBq.

The approximation $U_{ii} \sim 2(u_i^2 + u_i^2)^{1/2}$ is used in the following table.

Linking CCRI(II)-K2.Ce-139 (1976) to BIPM.RI(II)-K1.Ce-139

The value x_i is the equivalent activity for laboratory *i* participant in CCRI(II)-K2.Ce-139 having been normalized to the value of the BIPM as the linking laboratory (see Final report).

The degree of equivalence of laboratory *i* participant in CCRI(II)-K2.Ce-139 with respect to the key comparison reference value is given by a pair of terms: $D_i = (x_i \cdot x_R)$ and U_i , its expanded uncertainty (k = 2), both expressed in MBq. The approximation $U_i = 2(u_i^2 + u_R^2)^{1/2}$ is used in the following table.

The degree of equivalence between two laboratories *i* and *j*, one participant in BIPM.RI(II)-K1.Ce-139 and one in CCRI(II)-K2.Ce-139, or both participant in CCRI(II)-K2.Ce-139, is given by a pair of terms: $D_{ij} = D_i - D_j$ and U_{ij} , its expanded uncertainty (*k* = 2), both expressed in MBq, where the approximation $U_{ij} = 2(u_i^2 + u_j^2 - 2fu_i^2)^{1/2}$ is used where *l* is the linking laboratory when both laboratories are linked and *f* is the correlation coefficient.

Linking APMP.RI(II)-K2.Ce-139 (2004) to BIPM.RI(II)-K1.Ce-139

The value x_i is the equivalent activity for laboratory *i* participant in APMP.RI(II)-K2.Ce-139 having been normalized to the value of the NMIJ as the linking laboratory (see Final report).

The degree of equivalence of laboratory *i* participant in APMP.RI(II)-K2.Ce-139 with respect to the key comparison reference value is given by a pair of terms: $D_i = (x_i \cdot x_R)$ and U_i , its expanded uncertainty (k = 2), both expressed in MBq. The approximation $U_i = 2(u_i^2 + u_R^2)^{1/2}$ is used in the following table.

The degree of equivalence between two laboratories *i* and *j*, is given by a pair of terms: $D_{ij} = D_i - D_j$ and U_{ij} , its expanded uncertainty (*k* = 2), both expressed in MBq, where the approximation $U_{ij} = 2(u_i^2 + u_j^2 - 2fu_i^2)^{1/2}$ is used where *l* is the appropriate linking laboratory when both laboratories are linked and *f* is the correlation coefficient.

These statements make it possible to extend the BIPM.RI(II)-K1.Ce-139 matrices of equivalence to the other participants in CCRI(II)-K2.Ce-139 and in APMP.RI(II)-K2.Ce-139

Table 5 continued. Degrees of equivalence for ¹³⁹Ce

Lab j 🔤 🖂 🖂

Lab i				BIF	PM	N	IPL	0	мн	CN	II-IIR	N	IST	LNE-	LNHB	LNI	IRI	P1	ГВ	IR	Α	NN	١IJ	ANS	STO
Ŷ	Di	Ui	D) _{ij}	U _{ij}	Dij	Uij	Dij	Uij	Dij	Uij	Dij	Uij	Dij	Uij	Dij	Uij	Dij	Uij	Dij	Uij	Dij	Uij	Dij	Uij
_	/ M	Bq		/ M	Bq	/ 1	ИBq	/ 1	ИBq	/ 1	//Bq	/ N	ЛBq	/ N	IBq	/ M	Bq	/ M	lBq						
BIPM	-0.4	2.2				-0.4	2.6	0.3	2.5	-0.4	2.5	-2.1	2.5	-0.4	2.7	-0.4	2.5	-0.3	2.4	-0.6	2.9	-0.4	2.5	0.1	2.5
NPL	0.0	1.1	0	.4	2.6			0.7	1.5	0.0	1.4	-1.7	1.4	0.0	1.8	0.1	1.5	0.1	1.3	-0.2	2.0	0.0	1.4	0.5	1.4
омн	-0.7	1.0	-0	0.3	2.5	-0.7	1.5			-0.8	1.2	-2.4	1.2	-0.7	1.7	-0.7	1.4	-0.6	1.1	-0.9	1.9	-0.7	1.2	-0.2	1.2
CMI-IIR	0.0	0.7	0	.4	2.5	0.0	1.4	0.8	1.2			-1.6	1.0	0.0	1.5	0.1	1.2	0.1	0.8	-0.2	1.7	0.0	1.0	0.5	1.0
NIST	1.7	0.9	2	.1	2.5	1.7	1.4	2.4	1.2	1.6	1.0			1.7	1.6	1.7	1.2	1.8	0.9	1.5	1.8	1.7	1.0	2.2	1.1
LNE-LNHB	0.0	1.3	0	.4	2.7	0.0	1.8	0.7	1.7	0.0	1.5	-1.7	1.6			0.0	1.7	0.1	1.4	-0.2	2.1	0.0	1.5	0.5	1.6
LNMRI	0.0	1.0	0	.4	2.5	-0.1	1.5	0.7	1.4	-0.1	1.2	-1.7	1.2	0.0	1.7			0.0	1.1	-0.2	1.9	-0.1	1.2	0.5	1.2
РТВ	-0.1	0.6	0	.3	2.4	-0.1	1.3	0.6	1.1	-0.1	0.8	-1.8	0.9	-0.1	1.4	0.0	1.1			-0.3	1.7	-0.1	0.8	0.4	0.9
IRA	0.2	1.5	0	.6	2.9	0.2	2.0	0.9	1.9	0.2	1.7	-1.5	1.8	0.2	2.1	0.2	1.9	0.3	1.7			0.2	1.7	0.7	1.8
NMIJ	0.0	0.7	0	.4	2.5	0.0	1.4	0.7	1.2	0.0	1.0	-1.7	1.0	0.0	1.5	0.1	1.2	0.1	0.8	-0.2	1.7			0.5	1.1
ANSTO	-0.5	0.8	-0).1	2.5	-0.5	1.4	0.2	1.2	-0.5	1.0	-2.2	1.1	-0.5	1.6	-0.5	1.2	-0.4	0.9	-0.7	1.8	-0.5	1.1		
BARC	-0.1	1.6	0	.3	2.8	-0.2	2.0	0.6	1.9	-0.2	1.7	-1.8	1.8	-0.1	2.1	-0.1	1.9	-0.1	1.7	-0.3	2.3	-0.1	1.7	0.4	1.7
IFIN	0.3	1.0	0	.7	2.5	0.3	1.5	1.0	1.4	0.3	1.2	-1.4	1.3	0.3	1.7	0.3	1.4	0.4	1.1	0.1	1.9	0.3	1.2	0.8	1.2
IRMM	-0.5	1.8	-0).1	2.9	-0.6	2.2	0.2	2.0	-0.6	1.9	-2.2	2.0	-0.5	2.3	-0.5	2.0	-0.5	1.9	-0.7	2.4	-0.5	1.9	0.0	1.9
NRC	-0.2	0.5	0	.2	2.4	-0.3	1.3	0.5	1.1	-0.3	0.8	-1.9	0.9	-0.2	1.4	-0.2	1.1	-0.2	0.7	-0.4	1.7	-0.3	0.9	0.3	0.8
RC	0.0	1.2	0	.4	2.6	-0.1	1.7	0.7	1.5	-0.1	1.4	-1.7	1.4	0.0	1.8	0.0	1.5	0.0	1.3	-0.2	2.0	0.0	1.4	0.5	1.4
			_	_																					
CSIR-NML	0.5	1.5	0	.9	2.8	0.5	1.9	1.2	1.8	0.4	1.6	-1.2	1.7	0.5	2.0	0.5	1.8	0.6	1.6	0.3	2.2	0.5	1.5	1.0	1.7
INER	0.1	1.0	0	.6	2.5	0.1	1.5	0.9	1.4	0.1	1.2	-1.5	1.2	0.2	1.7	0.2	1.4	0.2	1.1	-0.1	1.9	0.1	1.0	0.7	1.2
KRISS	-0.8	1.1	-0	1.4	2.6	-0.9	1.6	-0.1	1.4	-0.9	1.3	-2.5	1.3	-0.8	1.7	-0.8	1.4	-0.8	1.2	-1.0	1.9	-0.9	1.1	-0.3	1.3
NIM	2.0	1.5	2	.4	2.8	2.0	1.9	2.7	1.8	2.0	1.6	0.3	1.7	2.0	2.0	2.1	1.8	2.1	1.6	1.8	2.2	2.0	1.5	2.5	1.7
VNIIM	0.3	0.6	0	.7	2.4	0.3	1.3	1.0	1.1	0.3	0.9	-1.4	0.9	0.3	1.5	0.4	1.1	0.4	0.7	0.1	1.7	0.3	0.6	0.8	1.0

Labj ====>

Lab i			B	ARC	IF	FIN	IR	мм	N	RC	F	RC	CSIR	-NML	IN	ER	KR	ISS	N	М	VN	IIM
¢.	Di	U,	D _{ij}	U _{ij}	D _{ij}	Uij	D _{ij}	U _{ij}	D _{ij}	U _{ij}	D _{ij}	Uij	D _{ij}	U _{ij}	Dij	Uij	Dij	U _{ij}	D _{ij}	U _{ij}	D _{ij}	U _{ij}
	/ M	Bq	/ 1	ИBq	/ N	ИBq	/ N	1Bq	/ N	1Bq	/ N	/Bq	/ M	lBq	/ M	Bq	/ N	IBq	/ M	Bq	/ M	Bq
BIPM	-0.4	2.2	-0.3	2.8	-0.7	2.5	0.1	2.9	-0.2	2.4	-0.4	2.6	-0.9	2.8	-0.6	2.5	0.4	2.6	-2.4	2.8	-0.7	2.4
NPL	0.0	1.1	0.2	2.0	-0.3	1.5	0.6	2.2	0.3	1.3	0.1	1.7	-0.5	1.9	-0.1	1.5	0.9	1.6	-2.0	1.9	-0.3	1.3
ОМН	-0.7	1.0	-0.6	1.9	-1.0	1.4	-0.2	2.0	-0.5	1.1	-0.7	1.5	-1.2	1.8	-0.9	1.4	0.1	1.4	-2.7	1.8	-1.0	1.1
CMI-IIR	0.0	0.7	0.2	1.7	-0.3	1.2	0.6	1.9	0.3	0.8	0.1	1.4	-0.4	1.6	-0.1	1.2	0.9	1.3	-2.0	1.6	-0.3	0.9
NIST	1.7	0.9	1.8	1.8	1.4	1.3	2.2	2.0	1.9	0.9	1.7	1.4	1.2	1.7	1.5	1.2	2.5	1.3	-0.3	1.7	1.4	0.9
LNE-LNHB	0.0	1.3	0.1	2.1	-0.3	1.7	0.5	2.3	0.2	1.4	0.0	1.8	-0.5	2.0	-0.2	1.7	0.8	1.7	-2.0	2.0	-0.3	1.5
LNMRI	0.0	1.0	0.1	1.9	-0.3	1.4	0.5	2.0	0.2	1.1	0.0	1.5	-0.5	1.8	-0.2	1.4	0.8	1.4	-2.1	1.8	-0.4	1.1
РТВ	-0.1	0.6	0.1	1.7	-0.4	1.1	0.5	1.9	0.2	0.7	0.0	1.3	-0.6	1.6	-0.2	1.1	0.8	1.2	-2.1	1.6	-0.4	0.7
IRA	0.2	1.5	0.3	2.3	-0.1	1.9	0.7	2.4	0.4	1.7	0.2	2.0	-0.3	2.2	0.1	1.9	1.0	1.9	-1.8	2.2	-0.1	1.7
NMIJ	0.0	0.7	0.1	1.7	-0.3	1.2	0.5	1.9	0.3	0.9	0.0	1.4	-0.5	1.5	-0.1	1.0	0.9	1.1	-2.0	1.5	-0.3	0.6
-					-																	
ANSTO	-0.5	0.8	-0.4	1.7	-0.8	1.2	0.0	1.9	-0.3	0.8	-0.5	1.4	-1.0	1.7	-0.7	1.2	0.3	1.3	-2.5	1.7	-0.8	1.0
BARC	-0.1	1.6			-0.4	1.8	0.4	2.4	0.1	1.6	-0.1	1.9	-0.6	2.2	-0.3	1.9	0.7	1.9	-2.1	2.2	-0.5	1.7
IFIN	0.3	1.0	0.4	1.8			0.8	2.0	0.5	1.0	0.3	1.5	-0.2	1.8	0.1	1.4	1.1	1.5	-1.7	1.8	0.0	1.1
IRMM	-0.5	1.8	-0.4	2.4	-0.8	2.0			-0.3	1.8	-0.5	2.1	-1.0	2.3	-0.7	2.0	0.3	2.1	-2.5	2.3	-0.9	1.9
NRC	-0.2	0.5	-0.1	1.6	-0.5	1.0	0.3	1.8			-0.2	1.2	-0.7	1.6	-0.4	1.1	0.6	1.2	-2.3	1.6	-0.6	0.8
RC	0.0	1.2	0.1	1.9	-0.3	1.5	0.5	2.1	0.2	1.2			-0.5	1.9	-0.2	1.5	0.8	1.6	-2.0	1.9	-0.4	1.3
_																						
CSIR-NML	0.5	1.5	0.6	2.2	0.2	1.8	1.0	2.3	0.7	1.6	0.5	1.9			0.3	1.6	1.3	1.7	-1.5	2.0	0.2	1.4
INER	0.1	1.0	0.3	1.9	-0.1	1.4	0.7	2.0	0.4	1.1	0.2	1.5	-0.3	1.6			1.0	1.3	-1.9	1.6	-0.2	0.9
KRISS	-0.8	1.1	-0.7	1.9	-1.1	1.5	-0.3	2.1	-0.6	1.2	-0.8	1.6	-1.3	1.7	-1.0	1.3			-2.9	1.7	-1.2	1.0
NIM	2.0	1.5	2.1	2.2	1.7	1.8	2.5	2.3	2.3	1.6	2.0	1.9	1.5	2.0	1.9	1.6	2.9	1.7			1.7	1.4
VNIIM	0.3	0.6	0.5	1.7	0.0	1.1	0.9	1.9	0.6	0.8	0.4	1.3	-0.2	1.4	0.2	0.9	1.2	1.0	-1.7	1.4		

Figure 1. Graph of degrees of equivalence with the KCRV for ¹³⁹Ce

(as it appears in Appendix B of the MRA)

N.B. the right hand axis indicates approximate relative values only

Appendix 1. Uncertainty budgets for the activity of ¹³⁹Ce submitted to the SIR

Relative standard uncertainties	$u_i imes 10^4$				
	evaluated by method				
Contributions due to	Α	В			
linear extrapolation, including weighing and counting type A uncertainties	17	_			
weighing	-	5			
background	—	1			
fixed dead time	_	1			
resolving time	_	3			
timing	_	3			
decay correction	-	1			
Quadratic summation	17	7			
Relative combined standard uncertainty, <i>u_c</i>	18				

Uncertainty budget for the NMIJ measurement of 2004

Appendix 2. Acronyms used to identify different measurement methods

Each acronym has six components, geometry-detector (1)-radiation (1)-detector (2)-radiation (2)-mode. When a component is unknown, ?? is used and when it is not applicable 00 is used.

Geometry	acronym	Detector	acronym	
4π	4P	proportional counter	PC	
defined solid angle	SA	press. prop counter	PP	
2π	2P	liquid scintillation counting	LS	
undefined solid angle	UA	Nal(TI)	NA	
		Ge(HP)	GH	
		Ge(Li)	GL	
		Si(Li)	SL	
		CsI(TI)	CS	
		ionization chamber	IC	
		grid ionization chamber	GC	
		bolometer	BO	
		calorimeter	CA	
		PIPS detector	PS	
Radiation	acronym	Mode	acronym	
positron	PO	efficiency tracing	ET	
beta particle	BP	internal gas counting	IG	
Auger electron	AE	CIEMAT/NIST	CN	
conversion electron	CE	sum counting	SC	
mixed electrons	ME	coincidence	СО	
bremsstrahlung	BS	anti-coincidence	AC	
gamma rays	GR	coincidence counting with efficiency tracing	СТ	
X - rays	XR	anti-coincidence counting with efficiency tracing	AT	
photons (x + γ) PH		triple-to-double coincidence ratio counting	TD	
photons + electrons	PE	selective sampling	SS	
alpha - particle	AP	high efficiency	HE	
mixture of various radiation	MX	digital coincidence counting	DC	

Examples	method	acronym		
$4\pi(PC)\beta-\gamma$ -coincidence cour	iting	4P-PC-BP-NA-GR-CO		
4π(PPC) β -γ-coincidence cou	unting eff. trac.	4P-PP-MX-NA-GR-CT		
defined solid angle α -particle	e counting with a PIPS detector	SA-PS-AP-00-00-00		
4π(PPC)AX-γ(GeHP)-anticoi	ncidence counting	4P-PP-MX-GH-GR-AC		
4π CsI- β ,AX, γ counting		4P-CS-MX-00-00-HE		
calibrated IC		4P-IC-GR-00-00-00		
internal gas counting		4P-PC-BP-00-00-IG		