Update of the BIPM comparison BIPM.RI(II)-K1.Cd-109 of activity measurements of the radionuclide ¹⁰⁹Cd to include the 2012 result of the LNE-LNHB (France)

C. Michotte¹, S. Courte¹, M. Nonis¹, R. Coulon¹, S. Judge¹, G. Ratel¹, C. Fréchou², C. Thiam²

E-mail: cmichotte@bipm.org

Abstract Since 1978, 10 laboratories have submitted 23 samples of ¹⁰⁹Cd to the International Reference System (SIR) for activity comparison at the Bureau International des Poids et Mesures (BIPM), with comparison identifier BIPM.RI(II)-K1.Cd-109. In 2012, the LNE-LNHB (France) participated in the comparison to update its degree of equivalence. A graphical presentation is also given.

1. Introduction

The SIR for activity measurements of γ -ray-emitting radionuclides was established in 1976. Each national metrology institute (NMI) may request a standard ampoule from the BIPM that is then filled with 3.6 g of the radioactive solution. For radioactive gases, a different standard ampoule is used. Each NMI completes a submission form that details the standardization method used to determine the absolute activity of the radionuclide and the full uncertainty budget for the evaluation. The ampoules are sent to the BIPM where they are compared with standard sources of 226 Ra using pressurized ionization chambers. Details of the SIR method, experimental set-up and the determination of the equivalent activity $A_{\rm e}$, are all given in [1].

From its inception until 31 December 2020, the SIR has been used to measure 1021 ampoules to give 776 independent results for 72 different radionuclides. The SIR makes it possible for national laboratories to check the reliability of their activity measurements at any time. This is achieved by the determination of the equivalent activity of the radionuclide and by comparison of the result with the key comparison reference value determined from the results of primary standardizations. These comparisons are

 $^{^{1}}$ Bureau International des Poids et Mesures, Pavillon de Breteuil, F-92312 Sèvres Cedex, France.

² Laboratoire National de métrologie et d'Essais -Laboratoire National Henri Becquerel (LNE-LNHB), Gif-sur-Yvette, France.

described as BIPM continuous comparisons and the results form the basis of the BIPM key comparison database (KCDB) of the Comité International des Poids et Mesures Mutual Recognition Arrangement (CIPM MRA) [2]. The comparison described in this report is known as the BIPM.RI(II)-K1.Cd-109 key comparison. The results of earlier participations in this key comparison were published previously [3,4].

2. Participants

Laboratory details are given in Table 1, with the earlier submissions being taken from [3, 4]. The dates of measurement in the SIR given in Table 1 are used in the KCDB and all references in this report. The AECL (Atomic Energy of Canada Ltd) is not part of the NMI in Canada but was an invited participant in various SIR comparisons as, in the early years, J.G.V. Taylor of the AECL was a personal member of the predecessor to the CCRI(II).

Table 1: Details of the participants in the BIPM.RI(II)-K1.Cd-109.

NMI or labora- tory	Previous acronyms	Full name	Country	RMO	Date of SIR measurement
AECL ^a	-	Atomic Energy of Canada Ltd	Canada	SIM	1982-03-31
BIPM	-	Bureau International des Poids et Mesures			1986-03-24
CMI-IIR	UVVVR	Czech Metrological Insti- tute - Inspectorate for Ion- izing Radiation	Czech Republic	EURAMET	1978-09-01 1986-04-08
IRA	IER	Institut de Radiophysique	Switzerland	EURAMET	2000-12-05
LNE-	LMRI,	Laboratoire National de	France	EURAMET	1980-07-02
LNHB	LMRI, LPRI, BNM- LNHB	métrologie et d'Essais -Laboratoire National Henri Becquerel	France	EURAMEI	1980-07-02
	ENTE	nemi Beequerei			1998-01-23 2012-02-29
NIST	NBS	National Institute of Standards and Technology	United States	SIM	2004-11-22
NMIJ	ETL	National Metrology Insti- tute of Japan	Japan	APMP	1996-04-05
NMISA	NAC, CSIR- NML ^b	National Metrology Insti- tute of South Africa	South Africa	AFRIMETS	1978-04-18
					1979-10-10
					1981-03-24
					1982-12-03
NPL	-	National Physical Laboratory	United King- dom	EURAMET	1980-10-09

NMI or labora- tory	Previous acronyms	Full name	Country	RMO	Date of SIR measurement
РТВ	-	Physikalisch-Technische Bundesanstalt	Germany	EURAMET	1994-11-24 2004-09-24

... Continuation of Table 1.

3. NMI standardization methods

00-00-00

Each NMI that submits amoules to the SIR has measured the activity either by a primary standardization method or by using a secondary method, for example a calibrated ionization chamber. In the latter case, the traceability of the calibration needs to be clearly identified to ensure that appropriate correlations are taken into account.

A brief description of the standardization methods used by the laboratories, the activities submitted, the relative standard uncertainties and the half-life used by the participants are given in Table 2. The uncertainty budget for the new submission is given in Appendix D attached to this report; previous uncertainty budgets are given in the earlier K1 reports [3,4]. The list of acronyms used to summarize the methods is given in Appendix E.

Since 2012, the half-life used by the BIPM is 461.9(4) days as published in BIPM Monographie 5 vol. 8 [5]. The half-life of 461.4(12) days [6] was used since 2004 and 464(1) days [7] for earlier results.

NMI or labora- tory	Method used and the acronym	$egin{aligned} \mathbf{Activity} \ A_i/\mathbf{MBq} \end{aligned}$	$egin{array}{c} ext{Relative} \\ ext{standard} \\ ext{uncertainty} \\ ext{}/10^{-2} \end{array}$		Reference date	Half-life /d
			A	В	yyyy-mm- dd	
AECL	γ efficiency tracing using $^{109}{\rm Pd}$ (4P-PC-BP-GL-GR-ET)	17 740	1.2	0.6	1981-09-01 17:00 UT	462.3(7)
BIPM	$4\pi (PPC)$ ce (4P-PP-CE-00-00-00)	21 547 ^f 21 708	0.01	0.26	1986-03-01 00:00 UT	462.6(4)
CMI-IIR	$4\pi (\text{NaI(Tl)})x (4\text{P-NA-XR-} 00-00-00)$ $4\pi (\text{NaI(Tl)})x (4\text{P-NA-XR-} 00-00-00)$	3802 17.670	0.2	1.3	1978-07-27 11:00 UT 1986-03-19	475 453.5

 $12:00 \ UT$

Table 2: Standardization methods of the participants for ¹⁰⁹Cd.

^a federal Crown corporation, not part of the NMI in Canada (see text)

^b NAC is another institute of the country.

... Continuation of Table 2.

NMI or labora-	Method used and the acronym	$Activity \ A_i/{ m MBq}$	Relati standa		Reference date	Half-life /d
tory			$\frac{\text{uncertainty}}{\sqrt{10^{-2}}}$			/
			A	В	yyyy-mm- dd	
IRA	Ionization chamber (4P-IC-GR-00-00-00) ^a	51 320	0.08	0.61	2000-12-01 12:00 UT	462.9(20)
LNE- LNHB	$4\pi(PPC)$ ce (4P-PP-CE-00-00-00)	2716 ^f	0.03	0.14	1980-02-19 00:00 UT	-
	TDCR (4P-LS-MX-00-00- TD) 4π (PPC)ce (4P-PP-CE-00-	2712 6916 ^g	0.03	0.14	1997-10-01 12:00 UT	-
	$ \begin{array}{c c} \hline 00\text{-}00) \\ \hline 4\pi (\text{NaI(Tl)}) & \text{well-type} \\ \text{counting} & (4\text{P-NA-GR-00-} \\ 00\text{-}00) \\ \end{array} $	8731	0.05	0.94	2011-06-13 12:00 UT	461.4(12)
NIST	Ionization chamber (4P-IC-GR-00-00-00) ^a	42 410	0.04	0.51	2004-11-15 12:00 UT	462(1)
NMIJ	$4\pi (PPC)$ ce (4P-PP-CE-00-00-00)	13 903	0.19	0.4	1996-03-01 12:00 UT	-
NMISA	$4\pi (LS)$ ce-x coincidence $(4P-LS-CE-NA-XR-CO)^b$	99 200 ^f	0.11	2	1978-03-31 10:00 UT	
		101 800	0.11	2		
	$4\pi (LS)$ ce-x coincidence $(4P-LS-CE-NA-XR-CO)^b$	176 400 ^f	0.13	1.80	1979-09-28 13:00 UT	-
	$4\pi (LS) ce (4P-LS-CE-00-00-00)^{b}$	187 900 176 800 ^f	0.13 0.10	1.80 2.00		
	·	188 400	0.10	2.00		
	$4\pi (LS)$ ce-x coincidence $(4P-LS-CE-NA-XR-CO)^c$	209 400 ^f	0.1	1.82	1981-02-10 12:00 UT	
	$4\pi(LS)$ ce-x coincidence	212 100 82 380 ^f	0.1	1.82 0.71	1982-10-29	
	(4P-LS-CE-NA-XR-CO) ^c	79 930	0.03	0.71	10:00 UT	
NPL	Ionization chamber (4P-IC-GR-00-00-00) ^d	39 300	0.09	1.64	1980-10-06 00:00 UT	
PTB	Ionization chamber (4P-IC-GR-00-00-00) ^d	7405	0.05	0.5	1994-10-01 00:00 UT	
	Ionization chamber (4P-IC-GR-00-00-00) ^e	14 962	0.06	0.29	2004-01-01 00:00 UT	[10]

^a calibrated in 1986 against $4\pi(\text{NaI}(\text{Tl}))\gamma$ counting and $4\pi(\text{LS})$ ce counting in the frame of the CCRI(II) comparison

^b see details in [8]

c see details in [9]

^d calibrated by a primary method

 $^{^{\}rm e}$ calibrated in March 2005 by a combination of $4\pi({\rm PPC}){\rm ce}$ counting 4P-PP-CE-00-00-HE, LS counting 4P-LS-CE-00-00-00 and HPGe spectrometry UA-GH-GR-00-00-00

^f Several samples submitted

g The result is the mean of the different methods.

Details regarding the solutions submitted are shown in Table 3, including any impurities, when present, as identified by the laboratories. When given, the standard uncertainties on the evaluations are shown.

Table 3	Details o	f each	solution	of 109 Cd	l submitted.

NMI or	Chemical	Solvent conc.	Carrier	Density	Relative activity of
laboratory	composi-		conc.		any impurity ^b
	tion				
/ SIR year		/ (mol dm ⁻³)	$/(\mu { m g}{ m g}^{-1})$	$/(g \text{cm}^{-3})$	
AECL 1982	$CdCl_2$ in HCl	0.1	CdCl ₂ : 20	1	-
BIPM 1986 ^a	$CdCl_2$ in HCl	0.1	CdCl ₂ : 20	-	^{110m} Ag:
					$3.6(7)$ x 10^{-6} %
					65 Zn: $1.4(3)$ x 10^{-6} %
CMI-IIR	$Cd(NO_3)_2$ in	0.08	$Cd(NO_3)_2$:	-	<0.1 %
1978	HCl		50		
1986	$CdCl_2$ in HCl	0.08	CdCl ₂ : 50	-	<0.1 %
IRA 2000	$CdCl_2$ in HCl	0.1	CdCl ₂ : 20	1	negligible
LNE-LNHB	$CdCl_2$ in HCl	1	CdCl ₂ : 25	1.016	110m Ag: $0.082(2)$ %
1980					
					⁶⁰ Co: 0.0182(5) %
					65 Zn: 0.0142(5) %
					152 Eu: $0.0021(1)$ %
					$^{134}\mathrm{Cs}$: $0.0004(1)$ %
					115m Cd: 0.03(1) %
1998	$CdCl_2$ in HCl	1	CdCl ₂ : 10	1.016	-
2012	$CdCl_2$ in HCl	1	CdCl ₂ : 10	1.016	None detected
NIST 2004	$CdCl_2$ in HCl	0.5	CdCl ₂ : 500	1.007(1)	-
NMIJ 1996	$CdCl_2$ in HCl	0.1	CdCl ₂ : 200	1	⁶⁵ Zn: 0.0047(5) %
NMISA 1978	CdCl in HCl	1	CdCl: 95	1.036	-
1979	$CdCl_2$ in HCl	1	CdCl ₂ : 100	1.036	-
1981	$CdCl_2$ in HCl	1	Cd ⁺⁺ : 610	1.037	-
1982	$CdCl_2$ in HCl	1	Cd ⁺⁺ : 300	1.037	-
NPL 1980	$CdCl_2$ in HCl	0.1	CdCl ₂ : 100	1.001	-
PTB 1994	$CdCl_2$ in HCl	0.1	CdCl ₂ : 45	1	-
2004	CdCl in HCl	0.1	CdCl: 28	1	-

^a ampoules measured by the BIPM in the frame of the 1986 CCRI(II)-K2.Cd-109 and used to make the link for the CCRI(II) key comparison

4. Results

All the submissions to the SIR since its inception in 1976 are maintained in a database known as the "master-file". The latest submission has added 1 ampoule for the activity measurements for 109 Cd giving rise to 23 ampoules in total. The SIR equivalent activity, A_{ei} , for each ampoule received from each NMI, i, including both previous and new results, is given in Table 4.

The relative standard uncertainties arising from the measurements in the SIR are

^b the ratio of the activity of the impurity to the activity of ¹⁰⁹Cd at the reference date

also shown. This uncertainty is additional to that declared by the NMI $(u(A_i))$ for the activity measurement shown in Table 2. Although submitted activities are compared with a given source of 226 Ra, all the SIR results are normalized to the radium source number 5 [1].

No recent submission has been identified as a pilot study so the most recent result of each NMI is normally eligible for inclusion on the KCDB platform of the CIPM MRA [2].

In principle, the chemical composition of the solutions could have an influence on the SIR measurements due to the intense x-ray emission from ¹⁰⁹Cd. However, using the efficiency curve of the SIR [11], the contribution of the x rays to the ionization current is estimated to be negligible. In consequence, the influence of the chemical composition on the SIR measurements can also probably be neglected in this case although a more detailed study could be carried out.

Table 4: Results of SIR measurement of ¹⁰⁹Cd.

NMI or labo-	m_i	A_i	$^{226}\mathbf{Ra}$	$A_{\mathbf{e}i}$	Relative	$u_{\mathbf{c}i}$	$A_{\mathbf{e}i}$	for
ratory			source		uncert.		KCRV	
					from			
					SIR			
/ SIR year	$/\mathbf{g}$	$/\mathbf{MBq}$		$/\mathbf{MBq}$	$/10^{-4}$	$/{ m MBq}$	$/\mathbf{MBq}$	
AECL 1982	1.613 23 ^a	17740	1	8110	28	110	8110(110)	
BIPM 1986	3.605 6	21 547	1	8112	16	25	-	
	3.632 5	21 708	1	8114	16	26	_	
CMI-IIR 1978	3.596 5	3802 ^c	1	7990	23	110	_b	
1986	3.615 4	17 670	1	7913	25	77	_b	
IRA 2000	3.527	51 320	1	8065	14	51	8065(51)	
	60(10)							
LNE-LNHB	3.685 56	2716 ^c	1	8128	240^{d}	200	-	
1980								
	3.679 70	2712	1	8110	240	200	-	
1998	3.594 4	6916 ^c	1	8187	42	88	-	
2012	3.757	8731 ^c	1	8042	23	78	_	
NIST 2004	3.613 9(2)	42 410	1	8168	16	44	_e	
NMIJ 1996	3.594 3	13 903	1	8157	23	41	-	
NMISA 1978	3.600	99 200	1	8161	13	160	-	
	3.599	101 800	1	8164	13	160	-	
1979	3.604	176 400	2	8217	11	150	-	
	3.605	187 900	2	8214	11	150	=	
	3.604	176 800	2	8238 ^h	11	170	-	
	3.605	188 400	2	8236 ^h	11	170	_	
1981	3.610	209 400	2	8186	11	150	_	
	3.602	212 100	2	8187	11	150	_	
1982	3.596	82 380	1	8166	$20^{\rm f}$	60	8171(60) ^g	
	3.595	79 930	1	8175	21	60	_	

NMI or labo-	m_i	A_i	$^{226}\mathbf{Ra}$	$A_{\mathbf{e}i}$	Relative	$u_{\mathbf{c},i}$	$A_{\mathbf{e}}$ for KCRV
ratory			source		uncert.		
					from		
					SIR		
/ SIR year	$/\mathbf{g}$	$/\mathbf{MBq}$		$/\mathbf{MBq}$	$/10^{-4}$	$/\mathbf{MBq}$	$/\mathbf{MBq}$
NPL 1980	3.589	39 300	1	8130	16	130	8130(130)
PTB 1994	3.698 9	7405°	1	8153 ^e	37	51	-
2004	3.640 9(9)	14 962	1	8170	29	34	8170(34)

... Continuation of Table 4.

4.1. The key comparison reference value

In May 2013, the CCRI(II) decided to calculate the key comparison reference value (KCRV) by using the power-moderated weighted mean [14] rather than an unweighted mean, as had been the policy. This type of weighted mean is similar to a Mandel-Paule mean in that the NMIs' uncertainties may be increased until the reduced chi-squared value is one. In addition, it allows for a power α smaller than two in the weighting factor. As proposed in [14], α is taken as 2-3/N where N is the number of results selected for the KCRV. Therefore, all SIR key comparison results can be selected for the KCRV with the following provisions:

- (a) only results for solutions standardized by primary techniques are accepted, with the exception of radioactive gas standards (for which results from transfer instrument measurements that are directly traceable to a primary measurement in the laboratory may be included);
- (b) each NMI or other laboratory may only use one result (normally the most recent result or the mean if more than one ampoule is submitted);
- (c) results more than 20 years old are included in the calculation of the KCRV but are not included in data shown in the KCDB or in the plots in this report, as they have expired;
- (d) possible outliers can be identified on a mathematical basis and excluded from the KCRV using the normalized error test with a test value of 2.5 and using the modified uncertainties;
- (e) results can also be excluded for technical reasons; and

^a mass of solution before dilution

^b Result not included in the KCRV because of potential impurity in the solution (see details in [3].)

^c Activity in the ampoule significantly lower than the minimum required for the SIR (45 MBq)

^d the SIR uncertainty reflects the uncertainties of the impurity measurements reported by the NMI

^e Result not included in the KCRV because of the slow drift of the ampoule holder's height in the IC at the NIST discovered in 2012

f changed from 14 x 10^{-4} to 20 x 10^{-4} and 21 x 10^{-4} due to the density effect in the SIR at low energy [12]

^g An average value and average uncertainty between all submitted samples is used for the KCDB [13].

h unofficial result

(f) the CCRI(II) is always the final arbiter regarding excluding any data from the calculation of the KCRV.

The data set used for the evaluation of the KCRVs is known as the KCRV file and is a reduced data set from the SIR master-file. Although the KCRV may be modified when other NMIs participate, on the advice of the Key Comparison Working Group of the CCRI(II), such modifications are made only by the CCRI(II) during one of its biennial meetings, or by consensus through electronic means (e.g., email) as discussed at the CCRI(II) meeting in 2013.

The ampoules containing an activity significantly smaller than the minimum required for the SIR were not selected for the KCRV. See Table 4. In addition, the $4\pi(\text{PPC})$ ce method was not considered as primary for ^{109}Cd ; the corresponding SIR results were also not selected for the KCRV. Consequently, using the recent result produces an updated KCRV for ^{109}Cd in 2012 of 8138(26) MBq with the power $\alpha = 1.4$ that has been calculated using the previously published results, selected as shown in Table 4, for the NPL (1980), AECL (1982), NMISA (1982), IRA (2000), and the PTB (2004) result. This can be compared with the previous KCRV values of 8136(44) MBq published in 2003 [3].

4.2. Degrees of equivalence

Every participant in a comparison is entitled to have one result included in the KCDB as long as the NMI is a signatory or designated institute listed in the CIPM MRA and the result is valid (i.e., not older than 20 years). Normally, the most recent result is the one included. An NMI may withdraw its result only if all other participants agree.

The degree of equivalence of a given measurement standard is the degree to which this standard is consistent with the KCRV [2]. The degree of equivalence is expressed quantitatively in terms of the deviation from the key comparison reference value and the expanded uncertainty of this deviation (k = 2). The degree of equivalence between any pair of national measurement standards is expressed in terms of their difference and the expanded uncertainty of this difference and is independent of the choice of key comparison reference value.

4.2.1. Comparison of a given NMI result with the KCRV

The degree of equivalence of the result of a particular NMI, i, with the key comparison reference value is expressed as the difference D_i between the values

$$D_i = A_{ei} - KCRV \tag{1}$$

and the expanded uncertainty (k = 2) of this difference, U_i , known as the equivalence uncertainty; hence

$$U_i = 2u(D_i) \tag{2}$$

When the result of the NMI i is included in the KCRV with a weight w_i , then

$$u^{2}(D_{i}) = (1 - 2w_{i})u_{i}^{2} + u^{2}(KCRV)$$
(3)

However, when the result of the NMI i is not included in the KCRV, then

$$u^2(D_i) = u_i^2 + u^2(KCRV) \tag{4}$$

4.2.2. Comparison between pairs of NMI results

The degree of equivalence between the results of any pair of NMIs, i and j, is expressed as the difference D_{ij} in the values

$$D_{ij} = D_i - D_j = A_{ei} - A_{ej} \tag{5}$$

and the expanded uncertainty (k=2) of this difference, $U_{ij}=2u(D_{ij})$, where

$$u^{2}(D_{ij}) = u_{i}^{2} + u_{j}^{2} - 2u(A_{ei}, A_{ej})$$
(6)

where any obvious correlations between the NMIs (such as a traceable calibration, or correlations normally coming from the SIR or from the linking factor in the case of linked comparison) are subtracted using the covariance $u(A_{ei}, A_{ej})$ (see [15] for more detail). However, the CCRI decided in 2011 that these pair-wise degrees of equivalence no longer need to be published as long as the methodology is explained.

Table B1 shows the matrix of all the degrees of equivalence as they will appear in the KCDB. It should be noted that for consistency within the KCDB, a simplified level of nomenclature is used with A_{ei} replaced by x_i . The introductory text is that agreed for the comparison. The graph of the results in Table 5, corresponding to the degrees of equivalence with respect to the KCRV (identified as x_R in the KCDB), is shown in Figure C1. This graphical representation indicates in part the degree of equivalence between the NMIs but obviously does not take into account the correlations between the different NMIs. It should be noted that the final data in this paper, while correct at the time of publication, will become out-of-date as NMIs make new comparisons. The formal results under the CIPM MRA [2] are those available in the KCDB.

5. Conclusion

The BIPM continuous key comparison for ¹⁰⁹Cd, BIPM.RI(II)-K1.Cd-109, currently comprises 4 results. The results have been analyzed with respect to the updated KCRV, providing degrees of equivalence for 4 national metrology institutes. The degrees of equivalence have been approved by the CCRI(II) and are published in the BIPM key comparison database. Other results may be added when other NMIs contribute ¹⁰⁹Cd activity measurements to this comparison or take part in other linked comparisons.

6. References

- [1] Ratel, G. The Système International de Référence and its application in key comparisons, *Metrologia*, 2007, 44(4), S7-S16.
- [2] CIPM MRA: Mutual recognition of national measurement standards and of calibration and measurement certificates issued by national metrology institutes, International Committee for Weights and Measures, 1999, pp. 45.
- [3] Ratel G., Michotte C., BIPM comparison BIPM.RI(II)-K1.Cd-109 of activity measurements of the radionuclide ¹⁰⁹Cd and links for the 1986 international comparison CCRI(II)-K2.Cd-109, *Metrologia*, 2003, 40, Tech. Suppl., 06019.
- [4] Ratel G., Michotte C., Janssen, Kossert K., Lucas L. and Karam L., Activity measurements of the radionuclide ¹⁰⁹Cd for the PTB, Germany and the NIST, USA in the ongoing comparison BIPM.RI(II)-K1.Cd-109, *Metrologia*, 2005, 42, Tech. Suppl., 06011.
- [5] Bé M.-M., Chisté V., Dulieu C., Kellett M. A., Mougeot X., Arinc A., Chechev V.P., Kuzmenko N.K., Kibédi T., Luca A., Nichols A.L., *Table of radionuclides*, Monographie BIPM-5, 2016, Vol 8.
- [6] Bé M.-M., Chisté V., Dulieu C., Browne E., Chechev V., Kuzmenko N., Helmer R., Nichols A., Schöfeld E., Dersch R., Table of radionuclides, Monographie BIPM-5, 2004, Vol. 1.
- [7] NBS Radioactivity Section, Priv. Comm. (Nov. 1976).
- [8] Steyn J., Standardization of Cadminium-109, CSIR Research Report 281, 1969.
- [9] Meyer B.R., Steyn J. and Conard F.M.P., Standardization of Cd-109 revisited, CSIR Research Report 588, 1983.
- [10] Bé M.-M., Chisté V., Dulieu C., Browne E., Chechev V., Kuzmenko N., Helmer R., Nichols A., Schönfeld E., Dersch R., *Table of radionuclides*, Monographie BIPM-5, 2004, Vol 2.
- [11] Cox M.G., Michotte C., Pearce A.K., Measurement modelling of the International Reference System (SIR) for gamma-emitting radionuclides, *Monographie BIPM-7*, 2007, 48 pp.
- [12] Michotte C., Ratel G., Courte S., Dzeil T., Listkowska A., Csete I., Rozsa K., Szücs L., Zsinka A., Fréchou C., Bobin C. and Pierre S., Update of the BIPM comparison BIPM.RI(II)-K1.Am-241 of activity measurements of the radionuclide ²⁴¹Am to include the 2009 results of the POLATOM (Poland), MKEH (Hungary) and the 2011 results of the LNE-LNHB (France), *Metrologia*, 2017, 54, Tech. Suppl., 06010.
- [13] Woods M.J., Reher D.F.G. and Ratel G., Equivalence in radionuclide metrology, *Applied Radiation and Isotopes*, 2000, **52**(3), 313-318.
- [14] Pommé S. and Keightley J., Determination of a reference value and its uncertainty through a power-moderated mean, *Metrologia*, 2015, **52**(3), S200.
- [15] Michotte C. and Ratel G., Correlations taken into account in the KCDB, CCRI(II) working document, 2003, CCRI(II)/03-29.

Appendix A. Introductory text for ¹⁰⁹Cd degrees of equivalence

Key comparison BIPM.RI(II)-K1.Cd-109

MEASURAND: Equivalent activity of ¹⁰⁹Cd

Key comparison reference value: the SIR reference value $x_{\rm R}$ for this radionuclide is 8138 MBq, with a standard uncertainty, $u_{\rm R}$ equal to 26 MBq (see Section 4.1 of the Final Report). The value x_i is taken as the equivalent activity for a laboratory i.

and U_i , its expanded uncertainty (k=2), both expressed in MBq, and $U_i=2((1-2w_i)u_i^2+u_{\rm R}^2)^{1/2}$, where w_i is the weight of The degree of equivalence of each laboratory with respect to the reference value is given by a pair of terms: $D_i = (x_i - x_R)$ laboratory i contributing to the calculation of $x_{\rm R}$.

Appendix B. Table of degrees of equivalence for BIPM.RI(II)-K1.Cd-109

Table B1: The table of degrees of equivalence for $\rm BIPM.RI(II)\text{-}K1.Cd\text{-}109$

NMI i	D_i / \mathbf{MBq}	U_i / \mathbf{MBq}
IRA	-73	90
PTB	32	58
NIST	30	100
LNE-LNHB	-100	160

Appendix C. Graph of degrees of equivalence with the KCRV for ¹⁰⁹Cd (as it appears in Appendix B of the MRA)

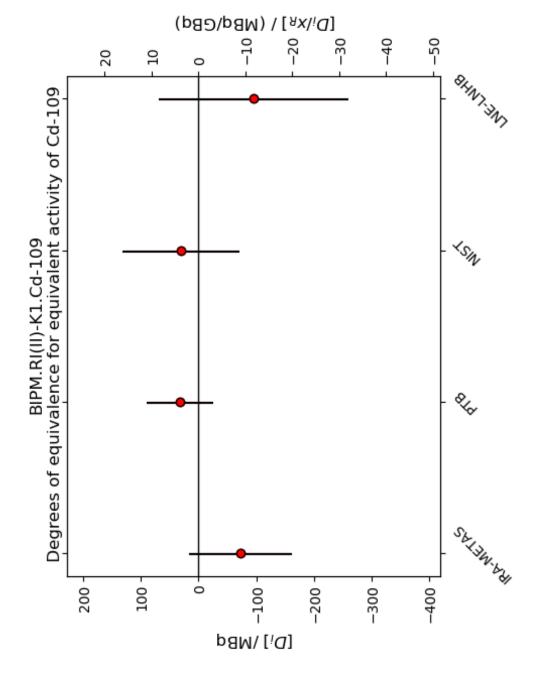


Figure C1. Degrees of equivalence for equivalent activity of ¹⁰⁹Cd.

Appendix D. Uncertainty budgets for the activity of $^{109}\mathrm{Cd}$ submitted to the SIR

Detailed Uncertainty Budget

Laboratory: LNE-LNHB; Radionuclide: 109 Cd ; Ampoule number: 3

Uncertainty components*, in % of the activity concentration, due to

		Remarks	Evaluation	Relative
			type (A or B)	Sensitivity
				Factor
counting statistics	0.3	10 sources measured	В	
weighing	0.1	Pycnometer technique	В	
dead time	0.01	Live-time technique	В	
background	0.05		A	
pile-up				
counting time				
adsorption				
impurities				
tracer				
input parameters and statistical model				
quenching				
interpolation from calibration curve		**********		
Detection efficiency	0.2	GEANT4 MC code	В	
decay-scheme parameters	0.7		В	
half life (T _{1/2} : 461.4 (12) d)	0.01	Decay correction	В	
self absorption				
extrapolation of efficiency				
curve	0.5	Detection threshold setting	B	
other effects (if relevant) (geometry factor, retrodiffusion	n)		B	
combined uncertainty (as quadratic sum of all uncertainty component	0.94		100 FOR THE THE THE THE THE	to be the sec or

^{*} The uncertainty components are to be considered as approximations of the corresponding standard deviations (see also *Metrologia*, 1981, 17, 73 and *Guide to expression of uncertainty in measurement*, ISO, corrected and reprinted 1995).

Appendix E. Acronyms used to identify different measurement methods

Each acronym has six components, geometry-detector (1)-radiation (1)-detector (2)-radiation (2)-mode. When a component is unknown, ?? is used and when it is not applicable 00 is used.

Geometry	acronym	Detector	acronym
4 π	4P	proportional counter	PC
defined solid angle	SA	press. Prop. Counter	PP
2 π	2P	liquid scintillation counting	LS
undefined solid angle	UA	NaI(Tl)	NA
		Ge(HP)	GH
		Ge(Li)	GL
		Si(Li)	SL
		CsI(Tl)	CS
		ionization chamber	IC
		grid ionization chamber	GC
		Cerenkov detector	CD
		calorimeter	CA
		solid plastic scintillator	SP
		PIPS detector	PS
		CeBr3	СВ

Radiation	acronym	Mode	acronym
positron	РО	efficiency tracing	ET
beta particle	BP	internal gas counting	IG
Auger electron	AE	CIEMAT/NIST	CN
conversion electron	CE	sum counting	SC
mixed electrons	ME	coincidence	СО
bremsstrahlung	BS	anti-coincidence	AC
gamma rays	GR	coincidence counting with	СТ
		efficiency tracing	
x-rays	XR	anti-coincidence counting	AT
		with efficiency tracing	
photons $(x + \gamma)$	PH	triple-to-double coincidence	TD
		ratio counting	
${ m photons} + { m electrons}$	PE	selective sampling	SS
alpha particle	AP	high efficiency	HE
mixture of various radi-	MX	digital coincidence counting	DC
ation			

Examples of methods	acronym
$4\pi(PC)\beta-\gamma$ coincidence counting	4P-PC-BP-NA-GR-CO
4π (PPC)β- γ coincidence counting	4P-PP-MX-NA-GR-CT
eff. trac	
defined solid angle α -particle	SA-PS-AP-00-00-00
counting with a PIPS detector	
$4\pi(PPC)AX-\gamma(GeHP)-$	4P-PP-MX-GH-GR-AC
anticoincidence counting	
$4\pi \text{CsI-}\beta, AX, \gamma \text{ counting}$	4P-CS-MX-00-00-HE
calibrated IC	4P-IC-GR-00-00-00
internal gas counting	4P-PC-BP-00-00-IG