FINAL REPORT

Bilateral comparison

ССТ-К9.1

Realizations of the ITS-90 from 273.16 K to 692.677 K

2018 - 2019

S. Rudtsch¹, A. I. Pokhodun², A. G. Ivanova², N. A. Beketov²

¹Physikalisch Technische Bundesanstalt (PTB) ²D.I. Mendeleyev Institute for Metrology (VNIIM)

CONTENT

Introduction	3
1. Comparison schedule	3
2. Procedures of the comparison	4
3. The measurement results of PTB at the fixed points	4
4. The measurement results of VNIIM at the fixed points	6
5. Comparison results	7
6. Conclusion	9
Appendix A Uncertainty budgets of PTB and VNIIM	10
Appendix B Fixed-point cells, furnaces and instrumentation of the participants	. 12
Appendix C Technical Protocol	16

Introduction

The bilateral comparison of the ITS-90 realizations at the National Metrological Institutes PTB (Germany) and VNIIM (Russian Federation) in the temperature range from 273.16K to 692.677 K was initiated by the Technical Committee for "Thermometry and thermal physics" TC1.10 of COOMET.

VNIIM was the coordinator of the bilateral comparison.

The purpose of the comparison is to evaluate the differences between the realizations of the national standards in the most essential temperature range with the highest requirements to the measurement uncertainty. This temperature range includes five ITS-90 fixed points: the triple point of water, the melting point of gallium, the freezing points of indium, tin and zinc. Two 25-Ohm Standard Platinum Resistance Thermometers (SPRTs) were used as transfer standards.

The results of the comparison are resistance ratios W_i for both SPRTs including associated uncertainties U_i . These were used to calculate differences in temperature ΔT_i between the fixed-point realizations of the participants for each ITS-90 fixed point (*i*).

This comparison was carried out in a "double blind" manner. This means that neither VNIIM nor PTB knew the results of the other participants before they have submitted their final results. This was ensured by sending the results to an independent third party, i.e. the chair of the CCT-WG-KC (A. Peruzzi). After this point the participants were not allowed to change or correct results. When both NMIs have confirmed that they have provided the final results, the third party submitted all results to the participants for the data evaluation and the common preparation of the Draft A report.

Name of Laboratory	Contact persons	Address
Physikalisch-Technische Bundesanstalt (PTB) Germany	Dr. S. Rudtsch steffen.rudtsch@ptb.de	Abbestraße, 2–12, 10587 Berlin, Germany
D. I. Mendeleyev Institute for Metrology (VNIIM) Russian Federation	Prof. Pokhodun A.I. a.i.pokhodun@vniim.ru	Moskovsky pr., 19, 190005, St. Petersburg

Participating laboratories:

1. Comparison schedule

01.2018	Planned	PTB, VNIIM
02.2018	First draft of the protocol completed	PTB, VNIIM

03.2018-07.2018	Review and approval of the protocol	CCT-WG-KC
04.2018-08.2018	Selection and first calibration of two SPRTs at VNIIM Delivery of the two SPRTs to PTB	VNIIM
08.2018-12.2018	Calibration of two SPRTs at PTB and return of both SPRTs to VNIIM	РТВ
01.2018-03.2019	Second calibration of the two SPRTs at VNIIM	VNIIM
03.2019	Delivery of final calibration results and final uncertainty budgets to the chair of CCT-WG-KC (A. Peruzzi) without mutual exchange	VNIIM, PTB
04.2019 -06.2019	Report in progress. Draft A.	VNIIM, PTB
07.2019-09.2019	Review of Draft A by CCT-WG-KC	CCT-WG-KC
10.2018 - 12.2019	Draft B	VNIIM, PTB
01.2020	Report submitted to CCT WG-KC for final review	VNIIM, PTB

2. Procedures of the comparison

VNIIM selected two SPRTs (type ETS-25, made in Russia): serial number 0002 and 3-95. The SPRTs were calibrated at all ITS-90 fixed points in the comparison range and sent to PTB. PTB calibrated these thermometers at all fixed points and sent the SPRTs back to VNIIM for the back-calibration.

The best measurement practice of PTB and VNIIM should be used for each fixedpoint realization. The resistance ratio W was calculated for each fixed point: $W = R_t/R_{TPW}$, where R_{TPW} is the SPRT resistance at the triple point of water obtained directly after measuring R_t . The values of R_t and R_{TPW} had to be corrected for self heating due to the measuring current, hydrostatic pressure and pressure in the cell. The calibration cycle had to be repeated at least 3 times.

If after receiving the calibrated SPRTs from VNIIM the measurements of the thermometer resistances at the triple-point of water indicated a change of more than 0,5 mK due to mechanical shock further actions were required. In this case the SPRT resistance had to be stabilized by annealing according to Technical Protocol before the calibration at PTB.

3. The measurement results of PTB at the fixed points

U					
Laboratory name:		PTB, WG 7.42			
$W(t) = R_t/R_{\rm TPW}$, whe	ere $R_{\rm TPW}$ – resis	stance at the TP	W after <i>R</i> t me	asurement	
Pressure correction	in the cell				
Thermometer numb	ber	No. 0002			
<i>R</i> (1 mA)	<i>R</i> (0 mA)	Hydrostatic	Pressure	Rcorrected	W
		correction	correction	(0mA)	
Ohm	Ohm	Ohm	Ohm	Ohm	
24,885264	24,885180	0,000018		24,885198	
63,916566	63,916438	-0,000041		63,916397	2,5684604
24,885166	24,885083	0,000018		24,885101	
47,096382	47,096242	-0,000033		47,096209	1,8925419
24,885228	24,885143	0,000018		24,885161	
40,056057	40,055922	-0,000052		40,055870	1,6096271
24,885253	24,885168	0,000018		24,885186	
27,824339	27,824246	0,000027		27,824273	1,1181052
24,885267	24,885183	0,000018		24,885201	7

Table 1. Average results of 3 cycles for SPRT No. 0002

Table 2. Average results of 3 cycles for SPRT No. 3-95

Laboratory name:		PTB, WG 7.42			
$W(t) = R_t/R_{\rm TPW}$, whe	ere R _{TPW} – resis	stance at the TP	W after Rt me	easurement	
Pressure correction	in the cell				
Thermometer numb	er	No.3-95			
<i>R</i> (1 mA)	<i>R</i> (0 mA)	Hydrostatic	Pressure	Rcorrected	W
		correction	correction	(0mA)	
Ohm	Ohm	Ohm	Ohm	Ohm	
24,473745	24,473546	0,000018		24,473563	
62,861768	62,861559	-0,000041		62,861519	2,5685660
24,473567	24,473374	0,000018		24,473391	
46,318803	46,318557	-0,000033		46,318525	1,8926001
24,473667	24,473470	0,000018		24,473488	
39,394496	39,394241	-0,000052		39,394200	1,6096671
24,473684	24,473490	0,000018		24,473507	
27,364323	27,364132	0,000027		27,364159	1,1181132
24,473689	24,473496	0,000018		24,473513	

4. The measurement results of VNIIM at the fixed points

Laboratory name:		VNIIM			
$W(t) = R_t/R_{\rm TPW},$	where $R_{\rm TPW}$ – res	istance at the T	PW after <i>R</i> t m	easurement	
Pressure correct	ion in the cell				
Thermometer nu	ımber	No. 0002			
<i>R</i> (1 mA)	<i>R</i> (0mA)	Hydrostatic	Pressure	Rcorrected	W
		correction	correction		
Ohm	Ohm	Ohm	Ohm	Ohm	
		Before de	eparture		
63,916096	63,915980	-0,0000384	0,0000075	63,915949	2,56845927
24,885009	24,88492	0,0000178	0,0000000	24,884938	
47,096039	47,095919	-0,0000333	0,0000069	47,095893	1,89253974
24,885093	24,885004	0,0000178	0,0000000	24,885022	
40,055744	40,055575	-0,0000473	0,0000035	40,055531	1,60962489
24,885077	24,884992	0,0000178	0,0000000	24,885010	
27,824081	27,823989	0,0000115	-0,0000023	27,823998	1,11810519
24,885025	24,884938	0,0000178	0,0000000	24,884956	
		After arrival			
63,917498	63,917397	-0,0000384	0,0000075	63,917366	2,56845965
24,885552	24,885468	0,0000178	0,0000000	24,885486	
47,096919	47,096801	-0,0000333	0,0000069	47,096775	1,89254020
24,885551	24,885464	0,0000178	0,0000000	24,885482	
40,056407	40,056238	-0,0000473	0,0000035	40,056194	1,60962443
24,885496	24,885411	0,0000178	0,0000000	24,885429	
27,824591	27,824484	0,0000115	-0,0000023	27,824493	1,11810554
24,885465	24,885373	0,0000178	0,0000000	24,885391	

Table 3. Average results of 3 cycles for SPRT No. 0002

Laboratory name): 	VNIIM				
$W(t) = R_t/R_{TPW}$, where R_{TPW} – resistance at the TPW after R_t measurement						
Pressure correction in the cell						
Thermometer nu	mber	No.3-95				
<i>R</i> (1 mA)	<i>R</i> (0mA)	Hydrostatic correction	Pressure correction	Rcorrected	W	
Ohm	Ohm	Ohm	Ohm	Ohm		
		Before de	eparture			
62,861695	62,861508	-0,0000390	0,0000070	62,861476	2,56856347	
24,473585	24,47338	0,0000180	0,0000000	24,473398		
46,318764	46,318527	-0,0000338	0,0000067	46,318500	1,89259757	
24,473697	24,473489	0,0000180	0,0000000	24,473507		
39,394458	39,394184	-0,0000490	0,0000057	39,394141	1,60966544	
24,473679	24,473478	0,0000180	0,0000000	24,473496		
27,364249	27,364049	0,0000121	-0,0000027	27,364058	1,11811311	
24,473601	24,473408	0,0000180	0,0000000	24,473426		
		After arrival	-			
62,861877	62,861686	-0,0000390	0,0000070	62,861654	2,56856423	
24,473630	24,473442	0,0000180	0,0000000	24,473460		
46,318800	46,318575	-0,0000338	0,0000067	46,318548	1,89259822	
24,473695	24,473506	0,0000180	0,0000000	24,473524		
39,394486	39,394197	-0,0000490	0,0000057	39,394154	1,60966525	
24,473685	24,473489	0,0000180	0,0000000	24,473507		
27,364267	27,364064	0,0000121	-0,0000027	27,364073	1,11811335	
24,473612	24,473416	0,0000180	0,0000000	24,473434		

Table 4. Average results of 3 cycles for SPRT No. 3-95

5. Comparison results

The differences of the temperature values ΔT_i and $U_i (\Delta T_i)$ of each fixed point was calculated according to:

$$\Delta T_{i} = \frac{W_{PTB} - (W_{VNIIM}, before} + W_{VNIIM}, after}{dW_{i} / dT_{i}}$$
(1)

$$U_{i}(\Delta T_{i}) = \sqrt{U_{PTB}^{2} + U_{VNIIM}^{2}}$$
(2)

In addition to the uncertainties reported by the laboratories the uncertainty of possible changes in the transfer SPRTs over the course of the comparison has to be taken into account for the determination of the uncertainty of temperature difference. The uncertainty of the measurement results due to the instability of the transfer standard, u_{PRT} was calculated under the assumption that the distribution of the thermometer drift in time was rectangular and symmetrical:

$$u_{prt} = \frac{\left[\left(W_{VNIIM}\right)_{end} - \left(W_{VNIIM}\right)_{start}\right]}{\sqrt{3}} \cdot \frac{\partial T}{\partial W}$$
(3)

The evaluations of the SPRTs instability during the VNIIM- PTB-VNIIM cycle are presented in Tables 5 and 6.

Fixed point	$(W_{ m VNIIM})_{ m start}$	(W _{VNIIM}) _{end}	ΔT mK	<i>u</i> _{PRT} , mK (<i>k</i> =1)
Ga	1,11810519	1,11810554	0,09	0,05
In	1,60962489	1,60962443	-0,12	0,07
Sn	1,89253974	1,89254020	0,12	0,07
Zn	2,56845927	2,56845965	0,11	0,06

Table 5. SPRT No. 0002

Table 6. SPRT No. 3-95

Fixed point	(W _{VNIIM}) _{start}	(W _{VNIIM}) _{end}	ΔT mK	<i>u</i> _{PRT} , mK (<i>k</i> =1)
Ga	1,11811311	1,11811335	0,06	0,03
In	1,60966544	1,60966525	-0,05	0,03
Sn	1,89259757	1,89259822	0,18	0,10
Zn	2,56856347	2,56856423	0,22	0,13

The differences ΔT_i (PTB-VNIIM) for the fixed points and their uncertainties $U_i(\Delta T)$ are presented in tables 7 and 8 for each SPRT and their mean values in Table 9.

Fixed point	РТВ	VNIIM	ΔT_i (PTB-VNIIM)	$U_i(\Delta T_i)$ (k=2)
	W	W	mK	mK
Zn	2,5684604	2,5684595	0,29	1,6
Sn	1,8925419	1,8925400	0,51	1,1
In	1,6096271	1,6096247	0,64	1,0
Ga	1,1181052	1,1181054	-0,04	0,3

Table 7. SPRT No. 0002

Fixed point	РТВ	VNIIM	$\Delta T_i (\mathbf{PTB-VNIIM})$	$U_i(\Delta T_i)$ (k=2)
	W	W	mK	mK
Zn	2,5685660	2,5685638	0,60	1,6
Sn	1,8926001	1,8925979	0,59	1,1
In	1,6096671	1,6096654	0,47	1,0
Ga	1,1181132	1,1181132	<0,01	0,3

Table 8. SPRT No. 3-95

Table 9.		
Fixed	ΔT_i (PTB-VNIIM)	$U_i(\Delta T_i)$
point		(<i>k</i> =2)
	mK	mK
Zn	0,44	1,6
Sn	0,55	1,1
In	0,55	1,0
Ga	-0,02	0,3

6. Conclusions

The differences between the values of temperatures of the fixed-point realizations at PTB and VNIIM (T_{PTB} - T_{VNIIM}), and their uncertainties are shown on Figure 1. The results confirm the consistency of the ITS-90 realizations of PTB and VNIIM within the stated uncertainties.

Fig. 1 The differences between temperature values: PTB - VNIIM for the fixed points with their expanded uncertainties (*k*=2).

Uncertainty budget VNIIM

Uncertainty components	mK (k=1)					
	Zn	Sn	In	Ga		
Туре А						
Repeatability of values, $W_t - u_1$	0.1	0.1	0.08	0.05		
Туре В						
Chemical impurities, <i>u</i> sie	0.42	0.25	0.22	0.035		
Hydrostatic head, $u_{\rm h}$	0.01	0.01	0.01	0.004		
SPRT self-heating, <i>u</i> i	0.04	0.04	0.04	0.01		
Heat flux, u_q	0.15	0.12	0.10	0.01		
Gas pressure, u_p	0.001	0.001	0.001	0.001		
Bridge non-linearity, <i>u</i> r	0.05	0.05	0.05	0.05		
Reference resistance temperature, <i>u</i> _R	0.0001	0.0001	0.0001	0.0001		
Reference resistance stability, u_t	0.0001	0.0001	0.0001	0.0001		
Propagated TPW, <i>u</i> _T	0.064	0.045	0.037	0.025		
Combined uncertainty	0.47	0.30	0.26	0.084		
Expanded uncertainty $(k=2)$	0.93	0.61	0.53	0.168		

Component of <i>R</i> _{TPW} measurement, type B, mK (<i>k</i> =1)	
Purity and isotopic composition	0,01
Hydrostatic head	0.002
SPRT self-heating	0.015
Heat flux	0.013
Total uncertainty, <i>u</i> (TPW)	0.022

Uncertainty budget for the determination of the W-Value of SPRTs

	Ga		In		Sn		Zn		
	mK	df	mK	df	mK	df	mK	df	Type A or B
Phase Transition Realization Repeatability	0.18	3	0.19	3	0.29	4	0.29	4	A
Bridge (repeatability, non-linearity, AC quadrature)	0.05	∞	0.05	-	0.05	∞	0.05	∞	В
Reference resistor stability	0.02	∞	0.03	-	0.03	x	0.03	∞	В
Chemical Impurities	0.07	∞	0.09	-	0.15	∞	0.28	∞	В
Hydrostatic-head	0.01	∞	0.03	-	0.02	∞	0.03	∞	В
Propagated TPW	0.06	∞	0.08	-	0.10	8	0.15	∞	В
SPRT self-heating	0.02	∞	0.02	-	0.03	∞	0.03	∞	В
HeatFlux	0.10	∞	0.70	-	0.70	∞	1.00	∞	В
Insulation leakage	0.00	∞	0.00	-	0.00	8	0.00	∞	В
SPRT Pt Oxydation	0.00	∞	0.00	-	0.00	8	0.00	∞	В
Gas pressure	0.02	∞	0.05	-	0.03	x	0.04	x	В
Combined Standard Uncertainty	0.13		0.43		0.45		0.65		
									_
Expanded Uncertainty (k=2 level, using effective df)	0.27		0.86		0.90		1.30		
(*) write A or B depending on the									-

PTB

Information on fixed-point cells, measurement instruments and furnace/maintenance systems

Laboratory	
Bridge, potentiometer	
Manufacturer	ASL
Туре	F900
A.C. or D.C.	AC
A.C. frequency	25 Hz
D.C. period	
Normal measurement current	1 mA
Self-heating current	1,41421 mA
Bridge non-linearity	$5 \cdot 10^{-8}$
Reference resistor	
Manufacturer	Tinsley
Туре	100 Ohm
Temperature control of reference	yes
resistor (yes/no)	
TPW cell	1517
Manufacturer	ISOTECH
Outer diameter	50 mm
Thermometer well, inner diameter	11 mm
Immersion depth of the middle of the	250 mm
SPRT sensing element	
Thermostat for maintaining the TPW	ISOTECH
Zn fixed point cell	326
Manufacturer	ISOTECH
Open or closed	closed
Outer diameter (crucible container)	50 mm
Thermometer well, inner diameter	8 mm
Metal purity	6N
Immersion depth of the middle of the	175 mm
SPRT sensing element	
Furnace for the fixed point of Zn	ITL17703
Manufacturer	ISOTECH
Type (1,2 or 3 zones)	3 zone
Freezing plateau duration	14 h

Sn fixed point cell	284
Manufacturer	ISOTECH
Open or closed	closed
Outer diameter (crucible container)	50 mm
Thermometer well, inner diameter	8 mm
Metal purity	6N
Immersion depth of the middle of the	175 mm
SPRT sensing element	
Furnace for the fixed point of Sn	ITLM17701
Manufacturer	ISOTECH
Type (1,2 or 3 zones)	3 zone
Freezing plateau duration	8 h
In fixed point cell	211
Manufacturer	РТВ
Open or closed	open
Outer diameter	50 mm
Thermometer well, inner diameter	8 mm
Metal purity	7N
Immersion depth of the middle of the	166 mm
SPRT sensing element	
Furnace for the fixed point of In	9114
Manufacturer	Hart Scientific
Type (1,2 or 3 zones)	3 zone
Freezing plateau duration	5 h
Ga fixed point cell	546
Manufacturer	ISOTECH
Open or closed	closed
Outer diameter	38 mm
Thermometer well, inner diameter	12 mm
Metal purity	7N
Immersion depth of the middle of the	230 mm
SPRT sensing element	
Furnace for the fixed point of Ga	
<u> </u>	ITL-M-17402B
Manufacturer	ITL-M-17402B ISOTECH

VNIIM

Information on fixed-point cells, measurement instruments and
furnace/maintenance systems

Laboratory	VNIIM
Bridge, potentiometer	
Manufacturer	
Туре	ASL
	F900
A.C. or D.C.	
A.C. frequency	AC
D.C. period	25 Hz
Normal measurement current	1 mA
Overheating current	1.414 mA
Reference resistor	
Manufacturer	ZIP, RF
Туре	MC3020
Temperature control of reference resistor (yes/no)	yes
TPW cell	No.0/41
Manufacturer	VNIIM
Outer diameter	50 mm
Thermometer well diameter	11 mm
Immersion depth of the middle of the SPRT sensing element	260 mm
Thermostat for maintaining the TPW	Hart Scientific model
	7312
Zn fixed point cell	No.109
Manufacturer	VNIIM
Open or closed	open
Outer diameter	52 mm
Thermometer well diameter	8 mm
Metal purity	6N
Immersion depth of the middle of the SPRT sensing element	160 mm
Furnace for the fixed point of Zn	
Manufacturer	VNIIM
Type (1, 2 or 3 zones)	3 zones
Melting plateau duration	
Freezing plateau duration	10 hours
Sn fixed point cell	No.30
Manufacturer	VNIIM
Open or closed	open

Outer diameter	52 mm		
Thermometer well diameter	12 mm		
Metal purity	6N		
Immersion depth of the middle of the SPRT sensing element	160 mm		
Furnace for the fixed point of Sn			
Manufacturer	VNIIM		
Type (1, 2 or 3 zones)	3 zones		
Melting plateau duration			
Freezing plateau duration	11 hours		
In fixed point cell	No.1		
Manufacturer	VNIIM		
Open or closed	open		
Outer diameter	42 mm		
Thermometer well diameter	10 mm		
Metal purity	6N		
Immersion depth of the middle of the SPRT sensing element	173 mm		
Furnace for the fixed point of In			
Manufacturer	VNIIM		
Type (1, 2 or 3 zones)	3 zones		
Melting plateau duration			
Freezing plateau duration	12 hours		
Ga fixed point cell	No.1		
Manufacturer	VNIIM		
Open or closed	open		
Outer diameter	42 mm		
Thermometer well diameter	10 mm		
Metal purity	7N		
Immersion depth of the middle of the SPRT sensing element	167 mm		
Furnace for the fixed point of Ga			
Manufacturer	VNIIM		
Type (1, 2 or 3 zones)	2 zones		
Melting plateau duration	17 hours		

Appendix C

Technical protocol

Bilateral comparison CCT-K9.1

Realizations of the ITS-90 from 273.16 K to 692.677 K 2018

Prepared by Prof. A. I. Pokhodun (VNIIM) and Dr. S. Rudtsch (PTB)

Introduction

The bilateral comparison of the ITS-90 realizations at the National Metrological Institutes PTB (Germany) and VNIIM (Russian Federation) in the temperature range from 273.16 K to 692.677 K was initiated by the Technical Committee on "Thermometry and thermal physics" TC1.10 of COOMET.

VNIIM (RF) is the coordinator of the bilateral comparison.

The purpose of the comparison is to evaluate the differences between the realizations of the national standards in the most essential temperature range with the highest requirements to the measurement uncertainty. This temperature range includes five ITS-90 fixed points: the triple point of water, the melting point of gallium, the freezing points of indium, tin and zinc. Two 25-Ohm Standard Platinum Resistance Thermometers (SPRT) will be used as transfer standards.

The results of the comparisons will be the differences of the temperature values ΔT_i and the evaluations of the uncertainties U_i for each fixed-point temperature.

Name of Laboratory	Contact persons	Address
Physikalisch-Technische Bundesanstalt (PTB) Germany	Dr. S. Rudtsch steffen.rudtsch@ptb.de	Abbestraße, 2–12, 10587 Berlin, Germany
D. I. Mendeleyev Institute for Metrology (VNIIM) Russian Federation	Prof. Pokhodun A.I. a.i.pokhodun@vniim.ru	Moskovsky pr., 19, 190005, St. Petersburg

Participating laboratories:

Comparison schedule

01.2018	Planned	PTB, VNIIM
02.2018	First draft of the protocol completed	PTB, VNIIM
03.2018-07.2018	Review and approval of the protocol	CCT-WG-KC
04.2018-08.2018	Selection and first calibration of two SPRTs at VNIIM Delivery of the two SPRTs to PTB	VNIIM
08.2018-12.2018	Calibration of two SPRTs at PTB and return of both SPRTs to VNIIM	РТВ
01.2018-03.2019	Second calibration of the two SPRTs at VNIIM	VNIIM
03.2019	Delivery of final calibration results and final uncertainty budgets to the heat of CCT-WG- KC (A. Peruzzi) without mutual exchange	VNIIM, PTB
04.2019 -06.2019	Report in progress. Draft A.	VNIIM, PTB
07.2019-09.2019	Review of Draft A by CCT-WG-KC	CCT-WG-KC
10.2018 - 12.2019	Draft B	VNIIM, PTB
01.2020	Report submitted to CCT WG-KC for final review	VNIIM, PTB

Procedures of the comparison

VNIIM will select and calibrate two SPRTs (type ETS-25, made in Russia) at all ITS-90 fixed points in the comparison range and send the SPRTs to PTB. PTB will calibrate these thermometers at all fixed points and send the SPRTs back to VNIIM for the back-calibration.

The differences of the temperature values ΔT_i and U_i (ΔT_i) of each fixed point will be calculated according to:

$$\Delta T_{i} = \frac{W_{PTB} - (W_{VNIM}, before} + W_{VNIM}, after}{dW_{i} / dT_{i}}$$
(1)

$$U_{i}(\Delta T_{i}) = \sqrt{U_{PTB}^{2} + U_{VNIIM}^{2}}$$
(2)

If the measurements of the thermometer resistances at the triple-point of water indicate a significant change due to mechanical shock the participants might agree on a modified evaluation procedure. After receiving the calibrated SPRTs from VNIIIM and before the calibration at PTB the SPRT resistance will be stabilized by annealing in a certain sequence:

- a) Measurement of the SPRT resistance at the TPW
- b) The SPRT is inserted into the annealing furnace at a temperature of 500 °C,
- c) The temperature in the annealing furnace is raised to 675 °C,
- d) The SPRT is kept in the furnace for two hours,
- e) The temperature in the furnace is reduced to 450 °C within 3.5 hours,

f) The SPRT is quickly removed from the annealing furnace and cools down (in air) to room temperature.

If the SPRT resistance at the triple point of water after annealing is changed by less than 0.5 mK in the temperature equivalent, it is possible to start its calibration at the fixed points.

If the SPRT resistance at the triple point of water after annealing is changed by 0.5 mK or more in the temperature equivalent, annealing should be repeated.

If after the second annealing the SPRT resistance at the triple point of water is changed by more than 0.5 mK in the temperature equivalent, the SPRT should be replaced.

The best measurement practice accepted at PTB and VNIIM should be used for each fixed-point realization. The resistance ratio *W* is calculated for each fixed point: $W = R_t/R_{TPW}$, where R_{TPW} is the SPRT resistance at the triple point of water obtained directly after measuring R_t . The values of R_t and R_{TPW} should be corrected for self heating due to the measuring current, hydrostatic pressure and pressure in the cell. The calibration cycle must be repeated at least 3 times

Submission of information

- a) Measurement results of $R_{\text{TPW}}(0 \text{ mA})$ before departure at VNIIM, after arrival and before departure at PTB and after arrival at VNIIM to check the stability during transportation. Further measurement will be carried out before and after each annealing procedure.
- b) Measurement results of $W = R_t/R_{TPW}$, where R_t is the ETS-25 resistance at the fixed-point temperatures and R_{TPW} is ETS-25 resistance at the TPW, obtained after R_t measurement, according to Appendix A.
- c) Uncertainty budget for each fixed-point according to Appendix B, additional components of uncertainty can be added.
- d) Characteristics of the fixed-points cells, furnaces, measuring instruments, used in the comparisons, according to the form in Appendix C.

Transportation of the transfer standard

VNIIM will send 2 SPRTs type ETS- 25 (made in Russia) in a suitable transportation box with the designation by large bold type 'This artifact is FRAGILE. It must only be handled by a qualified person', in English, German and Russian languages.

The SPRTs will be selected by VNIIM based on the results of previous investigations (stability, reproducibility).

To comply with customs regulations when crossing state borders the declaration – the Carnet form – must be completed carefully, indicating the recipient country and dates of import and export of the thermometer. VNIIM pays for preparing of «ATACornet» document.

For customs declaration:

The following two artifacts will be sent for an intercomparison with PTB (Germany)SPRT type: ETS-25 and serial number:

The artifact has no commercial value (it is not for sale). It is meant solely for the calibration of national standards and will be reexported immediately after the calibration is complete.

We request that the device is not handled or removed from the container/package.

If a Customs inspection is required then pleasure contact the relevant person so that he/she can be present and help you unpack it.

PTB is responsible for transferring the ETS-25 back to VNIIM, its return and customs registration for import to the Russian Federation and export in accordance with the «ATACarnet» document.

Linkage to CCT Key Comparison Reference Value and reporting

At the time this protocol was created two options for the linkage were possible, i.e. to the key comparison reference values of CCT-K3 and CCT-K9. VNIIM and PTB were/are both participants of CCT-K3 and CCT-K9.

Whereas the final report of CCT-K3 was issued in February 2002 it is currently not foreseeable when Draft B of CCT-K9 will be available. For several reasons a linkage to CCT-K3 would be unsatisfactory. Instead we assume that Draft B of CCT-K9 will be available at the time when Draft A of this comparison (CCT K9.1) will be prepared.

It is expected that VNIIM and PTB will have comparable measurement uncertainties. Therefore, it is intended to use the results of both institutes to establish the link to CCT-K9.

The deviations between the results of VNIIM and PTB to CCT-K9 will be determined as follows.

The results will be represented as differences $\Delta T_i = [T(NMI_i) - KCRV]$, with associated uncertainties U_i for each fixed point and NMI.

The linkage of the bilateral comparisons results: NMI₁, and NMI₂, with the results of **K9.1** can be defined using bilateral measurement results of the differences $[T(NMI_1) - T(NMI_2)]$ and the link one of them with results of **K9.1**.

$$\Delta T_{1} = [T(NMI_{1}) - KCRV_{K9}] = [T(NMI_{1}) - T(NMI_{2})] + [T(NMI_{2}) - KCRV_{K9}]$$

$$\Delta T_2 = [T(NMI_2) - KCRV_{K9}] = [T(NMI_2) - T(NMI_1)] + [T(NMI_1) - KCRV_{K9}]$$

and the uncertainty of $U(\Delta T_i)$

$$U^{2}(\Delta T_{1}) = U^{2}[T(NMI_{1}) - T(NMI_{2})] + U^{2}[T(NMI_{2}) - KCRV_{K9}]$$
$$U^{2}(\Delta T_{2}) = U^{2}[T(NMI_{2}) - T(NMI_{1})] + U^{2}[T(NMI_{1}) - KCRV_{K9}]$$

Because of the above described constellation this comparison will be carried out in a "double blind" manner. This means that neither VNIIM nor PTB will know the results of the other participants before they have submitted their final results. This is ensured by sending the results to an independent third party, i.e. the head of the CCT-WG-KC (A. Peruzzi). After this point the participants are not allowed to change or correct results. When both NMIs have confirmed that they have provided the final results, the third party will submit all results to the participants for the data evaluation and the common preparation of the Draft A report.