Bilateral comparison of local realizations of the ITS-90 between the silver point and 1700 °C using vacuum tungsten strip lamps as transfer standards between the NRC and the PTB

Final Report

Jürgen Hartmann Physikalisch-Technische Bundesanstalt Braunschweig und Berlin Abbestraße 2-12 10587 Berlin Germany

16 February 2004

Contents

INTRODUCTION	3
ORGANISATION	3
RESULTS	3
ANNEX A: REPORT OF THE PTB	10
ANNEX B: REPORT OF THE NRC	17

Introduction

At its 19th session in September 1996, the Consultative Committee for Thermometry (CCT) agreed to conduct an international key comparison of the local realisations of the International Temperature Scale (ITS) of 1990 above the silver point. High-stability tungsten-strip lamps were selected to be used as transfer standards. The measurements began in 1997 and ended in July 1999. The comparison was piloted by the NMi-VSL and co-piloted by the NPL. The national metrology institutes of 12 countries participated in this key comparison and the initial Draft A report was circulated in October 1999. With the circulation of the report, some participants became aware of problems with their local scale realisations. After identifying and correcting the root causes of the discrepancies, the NRC asked PTB to pilot a bilateral comparison to link their improved local scale realisation to the CCT-K5 results. The measurements were carried out from June 2001 to October 2002. This report presents the results of the NRC-PTB bilateral comparison.

Organisation

Two high-stability vacuum tungsten-strip lamps, C598 and 644C, served as transfer standards for this bilateral comparison. The comparison was piloted by the Physikalisch-Technische Bundesanstalt of Germany (PTB) and the lamps were supplied by the National Research Council of Canada (NRC). The measurements were performed according to the protocol for the CCT-K5 key comparison. Due to the good lamp stability following transport observed during CCT-K5, the initialization tests were omitted.

The measurements at the PTB and the NRC were corrected to the reference conditions stated in the CCT-K5 protocol. In detail, the reference conditions define:

- (a) the orientation of the strip
- (b) a base temperature of 20 °C
- (c) a wavelength of 650 nm
- (d) a set of eleven defined current settings (related to each lamp)

<u>Results</u>

The standard radiation thermometers used for the comparison are described in detail in the reports of the participants (Annexes A and B of this report). In brief, the NRC realised its high temperature scale using a calibrated radiation thermometer. This radiation thermometer directly measures the temperature of the lamps used in this comparison. A copper fixed-point blackbody radiator was used as the primary reference source. At the PTB, the standard IR radiation thermometer was used to transfer the temperature of the primary gold fixed point to two lamps, which were operated at 1337 K and 1800 K. These lamps were used to calibrate a third lamp at different temperatures. This third lamp was used to calibrate the comparison lamps using the standard IR radiation thermometer.

Tables 1 and 2 summarize the main features of the respective radiation thermometers and fixed-point radiators used to realise the high-temperature scales of the PTB and the NRC.

Table 1: Summary of the major parameters of the radiation thermometers used for the bilateral comparison

Laboratory	Target	Target	f-number	Central	FWHM	Optics
	Distance	size		wavelength		
	[mm]	[mm]		[nm]	[nm]	
NRC	500	0.6	7.7 and 24	650	10	Lenses
PTB	1220	0.5	15	653	18	Mirrors

Table 2: Summary of the parameters of the fixed points used for the bilateral comparison and the calculation method.

Laboratory	Fixed point material	Fixed point purity [%]	Fixed point emissivity	Calculation method
NRC	Cu	99.999	0.99997	effective
				wavelength
PTB	Au	99.999	0.99999	effective
				wavelength

The initial study of the angular dependence (Fig. 1) and the horizontal variation (Fig. 2) of the emitted spectral radiance showed no interreflections in the measured positions and sufficiently flat temperature profiles, indicating good measurement conditions for both participating laboratories.

Figure 1: Measured angular dependence of the spectral radiance of lamp C598 (left) and 644C (right): a) at the NRC, b) at the PTB.

Both laboratories measured each lamp at least twice at each temperature value. At the NRC the lamps were measured on two occasions, before they were transfered to the PTB and after their return, and the results of these two measurement series have been averaged. Figures 3 and 4 show the deviation of the radiance temperatures between the PTB and the NRC. The results and the respective uncertainties are given in Tables 3 to 8.

Table 3: The radiance temperature	s of lamp C598 as	measured at the PTB
-----------------------------------	-------------------	---------------------

I(C598) [A]	Ts650(C598) [°C]	u (<i>k</i> =1) [°C]
5.027	962.12	0.15
5.298	999.86	0.16
5.808	1064.48	0.17
5.981	1084.81	0.17
6.116	1100.32	0.18
7.054	1200.14	0.19
8.092	1300.06	0.21
9.210	1400.21	0.24
10.393	1500.17	0.26
11.635	1600.51	0.29
12.930	1700.43	0.32

I(644C) [A]	Ts650(644C) [°C]	u (<i>k</i> =1) [°C]
5.184	962.16	0.15
5.457	999.97	0.16
5.966	1064.46	0.17
6.141	1085.09	0.17
6.277	1100.35	0.18
7.223	1200.28	0.19
8.276	1300.27	0.21
9.411	1400.27	0.24
10.617	1500.46	0.26
11.880	1600.55	0.29
13.197	1700.63	0.32

Table 4: The radiance temperatures of lamp 644C as measured at the PTB.

Table 5a: The radiance temperatures of lamp C598 as measured at the NRC prior to the measurements at the PTB

I(C598) [A]	Ts650(C598, NRC_I) [°C]	u (<i>k</i> =1) [°C]*
5.027	962.28	0.19
5.298	1000.02	0.20
5.808	1064.51	0.22
5.981	1084.92	0.23
6.116	1100.40	0.24
7.054	1200.26	0.27
8.092	1300.32	0.33
9.210	1400.46	0.38
10.393	1500.75	0.40
11.635	1600.90	0.45
12.930	1700.97	0.50

* The uncertainties of the NRC measurements have been slightly revised due to a mistake found by an external referee **Table 5b:** The radiance temperatures of lamp C598 as measured at the NRC following the measurements at the PTB

I(C598) [A]	Ts650(C598, NRC_II) [°C]	u (<i>k</i> =1) [°C]*
5.027	962.16	0.19
5.298	999.89	0.20
5.808	1064.39	0.22
5.981	1084.78	0.23
6.116	1100.28	0.24
7.054	1200.13	0.27
8.092	1300.08	0.33
9.210	1400.16	0.38
10.393	1500.24	0.40
11.635	1600.33	0.45
12.930	1700.35	0.50

Table 5c: Average result for the radiance temperatures of lamp C598 as measured at the NRC.

I(C598) [A]	Ts650(C598, NRC_average) [°C]	u (<i>k</i> =1) [°C]*
5.027	962.22	0.19
5.298	999.95	0.20
5.808	1064.45	0.22
5.981	1084.85	0.23
6.116	1100.34	0.24
7.054	1200.19	0.27
8.092	1300.20	0.33
9.210	1400.31	0.38
10.393	1500.50	0.40
11.635	1600.61	0.45
12.930	1700.66	0.50

* The uncertainties of the NRC measurements have been slightly revised due to a mistake found by an external referee

Table 6a: The radiance temperatures of lamp 644C measured at the NRC prior to the measurements at the PTB

I(644C) [A]	Ts650(644C, NRC_I) [°C]	u (<i>k</i> =1) [°C]*
5.185	962.30	0.19
5.457	1000.21	0.20
5.966	1064.51	0.22
6.141	1085.04	0.23
6.276	1100.47	0.24
7.223	1200.38	0.27
8.276	1300.44	0.33
9.411	1400.45	0.38
10.617	1500.78	0.40
11.880	1600.84	0.45
13.197	1700.94	0.50

* The uncertainties of the NRC measurements have been slightly revised due to a mistake found by an external referee **Table 6b:** The radiance temperatures of lamp 644C as measured at the NRC following the measurements at the PTB

I(644C) [A]	Ts650(644C, NRC_II) [°C]	u (<i>k</i> =1) [°C]*
5.185	962.14	0.19
5.457	1000.07	0.20
5.966	1064.40	0.22
6.141	1084.93	0.23
6.276	1100.34	0.24
7.223	1200.29	0.27
8.276	1300.23	0.33
9.411	1400.18	0.38
10.617	1500.41	0.40
11.880	1600.54	0.45
13.197	1700.50	0.50

Table 6 c: Average result for the radiance temperatures of lamp 644C as measured at the NRC.

I(644C) [A]	Ts650(644C, NRC_average) [°C]	u (<i>k</i> =1) [°C]*
5.185	962.22	0.19
5.457	1000.14	0.20
5.966	1064.46	0.22
6.141	1084.98	0.23
6.276	1100.40	0.24
7.223	1200.33	0.27
8.276	1300.34	0.33
9.411	1400.31	0.38
10.617	1500.59	0.40
11.880	1600.69	0.45
13.197	1700.72	0.50

* The uncertainties of the NRC measurements have been slightly revised due to a mistake found by an external referee

Table 7: Differences between the radiance temperatures of lamp C598 measured at the NRC and the PTB

I(C598)	dT(NRC_I-PTB)	dT(NRC_II-PTB)	dT(NRC_average-PTB)	U combined
[A]	[°C]	[°C]	[°C]	(<i>k</i> =1) [°C]
5.027	0.16	0.04	0.10	0.24
5.298	0.15	0.02	0.09	0.26
5.808	0.03	-0.09	-0.03	0.28
5.981	0.11	-0.04	0.03	0.29
6.116	0.08	-0.04	0.02	0.30
7.054	0.12	-0.02	0.05	0.33
8.092	0.27	0.02	0.15	0.39
9.210	0.25	-0.05	0.10	0.45
10.393	0.58	0.07	0.33	0.48
11.635	0.39	-0.18	0.10	0.53
12.930	0.54	-0.08	0.23	0.60

Table 8: Differences between the radiance temperatures of lamp 644Cmeasured at the NRC and the PTB

I(644C)	dT(NRC_I-PTB)	dT(NRC_II-PTB)	dT(NRC_average-PTB)	U _{combined}
[A]	[°C]	[°C]	[°C]	(<i>k</i> =1) [°C]
5.185	0.14	-0.02	0.06	0.24
5.457	0.24	0.11	0.18	0.26
5.966	0.05	-0.06	0.00	0.28
6.141	-0.05	-0.15	-0.10	0.29
6.276	0.11	-0.01	0.05	0.30
7.223	0.10	0.01	0.06	0.33
8.276	0.17	-0.05	0.06	0.39
9.411	0.18	-0.09	0.04	0.45
10.617	0.32	-0.05	0.14	0.48
11.880	0.29	-0.02	0.14	0.53
13.197	0.31	-0.13	0.09	0.60

Figure 3: Differences in the radiance temperatures of lamp C598 as measured at the NRC and the PTB. (NRC_I, NRC_II, NRC_average: temperature measured at the NRC for the first and second run, and average temperature measured at the NRC, respectively. Dotted line: combined standard uncertainty at k=1)

Figure 4: Differences in the radiance temperatures of lamp 644C as measured at the NRC and the PTB. (NRC_I, NRC_II, NRC_average: temperature measured at the NRC for the first and second run, and average temperature measured at the NRC, respectively. Dotted line: combined standard uncertainty at k=1)

Annex A: Report of the PTB

January 2004

Report on the calibration of the tungsten strip lamps C598 and 644C within the bilateral CCT key-comparison "Local realizations of the ITS-90 between the Silver point and 1700 °C using vacuum Tungsten-strip lamps as transfer standards" between the NRC and the PTB

By J. Hartmann

I. Experimental and theoretical procedure

The realisation of the ITS- 90, the description of the equipment and the experimental procedure are described in the following references:

- 1. J. Fischer, H.J. Jung, R. Friedrich, "A new determination of the freezing temperature of gold relative to that of silver by radiation thermometry", Temperature **6**, 53-57 (1992);
- 2. J. Fischer, H.J. Jung, "Determination of the thermodynamic temperatures of the freezing points of silver and gold by near-infrared pyrometry", Metrologia **26**, 245-252 (1989);

The formal definition and derivation of the spectral radiance temperature with explicit reference to the corrections applied together with the transfer of the radiance temperature to the strip lamp is described in

- 3. J. Fischer, J. Hartmann, "Calibration of tungsten strip lamps as transfer standards for temperature" Proceedings of Tempmeko'99;
- 4. H.-J. Jung, J. Verch; "Ein Rechenverfahren zur Auswertung pyrometrischer Messungen", Optik **38**, 95-109 (1973)

In this report, only a short description of the reference thermometer characteristics is given.

The limiting effective wavelength λ_e is calculated for every lamp at every current according to Refs. 3 and 4 and is given in the final Tables 5 to 6 in the column λ_e . The measured beam is limited to a diameter of 20 mm. The reference pyrometer has a focal length of 300 mm yielding an *f*-number of 20/300=1/15. The target distance is 1220 mm and the target field is circular, with a diameter of 0.5 mm.

The size-of source-effect (SSE) with respect to a gold fixed-point blackbody with an aperture of 3 mm diameter (effective source diameter 30 mm) was measured for the two wavelengths (650 nm and 950 nm) for two different strip widths. The results are given in Table 1.

Wavelength / nm	SSE for the 1.5 mm strip	SSE for the 3 mm strip
650	6.89x10 ⁻⁴	5.26x10 ⁻⁴
950	7.13x10 ⁻⁴	4.24x10 ⁻⁴

Table 1: Size-of-source effect measured with respect to a gold fixed point with an aperture of 3 mm diameter (effective source diameter 30 mm) for two strip widths.

The transfer lamps C598 and 644C

The transfer lamps delivered to PTB on June 19th, 2001 during the TEMPMEKO 2001 conference, and transferred to NRC on May 18th, 2002, during the NEWRAD 2002 conference. The conditions of the measurements together with the total burning times for both lamps are given in Table 2.

	Lamp P598	Lamp 644C
Orientation	as prescribed in the protocol	as prescribed in the protocol
Base temperature T_{B}	$20 \ ^{\circ}C \pm 0.1 \ ^{\circ}C$	$20 \ ^{\circ}C \pm 0.1 \ ^{\circ}C$
Total burning time	57 h	57 h
Ambient temperature (aver.)	23 °C	23 °C

 Table 2: Measurement conditions for the two lamps C598 and 644C.

The measured horizontal and angular distributions of the strip radiance temperatures are presented in Fig. 1-2.

Figure 1: Horizontal distribution of the signal along the strip obtained for lamps C598 (left) and 644C (right). The signals were normalized to the signal at the middle of the strip. The signals were recorded at a nominal radiance temperature of 1200 °C.

Figure 2: Angular distribution of the signal when rotating the lamps (C598 on the left, 644C on the right) on an axis perpendicular to the optical axis and to the floor. The signals were normalized with respect to the signal at zero angle. The signals were recorded at a nominal radiance temperature of 1200 $^{\circ}$ C.

II. Uncertainties-Identification of uncertainty components

The calibration scheme consisted of three steps (see Ref. 3): First, two first-order working standards (WS) were calibrated with reference to the primary standard gold fixed-point blackbody. These two first-order WS (C514 and C520) were operated at only one radiance temperature (C514 at 1800 K, C520 at 1337 K).

In a second step, a second-order WS (P95) was calibrated with reference to the two first order WS at different radiance temperatures. In the last step, the lamps C598 and 644C were calibrated with reference to the second order WS at nearly the same radiance temperatures.

In the following, the contributions to the overall uncertainty are given separately for each calibration step. The uncertainties u_i are given at a coverage factor k=1.

a) Calibration of the first order WS with reference to the gold fixed point blackbody

1. Realization of the reference temperature of the gold fixed point. This uncertainty is caused by the impurity of the gold ingot (5N, i.e. 0.99999), the emissivity of the cavity (0.99996±0.00001) and the temperature difference ΔT across the bottom of the cavity (<1 mK). The realisation of the reference temperature T_r =1337.33 K is within ±0.01 K resulting in a standard uncertainty for the radiance temperature of

$$u_2 = \frac{0.01\,\mathrm{K}}{\sqrt{3}} \left(\frac{T}{T_r}\right)$$

2. Long term stability of the interference filters used (includes the mean effective wavelength, the spectral transmission of the interference filter, the spectral responsivity of the detector): ±0.05 nm resulting in a standard uncertainty for the radiance temperature of

$$u_3 = T \left(\frac{T}{T_r} - 1 \right) \frac{0.05 \text{ nm}}{\lambda \sqrt{3}}$$

3. Uncertainty in radiance comparison including a lamp (spatial and angular distribution of the spectral radiance, cleaning of the window, alignment, ratio of feedback resistors, non-linearity, SSE)

$$\Delta L/L = 1.5 \times 10^{-3}$$
.

This results in a standard uncertainty of radiance temperature of (with c_2 being Planck's second radiation constant)

$$u_4 = \frac{1.5 \cdot 10^{-3}}{\sqrt{3}} \frac{\lambda T^2}{c_2}$$

4. Uncertainty due to the measurement of the lamp current. With a relative uncertainty $u=2.4 \times 10^{-5}$ for the voltage measurement and $u=1 \times 10^{-5}$ for the standard resistor we obtain a resulting standard uncertainty in radiance temperature (with dT/di being the slope of the lamp characteristic T=T(i))

$$u_{5} = i \left(\frac{dT}{di}\right) \cdot \sqrt{\left(10^{-5}\right)^{2} + \left(2.4 \cdot 10^{-5}\right)^{2}}$$

5. Short term stability of a vacuum tungsten strip lamp of 0.1 K resulting in a standard uncertainty of radiance temperature

$$u_9 = \frac{0.1\,\mathrm{K}}{\sqrt{3}}$$

b) Calibration of lamp P95 with reference to Lamps C514 and C520

1. When comparing two sources with different radiance temperatures, an uncertainty arises due to poor blocking of the interference filter caused by parasitic transmission at long wavelengths. Using "edge filters" (RG780, RG715 and RG9), a rough estimate of the standard uncertainty in radiance temperature can be made, which is presented in Table 3.

<u>T/K</u>	u1 / K	<i>Т /</i> К	u1 / K
900	0,16	1500	0,01
1100	0,03	1700	0,02
1300	0,00	1900	0,02

Table 3: Standard uncertainty in radiance temperature due to blocking error with reference to a blackbody at 1337 K.

2. Realisation of the reference temperature

$$u_2 = u_2$$
 (first order WS) $(T/T_r)^2$

- 3. Long term stability of the interference filter u_3
- 4. Uncertainty in radiance comparison including a lamp u_4
- 5. Measurement of the lamp current u_5
- 6. Influence of the temperature of the base. The standard deviation for maximum changes of the base temperature T_b of ± 0.1 K is (with dT_s/dT_B being the change in radiance temperature when changing the base temperature by 1 K)

$$u_6 = \frac{dT_s}{dT_B} \frac{0.1\,\mathrm{K}}{\sqrt{3}}$$

6. Resolution of the IR-pyrometer in terms of the photocurrents equals $\pm 2x10^{-15}$ A. The photocurrent at 650 nm and 1337 K is 5,4x10⁻¹⁰ A. The standard deviation for resolution in radiance temperature is then

for 650 nm
$$u_7 = \frac{2 \cdot 10^{-15}}{5.4 \cdot 10^{-10}} \cdot \frac{\exp\left(\frac{c_2}{650 \,\mathrm{nm} \cdot 1337.33 \, K}\right)}{\exp\left(\frac{c_2}{650 \,\mathrm{nm} \cdot T}\right)} \cdot \frac{\left(\frac{650 \,\mathrm{nm} \, \frac{T^2}{c_2}}{\sqrt{3}}\right)}{\sqrt{3}}$$

- 7. Short term stability of the vacuum tungsten strip lamps u_{0}
- c) Calibration of lamps C598 and 644C with reference to Lamp P95
- 1. Realisation of the reference temperature $u_2 = u_2$ (second order WS) $(T/T_r)^2$
- 2. Long term stability of the interference filter u_3
- 3. Uncertainty in radiance comparison including a lamp: in contrast to the first two calibration steps an uncertainty in radiance of $\Delta L/L=2.0 \times 10^{-3}$ is considered for u_4 as the lamps C598 and 644C have not been investigated as thoroughly as the lamps C514, C520 and P95
- 4. Measurement of the lamp current u_5
- 5. Influence of the temperature of the base u_6

6. Resolution of the IR-pyrometer in terms of the photocurrents u_7

7. Short term stability of the vacuum tungsten strip lamps u_9

Summarizing all of the uncertainties mentioned above, the final overall uncertainty at the coverage factor k=1 presented in Table 4 is obtained.

Table 4 a)						
T (650 nm)/K	Uncertainty (k=1, 650 nm) / K					
1235.15	0.15					
1273.15	0.16					
1337.15	0.17					
1358.15	0.17					
1373.15	0.18					
1473.15	0.19					
1573.15	0.21					
1673.15	0.24					
1773.15	0.26					
1873.15	0.29					
1973.15	0.32					

Table 4 b)

T (950 nm)/K	Uncertainty (k=1, 950 nm) / K
1192.63	0.19
1227.82	0.19
1286.82	0.21
1306.18	0.22
1320.09	0.22
1411.67	0.24
1502.63	0.27
1592.85	0.30
1682.42	0.34
1771.34	0.37
1859.75	0.41

Table 4: Overall uncertainty as a function of radiance temperature for 650 nm wavelength (a) and for 950 nm wavelength (b)

III Calibration results

The calibration results for lamp C598 are shown in Tables 5 a) to d) for the 650 nm wavelength. The calibration results for lamp 644C are shown in Tables 6 a) to d) for the 650 nm wavelength.

The tables are slightly modified compared to the tables prescribed in the protocol as we left out some corrections. First, no corrections have been made for non-linearity and water absorption. These two effects were considered within the uncertainty budget. Second, no corrections due to the base temperature were made, as our temperature stabilization is sufficiently accurate and stable. A possible effect due to a slight variation has been considered in the uncertainty budget. Third, the control of the strip current is accurate and stable, so no correction for this has been applied (see columns 2-4). However, as we performed a Spline interpolation to the measured radiance temperatures to identify measurement errors (see Ref. 3), we applied an additional correction shown in the column named "Spline correction "in Tables 5 to 6.

First measurement on lamp C598 at 650 nm

Table 5 a)

		/						
No	l(j) / A	I(I) / A	l(j)-l(l) / A	R=i(C598)/i(F	Ts(P95 at 650F	Τλ/Κ	Tλ / K corrected for	T λ / K corrected for SSE and non-linearity
1	4.933	5.027	-0.094	0.80599999	1250	1234.857	1234.866	1234.866
2	5.236	5.298	-0.062	1.36575694	1250	1272.554	1272.564	1272.564
3	5.788	5.808	-0.02	0.85483756	1350	1337.123	1337.134	1337.134
4	5.980	5.981	-0.001	1.09358924	1350	1357.457	1357.468	1357.468
5	6.120	6.116	0.00405	1.31188381	1350	1372.884	1372.895	1372.895
6	7.107	7.054	0.0530333	1.26251577	1450	1472.637	1472.651	1472.651
7	8.177	8.092	0.085	1.22471791	1550	1572.468	1572.483	1572.483
8	9.314	9.210	0.104	1.19627421	1650	1672.488	1672.505	1672.505
9	10.513	10.393	0.12	1.17227203	1750	1772.416	1772.435	1772.435
10	11.767	11.635	0.1319	1.60504858	1800	1872.509	1872.530	1872.530
11	13.074	12.930	0.144	2.90904851	1800	1972.362	1972.386	1972.386

Table 5 b)

		/						
No	λe/nm	Τλ/Κ	dTλ/dλ / (K/	idTλ/dλ(λr-λe	Tλ(λr=650nm)	Tλ(λr=650nm)	Spline correction / I	Tλ(λr=650nm; I(j)) / °C
1	654.284	1234.866	-0.111	0.474	1235.340	962.190	-0.006	962.184
2	654.256	1272.564	-0.118	0.500	1273.064	999.914	-0.004	999.910
3	654.210	1337.134	-0.130	0.548	1337.682	1064.532	0.054	1064.586
4	654.197	1357.468	-0.134	0.564	1358.032	1084.882	0.000	1084.882
5	654.187	1372.895	-0.138	0.576	1373.471	1100.321	-0.048	1100.273
6	654.128	1472.651	-0.160	0.660	1473.310	1200.160	-0.006	1200.154
7	654.076	1572.483	-0.184	0.752	1573.235	1300.085	0.017	1300.102
8	654.030	1672.505	-0.211	0.851	1673.357	1400.207	0.007	1400.214
9	653.989	1772.435	-0.240	0.958	1773.394	1500.244	-0.043	1500.201
10	653.953	1872.530	-0.271	1.072	1873.603	1600.453	0.046	1600.499
11	653.920	1972.386	-0.304	1.193	1973.579	1700.429	-0.018	1700.411

Second measurement on lamp C598 at 650 nm

Table 5 c)

_	,							
No	I(j) / A	I(I) / A	I(j)-I(l) / A	R=i(C864)/i(F	Ts(P95 at 650F	Τλ/Κ	T λ / K corrected for	T λ / K corrected for SSE and non-linearity
1	4.933	5.027	0.0002	0.80454539	1250	1234.732	1234.741	1234.741
2	5.236	5.298	0	0.65974395	1300	1272.451	1272.456	1272.456
3	5.788	5.808	0	0.92146967	1350	1336.973	1336.978	1336.978
4	5.98	5.981	-0.0002	1.17955975	1350	1357.354	1357.360	1357.360
5	6.12	6.116	-1E-04	1.31214692	1400	1372.901	1372.912	1372.912
6	7.107	7.054	0.0051	1.26219391	1500	1472.612	1472.625	1472.625
7	8.177	8.092	-1E-04	1.22404396	1600	1572.406	1572.421	1572.421
8	9.314	9.210	1E-04	1.19588499	1700	1672.447	1672.464	1672.464
9	10.513	10.393	-1E-04	0.97876073	1800	1772.382	1772.391	1772.391
10	11.767	11.635	-1E-04	1.61830319	1800	1872.542	1872.553	1872.553
11	13.074	12.930	-1E-04	2.92543766	1800	1972.412	1972.428	1972.428

Table 5 d)

_		/						
No	λe / nm	Τλ/Κ	dTλ/dλ / (K/	dTλ/dλ(λr-λe	Tλ(λr=650nm)	Tλ(λr=650nm)	Spline correction / I	Tλ(λr=650nm; I(j)) / °C
1	654.284	1234.741	-0.111	0.474	1235.215	962.065	-0.003	962.061
2	654.256	1272.456	-0.118	0.500	1272.956	999.806	0.007	999.813
3	654.210	1336.978	-0.130	0.548	1337.526	1064.376	-0.005	1064.372
4	654.197	1357.360	-0.134	0.564	1357.924	1084.774	-0.030	1084.743
5	654.187	1372.912	-0.138	0.576	1373.488	1100.338	0.037	1100.375
6	654.128	1472.625	-0.160	0.660	1473.285	1200.135	-0.006	1200.129
7	654.076	1572.421	-0.184	0.752	1573.173	1300.023	-0.012	1300.011
8	654.030	1672.464	-0.211	0.851	1673.315	1400.165	0.040	1400.206
9	653.989	1772.391	-0.240	0.958	1773.349	1500.199	-0.059	1500.140
10	653.953	1872.553	-0.271	1.072	1873.626	1600.476	0.047	1600.523
11	653.920	1972.428	-0.304	1.193	1973.622	1700.472	-0.016	1700.456

Table 5: Results of the calibration of the lamp C598 at 650 nm for the first measurement (a), b)) and for the second measurement (c), d)) $\,$

First measurement on lamp 644C at 650 nm Table 6 a)

		/						
No	l(j) / A	I(I) / A	l(j)-l(l) / A	R=i(644C)/i(F	Ts(P95 at 650F	Τλ / Κ	$T\lambda / K$ corrected for	T λ / K corrected for SSE and non-linearity
1	5.185	5.185	1E-04	0.80574006	1250	1234.834	1234.844	1234.844
2	5.457	5.457	1E-04	1.36801877	1300	1272.676	1272.686	1272.686
3	5.966	5.966	1E-04	0.85422178	1350	1337.064	1337.075	1337.075
4	6.141	6.142	-0.00145	1.09771344	1350	1357.773	1357.784	1357.784
5	6.276	6.276	0	1.31289983	1400	1372.950	1372.962	1372.962
6	7.223	7.223	0	1.26413085	1500	1472.763	1472.777	1472.777
7	8.276	8.276	0	1.22674868	1600	1572.654	1572.669	1572.669
8	9.411	9.411	-1E-04	1.19660599	1700	1672.523	1672.541	1672.541
9	10.617	10.617	0	1.17363189	1800	1772.582	1772.601	1772.601
10	11.880	11.880	0	1.60536235	1800	1872.540	1872.562	1872.562
11	13.197	13.197	0	2.91125544	1800	1972.496	1972.520	1972.520

Table 6 b)

_		/						
No	λe/nm	Τλ / Κ	dTλ/dλ / (K/	dTλ/dλ(λr-λe	Tλ(λr=650nm)	Tλ(λr=650nm)	Spline correction / I	Tλ(λr=650nm; I(j)) / °C
1	654.284	1234.844	-0.111	0.474	1235.318	962.168	0.031	962.199
2	654.256	1272.686	-0.118	0.500	1273.186	1000.036	-0.062	999.974
3	654.210	1337.075	-0.130	0.548	1337.623	1064.473	0.036	1064.509
4	654.197	1357.784	-0.134	0.564	1358.348	1085.198	0.027	1085.226
5	654.187	1372.962	-0.138	0.576	1373.538	1100.388	-0.026	1100.362
6	654.127	1472.777	-0.160	0.660	1473.437	1200.287	-0.012	1200.274
7	654.076	1572.669	-0.184	0.752	1573.421	1300.271	0.004	1300.276
8	654.030	1672.541	-0.211	0.851	1673.392	1400.242	0.012	1400.254
9	653.989	1772.601	-0.240	0.958	1773.559	1500.409	-0.025	1500.385
10	653.953	1872.562	-0.271	1.072	1873.634	1600.484	0.021	1600.505
11	653.920	1972.520	-0.304	1.193	1973.713	1700.563	-0.007	1700.556

Second measurement on lamp 644C at 650 nm

Table 6 c)

		/						
No	l(j) / A	I(I) / A	I(j)-I(l) / A	R=i(644C)/i(F	Ts(P95 at 650F	Τλ / Κ	Tλ / K corrected for	T λ / K corrected for SSE and non-linearity
1	5.185	5.184	0.0002	0.80481937	1250	1234.755	1234.765	1234.765
2	5.457	5.457	0	0.79913236	1300	1272.649	1272.656	1272.656
3	5.966	5.966	0	0.92154794	1350	1336.978	1336.983	1336.983
4	6.141	6.141	-0.0002	1.18174774	1350	1357.508	1357.514	1357.514
5	6.276	6.277	-1E-04	1.31266917	1400	1372.935	1372.946	1372.946
6	7.223	7.223	0.0051	1.26397554	1500	1472.751	1472.764	1472.764
7	8.276	8.276	-1E-04	1.22684656	1600	1572.663	1572.678	1572.678
8	9.411	9.411	1E-04	1.19690962	1700	1672.556	1672.573	1672.573
9	10.617	10.617	-1E-04	1.03797444	1800	1772.708	1772.721	1772.721
10	11.880	11.880	-1E-04	1.61519335	1800	1872.663	1872.677	1872.677
11	13.197	13.197	-1E-04	2.92923899	1800	1972.642	1972.658	1972.658

Table 6 d)

-		/						
Nc	λe / nm	Τλ / Κ	dTλ/dλ / (K/	dTλ/dλ(λr-λe	Tλ(λr=650nm) /	Tλ(λr=650nm)	Spline correction /	Tλ(λr=650nm; I(j)) / °C
1	654.284	1234.765	-0.111	0.474	1235.238	962.088	0.025	962.113
2	654.256	1272.656	-0.118	0.500	1273.156	1000.006	-0.049	999.957
3	654.210	1336.983	-0.130	0.548	1337.531	1064.381	0.030	1064.411
4	654.197	1357.514	-0.134	0.564	1358.078	1084.928	0.019	1084.947
5	654.187	1372.946	-0.138	0.576	1373.523	1100.373	-0.025	1100.347
6	654.127	1472.764	-0.160	0.660	1473.425	1200.275	0.004	1200.278
7	654.076	1572.678	-0.184	0.752	1573.430	1300.280	-0.009	1300.271
8	654.030	1672.573	-0.211	0.851	1673.424	1400.274	0.009	1400.283
9	653.989	1772.721	-0.240	0.959	1773.679	1500.529	-0.003	1500.526
10	653.953	1872.677	-0.271	1.073	1873.750	1600.600	-0.002	1600.598
11	653.920	1972.658	-0.304	1.194	1973.851	1700.701	0.001	1700.703

Table 6: Results of the calibration of the lamp 644C at 650 nm for the first measurement (a), b)) and for the second measurement (c), d)) $\,$

Annex B: Report of the NRC

Report on the realization of the ITS-90 between the silver freezing point and 1700 °C at the National Research Council of Canada for the bilateral comparison between PTB and NRC

C. K. Ma, A. G. Steele, K. D. Hill

National Research Council of Canada, Institute for National Measurement Standards

The format of this report follows closely that of [1]. Section titles and numbers that are in Times New Roman font with the italic style are taken from the same reference. Notations in this report closely follow those in the reference and deviations from it are minor and self-explanatory. The terminology (as expressed in the use of the terms 'effective wavelength' and 'blackbody radiator') closely follows the reference.

4. Reporting

4.1. Experimental and theoretical procedures

4.1.1. Realization of the ITS-90

- Description of equipment, including reference thermometer and reference fixed-point blackbody radiator.

Our pyrometer comprises an interference filter, a photoelectric detector, aperture stops, converging lenses, and ancillaries (Fig. 4.1.1). The matched objective achromatic lenses of 69 mm diameter and 500 mm focal length project an image (1:1) of the target area onto a circular field stop of 0.6 mm diameter. The center wavelength of the interference filter is 650 nm and the full width at half maximum transmittance is 10 nm. The homemade detector assembly comprises a silicon photodiode (Hamamatsu S1226-5BQ), an operational amplifier, and a feedback resistor (1 G Ω).

Two Cu fixed-point blackbodies were used as reference radiators. The first was used for the measurements before the lamps were sent to PTB. It was broken near the end of the measurement. The second was used for the measurements following the return of the lamps.

- Description of experimental procedures

The calibration of the lamp was determined from the ratio of the response of the pyrometer as it viewed the lamp to that as it viewed a Cu-fixed-point blackbody radiator.

Fig. 4.1.1. Layout of the apparatus on an optical table (1222 mm × 2445 mm). N, furnace (305 mm dia., 610 mm long) embodying a blackbody radiator; C, carriage carrying a lamp mount for the lamp; S, scope temporarily in place for sighting at the notch of the lamp filament and the image of the field stop for adjusting the height of the notch of the filament to be the same as the image of the field stop; L_1 and L_2 , matched pair of achromatic lenses (diameter and focal length, 69 mm and 500 mm respectively); A, aperture stop (either 65 mm dia. or 21 mm dia.); F, field stop (0.6 mm dia.); E_1 and E_2 , pair of lenses; I, interference filter (nominal center wavelength and half width, 650 nm and 10 nm respectively); D, silicon photodiode (Hamamatsu S1226-5BQ) with ancillary electronic components (including a feedback resistor of 1 G Ω).

N and C are mounted on a pair of rails (dotted lines) to facilitate moving the blackbody radiator (housed inside N) or the lamp (mounted on C) to align with the optical axis.

 E_1 , E_2 , I, and D are inside a brass housing having a copper coil for circulating temperature-controlled water. These components comprise our photoelectric detector. A blackened shroud (not shown) shields F from stray light.

L₁, A, L₂, F, E₁, I, E₂, and D are mounted on holders that are movable along an optical bench (2089 mm long, dashed lines) which lies perpendicular to the rails.

The components on the optical bench comprise our optical pyrometer. The common optical axis for these components is 360 mm above the optical table.

- Formal definition/derivation of the spectral radiance temperature with explicit reference to corrections applied

Above the freezing point of Ag, the ITS-90 is defined by the equation:

$$L_{b,\lambda}(T_x) / L_{b,\lambda}(T_0) = \{ \exp(c_2 \lambda^{-1} T_0^{-1}) - 1 \} / \{ \exp(c_2 \lambda^{-1} T_x^{-1}) - 1 \}$$
(1)

where T_0 is any one of the (assigned) freezing points of Ag, Au and Cu, T_x is the temperature on the ITS-90, $c_2 = 0.014388 \text{ m} \cdot \text{K}$, and $L_{b,\lambda}$ is the radiance of a blackbody (the Planck's function) at the wavelength λ in vacuum.

The left-hand side of Eq. (1) is the ratio of monochromatic radiances. Our measurements, however, are the ratio of the integrated radiances:

$$\int_{\lambda_{1}}^{\lambda_{2}} \tau_{\lambda} s_{\lambda} L_{b,\lambda}(T_{x}) d\lambda / \int_{\lambda_{1}}^{\lambda_{2}} \tau_{\lambda} s_{\lambda} L_{b,\lambda}(T_{0}) d\lambda = G$$
⁽²⁾

where the integration limits, λ_1 and λ_2 , in our case are chosen to be 625 nm and 675 nm, respectively, τ_{λ} is the spectral transmittance of the interference filter, s_{λ} is the spectral responsivity of the photo diode, and G is the ratio of the responses of the photoelectric detector as it sights on the blackbody radiators at temperatures T_x and T_0 , respectively.

Implicit in Eq. (2) is the assumption that the spectral transmittance for the glass lenses of the pyrometer is constant in the wavelength range of λ_1 and λ_2 so that it cancels from the equation.

With known τ_{λ} , s_{λ} , T_0 , and G, Eq. (2) can be solved for T_x (in our case, by the method of successively approximating the true value by the mean of the upper and lower bounds which approach each other in successive iterations).

Eq. (2) can be rearranged as

$$\int_{\lambda_{1}}^{\lambda_{2}} \tau_{\lambda} s_{\lambda} L_{b,\lambda}(T_{x}) d\lambda = \int_{\lambda_{1}}^{\lambda_{2}} \tau_{\lambda} s_{\lambda} G L_{b,\lambda}(T_{0}) d\lambda.$$
(3)

The integrals on both sides of this equation can be interpreted as the two separate areas under the curves of $\tau_{\lambda}s_{\lambda}L_{b,\lambda}(T_x)$ and $\tau_{\lambda}s_{\lambda}GL_{b,\lambda}(T_0)$ in a plot with varying λ as the abscissa. A necessary condition for the two areas to be equal is that the curves must cross each other at least once at a specific wavelength λ_e (the effective wavelength). At this wavelength, the ordinates, $\tau_{\lambda}s_{\lambda}L_{b,\lambda}(T_x)$ and $\tau_{\lambda}s_{\lambda}GL_{b,\lambda}(T_0)$, are equal and therefore $L_{b,\lambda e}(T_x) / L_{b,\lambda e}(T_0) = G$. As a result, the ratio of the monochromatic radiances $L_{b,\lambda e}(T_x)$ and $L_{b,\lambda e}(T_0)$ in Eq. (1) is identical to the ratio of the integrated radiances in Eq. (2). The T_x that satisfies Eq. (2) also satisfies Eq. (1) and therefore is a temperature on the ITS-90.

For $\lambda \leq \lambda_2$ and $T_0 < T_x$, the ratio $L_{b,\lambda}(T_x) / L_{b,\lambda}(T_0)$ decreases monotonically with increasing λ . We can conclude that the condition of $L_{b,\lambda e}(T_x) / L_{b,\lambda e}(T_0) = G$ occurs only once at a unique λ_e .

For a non-blackbody such as the tungsten strip lamp, Eq. (2) becomes

$$\int_{\lambda_{1}}^{\lambda_{2}} \tau_{\lambda} s_{\lambda} L_{\lambda}(T_{x'}) d\lambda / \int_{\lambda_{1}}^{\lambda_{2}} \tau_{\lambda} s_{\lambda} L_{b,\lambda}(T_{0}) d\lambda = G.$$
(4)

where $T_{x'}$ is the true temperature of the non-blackbody and $L_{\lambda}(T_{x'})$ is its radiance. Since the definite integral of $L_{b,\lambda}(T)d\lambda$ increases monotonically with T, there is a blackbody of temperature T_x having the same total radiance in the wavelength band between λ_1 and λ_2 :

$$\int_{\lambda_1}^{\lambda_2} \tau_{\lambda} s_{\lambda} L_{\lambda}(T_{x'}) d\lambda = \int_{\lambda_1}^{\lambda_2} \tau_{\lambda} s_{\lambda} L_{b,\lambda}(T_{x}) d\lambda .$$
(5)

The temperature T_x of the substitute blackbody can be determined as discussed previously. It is defined to be the radiance temperature of the non-blackbody at the effective wavelength λ_e which is obtained by solving Eq. (1) with known T_x .

4.1.2. Transfer of radiance temperatures to strip lamps

- Description of equipment and procedures, including corrections

When we obtained the lamps from the manufacturer (GEC Hirst Research Centre), the copper lamp pins (posts) were not yet soldered into the copper blocks. During the soldering of the pins, we arranged that the bases of the blocks were leveled and the lamp filament was plumbed. Subsequently, the blocks were anchored to a glass plate (35 mm \times 89 mm) which became the base of the lamp.

Thereafter, the levelness of the plate determines the vertical orientation of the lamp. For calibration, the lamp is placed upright on a level rotary table. The position of the lamp is adjusted so that the part of the filament embodying the notch is on the axis of rotation of the table. The height of the table is adjusted to bring the notch of the filament to the same level as the optical axis. Viewing along the optical axis from the lamp towards the pyrometer, we rotate the rotary table and translate it sideways as necessary until the center of the fiducial mark (a circular paint dot) on the lamp window lies midway between the vertical edges of the filament. The position of the lamp along the optical axis is determined by the method described in sub-section *3.2.1.2 "Focusing"* in [1] by determining the position where the apparent width of the lamp filament is a minimum.

Our home-made pyrometer (Fig. 4.1.1) employs an aperture stop of 65 mm diameter for temperature measurements ranging from 962 °C to 1400 °C. For temperatures from 1300 °C to 1700 °C, a smaller aperture of 21 mm diameter is used instead. Generally, changing a component of the pyrometer alters its characteristics. For simplicity, we consider that we have two pyrometers covering two overlapping temperature ranges. The size-of-source effect and non-linearity for each pyrometer is measured individually.

The photo current $i(t_{Cu})$ of each pyrometer, which targets the Cu blackbody, need be known. With the large aperture, the photo current $i(t_{Cu65})$ is sufficiently large (~ 0.5 nA) to be measured directly. With the small aperture, the photo current $i(t_{Cu21})$ is approximately 10 times smaller and is determined indirectly. When the copper ingot in the blackbody undergoes freezing or melting, we repeatedly interchange the aperture to obtain measurements of $i(t_{Cu65})$ and $i(t_{Cu21})$ Based on many measurements from different freezes and melts, the mean (β) of the ratio of $i(t_{Cu65}) / i(t_{Cu21})$ is computed (β = 9.389 2 ± 0.001 7). In the calculation of the lamp temperature, the value of $i(t_{Cu21})$ is always obtained by dividing the measured $i(t_{Cu65})$ by β .

As discussed previously (Sec. 4.1.1, under the sub-title "*Formal definition/derivation of the spectral radiance temperature*"), the spectral radiance of the lamp is approximated by that of a blackbody at temperature T_x which becomes the spectral radiance temperature of the lamp. Solution of Eq. (2) to obtain T_x requires that the spectral transmittance τ_{λ} of the

interference filter and the spectral responsivity s_{λ} of the photodiode be known. These were measured separately (Appendix I).

Portions of the total response of the photodetector, which are due to radiation below λ_1 (625 nm) and above λ_2 (675 nm), should be accounted for. Taking the radiation source to be a blackbody at a temperature of 1357.77 K (T_{Cu}), we integrate (using Simpson's rule) the spectral response, $\tau_{\lambda}s_{\lambda}L_{b,\lambda}(T_{Cu})$ d λ in the three wavelength ranges of 400 nm to 624 nm, 624 nm to 676 nm, and 676 nm to 1100 nm. The three integrals are found to be in the ratio of $I_a : I_b : I_c$, respectively, where $I_a = 0.000 \ 007$, $I_b = 0.996 \ 409$, and $I_c = 0.003 \ 584$ (Appendix I). Since I_a is relatively small, we consider the response due to radiation below λ_1 to be negligible. The total response should be reduced by a factor of 0.996 409 to obtain the desired response due to radiation in the chosen pass band of λ_1 to λ_2 .

We also measured I_b by using a sharp-cut colored glass filter (Schott) RG830. Its spectral transmittance is less than 10^{-6} for wavelengths up to λ_2 , increases to 0.9061 at 940 nm, and remains constant to within \pm 0.0005 for wavelengths up to 1300 nm where the transmittance measurement ends. The measured value for I_b is 0.996 378. This differs insignificantly from the calculated value. The measured value was used to correct the photocurrent of our blackbody radiation source. The same glass filter was also used to determine the correction for the lamp at various temperatures.

4.2. Presentation of results

4.2.1. Local conditions to be specified

4.2.1.1. Reference thermometer

- *Effective wavelength* (λ_e) / *local reference wavelength*

We calculate the unknown radiance temperature T_x for each measured radiance ratio G by solving Eq. (2) with the reference temperature T_0 equal to T_{Cu} . Subsequently, the effective wavelength λ_e is calculated by solving Eq. (1) for λ with the known T_x .

- Half-width of spectral response function

This is nominally 10 nm.

- Aperture ratio; f-number

We interpret the aperture ratio to be the ratio of the diameters of the objective lens L_1 and the aperture stop A in Fig. 4.1.1. This is equal to 1.1 and 3.3 for the large and small aperture stops which cover the temperature ranges of 962 °C to 1400 °C and 1300 °C to 1700 °C, respectively.

The f-number is 7.7 and 24 for the temperature ranges mentioned above, respectively.

- Target distance

This is nominally 500 mm.

- Target field dimensions

This is a circular area of 0.6 mm diameter.

- Size-of-source effect (SSE)

This was measured for a circular source and for a rectangular source to simulate the conditions when the pyrometer views the blackbody furnace and the lamp (Appendix II).

- *Effective source diameter* ϕ_d *of the strip*

This does not concern us because the SSE is accounted for (see last paragraph).

4.2.1.2. Transfer lamps

- Orientation of the lamp

See Sec. 4.1.2 "Description of equipment and procedures, including corrections".

- Nominal base temperature and its stability

The temperature of the two copper blocks that comprise the base of the lamp was regulated by circulating water from a bath at a nominal temperature of 20°C. The minimum and maximum temperatures of the lamp base were 19.94 °C (lamp C598, 3rd run, 962 °C) and 20.89 °C (same lamp, 5th run, 1700 °C).

- Total burning time

This was not tallied. It will be reported if it is required.

4.2.1.3. Ambient conditions

- T_{amb}, RH; mean, maximum and minimum values

The room temperature was normally 23 °C. The humidity was not recorded.

4.2.2. Measurement results

See Appendices XI and XII for a detailed reporting of the measurement results.

4.3. Uncertainties

No efforts were made to carefully classify the uncertainties into types A and B. Generally, repeated measurements are few. Vigorous statistical treatment may not be worthwhile. With three exceptions that are of type A (k = 1) (uncertainty items labeled s_{A13} , s_{A14} , and s_{A17}), all of the uncertainties given below are considered to be of type B (k = 1). They are assumed to be uncorrelated and are simply summed in quadrature. They are denoted by the symbols s_{Bi} and ρ_{Bi} for absolute and fractional uncertainties, respectively, where the subscript i denotes the component. For brevity the unit for the s_{Bi} is normally not shown and is implicitly the kelvin.

4.3.1. Identification of uncertainty components

I. Reference blackbody radiator

- Realization of the reference temperature

Subcomponents:

impurities

Uncertainty in reference temperature based on data in Appendix III,

 $s_{B1}: 0.004$

emissivity

The emissivity is estimated to be 0.999 97 ± 0.000 03 ($\epsilon \pm s_{\epsilon}$) [2].

Uncertainty in the reference temperature calculated using Eq. (I) in Appendix IV with $T_x = T_{Cu}$ and $s_{\epsilon} / \epsilon = 0.000 03$,

s_{B2}: 0.002 5

temperature difference ΔT across the bottom section of the cavity in view

Estimation for ΔT , based on [3], is -0.001 2 ± 0.000 5 K.

Uncertainty,

s_{B3} : 0.000 5

Combined uncertainty (s_{B1} , s_{B2} , s_{B3}),

s_{B4}: 0.004 7

Uncertainties propagated at various temperatures and calculated using Eq. (G) in Appendix IV,

SB5:

t/ °C 962 1000 1064 1085 1100 1200 1300 1400 1500 1600 1700 Uncertainty 0.004 0.004 0.005 0.005 0.005 0.006 0.006 0.007 0.008 0.009 0.010

II. Reference thermometer

II.1. Ratio of photo-currents

-- Photo current - measurement

Fractional uncertainty in the measurements of radiance ratios due to the nonreproducibility (day-to-day variation) of the response of the detector when it views the blackbody radiator at the freezing point of copper (note that the uncertainty due to detector drift is embedded in this), $ho_{\rm B6}$: 0.002 5

Fractional uncertainty due to fluctuations (noise) of the detector reading,

 ρ_{B7} : This varies with temperature (Appendix V). The largest is 0.000 1 at 962°C.

-- Photo current - resolution

Uncertainties due to resolution (quantization) are negligible compared to the uncertainties due to fluctuations of readings.

Combined fractional uncertainty (ρ_{B6} , ρ_{B7}),

 $ho_{
m B8}$: 0.002 5

Uncertainties propagated at various temperatures calculated using Eq. (J) in Appendix IV,

S_{B8} :

t/ °C 962 1000 1064 1085 1100 1200 1300 1400 1500 1600 1700 Uncertainty 0.172 0.183 0.202 0.208 0.213 0.245 0.280 0.316 0.335 0.396 0.440

-- Linearity

Fractional uncertainty (Appendix VI),

*ρ*_{B9}: 0.000 04.

Uncertainties at various temperatures calculated using Eq. (J) in Appendix IV,

SB9:

t/ °C 962 1000 1064 1085 1100 1200 1300 1400 1500 1600 1700 Uncertainty 0.003 0.003 0.003 0.003 0.003 0.004 0.004 0.005 0.006 0.006 0.007

II.2. Size of source effect (SSE)

Fractional uncertainty (based on the data in Appendix II),

*ρ*_{B10} : 0.000 15.

Uncertainties at various temperatures calculated using Eq. (J) in Appendix IV,

S_{B10} :

t/ °C 962 1000 1064 1085 1100 1200 1300 1400 1500 1600 1700 Uncertainty 0.010 0.011 0.012 0.012 0.013 0.015 0.017 0.019 0.021 0.024 0.026

II.3. spectral parameters

-- Spectral response function, including (especially) the spectral transmission of the interference filter and the spectral responsivity of the detector. Stability of the interference filter

Uncertainty in the wavelength measurement of the filter transmittance is estimated to be 0.1 nm,

Uncertainties at various temperatures calculated by using Eq. (H) in Appendix IV,

SB11:

t/ °C 962 1000 1064 1085 1100 1200 1300 1400 1500 1600 1700 Uncertainty 0.017 0.012 0.003 0.000 0.002 0.019 0.038 0.060 0.084 0.109 0.138

Uncertainty in detector responsivity:

---- negligible.

The uncertainty in the detector responsivity s_{λ} can be due to the uncertainty in the wavelength measurements. This is considered to be accounted for by the uncertainty s_{B11} . The uncertainty in s_{λ} can be due to the uncertainty in the measurement of the magnitude of s_{λ} , which affects the slope $ds_{\lambda}/d\lambda$. This uncertainty in s_{λ} is estimated to be negligible [4].

Uncertainty due to the stability of the interference filter:

----- assumed negligible.

-- Blocking

 $ho_{\rm B12}$: 0.000 03

This is based on the difference between the fractional correction by calculation for the radiation transmission (0.996 41) and that by measurement (0.996 38) (see Sec. 4.1. "Description of equipment and procedures, including corrections").

Uncertainties at various temperatures calculated using Eq. (J) in Appendix IV,

S_{B12} :

t/ °C 962 1000 1064 1085 1100 1200 1300 1400 1500 1600 1700 Uncertainty 0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.004 0.004 0.005 0.005

-- Mean effective wavelength (λ_e), a variable, linking up additionally with the spectral characteristics of the transfer lamps around the fixed reference wavelengths λ_{rl} (local value) and λ_r (reference value)

----- partly negligible and partly accounted for.

The mean effective wavelength is computed according to the spectral response function. The computation itself is practically exact. Uncertainty due to the measured values in the spectral function is accounted for by the uncertainties in filter transmittance (s_{B11} , s_{B12}) and detector responsivity (negligible).

II.4. Possible additional parameters

-- Transmission of neutral density filter(s)

We did not use a neutral density filter to reduce the radiant flux. Instead, we use a smaller entrance aperture. For the blackbody source which is of concern, the reduction is given by $1/\beta$ where $\beta = 9.389 \ 2 \pm 0.001 \ 7$ (see Sec. 4.1.2 "Description of equipment and procedures, including corrections".)

Fractional uncertainty on the reduction

*ρ*_{A13} : 0.000 18

Uncertainties at various temperatures calculated by using Eq. (J) in Appendix IV,

SA13:

t/ °C 962 1000 1064 1085 1100 1200 1300 1400 1500 1600 1700 Uncertainty 0.012 0.013 0.015 0.015 0.016 0.018 0.020 0.023 0.026 0.029 0.032

As shown in the measurement results (Sec. 4.2.2), the calibrations based on the large and the small apertures generally differ in the overlapping temperature range of 1300 °C and 1400 °C. The standard deviations of the residuals resulting from curve fitting are 0.122 °C at 1300 °C and 0.139 °C at 1400 °C (see later Sec. *III.1. Lamp current -- Lamp currents I_j as prescribed*). Under the assumption that the uncertainty in each of the two calibrations based on the two apertures is 0.130 °C at 1350 °C, the uncertainties at other temperatures, calculated by substituting 1623.15 K for T_{Cu} and 0.130 K for s_{TCu} in Eq. (G) in Appendix IV, are assumed to be:

S_{A14}:

t/°C 962 1000 1064 1085 1100 1200 1300 1400 1500 1600 1700 Uncertainty 0.075 0.080 0.088 0.091 0.093 0.107 0.122 0.138 0.155 0.173 0.192

Combined uncertainty (s_{A13} , s_{A14})

SA15:

t/ °C 962 1000 1064 1085 1100 1200 1300 1400 1500 1600 1700 Uncertainty 0.076 0.081 0.089 0.092 0.094 0.109 0.124 0.140 0.157 0.175 0.195

-- Absorption by water vapour ($\lambda_r \cong 950 \text{ nm}$)

Our λ_r is 650 nm.

III. Transfer lamps

III.1. Lamp current

-- Lamp currents I_{λ} as set

The resistance of the standard resistor used for the measurement of lamp current is estimated to be 0.010 004 36 \pm 0.000 000 01 Ω (based on data in Appendix VII).

Fractional uncertainty in the absolute value of the measured current,

 ho_{B16} : 10⁻⁶

Fractional uncertainties in lamp current due to fluctuations in its measurement,

 ρ_{B17} : shown in Appendix VIII and tabulated below

t/ °C 962 1000 1064 1085 1100 1200 1300 1400 1500 1600 1700 Fractional uncertainty/ 10^{-6} 4.7 4.0 3.5 3.3 3.2 2.7 2.4 2.2 2.1 2.0 2.0

Combined fractional uncertainties (ρ_{B16} , ρ_{B17}),

 $ho_{ extsf{B18}}$:

t/ °C 962 1000 1064 1085 1100 1200 1300 1400 1500 1600 1700 Fractional uncertainty/ 10^{-6} 4.8 4.1 3.6 3.4 3.4 2.9 2.6 2.4 2.3 2.2 2.2

Analytical expression for the average of the calibrations of lamps 644C and C598 (Eq. 13 in Table B3 under Sec. *4.2.2 "Measurement results"* for each of the two lamps):

 t_{λ} / °C = 1373.4084 + 349.9584 z – 36.7109 z^2 + 17.3425 z^3 – 9.8311 z^4 + 0.8960 z^5 – 5.6400 z^6 + 6.5661 z^7

where z = (I / A - 9) / 4 and *I* is lamp current.

 $(dt_{\lambda}/dl) / (^{\circ}C / A) = (349.9584 - 73.4218 z + 52.0275 z^{2} - 39.3244 z^{3} + 4.4800 z^{4} - 33.8400 z^{5} + 45.9627 z^{6}) / 4$

Average of reference currents I_i (in Table A1 for each of the two lamps):

Avg. current / A5.1065.3785.8876.0616.1967.1398.1849.31110.50511.75813.064Nom.Temp. / °C9621000106410851100120013001400150016001700 $(dt_{\lambda}/dl) / (°C / A)$ 1451341201161131009286827877

Uncertainties in t_{λ} due to the uncertainties in the absolute value of the lamp current based on the sensitivity dt_{λ}/dI , average reference currents I_{j} , and fractional uncertainty ρ_{B18} given above ($\Delta t = dt_{\lambda}/dI \cdot I_{j} \cdot \rho_{B18}$) **S**B18:

t / °C 962 1000 1064 1085 1100 1200 1300 1400 1500 1600 1700 Uncertainty 0.004 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002

-- Lamp currents I_i as prescribed

In the calculation to determine the lamp calibration we did not adjust the set currents to bring them equal to the reference currents. We obtained the calibration by fitting an analytical expression of temperature vs. set current (see Table B3 in Sec. 4.2.2 "Measurement results"). In place of the uncertainties due to current adjustments, we have the uncertainties stemming from curve fitting. We assume that these uncertainties are indicated by the residuals (computed temperature – measured temperature) (see Appendix IX). The uncertainties are

SA19:

t∕ °C	962	1000	1064	1085	1100	1200	1300	1400	1500	1600	1700
Uncertainty	0.024	0.025	0.020	0.031	0.041	0.040	0.122	0.139	0.028	0.031	0.037

III.2. Radiance temperature

-- Short-term stability

This is assumed to be negligible in comparison with the non-reproducibility of the response of the detector at the reference fixed point.

-- Drift

No study was made.

-- Dependence on wavelength: $T_{\lambda} = T_{\lambda}(\lambda)$; $dT_{\lambda}/d\lambda(\lambda)$

Fractional uncertainty in $dT_{\lambda}/d\lambda$ [1],

 ho_{B20} : 0.1

Uncertainties in the wavelength corrections in Table B1 (using Eq. D in Appendix IV),

SB20:

t/ °C 962 1000 1064 1085 1100 1200 1300 1400 1500 1600 1700 $|\Delta t|$ / °C 0.004 0.003 0.002 0.002 0.002 0.000 0.002 0.004 0.007 0.009 0.013 Uncertainty 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001

-- Dependence on base temperature $T_{\lambda} = T_{\lambda} (\lambda; T_b)$

Uncertainties in the corrections for the temperature of the lamp base in Table B2 (see Appendix X),

SB21:

t∕ °C	962	1000	1064	1085	1100	1200	1300	1400	1500	1600	1700
Largest $ \Delta t_{\rm b} / \circ C$	0.305	0.320	0.336	0.361	0.351	0.418	0.489	0.579	0.665	0.752	0.886
Uncertainty in dt_{λ} / dt_{b}	0.016	0.013	0.012	0.010	0.009	0.007	0.005	0.003	0.000	0.000	0.000
Uncertainty in Δt_{λ} correction	0.005	0.004	0.004	0.004	0.003	0.003	0.002	0.002	0.000	0.000	0.000

Residual parameters:

-- Alignment (spatial and angular distribution of radiance)

spatial : axial position (along optical axis) ---- negligible.

With the procedure of photoelectric focusing (Sec. 3.2.1.2), the lamp filament can be positioned at the focal point to within ± 0.2 mm along the optical axis. The uncertainty associated with focusing is negligible.

lateral position (normal to optical axis on a horizontal plane) ---- negligible.

After alignment, the lamp can be moved laterally for 0.2 mm without causing the detector response to taper off. Under the assumption that the micrometer drive can reproducibly set the lateral position of the lamp within ± 0.01 mm, the uncertainty associated with the lateral position is negligible.

vertical position ---- assumed negligible.

We did not measure the vertical temperature gradient of the lamp filament. With a telescope, however, we observed (in the K5 Comparison) that the notch of the lamp filament was probably at a level within ± 0.05 mm of the optical axis at all temperature measurements. Temperature variation along such a small region is expected to be negligible.

angular orientation on a horizontal plane

Within a run, the angular orientation is reproducible to within $\pm 5'$. If, by assumption, the directional radiance distribution follows the cosine law, the fractional uncertainty is 10^{-6} and is negligible.

-- Target field

Assumed negligible (the target field is always properly filled).

-- Cleaning of the window

Assumed negligible.

IV. Lamp-thermometer composite parameters

-- Radiance temperature $T_{\lambda} = T_{\lambda}(\lambda_e; T_b)$ (before corrections, Table A1)

4.3. Uncertainties

T auran anatuma										
remperature	I. Blackbody radiator		II. Thermo	meter		III. Lamp	Combined			
	Ι	II.1	II. 3	II. 3	II. 4	III.1				
	S_{B5}	S_{B8}	S_{B11}	S_{B12}	S_{A15}	S_{B18}				
962	0.004	0.172	0.017	0.002	0.076	0.004	0.189			
1000	0.004	0.183	0.012	0.002	0.081	0.003	0.201			
1064	0.005	0.202	0.003	0.002	0.089	0.003	0.221			
1085	0.005	0.208	0.000	0.002	0.092	0.002	0.228			
1100	0.005	0.213	0.002	0.003	0.094	0.002	0.233			
1200	0.006	0.245	0.019	0.003	0.109	0.002	0.269			
1300	0.006	0.280	0.038	0.003	0.124	0.002	0.309			
1400	0.007	0.316	0.060	0.004	0.140	0.002	0.351			
1500	0.008	0.355	0.084	0.004	0.157	0.002	0.397			
1600	0.009	0.396	0.109	0.005	0.175	0.002	0.447			
1700	0.010	0.440	0.138	0.005	0.195	0.002	0.501			
	962 1000 1064 1085 1100 1200 1300 1400 1500 1600 1700	I I Blackbody radiator I SB5 962 0.004 1000 0.004 1064 0.005 1085 0.005 1100 0.005 1200 0.006 1300 0.007 1500 0.008 1600 0.009 1700 0.010	I. Blackbody radiator II.1 I II.1 SB5 SB8 962 0.004 0.172 1000 0.004 0.183 1064 0.005 0.202 1085 0.005 0.208 1100 0.006 0.245 1300 0.006 0.280 1400 0.007 0.316 1500 0.008 0.355 1600 0.009 0.396 1700 0.010 0.440	TemperatureI.I.II. ThermoBlackbody radiatorII. II. IIII.1II.3 S_{B5} S_{B8} S_{B11} 9620.0040.1720.01710000.0040.1830.01210640.0050.2020.00310850.0050.2130.00211000.0060.2450.01913000.0060.2800.03814000.0070.3160.06015000.0080.3550.08416000.0090.3960.10917000.0100.4400.138	TemperatureI.I.II. ThermometerBlackbody radiatorII. III. 3II. 3III.1II.3II.3SB5SB8SB11SB129620.0040.1720.0170.00210000.0040.1830.0120.00210640.0050.2020.0030.00210850.0050.2130.0020.00310000.0060.2450.0190.00310000.0060.2450.0190.00312000.0060.2800.0380.00314000.0070.3160.0600.00415000.0080.3550.0840.00416000.0090.3960.1090.00517000.0100.4400.1380.005	TemperatureIIII. ThermometerBlackbody radiatorII. III. 3II. 3III. 1II. 3II. 3II. 4SB5SB8SB11SB12SA159620.0040.1720.0170.0020.07610000.0040.1830.0120.0020.08110640.0050.2020.0030.0020.08910850.0050.2080.0000.0020.09211000.0050.2130.0020.0030.10913000.0060.2450.0190.0030.10913000.0060.2800.0380.0030.12414000.0070.3160.0600.0040.14015000.0080.3550.0840.0040.15716000.0090.3960.1090.0050.17517000.0100.4400.1380.0050.195	Image: Second			

-- $T_{\lambda} := T_{\lambda}(\lambda_e; T_b)$, corrected for the SSE (Table A2)

lus al a vi	Ta san a sa tura	4.3. Uncertainties*					
Index	remperature	Last table	II. Thermometer	Combined			
			II.2				
			S _{B10}				
1	962	0.189	0.010	0.189			
2	1000	0.201	0.011	0.201			
3	1064	0.221	0.012	0.221			
4	1085	0.228	0.012	0.228			
5	1100	0.233	0.013	0.233			
6	1200	0.269	0.015	0.269			
7	1300	0.309	0.017	0.309			
8	1400	0.351	0.019	0.352			
9	1500	0.397	0.021	0.398			
10	1600	0.447	0.024	0.448			
11	1700	0.501	0.026	0.502			

الموامير	Tamporatura	4.3. Uncertainties*					
Index	remperature	Last table	II. Thermometer	Combined			
			II.2				
			S _{B9}				
1	962	0.189	0.003	0.189			
2	1000	0.201	0.003	0.201			
3	1064	0.221	0.003	0.221			
4	1085	0.228	0.003	0.228			
5	1100	0.233	0.003	0.233			
6	1200	0.269	0.004	0.269			
7	1300	0.309	0.004	0.309			
8	1400	0.352	0.005	0.352			
9	1500	0.398	0.006	0.398			
10	1600	0.448	0.006	0.448			
11	1700	0.502	0.007	0.502			

-- $T_{\lambda} := T_{\lambda}(\lambda_e; T_b)$, corrected for SSE and non-linearity (Table A3)

* The uncertainties of the NRC measurements have been slightly revised due to a mistake found by an external referee

Conversion to reference conditions:

--
$$T_{\lambda} := T_{\lambda}(\lambda_e; T_b; I_{\beta})$$
, corrected to $RH = 0\%$ (only if $\lambda_r = 950$ nm)

Non-applicable.

-- *Reference wavelength* λ_r : $T_{\lambda} := T_{\lambda}(\lambda_r; T_{b}; I_{\ell})$ (Table B1)

Index	Tomoreneture	4.3. Uncertainties*					
Index	remperature	Last table	III. Lamp	Combined			
			III.2				
			S_{B20}				
1	962	0.189	0.003	0.189			
2	1000	0.201	0.003	0.201			
3	1064	0.221	0.002	0.221			
4	1085	0.228	0.002	0.228			
5	1100	0.233	0.001	0.233			
6	1200	0.269	0.000	0.269			
7	1300	0.309	0.001	0.309			
8	1400	0.352	0.002	0.352			
9	1500	0.398	0.003	0.398			
10	1600	0.448	0.003	0.448			
11	1700	0.502	0.004	0.502			

	_	4.	4.3. Uncertainties*					
Index	Temperature	Last table	III. Lamp	Combined				
			III.2					
			S_{B21}					
1	962	0.189	0.016	0.189				
2	1000	0.201	0.013	0.201				
3	1064	0.221	0.012	0.221				
4	1085	0.228	0.010	0.228				
5	1100	0.233	0.009	0.233				
6	1200	0.269	0.007	0.269				
7	1300	0.309	0.005	0.309				
8	1400	0.352	0.003	0.352				
9	1500	0.398	0.000	0.398				
10	1600	0.448	0.000	0.448				
11	1700	0.502	0.000	0.502				

-- Base temperature $20^{\circ}C$: $T_{\lambda} := T_{\lambda}(\lambda_r; 20; I_{\ell})$ (Table B2)

* The uncertainties of the NRC measurements have been slightly revised due to a mistake found by an external referee

-- Lamp current $I_{j:} T_{\lambda} := T_{\lambda}(\lambda_r; 20; I_j)$ (Table B3)

Indov	Tomororotura	4.3. Uncertainties*					
Index	remperature	Last table	III. Lamp	Combined			
			<i>III.1</i>				
			S _{A19}				
1	962	0.189	0.024	0.191			
2	1000	0.201	0.025	0.203			
3	1064	0.221	0.020	0.222			
4	1085	0.228	0.031	0.230			
5	1100	0.233	0.041	0.237			
6	1200	0.269	0.040	0.272			
7	1300	0.309	0.122	0.333			
8	1400	0.352	0.139	0.378			
9	1500	0.398	0.028	0.399			
10	1600	0.448	0.031	0.449			
11	1700	0.502	0.037	0.503			

4.3.2. Specifying uncertainties

4.3.2.1. Representation

Uncertainties have to be specified in accordance with the 'Guide to the expression of uncertainty in measurement', co-edited by BIPM (1993), in terms of the (effective) standard deviations sA(i), sB(i), s(i), for the components i to be taken into consideration. The terms to be included in the propagation of uncertainties should be fully described.

4.3.2.2. Final specifications

-- Uncertainty components arranged within the framework given in 4.3.1.

Already presented in Sec. 4.3.1.

-- The uncertainties $s\{T_{\lambda}(\lambda_r; I_j)\}$ vs. I_j in the specified reference conditions (3.1.2), I_j referring to the currents defined in Appendix D. (See the reference currents in Table I in this report.)

		Lai	mp	
Index	Nominal temperature / °C	644C	C598	Uncertainty /
		Currer	nt / A	K*
1	962	5.185	5.027	0.191
2	1000	5.457	5.298	0.203
3	1064	5.966	5.808	0.222
4	1085	6.141	5.981	0.230
5	1100	6.276	6.116	0.237
6	1200	7.223	7.054	0.272
7	1300	8.276	8.092	0.333
8	1400	9.411	9.210	0.378
9	1500	10.617	10.393	0.399
10	1600	11.880	11.635	0.449
11	1700	13.197	12.930	0.503

References

1. Bloembergen P., "Protocol to the local realizations of the ITS-90 between the silver point and 1700°C using vacuum tungsten-strip lamps as transfer standards", 1 June 1997.

2. Ohtsuka M., Bedford R.E., "Measurement of the thermodynamic temperature interval between the freezing points of silver and copper", in *Temperature, Its Measurement and Control in Science and Industry*, 1982, vol. 5, 175-181.

3. Ma C.K., "Experimental investigation of the temperature drop across the wall of a copper-freezing-point blackbody", in *Temperature, Its Measurement and Control in Science and Industry*, 2002, vol. 7, 651-656.

4. Bedford R.E., Ma C.K., "Effect of uncertainties in detector responsivity on thermodynamic temperatures measured with an optical pyrometer", *High Temperatures-High Pressures*, 1983, **15**, 119-130.

Appendix I. Spectral transmittance of the interference filter τ_{λ} , spectral response s_{λ} of the photo diode, and Planck's blackbody radiation function $L_{b,\lambda}(T_{Cu})$

Appendix IIa. SSE for the pyrometer with the large aperture of 65 mm dia.

Size-of-source effect expressed as $\Delta R/R$ where *R* is the total response of the pyrometer and ΔR is that part of the response due to radiation outside the target field.

Diameter of the opening of the blackbody furnace is 50 mm. The filament of the lamp is 1.5 mm wide, 50 mm long and 0.07 mm thick.
Appendix IIb. SSE for the pyrometer with the small aperture of 21 mm dia.

Size-of-source effect expressed as $\Delta R/R$ where *R* is the total response of the pyrometer and ΔR is that part of the response due to radiation outside the target field.

Diameter of the opening of the blackbody furnace is 50 mm. The filament of the lamp is 1.5 mm wide, 50 mm long and 0.07 mm thick.

Appendix III. Temperature depressions due to impurities.

The thermometric metal used to fill the Cu fixed-point cells for this work and for the experiment in [2] are from the same batch. We have not analyzed the impurity contents for the cells in this work. However, the analysis for the cell in [2], which is taken to be a representative for our cells, is as follows:

Llood
USEU
9.4
4.5
3.3
0.39
0.043
0.16

We note that the concentrations for the first three items in the table above increased markedly after using the cell inside a heat pipe. These items are the major components of Inconel (72% Ni, 15.5% Cr, 8% Fe) which is the wall material of the heat pipe. We speculate that the increase in concentration is due to contamination that originates from the heat pipe.

We do not have precise knowledge of the net effect on the freezing temperature (precisely, liquidus point) of a high-purity alloy due to a multitude of impurities. A crude assumption is that they act independently and that their effects superimpose upon one another additively. Using the phase diagrams for binary alloys, we estimate them as follows:

Impurity	Concentration / 10 ⁻⁶	Temperature elevation / K
Ni	9.4	0.003 5
Cr	4.5	0
Fe	3.3	0
Si	0.39	-0.000 15
AI	0.043	-0.000 01
Pb		0
Mg	0.16	-0.003

Arithmetic sum ~ 0

Considering that the impurity concentrations of our thermometric copper samples were not known and the major temperature elevation in the table above is 0.0035 K, we assume that the uncertainty due to impurities is 0.004 K.

Appendix IV. Uncertainties in the calculated temperature due to the uncertainties in various factors affecting the calculation.

Using Wien's radiation law, we express the ratio of the radiance of a blackbody at T_x to the radiance of the reference blackbody radiator at T_{Cu} as

$$G = L_{\lambda}(T_{x}) / [\epsilon L_{\lambda}(T_{Cu})] = \exp(c_{2} \lambda^{-1} T_{Cu}^{-1}) / [\epsilon \exp(c_{2} / \lambda^{-1} T_{x}^{-1})]$$
(A)

where λ is the reference wavelength (650 nm), T_{Cu} is the copper blackbody temperature (1357.77 K), and ϵ is the estimated emissivity of the blackbody radiator (0.999 97±0.000 03, [2]).

From Eq. (A) we obtain

$$T_{\rm x}^{-1} = T_{\rm Cu}^{-1} - \lambda \ {\rm c_2}^{-1} \ln (\epsilon {\rm G}).$$
 (B)

The various partial derivatives of the above equation are

$$\partial T_{\rm x} / \partial T_{\rm Cu} = T_{\rm x}^2 T_{\rm Cu}^{-2}$$
(C)

$$\partial T_x / \partial \lambda = T_x^2 c_2^{-1} \ln (\varepsilon G)$$
 (D)

$$\partial T_x / \partial \varepsilon = T_x^2 c_2^{-1} \lambda \varepsilon^{-1}$$
 (E)

$$\partial T_x / \partial G = T_x^2 c_2^{-1} \lambda G^{-1}$$
. (F)

It follows that the uncertainties in T_x due to the uncertainties in T_{Cu} , λ , ϵ , and G are, respectively,

$$s_{Tx, TCu} = T_x^2 T_{Cu}^{-2} s_{TCu}$$
 (G)

$$\mathbf{s}_{T\mathbf{x},\,\lambda} = T_{\mathbf{x}}^2 \mathbf{c}_2^{-1} \ln (\varepsilon \mathbf{G}) \mathbf{s}_{\lambda}$$
 (H)

$$s_{Tx, \epsilon} = T_x^2 c_2^{-1} \lambda \rho_{\epsilon}$$
 where the fractional uncertainty $\rho_{\epsilon} = s_{\epsilon} \epsilon^{-1}$ (I)

$$s_{Tx, G} = T_x^2 c_2^{-1} \lambda \rho_G$$
 where the fractional uncertainty $\rho_G = s_G G^{-1}$. (J)

where s denotes the uncertainty and the subscripts *T*Cu, λ , ϵ , and G denote the contributing components.

An uncertainty in the detector reading may be due to the fluctuations of the reading itself or the positioning of the lamp, etc. This results in an uncertainty in the radiance ratio and in turn an uncertainty in the calculated temperature. Similarly, uncertainties in the correction factors for linearity and SSE result in uncertainties in the deduced radiance ratios and in turn the calculated temperatures. In all of these cases, Eq. (J) can be applied by using the appropriate fractional uncertainty $s_G G^{-1}$ is in the equation.

Appendix V. Fractional uncertainties in detector readings due to fluctuations.

Appendix VIa. Non-linearity of the large aperture

photo current ratio $i(\phi) / i(\phi_{Cu})$ where $i(\phi)$ and $i(\phi_{Cu})$ are the photo currents when the pyrometer targets the lamp and the Cu blackbody, respectively Appendix VIb. Non-linearity of the small aperture

where $i(\varphi)$ and $i(\varphi_{Cu})$ are the photo currents when the pyrometer targets the lamp and the Cu blackbody, respectively

t : temperature of the oil bath (an integral part of the standard resistor) in which the resistive

element of the standard resistor is immersed.

I : current passing through the standard resistor in an ambient at 24 °C.

Appendix VIII. Fractional uncertainties in lamp current due to fluctuations in readings.

Appendix IX. Uncertainty (1σ) in curve fitting based on the combined residuals in Table B3 for both lamps 644C and C598

Appendix X. Change of the radiance temperature t_{λ} with the change of the temperature of the lamp base t_{b} (note that the curve, based on freehand drawing, is to facilitate the drawing of the estimated error bars and was not used in the calculation for the corrections in Table B2).

Appendix XI. NRC Data for Lamp C598

Notes:

- (a) The resistance of the standard resistor used for the measurement of the lamp current is 10.004 36 m Ω .
- (b) The resistance of the feedback resistor in the photoelectric detector is 1 G Ω .
- (c) The *f*-number is 7.7 for the large aperture and 23.8 for the small apertures.
- (d) The diameter of the circular field stop is 0.6 mm.

Table I: Raw data

	Lamp c	urrent		Large aperture		Small aperture	
Index	•		Temperature	Ratio of	Temperature	Ratio of	Temperature
			of lamp base	photo currents	of lamp	photo currents	of lamp
					-	-	-
	Reference	As set	Measured	Measured	Calculated	Measured	Calculated
j	lj	l _e	t _b	$i(t_{\lambda}) / i(t_{Cu})$	t_{λ}	$i(t_{\lambda}) / i(t_{Cu})$	t_{λ}
		¢	° 0		0 -		0 -
	A	А			°C		C
1st ru	n (May 10 -	15, 2001)	1			•	
1	5.027	5.02518	19.983	0.197510	961.750		
2	5.298	5.29583	19.989	0.335702	999.410		
3	5.808	5.80513	19.950	0.775055	1063.720		
4	5.981	5.97845	20.009	0.994989	1084.198		
5	6.116	6.11299	20.009	1.194887	1099.610		
6	7.054	7.05109	20.030	3.563738	1199.403		
7	8.092	8.08833	20.058	9.250636	1299.174	9.243814	1299.092
8	9.210	9.20566	20.094	21.434229	1398.973	21.427640	1398.934
9	10.393	10.38889	20.133			45.203731	1498.847
10	11.635	11.62972	20.176			88.010596	1598.673
11	12.930	12.92436	20.225			160.160799	1698.480
2nd ru	in (May 16 a	& 17, 2001)				
1	5.027	5.02516	19.979	0.197309	961.680		
2	5.298	5.29584	19.953	0.335341	999.331		
3	5.808	5.80510	19.999	0.774872	1063,701		
4	5.981	5.97845	19.962	0.993885	1084.106		
5	6.116	6.11299	20.040	1.193939	1099,542		
6	7.054	7.05107	20.030	3.560554	1199.315		
7	8.092	8.08833	20.045	9.244420	1299.099	9.236691	1299.006
8	9.210	9.20566	20.061	21.430478	1398.951	21,424167	1398.914
9	10.393	10.38885	20.102			45,198267	1498.830
10	11.635	11.62972	20.151			88.004449	1598.662
11	12,930	12,92436	20.197			160.147530	1698.465
			_00.				
3rd ru	n (May 18, 2	2001)					
1	5.027	5.02514	19.938	0.197348	961,694		
2	5.298	5.29584	19.944	0.335395	999.344		
3	5,808	5.80512	19,959	0.774918	1063.706		
4	5.981	5.97845	19.958	0.994099	1084.124		
5	6.116	6.11299	19,962	1,193993	1099 546		
6	7.054	7.05110	19,986	3.561265	1199 335		
7	8.092	8.08834	20.022	9.245958	1299 118		
8	9 210	9 20567	20.061	21 432604	1398 964	21 428519	1398 940

9	10.393	10.38856	20.099		45.200414	1498.837
10	11.635	11.62972	20.148		88.006401	1598.665
11	12.930	12.92435	20.192		160.135821	1698.453

4th ru	4th run (August 20, 2002)									
(The e	(The experimental setup had been changed to run another experiment. The lamp was returned from									
PTB.	PTB. The Cu blackbody used in previous calibrations broke. A new Cu blackbody was used.)									
1	5.027	5.02471	20.153	0.197017	961.579					
2	5.298	5.29569	20.166	0.334944	999.244					
3	5.808	5.80581	20.207	0.774782	1063.691					
4	5.981	5.97884	20.215	0.993344	1084.060					
5	6.116	6.11352	20.228	1.193187	1099.489					
6	7.054	7.05078	20.295	3.555587	1199.179	3.543435	1198.843			
7	8.092	8.08865	20.365	9.236557	1299.004	9.206366	1298.639			
8	9.210	9.20579	20.448	21.411246	1398.837	21.354994	1398.506			
9	10.393	10.38857	20.534			45.042629	1498.341			
10	11.635	11.62998	20.639			87.728535	1598.165			
11	12.930	12.92546	20.730			159.705580	1697.980			
5th ru	n (August 2	6, 2002)								
1	5.027	5.02487	20.305	0.196914	961.540					
2	5.298	5.29594	20.320	0.334965	999.248					
3	5.808	5.80598	20.336	0.774798	1063.693					
4	5.981	5.97877	20.361	0.993050	1084.036					
5	6.116	6.16367	20.351	1.274803	1105.143					
6	7.054	7.05103	20.418	3.556571	1199.206					
7	8.092	8.08845	20.489	9.234497	1298.979	9.203414	1298.603			
8	9.210	9.20607	20.579	21.411788	1398.841	21.350955	1398.482			
9	10.393	10.38854	20.665			45.020489	1498.271			
10	11.635	11.62999	20.752			87.682702	1598.082			
11	12.930	12.92438	20.886			159.545940	1697.805			

Table II: Data after corrections for the undesirable transmission of the interference filter in the infra-red

Correction factor is expressed as $F_1 = 1 - \Delta i / i$ where i is the total photo current and Δi is that part of i due to the IR transmission.

For the Cu blackbody, correction factor $F_1(Cu) = 0.996378$

For the lamp, correction factor $F_{I}(L) = 0.999 \ 128 \ 74 + 0.000 \ 923 \ 34 \ u - 0.000 \ 724 \ 68 \ u^{2} + 0.000 \ 827 \ 08 \ u^{3} - 0.000 \ 512 \ 63 \ u^{4}$

where $u = (t_{\lambda} / °C - 1330) / 370$

(2)

	Largo aporturo		Small aporturo		Lorgo oporturo	Small an artura	
luc al a co			Sinali a			Smail aperture	
Index	Correction	Ratio of	Correction	Ratio of	Scaled te	emperature	
	factor for lamp	photo currents	factor for lamp	photo currents			
j	F _I (L)	$i(t_{\lambda}) / i(t_{Cu}) =$	F _I (L)	$i(t_{\lambda}) / i(t_{Cu}) =$		u	
	Using Eq. (1)						
		$i(t_{2}) / i(t_{c_{1}})$ in	Using Eq. (1)	$i(t_{\lambda}) / i(t_{c_{\mu}})$ in	Using Eq.	(2) and t_{λ} in	
		Table I x $F_{i}(I)$ /		Table I x $F_{i}(I)$ /	Ťa	able I	
		E(Cu)		$E_{i}(C_{i})$	-		
		r ((eu)		1 ((04)			
1 of rup							
ISLIUII	0.00047	0.40747			0.00507		
1	0.99617	0.19747			-0.99527		
2	0.99681	0.33585			-0.89349		
3	0.99764	0.77604			-0.71968		
4	0.99785	0.99646			-0.66433		
5	0.99800	1.19683			-0.62268		
6	0.99867	3.57193			-0.35296		
7	0.99905	9.27541	0.99905	9,26857	-0.08331	-0.08354	
8	0.99928	21 49667	0.99928	21 49006	0 18641	0 18631	
0	0.00013	21.40007	0.00020	15 34335	0.10041	0.10001	
- 	0.99913		0.99940	40.0400		0.43034	
10	0.99913		0.99959	00.29442		0.72014	
11	0.99913		0.99964	160.68550		0.99589	
2nd run		1					
1	0.99617	0.19727			-0.99546		
2	0.99681	0.33549			-0.89370		
3	0.99764	0.77586			-0.71973		
4	0.99785	0.99536			-0.66458		
5	0.99800	1,19588			-0.62286		
6	0.99867	3 56874			-0.35320		
7	0.00000	0 26017	0 00005	0 261/2	-0.08352	-0 08377	
0	0.00028	21 40200	0.00028	21 / 2657	0.00002	0.00077	
0	0.99920	21.49290	0.99920	45 22707	0.10035	0.10025	
9	0.99913		0.99940	40.00707		0.45650	
10	0.99913		0.99959	88.28826		0.72611	
11	0.99913		0.99964	160.67219		0.99585	
3rd run	-						
1	0.99617	0.19731	0.99913		-0.99542		
2	0.99681	0.33554	0.99913		-0.89366		
3	0.99764	0.77590	0.99913		-0.71971		
4	0.99785	0.99557	0.99913		-0.66453		
5	0.99800	1,19593	0.99913		-0.62285		
6	0 99867	3 56945	0 99913		-0 35315		
7	0.00007	0.00040	0.00013		-0.08346		
0	0.00000	21 40504	0.00000	21 40004	0.00040	0 19622	
0	0.99926	21.49504	0.99926	21.49094	0.10039	0.10032	
9			0.99946	45.34003		0.45632	
10			0.99959	88.29021		0.72612	
11			0.99964	160.66044		0.99582	
4th run							
1	0.99617	0.19698			-0.99573		
2	0.99681	0.33509			-0.89394		
3	0.99764	0.77577			-0.71975		
4	0.99785	0.99481			-0.66470		
5	0.99800	1 19512			-0.62300		
. <u> </u>			1		0.00000		

6	0.99867	3.56376	0.99867	3.55157	-0.35357	-0.35448
7	0.99905	9.26129	0.99904	9.23101	-0.08377	-0.08476
8	0.99928	21.47361	0.99928	21.41718	0.18605	0.18515
9	0.99913		0.99945	45.18172		0.45498
10	0.99913		0.99959	88.01141		0.72477
11	0.99913		0.99964	160.22881		0.99454
5th run						
1	0.99617	0.19687			-0.99584	
2	0.99681	0.33511			-0.89392	
3	0.99764	0.77578			-0.71975	
4	0.99785	0.99452			-0.66477	
5	0.99804	1.27693			-0.60772	
6	0.99867	3.56474			-0.35350	
7	0.99905	9.25922	0.99904	9.22805	-0.08384	-0.08486
8	0.99928	21.47415	0.99928	21.41313	0.18606	0.18509
9	0.99913		0.99945	45.15950		0.45479
10	0.99913		0.99959	87.96542		0.72455
11	0.99913		0.99964	160.06865		0.99407

	L	amp current		Large a	perture	Small aperture		
Index	Reference	As set	Difference	Ratio of	Temperature	Ratio of	Temperature	
				photo currents	-	photo currents	-	
j	lj	6	I _i - I _ℓ	i(t _λ) / i(t _{Cu})	$t_{\lambda}(\lambda_{e}; t_{b}; I_{\ell})$	i(t _λ) / i(t _{Cu})	$t_{\lambda}(\lambda_{e}; t_{b}; I_{\ell})$	
		- e						
	From Table I	From Table I		From Table II	By calculation	From Table II	By calculation	
	A	А	A		°C		Э°	
1st run		_						
1	5.027	5.02518	0.00182	0.19747	961.736			
2	5.298	5.29583	0.00217	0.33585	999.443			
3	5.808	5.80513	0.00287	0.77604	1063.823			
4	5.981	5.97845	0.00255	0.99646	1084.321			
5	6.116	6.11299	0.00301	1.19683	1099.748			
6	7.054	7.05109	0.00291	3.57193	1199.628			
7	8.092	8.08833	0.00367	9.27541	1299.473	9.26857	1299.390	
8	9.210	9.20566	0.00434	21.49667	1399.341	21.49006	1399.302	
9	10.393	10.38889	0.00411			45.34335	1499.285	
10	11.635	11.62972	0.00528			88.29442	1599.182	
11	12.930	12.92436	0.00564			160.68550	1699.054	
2nd run								
1	5.027	5.02516	0.00184	0.19727	961.666			
2	5.298	5.29584	0.00216	0.33549	999.364			
3	5.808	5.80510	0.00290	0.77586	1063.804			
4	5.981	5.97845	0.00255	0.99536	1084.229			
5	6.116	6.11299	0.00301	1.19588	1099.680			
6	7.054	7.05107	0.00293	3.56874	1199.540			
7	8.092	8.08833	0.00367	9.26917	1299.398	9.26142	1299.304	
8	9.210	9.20566	0.00434	21.49290	1399.319	21.48657	1399.281	
9	10.393	10.38885	0.00415			45.33787	1499.267	
10	11.635	11.62972	0.00528			88.28826	1599.171	
11	12.930	12.92436	0.00564			160.67219	1699.040	

3rd run							
1	5.027	5.02514	0.00186	0.19731	961.680		
2	5.298	5.29584	0.00216	0.33554	999.375		
3	5.808	5.80512	0.00288	0.77590	1063.808		
4	5.981	5.97845	0.00255	0.99557	1084.247		
5	6.116	6.11299	0.00301	1.19593	1099.684		
6	7.054	7.05110	0.00290	3.56945	1199.560		
7	8.092	8.08834	0.00366	9.27072	1299.416		
8	9.210	9.20567	0.00433	21.49504	1399.331	21.49094	1399.307
9	10.393	10.38856	0.00444			45.34003	1499.274
10	11.635	11.62972	0.00528			88.29021	1599.175
11	12.930	12.92435	0.00565			160.66044	1699.027
	1	1					
4th run							
1	5.027	5.02471	0.00229	0.19698	961.565		
2	5.298	5.29569	0.00231	0.33509	999.277		
3	5.808	5.80581	0.00219	0.77577	1063.794		
4	5.981	5.97884	0.00216	0.99481	1084.183		
5	6.116	6.11352	0.00248	1.19512	1099.626		
6	7.054	7.05078	0.00322	3.56376	1199.404	3.55157	1199.068
7	8.092	8.08865	0.00335	9.26129	1299.303	9.23101	1298.937
8	9.210	9.20579	0.00421	21.47361	1399.205	21.41718	1398.873
9	10.393	10.38857	0.00443			45.18172	1498.778
10	11.635	11.62998	0.00502			88.01141	1598.674
11	12.930	12.92546	0.00454			160.22881	1698.554
		•			·	•	•
5th run							
1	5.027	5.02487	0.00213	0.19687	961.526		
2	5.298	5.29594	0.00206	0.33511	999.281		
3	5.808	5.80598	0.00202	0.77578	1063.795		
4	5.981	5.97877	0.00223	0.99452	1084.159		
5	6.116	6.16367	-0.04767	1.27693	1105.286		
6	7.054	7.05103	0.00297	3.56474	1199.431		
7	8.092	8.08845	0.00355	9.25922	1299.278	9.22805	1298.901
8	9.210	9.20607	0.00393	21.47415	1399.208	21.41313	1398.849
9	10.393	10.38854	0.00446			45.15950	1498.708
10	11.635	11.62999	0.00501			87.96542	1598.591
11	12.930	12.92438	0.00562			160.06865	1698.379

Table A2: Calibration after corrections for the size-of-source effect

Correction factor is expressed as $F_s = 1 - \Delta i / i$ where i is the total photo current and Δi is that part of i due to the out-of-field radiation.

For the large aperture: $\Delta i / i$ is equal to 0.0015 for the lamp and 0.0058 for the Cu blackbody.

Correction factor for the ratio of photo currents $i(t_{\lambda}) / i(t_{Cu})$ is equal to $F_{SL} = 1 - 0.0015 + 0.0058 = 1.0043.$

For the small aperture: $\Delta i / i$ is equal to 0.0039 for the lamp and 0.0118 for the Cu blackbody.

Correction factor for the ratio of photo currents $i(t_{\lambda}) / i(t_{Cu})$ is equal to $F_{SS} = 1 - 0.0039 + 0.0118 = 1.0079.$

	Large a	oerture	Small aperture		
Index	Ratio of	Temperature	Ratio of	Temperature	
Index	nhoto currente	remperature	nhoto currente	remperature	
			photo currents		
	:/+) / :/+)	t () . t . l)	;/4 \ / ;/4 \	+ () · · · · · · ·)	
J	$I(l_{\lambda}) / I(l_{Cu}) =$	$t_{\lambda}(\lambda_{e}; t_{b}; I_{\ell})$	$I(l_{\lambda}) / I(l_{Cu}) =$	$t_{\lambda}(\Lambda_{e}; t_{b}; I_{\ell})$	
	-		_		
	F _{SL} X	0.0	F _{SS} X	0.0	
	$i(t_{\lambda}) / i(t_{Cu})$ in	Ъ	$i(t_{\lambda}) / i(t_{Cu})$ in	°C	
	Table A1		Table A1		
		1	st run		
1	0.19832	962.032			
2	0.33729	999.756			
3	0.77938	1064.169			
4	1.00075	1084.679			
5	1 20197	1100 113			
6	3 58729	1200.049			
7	0.31520	1200.043	0 3/170	1300 270	
0	3.31323	1299.952	9.54179	1300.270	
0	21.36910	1399.003	21.03983	1400.297	
9			45.70157	1500.402	
10			88.99195	1600.429	
11			161.95492	1700.438	
		2	nd run	_	
1	0.19812	961.962			
2	0.33693	999.677			
3	0.77919	1064.150			
4	0.99964	1084.587			
5	1 20102	1100.046			
6	3 58408	1100.061			
7	0.300400	1200 877	0 33/50	1300 184	
0	21 59522	1200.961	21 65622	1400.276	
0	21.00032	1399.001	21.03032	1400.270	
9			45.69604	1500.385	
10			88.98573	1600.418	
11			161.94150	1700.423	
		_	_		
		3	rd run		
1	0.19816	961.976			
2	0.33698	999.688			
3	0.77924	1064.155			
4	0.99985	1084.604			
5	1.20107	1100.049			
6	3.58480	1199.980			
7	9.31058	1299.896			
8	21.58746	1399.873	21,66072	1400.302	
9			45 69821	1500 392	
10			88 08771	1600 422	
11			161 02066	1700 /10	
	I		101.92900	1700.410	
		4	thrup		
4	0.40700	4		1	
1	0.19782	961.858			
2	0.33653	999.591			
3	0.77910	1064.140			
4	0.99909	1084.541			
5	1.20026	1099.992			
6	3.57908	1199.824	3.57963	1199.839	
7	9.30111	1299.782	9.30393	1299.816	
8	21.56595	1399.747	21.58638	1399.867	

9			45.53865	1499.895
10			88.70670	1599.920
11			161.49461	1699.937
		5	5th run	
1	0.19772	961.823		
2	0.33655	999.595		
3	0.77912	1064.142		
4	0.99880	1084.517		
5	1.28243	1105.656		
6	3.58007	1199.851		
7	9.29904	1299.757	9.30095	1299.780
8	21.56649	1399.751	21.58229	1399.843
9			45.51626	1499.825
10			88.66034	1599.837
11			161.33319	1699.761

Table A3: Calibration after corrections for non-linearity

Correction factor for the ratio of the photo currents $i(t_{\lambda}) / i(t_{Cu})$ is expressed as $F_N = 1 - \Delta i / i$ where i is the total photo current and Δi is that part of i due to the non-linearity.

For the large aperture, the correction factor is given by

$$F_{NL} = 1 + (v - v^*)(0.000\ 018\ 97 + 0.001\ 355\ 17\ v + 0.001\ 005\ 17\ v^2 + 0.000\ 225\ 52\ v^3)$$
(3)

For the small aperture, the correction factor is given by

 $F_{NS} = 1 + (v - v^*)(0.000\ 003\ 08 + 0.000\ 121\ 36\ v + 0.000\ 190\ 44\ v^2 + 0.000\ 073\ 09\ v^3)$ (4)

where
$$v = \{ \ln[i(t_{\lambda}) / i(t_{Cu})] - 3 \} / 2.3$$
 (5)

and
$$v^* = -3/2.3$$

		Large a	perture			Small a	perture		Large aperture	Small aperture
	Correction	Ratio of	Effective	Temperature	Correction	Ratio of	Effective	Temperature	Scaled photo	current ratio
Index	factor	photo currents	wavelength		factor	photo currents	wavelength			
									١	/
	F _{NL}	$i(t_{\lambda}) / i(t_{Cu}) =$	λε	$t_{\lambda}(\lambda_{e}; t_{b}; I_{\ell})$	F _{NS}	$i(t_{\lambda}) / i(t_{Cu}) =$	λε	$t_{\lambda}(\lambda_{e}; t_{b}; I_{\ell})$		
j									Using Eq. (5) a	and $i(t_{\lambda}) / i(t_{Cu})$
	Using Eq.	F _{NL} x			Using Eq.	F _{NS} x			in Tab	ole A2
	(3)	i(t _λ) / i(t _{Cu}) in			(4)	i(t _λ) / i(t _{Cu}) in				
		Table A2	nm	°C		Table A2	nm	°C		
	•	•	•	•	•	•	•	•		
1st run										
1	1.00033	0.19838	650.034	962.053					-2.00777	
2	1.00023	0.33737	650.028	999.773					-1.77687	
3	1.00006	0.77942	650.019	1064.174					-1.41272	
4	1.00000	1.00075	650.016	1084.679					-1.30402	
5	0.99996	1.20192	650.014	1100.109					-1.22436	
6	0.99971	3.58624	650.002	1200.020					-0.74896	
7	0.99968	9.31231	649.991	1299.917	0.99998	9.34162	649.991	1300.268	-0.33406	-0.33283
8	1.00008	21.59090	649.982	1399.894	1.00001	21.66004	649.982	1400.298	0.03139	0.03281

0					1 00012	45 70720	640.072	1500 /10		0 25745
9					1.00012	40.70720	649.973	1600.419		0.33743
11					1.00033	162 07123	649.900	1700 564		0.04713
					1.00072	102.07120	045.555	1700.004		0.30733
2nd run										
1	1.00033	0.19818	650.034	961.983					-2.00822	
2	1.00023	0.33700	650.028	999.693					-1.77734	
3	1.00006	0.77924	650.019	1064.155					-1.41283	
4	1.00000	0.99964	650.016	1084.587					-1.30451	
5	0.99996	1.20097	650.014	1100.042					-1.22471	
6	0.99971	3.58303	650.002	1199.932					-0.74935	
7	0.99968	9.30605	649.991	1299.841	0.99998	9.33442	649.991	1300.182	-0.33435	-0.33316
8	1.00008	21.58712	649.982	1399.871	1.00001	21.65653	649.982	1400.277	0.03131	0.03274
9					1.00012	45.70167	649.973	1500.402		0.35740
10					1.00035	89.01720	649.966	1600.474		0.64716
11					1.00072	162.05779	649.959	1700.550		0.90749
. .										
3rd run	1 00000	0.40000	050.004	004.007					0.00010	
1	1.00033	0.19822	650.034	961.997					-2.00813	
2	1.00023	0.33706	650.028	999.706					-1.///2/	
3	1.00006	0.77928	650.019	1064.159					-1.41280	
4	1.00000	0.99985	650.016	1084.604					-1.30441	
5	0.99990	2 59275	650.014	1100.040					-1.22409	
7	0.99971	0.20760	640.002	1200 860					-0.74920	
7 Q	1 00008	21 58027	640.082	1299.000	1 00001	21 66002	640.082	1400 202	-0.33420	0 02282
0	1.00006	21.30927	049.902	1399.004	1.00001	45 70394	640.072	1400.303	0.03135	0.03203
9 10					1.00012	80.01017	640.066	1600.409		0.55742
11					1.00033	162 04593	649.900	1700 537		0.04717
			1	I	1.00012	102.0 1000	010.000	1100.001		0.001 10
4th run										
1	1.00033	0.19789	650.034	961.882					-2.00886	
2	1.00023	0.33661	650.028	999.608					-1.77786	
3	1.00006	0.77915	650.019	1064.146					-1.41288	
4	1.00000	0.99909	650.016	1084.541					-1.30474	
5	0.99996	1.20021	650.014	1099.988					-1.22498	
6	0.99971	3.57803	650.002	1199.795	0.99999	3.57960	650.002	1199.838	-0.74995	-0.74989
7	0.99968	9.29813	649.991	1299.746	0.99998	9.30376	649.991	1299.814	-0.33472	-0.33459
8	1.00008	21.56773	649.982	1399.758	1.00001	21.58658	649.982	1399.868	0.03092	0.03133
9					1.00012	45.54422	649.973	1499.912		0.35590
10					1.00035	88.73793	649.966	1599.976		0.64580
11					1.00072	161.61025	649.959	1700.063		0.90629
5th run			1				1			
1	1.00033	0.19779	650.034	961.847					-2.00909	
2	1.00023	0.33663	650.028	999.612					-1.77783	
3	1.00006	0.77916	650.019	1064.147					-1.41287	
4	1.00000	0.99880	650.016	1084.517					-1.30487	
5	0.99994	1.28235	650.013	1105.65					-1.19619	
6	0.99971	3.57902	650.002	1199.822	0.00000	0.000=0	0.40.001	1000 == 0	-0.74983	0.00.170
7	0.99968	9.29606	649.991	1299.721	0.99998	9.30078	649.991	1299.778	-0.33482	-0.33473
8	1.00008	21.56827	649.982	1399.761	1.00001	21.58250	649.982	1399.844	0.03093	0.03125
9			ļ		1.00012	45.52183	649.973	1499.842		0.35568
10			ļ		1.00035	88.69154	649.966	1599.893		0.64557
11					1.00072	161.44859	649.959	1699.887		0.90586

Table B1: Calibration after corrections for wavelength

From "Protocol" by P. Bloembergen:

$$\frac{\partial t_{\lambda}}{\partial \lambda} / (^{\circ}C / nm) = -0.35422504 \times 10^{-1} + 2.70716088 \times 10^{-5} t_{\lambda} / ^{\circ}C - 0.10980270 \times 10^{-6} (t_{\lambda} / ^{\circ}C)^{2}$$
(6)

Reference wavelength $\lambda_r = 650 \text{ nm}$

		Large	aperture		Small aperture				
Index	Sensitivity	Wavelength	Wavelength	Temperature	Sensitivity	Wavelength	Wavelength	Temperature	
i	Contentivity	difference	correction	remperature	Conditivity	difference	correction	rompolataro	
J		amerenee	concouch			unioreneo	concourt		
	at. / a)	$\Delta \lambda =$	$\Delta t =$	$t_{\lambda}(\lambda_{\mu}: t_{\mu}: L) =$	at. (a)	$\Delta \lambda =$	$\Delta t =$	$t_{\lambda}(\lambda_{\mu}: t_{\mu}: L) =$	
	$O(\lambda / O)$		<u> </u>	$\mathcal{L}(\mathcal{V}_{r}, \mathcal{L}_{D}, \mathcal{L}_{\ell}) =$	$O(\lambda) O(\lambda)$		<u> </u>	$\mathcal{L}(\mathcal{M}, \mathcal{M}) =$	
	Using Eq. (6)	$\lambda - \lambda$ in	$\frac{\partial t_{0}}{\partial \lambda} \times \frac{\partial \lambda}{\partial \lambda} \times \frac{\partial \lambda}{\partial \lambda}$	$t_{1}(\lambda \cdot t_{1} \cdot I)$ in	Using Eq. (6)	$\lambda - \lambda$ in	$\frac{\partial t}{\partial \lambda} \times \frac{\partial \lambda}{\partial \lambda} \times \frac{\partial \lambda}{\partial \lambda}$	$t_{\lambda}(\lambda \cdot t_{\lambda} \cdot I)$ in	
	and t ₂ in	Table A3		Table $\Delta 3 \pm \Delta t$	and t ₁ in	Table A3		Table $\Delta 3 \pm \Lambda t$	
	Table A3				Table A3	1 4010 7 10			
	°C / nm	nm	°C	°C	°C / nm	nm	°C	О°	
	071111		_	Ū	071111		_		
1st run									
1	-0.111	-0.034	0.004	962.057					
2	-0.118	-0.028	0.003	999.776					
3	-0.131	-0.019	0.002	1064.176					
4	-0.135	-0.016	0.002	1084.681					
5	-0 139	-0.014	0.002	1100 111					
6	-0.161	-0.002	0.000	1200 020					
7	-0.186	0.009	-0.002	1299 915	-0.186	0.009	-0.002	1300 266	
8	-0.213	0.018	-0.004	1399 890	-0.213	0.018	-0.004	1400 294	
9	0.210	0.010	0.001	1000.000	-0.242	0.027	-0.007	1500 412	
10					-0.273	0.027	-0.009	1600.472	
11					-0.307	0.004	-0.013	1700 551	
					0.001	0.011	0.010	1700.001	
2nd run									
1	-0.111	-0.034	0.004	961.987					
2	-0.118	-0.028	0.003	999.696					
3	-0 131	-0.019	0.002	1064 157					
4	-0 135	-0.016	0.002	1084 589					
5	-0 139	-0.014	0.002	1100 044					
6	-0 161	-0.002	0.000	1199 932					
7	-0.186	0.009	-0.002	1299 839	-0 186	0.009	-0.002	1300 180	
8	-0.213	0.018	-0.004	1399 867	-0.213	0.018	-0.004	1400 273	
9	01210	0.010	0.001	10001001	-0.242	0.027	-0.007	1500 395	
10					-0.273	0.034	-0.009	1600 465	
11					-0.307	0.041	-0.013	1700.537	
					0.001	0.0.1	0.010		
3rd run									
1	-0.111	-0.034	0.004	962.001					
2	-0.118	-0.028	0.003	999.709					
3	-0.131	-0.019	0.002	1064.161					
4	-0 135	-0.016	0.002	1084 606					
5	-0.139	-0.014	0.002	1100.048					
6	-0.161	-0.002	0.000	1199.952					
7	-0,186	0.009	-0.002	1299 858					
8	-0.213	0.018	-0.004	1399.880	-0.213	0.018	-0.004	1400,299	
9					-0.242	0.027	-0.007	1500.402	
10					-0.273	0.034	-0.009	1600.469	
11					-0.307	0.041	-0.013	1700.524	

4th run								
1	-0.111	-0.034	0.004	961.886				
2	-0.118	-0.028	0.003	999.611				
3	-0.131	-0.019	0.002	1064.148				
4	-0.135	-0.016	0.002	1084.543				
5	-0.139	-0.014	0.002	1099.990				
6	-0.161	-0.002	0.000	1199.795	-0.161	-0.002	0.000	1199.838
7	-0.186	0.009	-0.002	1299.744	-0.186	0.009	-0.002	1299.812
8	-0.213	0.018	-0.004	1399.754	-0.213	0.018	-0.004	1399.864
9					-0.242	0.027	-0.007	1499.905
10					-0.273	0.034	-0.009	1599.967
11					-0.307	0.041	-0.013	1700.050
5th run	-			•				
1	-0.111	-0.034	0.004	961.851				
2	-0.118	-0.028	0.003	999.615				
3	-0.131	-0.019	0.002	1064.149				
4	-0.135	-0.016	0.002	1084.519				
5	-0.140	-0.013	0.002	1105.652				
6	-0.161	-0.002	0.000	1199.822				
7	-0.186	0.009	-0.002	1299.719	-0.186	0.009	-0.002	1299.776
8	-0.213	0.018	-0.004	1399.757	-0.213	0.018	-0.004	1399.840
9					-0.242	0.027	-0.007	1499.835
10					-0.273	0.034	-0.009	1599.884
11					-0.307	0.041	-0.013	1699.874

Table B2: Calibration after corrections for the temperatures of the lamp base

Reference temperature for the lamp base $t_r = 20^{\circ}C$

For 961.78°C $\leq t_{\lambda} \leq 1100$ °C, $\partial t_{\lambda} / \partial t_{b} = 0.0175 - 0.0274 \text{ w} + 0.0382 \text{ w}^{2} - 0.0250 \text{ w}^{3}$ (7)

where w =
$$(t_{\lambda} / °C - 1125) / 175$$

 $\begin{array}{ll} \mbox{For} \ t_\lambda \sim 1200^\circ \mbox{C}, & \partial t_\lambda \,/\, \partial t_b = 0.010 \\ \mbox{For} \ t_\lambda \sim 1300^\circ \mbox{C}, & \partial t_\lambda \,/\, \partial t_b = 0.003 \\ \mbox{For} \ t_\lambda \sim 1400^\circ \mbox{C} \ \mbox{and higher}, & \partial t_\lambda \,/\, \partial t_b = 0.000 \end{array}$

(8)

			Large	aperture			Smal	aperture		Large aperture	Small aperture
Index	Current	Sensitivity	Base temperature difference	Base temperature correction	Temperature	Sensitivity	Base temperature difference	Base temperature correction	Temperature	Scaled Te	emperature
j	\mathbf{I}_ℓ	$\partial t_\lambda / \partial t_b$	Δt_{b} =	$\Delta t =$	$t_{\lambda}(\lambda_r;t_r;I_\ell) =$	$\partial t_{\lambda}/\partial t_{b}$	Δt_{b} =	$\Delta t =$	$t_{\lambda}(\lambda_r;t_r;I_{\ell}) =$,	w
	From Table I	Using Eq. (7) or	t _r – t _⊳ in Table I	$\partial t_{\lambda} / \partial t_{b} \times \Delta t_{b}$	$\begin{array}{c} t_{\lambda}(\lambda_{r};t_{b};I_{\ell}) \ { m in} \ { m Table B1 +} \ \Delta t \end{array}$	Using assigned values	t _r – t _⊳ in Table I	$\partial t_{\lambda} / \partial t_{b} \times \Delta t_{b}$	$t_{\lambda}(\lambda_r; t_b; I_{\ell})$ in Table B1 + Δt	Using Eq. in Ta	. (8) and t_{λ} ble B1
	A	assigned values given above	C	Ű	°C	given above		Ű	C		
1st run											
1	5.02518	0.096	0.017	0.002	962.058					-0.93110	
2	5.29583	0.066	0.011	0.001	999.777					-0.71556	
3	5.80513	0.033	0.050	0.002	1064.178					-0.34756	
4	5.97845	0.026	-0.009	0.000	1084.681					-0.23039	
5	6.11299	0.022	-0.009	0.000	1100.111					-0.14222	
6	7.05109	0.010	-0.030	0.000	1200.020					0.42869	
7	8.08833	0.003	-0.058	0.000	1299.915	0.003	-0.058	0.000	1300.266	0.99952	1.00152
8	9.20566	0.000	-0.094	0.000	1399.890	0.000	-0.094	0.000	1400.294	1.57080	1.5/311
9	10.38889					0.000	-0.133	0.000	1500.412		2.14521
10	11.62972					0.000	-0.176	0.000	1600.476		2.71700
11	12.92436					0.000	-0.225	0.000	1700.551		3.28887
2nd rur	n										
1	5.02516	0.096	0.021	0.002	961.989					-0.93150	
2	5.29584	0.066	0.047	0.003	999.699					-0.71602	
3	5.80510	0.033	0.001	0.000	1064.158					-0.34767	
4	5.97845	0.026	0.038	0.001	1084.590					-0.23092	
5	6.11299	0.022	-0.040	-0.001	1100.043					-0.14261	
6	7.05107	0.010	-0.030	0.000	1199.932					0.42818	
7	8.08833	0.003	-0.045	0.000	1299.839	0.030	-0.045	-0.001	1300.179	0.99908	1.00103
8	9.20566	0.000	-0.061	0.000	1399.867	0.000	-0.061	0.000	1400.273	1.57067	1.57299
9	10.38885					0.000	-0.102	0.000	1500.395		2.14512
10	11.62972					0.000	-0.151	0.000	1600.465		2.71694
11	12.92436					0.000	-0.197	0.000	1700.537		3.28879
3rd run											
1	5.02514	0.096	0.062	0.006	962.007					-0.93142	
2	5.29584	0.066	0.056	0.004	999.713					-0.71595	
3	5.80512	0.033	0.041	0.001	1064.163					-0.34765	
4	5.97845	0.026	0.042	0.001	1084.607					-0.23082	
5	6.11299	0.022	0.038	0.001	1100.049					-0.14258	
6	7.05110	0.010	0.014	0.000	1199.952					0.42830	
7	8.08834	0.003	-0.022	0.000	1299.858					0.99919	
8	9.20567	0.000	-0.061	0.000	1399.880	0.000	-0.061	0.000	1400.299	1.57074	1.57314
9	10 38856					0.000	-0.099	0.000	1500 402		2 14516

10	11.62972					0.000	-0.148	0.000	1600.469		2.71696
11	12.92435					0.000	-0.192	0.000	1700.524		3.28871
4th rur	1										
1	5.02471	0.096	-0.153	-0.015	961.871					-0.93208	
2	5.29569	0.066	-0.166	-0.011	999.600					-0.71651	
3	5.80581	0.033	-0.207	-0.007	1064.142					-0.34772	
4	5.97884	0.026	-0.215	-0.006	1084.538					-0.23118	
5	6.11352	0.022	-0.228	-0.005	1099.985					-0.14291	
6	7.05078	0.010	-0.295	-0.003	1199.792	0.010	-0.295	-0.003	1199.835	0.42740	0.42765
7	8.08865	0.003	-0.365	-0.001	1299.743	0.030	-0.365	-0.011	1299.801	0.99854	0.99893
8	9.20579	0.000	-0.448	0.000	1399.754	0.000	-0.448	0.000	1399.864	1.57002	1.57065
9	10.38857					0.000	-0.534	0.000	1499.905		2.14232
10	11.62998					0.000	-0.639	0.000	1599.967		2.71410
11	12.92546					0.000	-0.730	0.000	1700.050		3.28600
5th rur	1										
1	5.02487	0.097	-0.305	-0.029	961.821					-0.93228	
2	5.29594	0.066	-0.320	-0.021	999.594					-0.71648	
3	5.80598	0.033	-0.336	-0.011	1064.139					-0.34772	
4	5.97877	0.026	-0.361	-0.009	1084.510					-0.23132	
5	6.16367	0.021	-0.351	-0.007	1105.644					-0.11056	
6	7.05103	0.010	-0.418	-0.004	1199.818					0.42756	
7	8.08845	0.003	-0.489	-0.001	1299.718	0.003	-0.489	-0.001	1299.775	0.99840	0.99872
8	9.20607	0.000	-0.579	0.000	1399.757	0.000	-0.579	0.000	1399.840	1.57004	1.57052
9	10.38854					0.000	-0.665	0.000	1499.835		2.14192
10	11.62999					0.000	-0.752	0.000	1599.884		2.71362
11	12.92438					0.000	-0.886	0.000	1699.874		3.28500

Table B3: Calibration in terms of radiance temperature as a function of lamp current at the reference wavelength and lamp-base temperature

A polynomial is fitted to the data of t_{λ} and I_{λ} for the 1st, 2nd and 3rd runs in Table B2 (data before the departure of the lamp to PTB) to express t_{λ} as a function of I_{λ} .

Another polynomial is fitted to the data for the 4th and 5th runs (data after the return of the lamp from PTB).

For the 1st, 2nd and 3rd runs,

$$t_{\lambda} / {}^{\circ}C = 1382.1188 + 351.2963 z - 35.0628 z^{2} + 17.2444 z^{3} - 11.3464 z^{4} - 3.5995 z^{5} - 3.3128 z^{6} + 9.1076 z^{7}$$
(9)

For the 4th and 5th runs,

$$t_{\lambda} / \ ^{\circ}\text{C} = 1381.8217 + 351.0045 \ z - 35.8689 \ z^{2} + 15.7387 \ z^{3} - 9.0408 \ z^{4} \\ + 0.9508 \ z^{5} - 4.9093 \ z^{6} + 6.0380 \ z^{7} \\ (10)$$

(11) where
$$z = (I_{\lambda} / A - 9) / 4$$

and 961.78 $\leq~t_{\lambda}\,/\,^{o}C~\leq~1700$

	Cur	ront			orturo	Small o	oorturo
	Cui	Tern		Laiye a	Jeiture	Silialia	
Index	As set	Scaled	Temperature	Temperature	Residual	Temperature	Residual
			Computed	Measured	Computed - Measured	Measured	Computed - Measured
j	\mathbf{I}_{ℓ}	z	$t_{\lambda}(\lambda_r; t_r; I_{\ell})$	$t_{\lambda}(\lambda_{r};t_{r};I_{\ell})$	Δt_{λ}	$t_{\lambda}(\lambda_{r}; t_{r}; I_{\ell})$	Δt_{λ}
	From Table B2	Using Eq. (11)	Using Eq. (9) or (10)	From Table B2		From Table B2	
	А		°C	°C	°C	°C	°C
1st run							
1	5.02518	-0.993705	962.011	962.058	-0.047		
2	5.29583	-0.926043	999.740	999.777	-0.037		
3	5.80513	-0.798718	1064.181	1064.178	0.003		
4	5.97845	-0.755388	1084.611	1084.681	-0.070		
5	6.11299	-0.721753	1100.050	1100.111	-0.061		
6	7.05109	-0.487228	1199.995	1200.020	-0.025		
7	8.08833	-0.227918	1299.998	1299.915	0.082	1300.266	-0.269
8	9.20566	0.051415	1400.090	1399.890	0.200	1400.294	-0.204
9	10.38889	0.347223	1500.408			1500.412	-0.004
10	11.62972	0.657430	1600.471			1600.476	-0.005
11	12.92436	0.981090	1700.537			1700.551	-0.014
2nd run							
1	5.02516	-0.993710	962.008	961.989	0.020		
2	5.29584	-0.926040	999.741	999.699	0.042		
3	5.8051	-0.798725	1064.177	1064.158	0.020		
4	5.97845	-0.755388	1084.611	1084.590	0.021		
5	6.11299	-0.721753	1100.050	1100.043	0.007		
6	7.05107	-0.487233	1199,993	1199.932	0.061		
7	8.08833	-0.227918	1299.998	1299.839	0.158	1300.179	-0.181
8	9.20566	0.051415	1400.090	1399.867	0.223	1400.273	-0.183
9	10.38885	0.347213	1500.405			1500.395	0.009
10	11.62972	0.657430	1600.471			1600.465	0.006
11	12.92436	0.981090	1700.537			1700.537	0.000
3rd run	5 00544	0.000745	000.005	<u> </u>	0.001	[[
1	5.02514	-0.993715	962.005	962.007	-0.001		
2	5.29584	-0.926040	999.741	999.713	0.028		
3	5.80512	-0.798720	1064.180	1064.163	0.017		
4	5.97845	-0.755388	1084.611	1084.607	0.004		
5	6.11299	-0.721753	1100.050	1100.049	0.001		
6	7.0511	-0.487225	1199.996	1199.952	0.044		
7	8.08834	-0.227915	1299.998	1299.858	0.140		
8	9.20567	0.051417	1400.091	1399.880	0.211	1400.299	-0.208
9	10.38856	0.347140	1500.381			1500.402	-0.022
10	11.62972	0.657430	1600.471			1600.469	0.002
11	12.92435	0.981088	1700.537			1700.524	0.012
4th run							
1	5.02471	-0.993823	961 857	961 871	-0 014		
2	5 20560	-0.926078	999 581	003 000	-0 010		
3	5 80581	-0 798548	1064 132	1064 142	-0.009		
4	5.97884	-0.755290	1084 535	1084 538	-0.003		
•	0.01001	0.00200			5.550	1	1

5	6.11352	-0.721620	1099,991	1099,985	0.007		
6	7.05078	-0.487305	1199.795	1199.792	0.003	1199.835	-0.040
7	8.08865	-0.227838	1299.776	1299.743	0.033	1299.801	-0.026
8	9.20579	0.051448	1399.787	1399.754	0.033	1399.864	-0.077
9	10.38857	0.347143	1499.875			1499.905	-0.031
10	11.62998	0.657495	1599.924			1599.967	-0.043
11	12.92546	0.981365	1700.004			1700.050	-0.047
5th run							
1	5.02487	-0.993783	961.880	961.821	0.058		
2	5.29594	-0.926015	999.615	999.594	0.021		
3	5.80598	-0.798505	1064.153	1064.139	0.014		
4	5.97877	-0.755308	1084.526	1084.510	0.017		
5	6.16367	-0.709083	1105.660	1105.644	0.016		
6	7.05103	-0.487243	1199.821	1199.818	0.003		
7	8.08845	-0.227888	1299.757	1299.718	0.039	1299.775	-0.018
8	9.20607	0.051518	1399.811	1399.757	0.054	1399.840	-0.029
9	10.38854	0.347135	1499.872			1499.835	0.037
10	11.62999	0.657498	1599.925			1599.884	0.041
11	12.92438	0.981095	1699.921			1699.874	0.046

The deviation of Eq. (10) from Eq. (9) is taken to be the change of the calibration after the return of the lamp from PTB:

$$\Delta t_{\lambda} / {}^{\circ}C = -0.2910 - 0.2918 z - 0.8061 z^{2} - 1.5057 z^{3} + 2.3056 z^{4} + 4.5503 z^{5} - 1.6065 z6 - 3.0696 z^{7}$$
(12)

The changes at the reference lamp currents are given in the following table:

Index	Lamp o	current	Nominal	Temperature
	Absolute	Scaled	temperature	change
j	I_ℓ	z	t_{λ}	Δt_{λ}
	From Table A1	Using Eq. (11)		Using Eq. (12)
	А		°C	°C
1	5.027	-0.99325	961.780	-0.091
2	5.298	-0.92550	1000.000	-0.140
3	5.808	-0.79800	1064.180	-0.126
4	5.981	-0.75475	1084.620	-0.118
5	6.116	-0.72100	1100.000	-0.114
6	7.054	-0.48650	1200.000	-0.163
7	8.092	-0.22700	1300.000	-0.245
8	9.210	0.05250	1400.000	-0.309
9	10.393	0.34825	1500.000	-0.502
10	11.635	0.65875	1600.000	-0.561
11	12.930	0.98250	1700.000	-0.627

The mean of Eqs. (9) and (10) is taken to be the analytical representation of the calibration of the lamp:

 $\begin{array}{rl} t_{\lambda} \ / \ ^{o}C = & 1381.9703 \ + \ 351.1504 \ z \ - \ 35.4659 \ z^{2} \ + \ 16.4916 \ z^{3} \\ & - & 10.1936 \ z^{4} \ - \ 1.3244 \ z^{5} \ - \ 4.1111 \ z^{6} \ + \ 7.5728 \ z^{7} \end{array} \tag{13}$

where z is a (non-dimensionalized) lamp current after scaling according to Eq. (11).

To facilitate comparison at the reference currents the following table is given:

Index	Lamp	current	Temperature
	Absolute	Scaled	
j	\mathbf{I}_{ℓ}	Z	$t_{\lambda}(\lambda_r; t_r; I_{\ell})$
	From Table A1	Using Eq. (11)	Using Eq. (13)
	А		°C
1	5.027	-0.99325	962.231
2	5.298	-0.92550	999.961
3	5.808	-0.79800	1064.460
4	5.981	-0.75475	1084.846
5	6.116	-0.72100	1100.332
6	7.054	-0.48650	1200.204
7	8.092	-0.22700	1300.212
8	9.210	0.05250	1400.310
9	10.393	0.34825	1500.494
10	11.635	0.65875	1600.602
11	12.930	0.98250	1700.664

Appendix XII. NRC Data for Lamp 644C

Notes:

- (e) The resistance of the standard resistor used for the measurement of the lamp current is 10.004 36 m Ω .
- (f) The resistance of the feedback resistor in the photoelectric detector is 1 G Ω .
- (g) The *f*-number is 7.7 for the large aperture and 23.8 for the small apertures.
- (h) The diameter of the circular field stop is 0.6 mm.

Table I: Raw data

				Large a	aperture	Small a	perture
Index	Lamp c	current	Temperature of lamp base	Ratio of photo currents	Temperature of lamp	Ratio of photo currents	Temperature of lamp
j	Reference I _j (A)	As set I _ℓ (A)	Measured ^{(b} (°C)	$\begin{array}{l} \text{Measured} \\ \text{i}(t_{\lambda}) \ / \ \text{i}(t_{Cu}) \end{array}$	$\begin{array}{c} \text{Calculated} \\ {}^{t_\lambda}_{^{(o}\text{C})} \end{array}$	$\begin{array}{l} \text{Measured} \\ \text{i}(t_{\lambda}) \ / \ \text{i}(t_{Cu}) \end{array}$	$\underset{\stackrel{(o}{C})}{C}$
1st ru	n (April 27	2001)					
1	5 185	5 18290	19 989	0 1973386	961 690		
2	5.457	5.45445	19.989	0.3361236	999.501		
3	5.966						
4	6.141	6.13825	19.981	0.9952613	1084.221		
5	6.276	6.27330	20.005	1.1950503	1099.621		
6	7.223	7.21982	20.020	3.5635511	1199.398		
7	8.276	8.27214	20.081	9.2531384	1299.204	9.2415697	1299.065
8	9.411	9.40735	20.110			21.4151901	1398.861
9	10.617	10.61192	20.165			45.1840215	1498.785
10	11.880	11.87454	20.218			87.9683475	1598.597
11	13.197	13.19122	20.264			160.1096714	1698.424
2nd ru (This	ın (April 30 run followe	, 2001) d the last r	un. Lamp alignr	nent was the s	ame as previc	ously.)	
1	5.185	5.18286	20.015	0.1972960	961.676		
2	5.457	5.45445	20.015	0.3360727	999.490		
3	5.966						
4	6.141	6.13826	20.035	0.9951636	1084.213		
5	6.276	6.27331	20.043	1.1950035	1099.618		
6	7.223	7.21980	20.074	3.5641497	1199.414		
7	8.276	8.27214	20.128	9.2540279	1299.215	9.2430919	1299.093
8	9.411	9.40733	20.143	21.4313921	1398.956	21.4193857	1398.886
9	10.617	10.61192	20.187			45.1929982	1498.813
10	11.880	11.87447	20.225			87.9864960	1598.629
11	13.197	13.19120	20.274			160.1350402	1698.452

3rd run (June 13, 2001)

allation and re-alignment of the lamp)

(This	run require	d re-install	ation and re-all	griment of the l	iamp.)	
1	5.185	5.18290	19.981	0.1973729	961.701	
2	5.457	5.45448	19.989	0.3361911	999.517	
3	5.966	5.96316	20.000	0.7750488	1063.719	
4	6.141	6.13828	20.033	0.9959180	1084.276	
5	6.276	6.27332	19.966	1.1967556	1099.743	
6	7.223	7.21981	20.004	3.5677350	1199.513	
7	8.276	8.27215	20.102	9.2640188	1299.336	
8	9.411					
9	10.617					
10	11.880					
11	13.197					

4th run (August 19, 2002)

(The experimental setup had been changed to run another experiment. The lamp was returned from PTB. The Cu blackbody used in the previous calibration broke. A new Cu blackbody was used.)

							/
1	5.185	5.18288	20.200	0.1969698	961.561		
2	5.457	5.45477	20.212	0.3358148	999.434		
3	5.966	5.96350	20.254	0.7747073	1063.684		
4	6.141	6.13856	20.259	0.9945663	1084.163		
5	6.276	6.27343	20.269	1.1940057	1099.547		
6	7.223	7.21982	20.323	3.5615770	1199.344		
7	8.276	8.27204	20.417	9.2481901	1299.145	9.2115127	1298.701
8	9.411	9.40688	20.508	21.4180242	1398.878	21.3471286	1398.459
9	10.617	10.61270	20.606			45.0797227	1498.458
10	11.880	11.87282	20.724			87.7599969	1598.221
11	13.197	13.19125	20.842			159.6735352	1697.945
	-	-					

5th run (August 28, 2002) (This run required re-installation and re-alignment of the lamp.)

· · ·							
1	5.185	5.18277	20.256	0.1968415	961.516		
2	5.457	5.45466	20.310	0.3356844	999.405		
3	5.966	5.96342	20.336	0.7741033	1063.620		
4	6.141	6.13839	20.374	0.9946697	1084.172		
5	6.276	6.27326	20.387	1.1940657	1099.551		
6	7.223	7.21971	20.428	3.5620051	1199.356		
7	8.276	8.27245	20.512	9.2534377	1299.208	9.2199413	1298.803
8	9.411	9.40690	20.601	21.4237186	1398.911	21.3563535	1398.514
9	10.617	10.61236	20.690			45.0946767	1498.505
10	11.880	11.87486	20.791			87.8013633	1598.296
11	13.197	13.19128	20.870			159.7725816	1698.054

Table II: Data after corrections for the undesirable transmission of the interference filter in the infra-red

Correction factor is expressed as $F_1 = 1 - \Delta i / i$ where i is the total photo current and Δi is that part of i due to the IR transmission.

For the blackbody, correction factor $F_1(Cu) = 0.996378$

For the lamp, correction factor
$$F_1(L) = 0.999 \ 128 \ 74 + 0.000 \ 923 \ 34 \ u - 0.000 \ 724 \ 68 \ u^2 + 0.000 \ 827 \ 08 \ u^3 - 0.000 \ 512 \ 63 \ u^4$$
 (1)

where
$$u = (t_{\lambda} / °C - 1330) / 370$$

(2)

	Large a	aperture	Small a	aperture	Large	Small
					aperture	aperture
Index	Correction	Ratio of	Correction	Ratio of	Scaled ter	mperature
	factor for lamp	photo currents	factor for lamp	photo currents		-
j	F _I (L)	$i(t_{\lambda}) / i(t_{Cu}) =$	F _I (L)	$i(t_{\lambda}) / i(t_{Cu}) =$	ι	l
	Using Eq. (1)	i(t _λ) / i(t _{Cu}) in	Using Eq. (1)	$i(t_{\lambda}) / i(t_{Cu})$ in	Using Eq. ((2) and t_{λ} in
		Table I x F _I (L) /		Table I x F _I (L) /	Tab	ole I
		F _I (Cu)		F _I (Cu)		
1st ru	n		1	1		
1	0.99617	0.19730			-0.99543	
2	0.99681	0.33627			-0.89324	
3						
4	0.99785	0.99674			-0.66427	
5	0.99800	1.19699			-0.62265	
6	0.99867	3.57174			-0.35298	
7	0.99905	9.27792	0.99905	9.26632	-0.08323	-0.08361
8			0.99928	21.47757		0.18611
9			0.99946	45.32358		0.45618
10			0.99959	88.25203		0.72594
11			0.99964	160.63421		0.99574
2nd ru	ln					
1	0.99617	0.19726			-0.99547	
2	0.99681	0.33622			-0.89327	
3						
4	0.99785	0.99664			-0.66429	
5	0.99800	1.19694			-0.62265	
6	0.99867	3.57234	0.00005	0.00704	-0.35294	
/	0.99905	9.27881	0.99905	9.26784	-0.08320	-0.08353
8	0.99928	21.49382	0.99928	21.48178	0.18637	0.18618
9			0.99946	45.33259		0.45625
10			0.99959	88.27024		0.72602
11			0.99964	160.65966		0.99582
0	-					
	0.00617	0 10722			0.00540	
	0.99017	0.19/33			-0.99540	
	0.99081	0.33034			-0.09320	
3	0.99704	0.00720			-0.7 1908	
4 F	0.99700	0.337.33			-0.00412	
) (0.99800	1.198/0			-0.02232	
ь	0.99867	3.57594			-0.35267	

7	0.99905	9.28883			-0.08288	
8						
9						
10						
11						
∕th ru	n					
1	0.99617	0 19693			-0 99578	
2	0.99681	0.13035			-0.33370	
2	0.00001	0.33550			-0 71977	
4	0.99785	0.99604			-0 66442	
5	0.99800	1 19594			-0.62285	
6	0.99867	3 56976			-0.35312	
7	0.99905	9 27296	0 99904	9 23617	-0.08339	-0 08459
8	0.99928	21 48041	0.99928	21 40929	0.18616	0.18502
9	0.00020	21.10011	0.99945	45 21893	0.10010	0.45529
10			0 99959	88 04297		0 72492
11			0.99964	160,19666		0.99445
		1				
5th ru	n					
1	0.99617	0.19680			-0.99590	
2	0.99681	0.33583			-0.89350	
3	0.99764	0.77509			-0.71995	
4	0.99785	0.99614			-0.66440	
5	0.99800	1.19600			-0.62284	
6	0.99867	3.57019			-0.35309	
7	0.99905	9.27822	0.99905	9.24462	-0.08322	-0.08432
8	0.99928	21.48612	0.99928	21.41854	0.18625	0.18517
9			0.99946	45.23394		0.45542
10			0.99959	88.08448		0.72512
11			0.99964	160.29603		0.99474

Table A1: Calibration be	efore corrections for	or the size-of-source	effect, non-linearity, et	С
--------------------------	-----------------------	-----------------------	---------------------------	---

				Large a	perture	Small a	perture
	L	amp curre	nt	Ratio of	Temperature	Ratio of	Temperature
		·		photo currents		photo currents	
Index	Reference	As set	Difference	Measured	Calculated	Measured	Calculated
j	lj	I_{ℓ}	$I_j - I_\ell$	i(t _λ) / i(t _{Cu})	$t_{\lambda}(\lambda_{e};t_{b};I_{\ell})$	$i(t_{\lambda})$ / $i(t_{Cu})$	$t_{\lambda}(\lambda_{e};t_{b};I_{\ell})$
	А	А	А	From Table II	°C	From Table II	°C
1st ru	n						
1	5.185	5.18290	0.00210	0.19730	961.676		
2	5.457	5.45445	0.00255	0.33627	999.534		
3	5.966						
4	6.141	6.13825	0.00275	0.99674	1084.344		
5	6.276	6.27330	0.00270	1.19699	1099.759		
6	7.223	7.21982	0.00318	3.57174	1199.623		
7	8.276	8.27214	0.00386	9.27792	1299.503	9.26632	1299.363
8	9.411	9.40735	0.00365			21.47757	1399.228
9	10.617	10.61192	0.00508			45.32358	1499.223
10	11.880	11.87454	0.00546			88.25203	1599.106
11	13.197	13.19122	0.00578			160.63421	1698.998

2nd ru	ın						
1	5.185	5.18286	0.00214	0.19726	961.663		
2	5.457	5.45445	0.00255	0.33622	999.523		
3	5.966						
4	6.141	6.13826	0.00274	0.99664	1084.336		
5	6.276	6.27331	0.00269	1.19694	1099.756		
6	7.223	7.21980	0.00320	3.57234	1199.639		
7	8.276	8.27214	0.00386	9.27881	1299.514	9.26784	1299.382
8	9.411	9.40735	0.00365	21.49382	1399.324	21.48178	1399.253
9	10.617	10.61192	0.00508			45.33259	1499.026
10	11.880	11.87447	0.00553			88.27024	1599.139
11	13.197	13.19120	0.00580			160.65966	1699.026
ا به ام ا							
		E 10000	0.00010	0 10722	061 697		
1	5.185	5.18290	0.00210	0.19733	961.687		
2	5.457	5.45448	0.00252	0.33634	999.549		
3	5.966	5.96316	0.00284	0.77603	1063.821		
4	6.141	6.13828	0.00272	0.99739	1084.399		
5	0.270	6.27332	0.00268	1.19870	1099.881		
6	7.223	7.21981	0.00319	3.57594	1199.738		
/	8.276	8.27215	0.00385	9.28883	1299.634		
8	9.411						
9	10.617						
10	11.880						
11	13.197						
4th m	n /l amn w	oo roturooo	from DTD	<u>\</u>			
41110	n (Lamp w			.)	004 547		
1	5.185	5.18288	0.00212	0.19693	961.547		
2	5.457	5.45477	0.00223	0.33590	999.400		
3	0.900	5.96350	0.00250	0.77569	1003.700		
4	0.141	6.13030	0.00244	0.99604	1004.200		
5 6	0.270	0.27343	0.00257	1.19094	1099.000		
0	7.223	7.21962	0.00316	3.30970	1199.000	0.00047	1000.000
/	8.276	8.27204	0.00396	9.27296	1299.443	9.23017	1298.999
0	9.411	9.40000	0.00412	21.46041	1399.245	21.40929	1390.020
9	11.017	10.01270	0.00430			40.21093	1490.090
10	11.880	11.87282	0.00718			88.04297	1598.731
11	13.197	13.19125	0.00575			100.19000	1096.519
5th ru	n						
	5 1 8 5	5 1 8 2 7 7	0 00223	0 10680	061 502		
1 2	5.105	5.10277	0.00223	0.19000	000 429		
2	5.457	5.45400	0.00234	0.33563	1062 724		
3	6 1 / 1	6 1 2 9 2 0	0.00258	0.00614	1003.724		
4 5	6 276	6 27226	0.00201	1 10600	1004.295		
6	0.270	7 21071	0.00274	3 57010	1100 590		
7	8 276	8 272/1	0.00329	0.07900	1200 507	0 24462	1200 102
/ 0	0.270	0.21241	0.00309	3.21022 21 19612	1200 270	3.24402 21 /195/	1209.102
0	9.411 10.617	9.40090	0.00410	21.40012	1399.279	45 22204	1/02 0/2
9 10	11 880	11 87/86	0.00404			88 08118	1508 805
11	12 107	12 10120	0.00572			160 20602	1602 629
	13.197	13.19120	0.00072		I	100.29003	1090.020

Table A2: Calibration after corrections for the size-of-source effect

Correction factor is expressed as $F_S = 1 - \Delta i / i$ where i is the total photo current and Δi is that part of i due to the out-of-field radiation.

For the large aperture: $\Delta i / i$ is equal to 0.0015 for the lamp and 0.0058 for the blackbody.

The correction factor for the ratio of photo currents $i(t_{\lambda}) / i(t_{Cu})$ is equal to $F_{SL} = 1 - 0.0015 + 0.0058 = 1.0043$.

For the small aperture: $\Delta i / i$ is equal to 0.0039 for the lamp and 0.0118 for the blackbody.

The correction factor for the ratio of photo currents $i(t_{\lambda}) / i(t_{Cu})$ is equal to $F_{SS} = 1 - 0.0039 + 0.0118 = 1.0079$.

	Large ap	erture	Small ape	erture
Index	Ratio of photo currents	Temperature	Ratio of photo currents	Temperature
j	·	$t_{\lambda}(\lambda_{e}; t_{b}; I_{\ell})$	$i(t_{\lambda}) / i(t_{Cu}) = F_{SS} x$	$t_{\lambda}(\lambda_{e}; t_{b}; I_{\ell})$
	$i(t_{\lambda}) / i(t_{Cu}) = F_{SL} x$	°c	i(t)/i(t) in	°C
	i(t _λ) / i(t _{Cu}) in Table A1	C	Table A1	C
1st ru	n			
1	0.19815	961.973		
2	0.33772	999.849		
3				
4	1.00102	1084.701		
5	1.20214	1100.125		
6	3.58710	1200.043		
7	9.31781	1299.983	9.33952	1300.243
8			21.64724	1400.223
9			45.68164	1500.340
10			88.94922	1600.353
11			161.90322	1700.382
2nd ru	in			
1	0.19810	961.955		
2	0.33766	999.836		
3				
4	1.00092	1084.693		
5	1.20209	1100.121		
6	3.58770	1200.060		
7	9.31871	1299.993	9.34106	1300.261
8	21.58624	1399.866	21.65148	1400.248
9			45.69071	1500.368
10			88.96758	1600.386
11			161.92887	1700.410
3rd ru	n			
1	0.19818	961.983		
2	0.33778	999.862		
3	0.77937	1064.168		
4	1.00168	1084.756		

5	1.20385	1100.246		
6	3.59131	1200.158		
7	9.32877	1300.114		
8				
9				
10				
11				
4th ru	n	1	1	1
1	0.19778	961.844		
2	0.33740	999.780		
3	0.77903	1064.133		
4	1.00032	1084.643		
5	1.20109	1100.050		
6	3.58511	1199.989		
7	9.31283	1299.923	9.30913	1299.878
8	21.57278	1399.787	21.57842	1399.820
9			45.57616	1500.012
10			88.73851	1599.977
11			161.46221	1699.902
5th ru	n a taman		1	
1	0.19765	961.799		
2	0.33727	999.751		
3	0.77842	1064.070		
4	1.00043	1084.652		
5	1.20115	1100.055		
6	3.58554	1200.001		
7	9.31812	1299.986	9.31765	1299.981
8	21.57851	1399.821	21.58775	1399.875
9			45.59129	1500.059
10			88.78035	1600.052
11			161.56236	1700.011

Table A3: Calibration after corrections for non-linearity

The correction factor for the ratio of photo current $i(t_{\lambda}) / i(t_{Cu})$ is expressed as $F_N = 1 - \Delta i / i$ where i is the total photo current and Δi is that part of i due to the non-linearity.

For the large aperture, the correction factor is given by

$$F_{NL} = 1 + (v - v^*)(0.000\ 018\ 97 + 0.001\ 355\ 17\ v + 0.001\ 005\ 17\ v^2 + 0.000\ 225\ 52\ v^3)$$
 (3)

For the small aperture, the correction factor is given by

 $F_{NS} = 1 + (v - v^*)(0.000\ 003\ 08 + 0.000\ 121\ 36\ v + 0.000\ 190\ 44\ v^2 + 0.000\ 073\ 09\ v^3)$ (4)

where $v^* = -3 / 2.3$

and $v = \{ln[i(t_{\lambda}) / i(t_{Cu})] - 3\} / 2.3$

(5)

		Large	aperture			Sma	Large aperture	Small aperture		
Index	Correction factor	Ratio of photo currents	Effective wavelength	Temperature	Corection factor	Ratio of photo currents	Effective wavelength	Temperature	Scaled p	hoto current ratio
j	F_{NL}	i(t _λ) / i(t _{Cu})	λ_{e}	$t_{\lambda}(\lambda_{e};t_{b};I_{\ell})$	F_{NS}	i(t _λ) / i(t _{Cu})	λ_{e}	$t_{\lambda}(\lambda_{e};t_{b};I_{\ell})$		v
	Using Eq. (3)	- F _{NL} x i(t _λ) / i(t _{Cu}) in Table A2	nm	°C	Using Eq. (4)	- F _{NS} x i(t _λ) / i(t _{Cu}) in Table A2	nm	°C	Using Eq / in Ta	. (5) and i(t _λ) i(t _{Cu}) able A2

1st run

10110										
1	1.00033	0.19821	650.034	961.994					-2.00815	
2	1.00023	0.33779	650.028	999.864					-1.77633	
3										
4	1.00000	1.00102	650.016	1084.701					-1.30390	
5	0.99996	1.20209	650.014	1100.121					-1.22430	
6	0.99971	3.58605	650.002	1200.015					-0.74898	
7	0.99968	9.31483	649.991	1299.947	0.99998	9.33935	649.991	1300.241	-0.33394	-0.33293
8					1.00001	21.64745	649.982	1400.224		0.03256
9					1.00012	45.68726	649.973	1500.357		0.35726
10					1.00035	88.98066	649.966	1600.409		0.64699
11					1.00072	162.01945	649.959	1700.508		0.90739

2nd run

znu n	111									
1	1.00033	0.19817	650.034	961.980					-2.00825	
2	1.00023	0.33774	650.028	999.853					-1.77639	
3										
4	1.00000	1.00092	650.016	1084.693					-1.30395	
5	0.99996	1.20204	650.014	1100.118					-1.22432	
6	0.99971	3.58665	650.002	1200.031					-0.74891	
7	0.99968	9.31573	649.991	1299.958	0.99998	9.34089	649.991	1300.259	-0.33390	-0.33286
8	1.00008	21.58804	649.982	1399.877	1.00001	21.65169	649.982	1400.249	0.03133	0.03264
9					1.00012	45.69634	649.973	1500.386		0.35735
10					1.00035	88.99903	649.966	1600.442		0.64707
11					1.00072	162.04514	649.959	1700.536		0.90746

3rd run

1	1.00002	0.19819	650.034	961.987				
2	1.00023	0.33786	650.028	999.879			-1.77624	
3	1.00006	0.77941	650.019	1064.173			-1.41273	
4	1.00000	1.00168	650.016	1084.756			-1.30362	
5	0.99996	1.20380	650.014	1100.242			-1.22368	
6	0.99971	3.59026	650.002	1200.130			-0.74847	
7	0.99968	9.32579	649.991	1300.078			-0.33343	
8								
9								
10								
11								

4th run

TULLIA						
1	1.00033	0.19784	650.034	961.865	-2.00897	
2	1.00023	0.33748	650.028	999.797	-1.77673	
3	1.00006	0.77907	650.019	1064.137	-1.41292	
4	1.00000	1.00032	650.016	1084.643	-1.30421	
5	0.99996	1.20103	650.014	1100.046	-1.22468	

6	0.99971	3.58406	650.002	1199.960					-0.74922	
7	0.99968	9.30985	649.991	1299.887	0.99998	9.30896	649.991	1299.876	-0.33418	-0.33435
8	1.00008	21.57456	649.982	1399.798	1.00001	21.57863	649.982	1399.822	0.03106	0.03117
9					1.00012	45.58175	649.973	1500.029		0.35625
10					1.00035	88.76978	649.966	1600.033		0.64595
11					1.00072	161.57780	649.959	1700.028		0.90620

5th run

1	1.00034	0.19771	650.034	961.820					-2.00925	
2	1.00023	0.33735	650.028	999.769					-1.77690	
3	1.00006	0.77846	650.019	1064.074					-1.41326	
4	1.00000	1.00043	650.016	1084.652					-1.30416	
5	0.99996	1.20109	650.014	1100.050					-1.22466	
6	0.99971	3.58449	650.002	1199.972					-0.74917	
7	0.99968	9.31513	649.991	1299.950	0.99998	9.31748	649.991	1299.979	-0.33393	-0.33395
8	1.00008	21.58031	649.982	1399.832	1.00001	21.58796	649.982	1399.876	0.03117	0.03136
9					1.00012	45.59688	649.973	1500.076		0.35640
10					1.00035	88.81165	649.966	1600.108		0.64616
11					1.00072	161.67810	649.959	1700.137		0.90647

Table B1: Calibration after corrections for wavelength

From "Protocol" by P. Bloembergen:

 $(\partial t_{\lambda} / \partial \lambda) / (^{\circ}C / nm) = -0.35422504 \times 10^{-1} + 2.70716088 \times 10^{-5} t_{\lambda} / ^{\circ}C - 0.10980270 \times 10^{-6} (t_{\lambda} / ^{\circ}C)^{2}$ (6)

Reference wavelength $\lambda_r = 650 \text{ nm}$

		Large	aperture		Small aperture				
Index	Sensitivity	Wavelength	Wavelength	Temperature	Sensitivity	Wavelength	Wavelength	Temperature	
		difference	correction			difference	correction		
j	$\partial t_{\lambda} / \partial \lambda$								
		$\Delta \lambda =$	$\Delta t =$	$t_{\lambda}(\lambda_r; t_b; I_{\ell}) =$	$\partial t_{\lambda} / \partial \lambda$	$\Delta \lambda =$	$\Delta t =$	$t_{\lambda}(\lambda_r; t_b; I_{\ell}) =$	
	Using Eq.								
	(6)	$\lambda_r - \lambda_e$ in	∂t_{λ} /	$t_{\lambda}(\lambda_e; t_b; I_{\ell})$ in	Using Eq.	$\lambda_r - \lambda_e$ in	∂t_{λ} /	$t_{\lambda}(\lambda_e; t_b; I_{\ell})$ in	
	and t_{λ} in	Table A3	$\partial \lambda \times \Delta \lambda$	Table A3	(6)	Table A3	$\partial \lambda imes \Delta \lambda$	Table A3	
	Table A3			+ Δt	and t_{λ} in			+ ∆t	
					Table A3				
			°0	0.5			°0	0.0	
	°C / nm	nm	50	3 °	°C / nm	nm	-0	J°	
1st ru	n								
1	-0.111	-0.034	0.004	961.998					
2	-0.118	-0.028	0.003	999.867					
3									
4	-0.135	-0.016	0.002	1084.703					
5	-0.139	-0.014	0.002	1100.123					
6	-0.161	-0.002	0.000	1200.015					
7	-0.186	0.009	-0.002	1299.945	-0.186	0.009	-0.002	1300.239	
8					-0.213	0.018	-0.004	1400.220	
9					-0.242	0.027	-0.007	1500.350	
10					-0.273	0.034	-0.009	1600.400	
11					-0.307	0.041	-0.013	1700.495	
2nd r									
--------	------------	--------	--------	----------	--------	-------	--------	----------	
	 _∩ 111	-0.034	0.004	961 984					
1	-0.111	-0.034	0.004	901.904					
2	-0.110	-0.020	0.003	333.030					
4	-0 135	-0.016	0.002	1084 695					
5	_0.130	-0.014	0.002	1100 120					
6	-0.153	-0.014	0.002	1200.031					
7	-0.186	0.002	-0.002	1299 956	-0 186	0.009	-0.002	1300 257	
8	-0.213	0.000	-0.004	1399 873	-0.213	0.018	-0.004	1400 245	
9	0.210	0.010	0.004	1000.070	-0.242	0.010	-0.007	1500 379	
10					-0.273	0.034	-0.009	1600 433	
11					-0.307	0.041	-0.013	1700 523	
					0.001	0.011	0.010	1100.020	
3rd ru	n		1	1	1			1	
1	-0.111	-0.034	0.004	961.991					
2	-0.118	-0.028	0.003	999.882					
3	-0.131	-0.019	0.002	1064.175					
4	-0.135	-0.016	0.002	1084.758					
5	-0.139	-0.014	0.002	1100.244					
6	-0.161	-0.002	0.000	1200.130					
7	-0.186	0.009	-0.002	1300.076					
8									
9									
10									
11									
4th ru	n								
1	-0 111	-0.034	0.004	961 869					
2	-0 118	-0.028	0.003	999 800					
3	-0.131	-0.019	0.002	1064,139					
4	-0.135	-0.016	0.002	1084.645					
5	-0.139	-0.014	0.002	1100.048					
6	-0.161	-0.002	0.000	1199.960					
7	-0.186	0.009	-0.002	1299.885	-0.186	0.009	-0.002	1299.874	
8	-0.213	0.018	-0.004	1399.794	-0.213	0.018	-0.004	1399.818	
9					-0.242	0.027	-0.007	1500.022	
10					-0.273	0.034	-0.009	1600.024	
11					-0.307	0.041	-0.013	1700.015	
				I	11		1	I	
5th ru	n								
1	-0.111	-0.034	0.004	961.824					
2	-0.118	-0.028	0.003	999.772					
3	-0.131	-0.019	0.002	1064.076					
4	-0.135	-0.016	0.002	1084.654					
5	-0.139	-0.014	0.002	1100.052					
6	-0.161	-0.002	0.000	1199.972					
7	-0.186	0.009	-0.002	1299.948	-0.186	0.009	-0.002	1299.977	
8	-0.213	0.018	-0.004	1399.828	-0.213	0.018	-0.004	1399.872	
9					-0.242	0.027	-0.007	1500.069	
10					-0.273	0.034	-0.009	1600.099	
11					-0.307	0.041	-0.013	1700.124	

Table B2: Calibration after corrections for the temperature of the lamp base

Reference temperature for the lamp base $t_r = 20^{\circ}C$

For 961.78°C $\leq t_{\lambda} \leq$ 1200°C,	$\partial t_{\lambda} / \partial t_{b} = 0.0354 - 0.0465 w + 0.0216 w^{2}$ where w = (t _{λ} / °C - 1080) / 120	(7) (8)
For t _λ ~ 1300°C,	$\partial t_{\lambda} / \partial t_{b} = 0.005$	
For t _λ ~ 1400°C,	$\partial t_{\lambda} / \partial t_{b} = 0.002$	
For $t_{\lambda} \sim 1500^{\circ}$ C and higher,	$\partial t_{\lambda} / \partial t_{b} = 0.000$	

			Large a	aperture		Small aperture			Large aperture	Small aperture	
Index	Current	Sensitivity	Base temperature difference	Base temperature correction	Temperature	Sensitivity	Base temperature difference	Base temperature correction	Temperature	Scaled te	mperature
j	I_{ℓ}	$\partial t_{\lambda}/\partial t_{b}$	$\Delta t_{b} =$	$\Delta t =$	$t_{\lambda}(\lambda_r;t_r;I_\ell) =$	$\partial t_{\lambda} / \partial t_{b}$	$\Delta t_{b} =$	$\Delta t =$	$t_{\lambda}(\lambda_r;t_r;I_\ell) =$	٧	V
	From Table I A	Using Eq. (7) or assigned values given above	t _r – t _⊳ in Table I °C	$\partial t_{\lambda} / \partial t_{b} \times \Delta t_{b}$ °C	$t_{\lambda}(\lambda_{\tau}; t_{b}; I_{\ell})$ in Table B1 + Δt °C	Using assigned values given above	t _r – t _⊳ in Table I °C	$\partial t_{\lambda} / \partial t_{b} \times \Delta t_{b}$ °C	$t_{\lambda}(\lambda_{r}; t_{b}; I_{\ell})$ in Table B1 + Δt °C	Using Eq. in Tat	(8) and t _λ ble B1
4 - 1											
1st run 1	5 18200	0 102	0.011	0.001	961 999			1		-0.98335	
2	5 45445	0.102	0.011	0.001	999 868					-0.90333	
3	0.10110	0.070	0.011	0.001	000.000					0.00111	
4	6.13825	0.034	0.019	0.001	1084.704					0.03919	
5	6.27330	0.028	-0.005	0.000	1100.123					0.16769	
6	7.21982	0.010	-0.020	0.000	1200.015					1.00013	
7	8.27214	0.005	-0.081	0.000	1299.945	0.005	-0.081	0.000	1300.239	1.83288	1.83533
8	9.40735					0.002	-0.110	0.000	1400.220		2.66850
9	10.01192					0.000	-0.165	0.000	1500.350		3.50292
11	13 10122					0.000	-0.216	0.000	1700.400		4.33000
	10.10122					0.000	0.204	0.000	1700.400		0.17000
2nd rur	า										
1	5.18286	0.102	-0.015	-0.002	961.982					-0.98347	
2	5.45445	0.076	-0.015	-0.001	999.855					-0.66786	
3	0.40000	0.004	0.005	0.001	4004.004					0.00040	
4	6.13820	0.034	-0.035	-0.001	1084.694					0.03913	
6	7 21980	0.028	-0.043	-0.001	1200.031					1 00026	
7	8.27214	0.005	-0.128	-0.001	1299.956	0.005	-0.128	-0.001	1300.257	1.83297	1,83548
8	9.40735	0.002	-0.143	0.000	1399.873	0.002	-0.143	0.000	1400.245	2.66561	2.66871
9	10.61192					0.000	-0.187	0.000	1500.379		3.50316
10	11.87447					0.000	-0.225	0.000	1600.433		4.33694
11	13.19120					0.000	-0.274	0.000	1700.523		5.17103
3rd run											
1	5.18290	0.102	0.019	0.002	961.993					-0.98341	
2	5.45448	0.076	0.011	0.001	999.883					-0.66765	
3	5.96316	0.042	0.000	0.000	1064.175					-0.13187	
4	6.13828	0.034	-0.033	-0.001	1084.757					0.03965	
5	0.2/332	0.028	0.034	0.001	1100.245					0.16870	
7	8 27215	0.010	-0.004	-0.000	1300.076					1.00109	
8	0.27210	0.000	0.102	0.001	1000.070						
9											
10											
11											
4th run											
1	5.18288	0.102	-0.200	-0.020	961.848					-0.98443	
2	5.45477	0.076	-0.212	-0.016	999.784					-0.66833	
3	5.96350	0.042	-0.254	-0.011	1064.129					-0.13217	
4	6.13856	0.034	-0.259	-0.009	1084.636					0.03871	

5	6.27343	0.028	-0.269	-0.008	1100.040					0.16707	
6	7.21982	0.011	-0.323	-0.003	1199.957					0.99967	
7	8.27204	0.005	-0.417	-0.002	1299.883	0.005	-0.417	-0.002	1299.872	1.83238	1.83229
8	9.40688	0.002	-0.508	-0.001	1399.793	0.002	-0.508	-0.001	1399.817	2.66495	2.66515
9	10.61270					0.000	-0.606	0.000	1500.022		3.50019
10	11.87282					0.000	-0.724	0.000	1600.024		4.33353
11	13.19125					0.000	-0.842	0.000	1700.015		5.16680
5th run	I										
1	5.18277	0.102	-0.256	-0.026	961.798					-0.98480	
2	5.45466	0.076	-0.310	-0.024	999.749					-0.66856	
3	5.96342	0.042	-0.336	-0.014	1064.062					-0.13270	
4	6.13839	0.034	-0.374	-0.013	1084.642					0.03878	
5	6.27326	0.028	-0.387	-0.011	1100.041					0.16710	
6	7.21971	0.011	-0.428	-0.004	1199.968					0.99977	
7	8.27241	0.005	-0.512	-0.003	1299.946	0.005	-0.512	-0.003	1299.975	1.83290	1.83314
8	9.40690	0.002	-0.601	-0.001	1399.827	0.002	-0.601	-0.001	1399.871	2.66523	2.66560
9	10.61236					0.000	-0.690	0.000	1500.069		3.50058
10	11.87486					0.000	-0.791	0.000	1600.099		4.33416
11	13.19128					0.000	-0.870	0.000	1700.124		5.16770

Table B3: Calibration in terms of radiance temperature as a function of lamp current at the reference wavelength and lamp-base temperature

A polynomial is fitted to the data of t_{λ} and I_{λ} for the 1st, 2nd and 3rd runs in Table B2 (data before the departure of the lamp to PTB) to express t_{λ} as a function of I_{λ} .

Another polynomial is fitted to the data for the 4th and 5th runs (data after the return of the lamp from PTB).

For the 1st, 2nd and 3rd runs,

$$t_{\lambda} / {}^{\circ}C = 1364.9563 + 348.9149 z - 37.8154 z^{2} + 18.3207 z^{3} - 9.9394 z^{4} + 2.2404 z^{5} - 6.8364 z^{6} + 6.2010 z^{7}$$
(9)

For the 4th and 5th runs,

$$t_{\lambda} / {}^{\circ}C = 1364.7364 + 348.6177 z - 38.0963 z^{2} + 18.0661 z^{3} - 8.9975 z^{4} + 3.9923 z^{5} - 7.5011 z^{6} + 4.9177 z^{7}$$
(10)

where $z = (I_{\lambda} / A - 9) / 4$ (11)

and $~961.78~\leq~t_{\lambda}\,/~^{o}C~\leq~1700$

	Current			Large aperture		Small aperture		
Index	Absolute	Scaled	Temperature	Temperature	Residual	Temperature	Residual	
			Computed	Measured		Measured		
i		7	Compatod	medearea		medeared		
,	ℓ_{ℓ}	_	$t_{\cdot}(\lambda \cdot t \cdot 1)$	$t_{\lambda}(\lambda \cdot t \cdot 1)$	۸+.	$t_{\lambda}(\lambda \cdot t \cdot 1)$	۸+.	
	F	Usina Ea.	ι _λ (/∪ _r , ι _r , ι _ℓ)	ι _λ (/ν _r , ι _r , ι _ℓ)	$\Delta \iota_{\lambda}$	ι _λ (/ν _r , ι _r , ι _ℓ)	Διλ	
	From Table D2	(11)	Llsing Eq. (9)	From Table	-	From Table B2	Computed -	
	Table B2	()	or (10)	R2	Moasurad		Moasured	
			01 (10)	02	Measureu		Measureu	
	А		°C	°C	°C	°C	°C	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Ū	Ŭ	U	0	U	
1st ru	n							
1	5 18290	-0 954275	961 992	961 999	-0.007			
2	5 45445	-0.886388	999 870	999 868	0.002			
3	0.10110	0.000000	000.070	000.000	0.002			
4	6 13825	-0 715438	1084 729	1084 704	0.025			
5	6 27330	-0.681675	1100 148	1100 123	0.026			
6	7 21982	-0 445045	1200.065	1200.015	0.020			
7	8 2721/	-0 181965	1200.000	1200.015	0.000	1300 230	-0 1/7	
7 8	0.27214	0.101905	1/00 115	1233.343	0.147	1400.239	-0.147	
0	9.40733	0.101838	1400.115			1400.220	-0.105	
9	10.01192	0.402960	1600.303			1600.000	0.013	
10	11.67454	0.716035	1000.420			1700.400	0.020	
11	13.19122	1.047805	1700.510			1700.495	0.014	
0 m d m	10							
		0.054005	001 000	001 000	0.004			
1	5.18280	-0.954285	961.986	961.982	0.004			
2	5.45445	-0.886388	999.870	999.855	0.015			
3			1001					
4	6.13826	-0.715435	1084.730	1084.694	0.036			
5	6.27331	-0.681673	1100.149	1100.119	0.031			
6	7.21980	-0.445050	1200.063	1200.031	0.032			
7	8.27214	-0.181965	1300.092	1299.956	0.136	1300.257	-0.165	
8	9.40735	0.101838	1400.115	1399.873	0.242	1400.245	-0.130	
9	10.61192	0.402980	1500.363			1500.379	-0.016	
10	11.87447	0.718618	1600.414			1600.433	-0.019	
11	13.19120	1.047800	1700.508			1700.523	-0.015	
3rd ru	n		1	•				
1	5.18290	-0.954275	961.992	961.993	-0.001			
2	5.45448	-0.886380	999.874	999.883	-0.009			
3	5.96316	-0.759210	1064.164	1064.175	-0.011			
4	6.13828	-0.715430	1084.732	1084.757	-0.025			
5	6.27332	-0.681670	1100.151	1100.245	-0.094			
6	7.21981	-0.445048	1200.064	1200.130	-0.066			
7	8.27215	-0.181963	1300.093	1300.076	0.017			
8								
9								
10								
11								
4th ru	n							
1	5.18288	-0.954280	961.836	961.848	-0.013			
2	5.45477	-0.886308	999.765	999.784	-0.019			
3	5.96350	-0.759125	1064.091	1064.129	-0.038			
4	6.13856	-0.715360	1084.659	1084.636	0.023			
5	6.27343	-0.681643	1100.062	1100.040	0.022			
6	7.21982	-0.445045	1199.950	1199.957	-0.007			
7	8.27204	-0.181990	1299.910	1299.883	0.027	1299.872	0.038	
8	9.40688	0.101720	1399.822	1399.793	0.029	1399.817	0.005	

9	10.61270	0.403175	1500.063			1500.022	0.040
10	11.87282	0.718205	1599.982			1600.024	-0.042
11	13.19125	1.047813	1700.068			1700.015	0.053
5th ru	n						
1	5.18277	-0.954308	961.820	961.798	0.022		
2	5.45466	-0.886335	999.750	999.749	0.002		
3	5.96342	-0.759145	1064.081	1064.062	0.019		
4	6.13839	-0.715403	1084.640	1084.642	-0.002		
5	6.27326	-0.681685	1100.043	1100.041	0.002		
6	7.21971	-0.445073	1199.939	1199.968	-0.029		
7	8.27241	-0.181898	1299.944	1299.946	-0.002	1299.975	-0.031
8	9.40690	0.101725	1399.823	1399.827	-0.004	1399.871	-0.048
9	10.61236	0.403090	1500.035			1500.069	-0.034
10	11.87486	0.718715	1600.140			1600.099	0.041
11	13.19128	1.047820	1700.071			1700.124	-0.054

The deviation of Eq. (10) from Eq. (9) is taken to be the change of calibration after the return of the lamp from PTB:

$$\Delta t_{\lambda} / {}^{\circ}C = -0.2199 - 0.2972 z - 0.2809 z^{2} - 0.2546 z^{3} + 0.9419 z^{4} + 1.7519 z^{5} - 0.6647 z^{6} - 1.2833 z^{7}$$
(12)

The changes at the reference lamp currents are given in the following table:

	Lamp (	Current	Nominal	Temperature
Index	Absolute	Scaled	temperature	change
			-	
j	L.	z	$t_{\lambda}$	$\Delta t_{\lambda}$
	•ℓ			
	А	Using Eq. (11)	°C	°C
	From Table A1			Using Eq. (12)
				<b>U I (</b> <i>i</i> <b>(</b> <i>i</i> <b>() <i>i</i> <b>(</b><i>i</i> <b>(</b><i>i</i> <b>(</b><i>i</i> <b>() <i>i</i> <b>()</b><i>i</i> ()</b><i>i</i> <b>()</b><i>i</i> ()</b> <i>i <b>()</b><i>i <b>()</b><i>i</i> <b>()</b><i>i<b>()</b><i>i</i> <b>()</b><i>i<b>()</b><i>i</i><b>()</b><i>i<b>()</b><i>i</i><b>()</b><i>i<b>()</b><i>i<b>()</b><i>i</i><b>()</b><i>i<b>()</b><i>i</i><b>()</b><i>i<b>()</b><i>i</i><b>()</b><i>i<b>()</b><i>i</i><b>()</b><i>i<b>()</b><i>i</i><b>()</b><i>i<b>()</b><i>i<b>()</b><i>i<b>()</b><i>i<b>()</b><i>i<b>()</b><i>i<b>()</b><i>i<b>()</b><i>i<b>()</b><i>i<b>()</b><i>i<b>()</b><i>i<b>()</b><i>i<b>()</b><i>i<b>()</b><i>i<b>()</b><i>i<b>()</b><i>i<b>()</b><i>i<b>()</b><i>i<b>()</b><i>i<b>()</b><i>i<i>())i<i>(), <i>i</i>(<i>i</i>)<i>i(), <i>i</i>(<i>i</i>)<i>i())i<i>(), <i>i</i>(<i>i</i>)<i>i()) <i>i</i>(<i>i</i>)<i>i()) <i>i</i>(<i>i</i>)<i>i()) <i>i()) <i>i()) <i>i()() <i>i()) <i>i())i()) <i>i()) <i>i() <i>i()) <i>i()) <i>i()) <i>i()) <i>i()) <i>i()) <i>i()) <i>i()) <i>i()) <i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>
1	5.185	-0.953750	961.780	-0.153
2	5.457	-0.885750	1000.000	-0.148
3	5.966	-0.758500	1064.180	-0.114
4	6.141	-0.714750	1084.620	-0.105
5	6.276	-0.681000	1100.000	-0.101
6	7.223	-0.444250	1200.000	-0.115
7	8.276	-0.181000	1300.000	-0.173
8	9.411	0.102750	1400.000	-0.254
9	10.617	0.404250	1500.000	-0.364
10	11.880	0.720000	1600.000	-0.304
11	13.197	1.049250	1700.000	-0.449

The mean of Eqs. (9) and (10) is taken to be the analytical representation of the calibration of the lamp:

$$t_{\lambda} / {}^{\circ}C = 1364.8464 + 348.7663 z - 37.9559 z^{2} + 18.1934 z^{3} - 9.4685 z^{4} + 3.1164 z^{5} - 7.1688 z^{6} + 5.5594 z^{7}$$
(13)

where z is a (non-dimensionalized) lamp current after scaling according to Eq. (11)

To facilitate comparison at the reference currents the following table is given:

	Lamp (		
Index	Absolute	Scaled	Temperature
j	L	Z	$t_{\lambda}(\lambda_r; t_r; I_{\ell})$
	From Table A1	Using Eq. (11)	Using Eq. (13)
	Δ		°C
	<u></u>		C
1	5.185	-0.953750	962.220
2	5.457	-0.885750	1000.138
3	5.966	-0.758500	1064.446
4	6.141	-0.714750	1084.994
5	6.276	-0.681000	1100.403
6	7.223	-0.444250	1200.324
7	8.276	-0.181000	1300.357
8	9.411	0.102750	1400.300
9	10.617	0.404250	1500.594
10	11.880	0.720000	1600.690
11	13.197	1.049250	1700.724