

AFRIMETS.L-S6 Supplementary Comparison

Comparison on Hand Instruments

(50mm Micrometer setting piece, 0-25mm and 50-75mm External

Micrometers)

Final Report

Burnhard Panda Gandah¹, Munyaradzi Mubaiwa¹, Esther Guranungo¹, Oelof Kruger², Zanele Nzimande², Natasha Sichone³, Frank Kabwe³, Angela Charles⁴, Pamidzani Ntima⁵, Modiriemang Kame⁵, Tomeswar Pryam⁶, Emidio Mulchande⁷, Sheehama Pandulo⁸, Truwe Munkhondya⁹

¹Scientific and Industrial Research and Development Centre's National Metrology Institute, Zimbabwe
²National Metrology Institute of South Africa
³Zambia Metrology Agency
⁴Tanzania Bureau of Standards
⁵Botswana Bureau of Standards
⁶Mauritius Standards Bureau
⁷Mozambique Instituto Nacional de Normalizacao e Qualidade
⁸Namibian Standards Institution
⁹Malawi Bureau of Standards

Tab	le of Contents
0.	Document Control
1	Introduction
1.1	Background
1.2	Objectives
2	Organisation
2.1	Participants
2.2	Form of comparison
2.3	Time Schedule
3	Description of Artefacts
4	Measurement Instructions
4.1	Measurand
4.2	Calibration Instruction
5	Methods used7
6	Results
7	Analysis9
7.1	Calculation of reference values9
7.2	Calculation of Degrees of Equivalence11
8	Graphical Summary of results
9	Conclusion
10	Recommendations
11	Acknowledgement

0. Document Control

Draft A.1 Issued October 2022

Draft A.2 Report Issued March 2023

Key Changes

- Correction of artefacts resolution in table 3, Correction of NSI Acronym, Removal of NSI data points measured on wrong nominal values based on information and request from Sheehama Pandulo, NSI
- Addition of information to the conclusion, recommendation and acknowledgement sections according to comments from Oelof Kruger, NMISA

1 Introduction

1.1 Background

Following the decision of a Southern African Development Community in Measurement Traceability (SADCMET) meeting held in South Africa in 2018 as per SADCMET strategic plan, Zimbabwe's Scientific and Industrial Research and Development Centre's National Metrology Institute (SIRDC-NMI) hosted a Dimensional Interlaboratory Comparison training workshop from the 11th to the 13th of February 2019. The workshop was sponsored by Physikalisch Technische Bundesanstalt (PTB), Germany [1]. It is during this period that the SADCMET Technical Committee for Length agreed to start comparisons in different parameters and artifacts.

The parameters chosen included Hand instruments (External Micrometers). Two micrometers were chosen in order to cover the accreditation range of most of the participating National Metrology Institutes (NMIs). It was further agreed that the intercomparison be upgraded to AFRIMETS level in order for one of the objectives, registration of Calibration and Measurement Capabilities (CMCs) in the International Bureau of Weights and Measures Key Comparison Data Base (BIPM KCDB) to be fulfilled. The comparison was registered in the KCDB as AFRIMETS.L-S6.

The technical protocol for the comparison was drafted in consultation with the participants following the guidelines established by the BIPM [2, 3]. The comparison project was funded by PTB.

1.2 Objectives

The objectives of the comparison were to:

- Assess the equivalence of the hand instruments (External Micrometers) calibration among the participants and to underpin the relevant claim of the Calibration and Measurement Capability in the International Bureau of Weights and Measures Key Comparison Data Base (BIPM KCDB).
- Enable the participating NMIs to meet the requirements of ISO17025:2017 international accreditation
- Serve as a tool for procedure and method validation and to
- Ensure harmonization of standards and demonstrate measurement uniformity of SADC NMIs.

2 Organisation

2.1 Participants

Zimbabwe's Scientific and Industrial Research and Development Centre National Metrology Institute (SIRDC-NMI) acted as the pilot laboratory among the participants in the comparison. The participating institutes were Zimbabwe (SIRDC NMI), National Metrology Institute of South Africa (NMISA), Zambia Metrology Agency (ZMA), Malawi Bureau of Standards (MBS), Namibian Standards Institution (NSI), Mauritius Standards Bureau (MSB),

Botswana Bureau of Standards (BOBS), Tanzania Bureau of Standards (TBS), Mozambique Instituto Nacional de Normalizacao e Qualidade (INNOQ)[1]. All the participants were supposed to demonstrate traceability to an independent realization of the SI unit of length, the meter or make clear the route of traceability to SI unit, the meter via another named laboratory [1, 2]. The laboratories accepted the general instructions written down in the technical protocol SADCMET ILC/LEN-003/2019. Later changes to the protocol such as the change in schedule due to COVID 19 pandemic was made with prior agreement of all the participants. A closing workshop organized by SADCMET RC and sponsored by PTB was held from 8-11 August 2022 in Dar es Salaam to discuss the analysis of the Intercomparison results.

r		sist of participation	<u> </u>	1
	Participant	Correspondence	E-mail Address Phone number	Address
1	SIRDC (Zimbabwe) (Pilot)	Burnhard Panda Gandah	Email: <u>bgandah@sirdc.ac.zw</u> / <u>burnhardg@gmail.com</u> Tel:+263242860346/ +263778330014	SIRDC National Metrology Institute, 1574 Alpes Road, Hatcliffe, Harare
2	NMISA (South Africa)	Oelof Kruger (AFRIMETS TCL Chair) Zanele Nzimande	Email: okruger@nmisa.org Email: znzimande@nmisa.org Tel: 012 841 3057	NMISA, Bldg 5, CSIR, Meiring Naude Road - South Africa
3	MBS (Malawi)	Truwe Munkhondya	Email: <u>truwemunkhondya@mbsmw.org</u> +265993202760	Malawi Bureau of Standards, Blantyre, Malawi
4	MSB (Mauritius)	Tomeswar Pryam	Email: T_Pryam@ msbmu.onmicrosoft.com Tel: +23057689595	Mauritius Standards Bureau Villa Road, Moka
5	INNOQ (Mozambique)	Emidio Mulchande	Email: <u>emulcha@gmail.com</u> Tel:+258 21 344 600 /	Av. de Moçambique, Parcela 7168/D1/7 Bairro, Zimpeto, Maputo, Mozambique
6	NSI (Namibia)	Sheehama Pandulo	Email: <u>PanduloS@nsi.com.na</u>	205 Gold Street, Windhoek, Namibia
7	TBS (Tanzania)	Angela K Charles	Email: angela.charles@tbs.go.tz Tel: +255714215038	Tanzania bureau of standards, Ubungo, Sam Nujoma – Morogoro road junction, Dar es salaam
8	ZMA (Zambia)	Natasha Sichone	Email: <u>sichonenatasha@gmail.com</u> Tel: +260968862190	HQ Plot #2387 Longo-longo Road P.O BOX 30989 Lusaka, Zambia
9	BOBS (Botswana)	Ntima Pamidzani	Email: <u>ntima@bobstandards.bw</u> +26772607660	BOBS, Botswana Bureau of Standards, Private Bag BO48, Main Airport Road, Plot No. 55745, Gaborone - Botswana

Table 1 : List of participating laboratories

2.2 Form of comparison

The comparison was primarily carried out through calibration of the artifacts which are 2 external micrometers (range: 0-25 mm and 50-75mm). The sequence of measurements was as in table 2. The comparison consisted of one round. Every Laboratory was to have a period of one month in which to i) receive the artifact ii) perform measurements and iii) send the artifacts to the next participant. However there were some changes to the schedule due to covid-19 protocols.

2.3 Time Schedule

The commencement date of the intercomparison was July 2019 when NMISA took the first measurements. Malawi was the last laboratory in the loop to take measurements. After all laboratories had taken measurements, the artefacts were send to NMISA for measurements to check the stability of the artefacts. During the Virtual AFRIMETS TCL meeting held in 2021, it was further agreed that participants should start submitting results to the pilot lab soon after the participant had taken measurements. When measurements were completed participants were given deadline date for submitting the results.

Table 2: Actual Schedule of Comparison							
COUNTRY/ LAB	DATE						
South Africa (NMISA)	08/07/2019						
Mauritius (MSB)	16/09/2019						
Tanzania (TBS)	09/10/2019						
Zambia (ZMA)	24/01/2020						
Zimbabwe (SIRDC)	30/05/2020						
Botswana (BOBS)	30/06/2020						
Namibia (NSI)	07/10/2020						
Mozambique (INNOQ)	13/04/2021						
Malawi (MBS)	07/07/2021						
South Africa (NMISA)	13/01/2022						

Table 2: Actual Schedule of Comparison

3 Description of Artefacts

PTB sponsored the purchase of artifacts. NMISA was tasked to source for the artefacts. The artefacts were 2 external micrometers shown in figure 1.1 and figure 1.2, and a 50mm micrometer setting piece shown in Figure 1.2.

Figure 1.1 : Photograph of the 0-25mm micrometer

Figure 1.2 : Photograph of the 50-75 mm micrometer.

Table 3 shows the range, resolution as well as the thermal expansion coefficient of the artifacts

Artefact		Make	Serial	Range	Resolution	Expansion
			Number	(mm)	(mm)	Coefficient (10 ⁻⁶ /K)
Micrometer		ESMET	0207124456	50-75mm	0.01	11.5 ± 1.0
Micrometer		ESMET	161202229	0-25mm	0.001	11.5±1.0
Micrometer	setting	ESMET	-	50mm	-	11.5±1.0
piece						

4 Measurement Instructions

4.1 Measurand

The Calibration was performed on the length scale of the external micrometer (Consultative Committee for length (CCL) category 6.1.1 so that the error of indicated size is measured [4].

4.2 Calibration Instruction

0-25mm Micrometer:

Screw thread Error of indicated size at the prescribed positions was determined by measuring 10 Gauge blocks which have the lengths in mm of (2.5, 5.1, 7.7, 10.3, 12.9, 15, 17.6, 20.2, 22.8 and 25 mm). Micrometer was to be zeroed before measurement. Zero reading was to be recorded after zeroing. Repeatability was measured at 15mm.

50-75mm Micrometer:

Screw thread Error of indicated length at the prescribed positions was determined by measuring Gauge blocks which have the lengths in mm of (50, 60, 70 and 75 mm). The Origin was to be set to 50 mm and recorded after being set. Repeatability was measured at 60mm.

50mm Micrometer setting piece:

Centre length of the micrometer setting piece was to be measured in a horizontal or vertical orientation.

5 Methods used

5.1 External Micrometers (0-25mm and 50-75mm)

All participants used the comparison with gauge blocks method to calibrate the two micrometers as stated in the measurements instruction section of the protocol. For the 50-75mm micrometer, the measurement instructions did not specify whether the Origin was to be set to 50mm using the provided setting rod or the participants' own equipment. All participants however indicated that they used a 50mm gauge block to set the origin. This might have been because this had been discussed during the 2019 intercomparison training workshop.

5.2 Micrometer setting piece (50mm)

The use of different equipment and techniques for measuring the micrometer setting piece resulted in participants having different uncertainties. Table 4 shows equipment used.

Metrology Institute	Method/Equipment used
BOBS (Botswana)	Gauge blocks and Trimos Universal Machine
ZMA (Zambia)	Height Measuring Machine
SIRDC-NMI (Zimbabwe)	Gauge blocks and Dial comparator
TBS (Tanzania)	Universal Length Machine
NMISA (South Africa)	Labmaster Universal measuring machine
MSB (Mauritius)	Gauge blocks and Micrometer
MBS (Malawi)	Did not measure setting rod
NSI (Namibia)	Digital Calipers
INNOQ (Mozambique)	Vernier Calipers

Table 4: Methods and equipment used for measuring micrometer setting piece

6 Results

The measurements results for the micrometers and setting piece are presented in tables 5 to 7 and Fig. 2.1 to Fig. 4.

	Micrometer measured length (X) /mm								
Nominal (mm)	NSI	SIRDC- NMI	INNOQ	BOBS	MSB	ZMA	TBS	NMISA	MBS
2.500	2.501	2.501	2.490	2.500	2.501	2.500	2.500	2.501	2.500
5.100	-	5.101	5.090	5.100	5.101	5.101	5.100	5.101	5.104
7.700	-	7.701	7.697	7.700	7.700	7.701	7.700	7.701	7.701
10.300	-	10.301	10.300	10.300	10.301	10.302	10.300	10.301	10.300
12.900	-	12.900	12.900	12.900	12.901	12.901	12.900	12.900	12.900
15.000	15.001	15.001	14.997	15.000	15.001	15.000	15.000	15.000	15.002
17.600	-	17.602	17.597	17.600	17.600	17.601	17.600	17.600	17.600
20.200	-	20.201	20.020	20.200	20.202	20.201	20.200	20.200	20.200
22.800	-	22.800	22.800	22.800	22.802	22.801	22.799	22.800	22.802
25.000	25.001	25.001	24.993	25.000	25.002	25.000	25.000	25.000	25.001
		Reported	l Uncertain	ties of Meas	urement ((U)/mm			
Nominal									
(mm)	NSI	SIRDC	INNOQ	BOBS	MSB	ZMA	TBS	NMISA	MBS
0 to)								
25.000	0.001	0.002	-	0.0048	0.002	0.001	0.006	0.0013	0.003

Table 5: 0-25mm Micrometer results

NB: INNOQ did not provide a valid uncertainty budget to support stated uncertainties

Table 6: 50-75mm Micrometer results

		Microme	ter measur	ed length (X	K) /mm				
Nominal (mm)	NSI	SIRDC- NMI	INNOQ	BOBS	MSB	ZMA	TBS	NMISA	MBS
50.000	50.000	50.000	50.000	50.000	50.000	50.000	50.000	50.000	50.030
60.000	60.000	60.000	60.000	60.000	60.002	60.000	60.000	60.000	60.000
70.000	70.000	70.000	70.000	70.000	70.002	70.000	70.000	70.000	70.000
75.000	75.000	75.000	75.000	75.000	75.002	75.000	75.000	75.000	75.000
		Reported	Uncertaint	ies of Measu	urement (U)/mm			
Nominal (mm)									MBS
50 to 75	0.010	0.007	_	0.008	0.004	0.010	0.006	0.012	0.010

NB: INNOQ did not provide a valid uncertainty budget to support stated uncertainties

Table 7: 50mm setting piece

		Micrometer setting Piece measured length (X) /mm								
Nominal (mm)	NSI	SIRDC- NMI	INNOQ	BOBS	MSB	ZMA	TBS	NMISA	MBS	
50.000	50.010	50.002	50.050	50.000	50.000	50.000	50.000	50.001	NA	
		Reported	Uncertaint	ies of Meas	surement (U)/mm				
Nominal (mm)	-								MBS	
50.000	0.003	0.004	-	0.008	0.004	0.03	0.002	0.0005	NA	

NB: INNOQ did not provide a valid uncertainty budget to support stated uncertainties. NSI reported uncertainty did not take into account contribution of the Caliper used to measure the setting piece.

7 Analysis

7.1 Calculation of reference values

The weighted mean of the participants' results was used for the calculation of reference values after elimination of outliers.

The reference value being

$$\chi_{ref} = \frac{\sum u_{x_i}^{-2} x_i}{\sum u_{x_i}^{-2}} \tag{1}$$

Combined uncertainty of reference value

$$u_{c_{ref}} = \frac{1}{\sqrt{\sum u_{x_i}^{-2}}}$$
(2)

Expanded uncertainty

$$u_{exp_{ref}} = 2\frac{1}{\sqrt{\sum u_{x_i}^{-2}}} \tag{3}$$

The weighted mean method requires that reference value be calculated after elimination of outliers using the remaining consistent data set [5]. Any result with an E_n value > 1 with respect to the reference value is excluded and the reference value and E_n value ratio recalculated using the remaining results. For a case where more than one laboratory result was to be excluded the test was performed one at a time [5, 6]. Another way of checking for consistency of a data set is to use the Birge ratio [5]. A data set is consistent if the Birge ratio is less than the Birge Criterion.

The Birge ratio R_B is derived from the least squares algorithms and the χ^2 -test

$$R_B = \frac{U_{ext}}{U_{int}} \tag{4}$$

Where $u_{int} = u_{cref}$ is the propagated internal uncertainty and u_{ext} is the external standard deviation

$$u_{ext} = \sqrt{\frac{1}{(n-1)} \cdot \frac{\sum_{i=1}^{n} \left(\left(x_{i} - \bar{x}_{ref} \right)^{2} \cdot \frac{1}{u^{2}(x_{i})} \right)}{\sum_{i=1}^{n} u^{-2}(x_{i})}}$$
(5)

The Birge ratio has an expectation value of $R_B = 1$, when considering standard uncertainties. For a coverage factor of k = 2, the expectation value is increased and the data in a comparison are consistent provided that

$$R_B < \sqrt{1 + \sqrt{\frac{8}{(n-1)}}} \tag{6}$$

where n is the number of laboratories. [5]

Equations (2), (4), (5) and (6) were used to check data used for reference value calculation for statistical consistency.

NSI data set for the 0-25mm micrometer were excluded from calculation of reference values because some measurements were not taken at the nominal values stated in the protocol.

INNOQ data sets were excluded from calculation of reference values because of the uncertainties which ranged from 0.001 to 11.112mm for micrometers and 28.896 mm for the micrometer setting Piece which were not explained.

MBS was excluded in reference value calculations for 50 mm position for the 50-75 mm micrometer, E_n value >1 during first iteration of the weighted mean method. It was also expected from the protocol that the origin be set at 50mm. No explanation was provided by the laboratory for the result at 50mm. Remaining statistically consistent data sets were used for the calculation of reference values for all artefacts. The internal consistency of the remaining datasets used was also confirmed by the Birge ratio test.

Excluding	Excluding values for NSI and INNOQ										
Reference	values			Subset consistency check							
Combined Xref Uref		Expanded Uref exp		U external	Birge Ratio	Birge Criterion					
2.5005	0.0007	0.0014		0.00020	0.31	1.47					
5.1011	0.0007	0.0014		0.00028	0.42	1.47					
7.7009	0.0007	0.0014		0.00014	0.21	1.47					
10.3014	0.0007	0.0014		0.00026	0.38	1.47					
12.9006	0.0007	0.0014		0.00020	0.31	1.47					
15.0003	0.0007	0.0014		0.00023	0.35	1.47					
17.6007	0.0007	0.0014		0.00027	0.41	1.47					
20.2008	0.0007	0.0014		0.00026	0.39	1.47					
22.8008	0.0007	0.0014		0.00030	0.45	1.47					
25.0004	0.0007	0.0014		0.00028	0.42	1.47					

Table 8: 0-25mm reference values.

Table 9: 50-75mm reference values

Excluding	Excluding INNOQ and (MBS 50mm position)											
Reference	e Values			Data consistency Check								
Xref	Combined Uref	Expanded Uref		External Uext	Birge Ratio	Birge Criterion						
50.0000	0.0026	0.0051		0.00000	0.00	1.47						
60.0008	0.0025	0.0050		0.00037	0.15	1.44						
70.0008	0.0025	0.0050		0.00037	0.15	1.44						
75.0008	0.0025	0.0050		0.00037	0.15	1.44						

Table 10: 50mm Setting piece reference values.

Excluding I	Excluding INNOQ, NSI and (MBS did not measure setting piece)									
Reference Values Data cons					cy Check					
Xref	Combined Uref	Expanded Uref		External Uext	Birge Ratio	Birge Criterion				
50.0007	0.0005	0.0010		0.000087	0.18	1.50				

7.2 Calculation of Degrees of Equivalence

Normalised error (E_n) values were used to calculate the degree of equivalence among participants.

$$E_n = \frac{x - x_{ref}}{2 \cdot \sqrt{\left(u_{x_c}^2 - u_{c_{ref}}^2\right)}}$$
(7)

$$\overline{E_n} = \frac{x - x_{ref}}{\sqrt{\left(u_{x_{exp}}^2 + u_{ref_{exp}}^2\right)}}$$
(8)

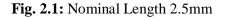
Where x_{ref} is the reference value and $u_{ref exp}$ is the reference expanded uncertainty. and $u_{c ref}$ is the reference combined uncertainty. *x* and $u_{x exp}$ are the reported value and expanded uncertainty, respectively, for a participating laboratory.

For laboratories that contributed to the calculation of reference values, the E_n value formula with a minus in the denominator was used to account for the correlation of the uncertainties. E_n value with a plus sign was used for the labs excluded from reference value calculation.

	En Value	En Values									
Nominal (mm)	NSI	SIRDC- NMI	INNOQ	BOBS	MSB	ZMA	TBS	NMISA	MBS		
2.500	0.22	0.14	-	-0.05	0.14	-0.32	-0.04	0.23	-0.08		
5.100	-	-0.03	-	-0.12	-0.03	-0.08	-0.09	-0.05	0.49		
7.700	-	0.04	-	-0.09	-0.23	0.09	-0.07	0.06	0.02		
10.300	-	-0.10	-	-0.14	-0.10	0.43	-0.11	-0.16	-0.23		
12.900	-	-0.15	-	-0.06	0.12	0.30	-0.05	-0.25	-0.09		
15.000	0.28	0.18	-	-0.03	0.18	-0.21	-0.03	-0.14	0.29		
17.600	-	0.36	-	-0.07	-0.17	0.23	-0.06	-0.30	-0.11		
20.200	-	0.06	-	-0.08	0.33	0.15	-0.06	-0.34	-0.13		
22.800	-	-0.20	-	-0.08	0.33	0.17	-0.15	-0.33	0.21		
25.000	0.26	0.16	-	-0.04	0.43	-0.25	-0.03	-0.17	0.11		

Table 11: 0-25mm Micrometer normalized Errors (En) values for the participants

Table 12: 50-75mm Micrometer En values for the participants


	En Values										
Nominal (mm)	NSI	SIRDC- NMI	INNOQ	BOBS	MSB	ZMA	TBS	NMISA	MBS		
50.000	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	1.45		
60.000	-0.04	-0.06	-	-0.05	0.20	-0.04	-0.07	-0.03	-0.04		
70.000	-0.04	-0.06	-	-0.05	0.20	-0.04	-0.07	-0.03	-0.04		
75.000	-0.04	-0.06	-	-0.05	0.20	-0.04	-0.07	-0.03	-0.04		

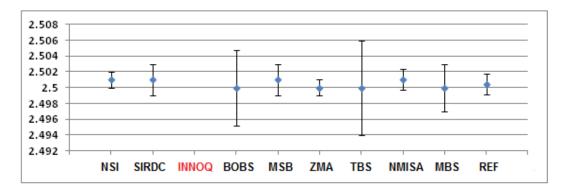
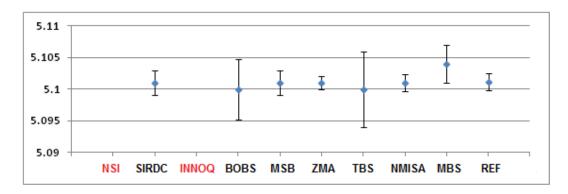

	En Values										
Nominal (mm)	NSI	SIRDC- NMI	INNOQ	BOBS	MSB	ZMA	TBS	NMISA	MBS		
50.000	1.52	0.159	-	-0.046	-0.093	-0.012	-0.062	0.001	N/A		

Table 13: 50mm Micrometer Setting Piece En values for the participants


8 Graphical Summary of results

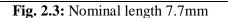

0-25mm Micrometer

Fig. 2.2: Nominal Length 5.1mm

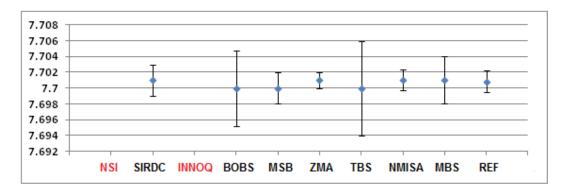


Fig. 2.4: Nominal length 10.3 mm

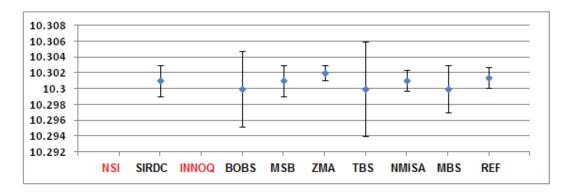
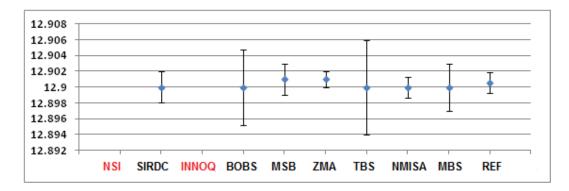



Fig. 2.5: Nominal Length 12.9mm

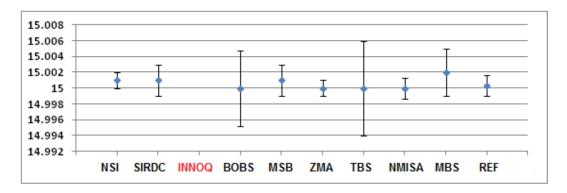


Fig. 2.7: Nominal length 17.6mm

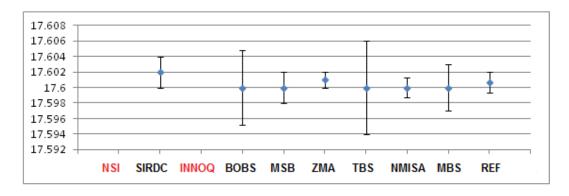
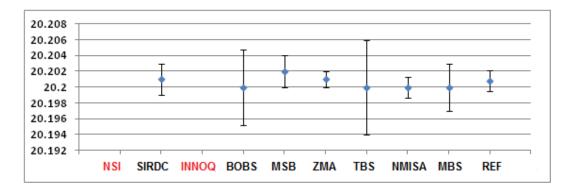
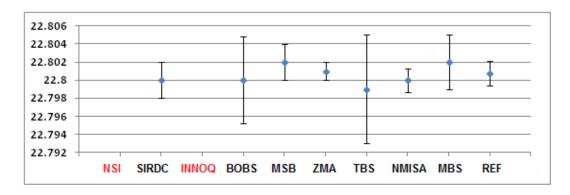
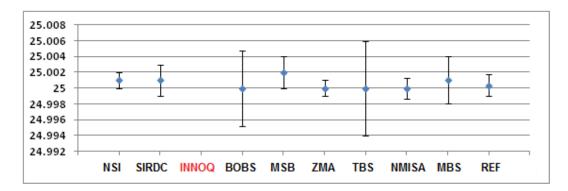
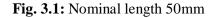



Fig. 2.8: Nominal Length 20.2 mm

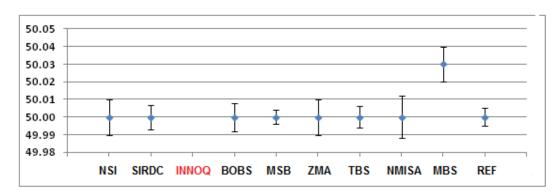

Fig. 2.9: Nominal Length 22.8mm

Fig. 2.10: Nominal Length 25mm

50-75mm Micrometer

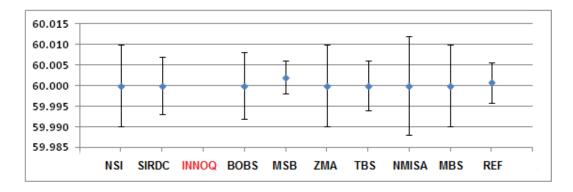


Fig. 3.2: Nominal length 60mm

Fig. 3.3: Nominal Length 70mm

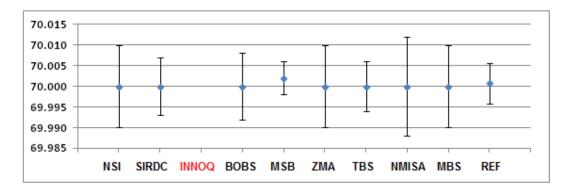
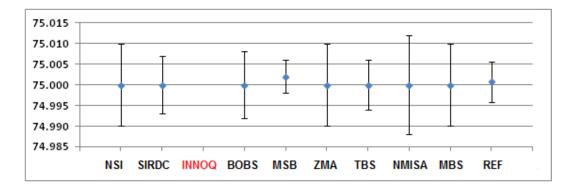
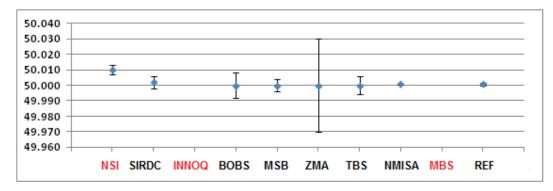




Fig. 3.4: Nominal Length 75mm

Micrometer setting piece

9 Conclusion

Nine African National Metrology Institutes participated in the PTB sponsored AFRIMETS.L-S6 External micrometers and setting rod interlaboratory comparison during the period 2019 to 2022. Due to covid-19 pandemic travel restrictions, artefacts had to be couriered in some cases instead of being hand carried as per initial plan. This resulted in some minor delays in the movement of artefacts due to customs clearance formalities. No damages to the artefacts were observed during the comparison. Overall the Interlaboratory comparison was successfully completed.

Measurements by one participant which were taken on nominal positions not stated in the protocol (for the 0-25mm Micrometer) were not included in the report. Results for another participant with uncertainties that were not supported by uncertainty budgets were not used in reference value calculation. One result at the 50mm position by one participant for the 50-75mm micrometer with En value greater than 1 during first iteration of the weighted mean method was not used in the calculation of reference values. At that position participants were expected to have set the origin to 50mm.

10 Recommendations

Laboratories with |En| values less than one may use their results to demonstrate competence in their calibration measuring capabilities while those with E_n values outside the acceptable range can investigate the root cause of the disagreement with the view of making corrective actions.

It is recommended that protocols and reports be properly reviewed to ensure that all measurement requirements are understood. NMIs are also encouraged to report and send results in the same format for easier analysis by the pilot laboratory.

11 Acknowledgement

The SADCMET TCL acknowledges with thanks

a. PTB for continued funding of the Dimensional interlaboratory comparisons and trainings.

Final Report

- b. SIRDC and TBS for hosting the initial and closing workshops
- c. All NMIs for participating in the ILC

REFERENCES

[1] Supplementary comparison. Comparison on Hand Instruments (0-25mm and 50-75mm External micrometers [Online]. Available from:

http://www.sadcmet.org/Comparisons/SiteAssets/Pages/SADCMET/EXTERNAL%20MICR OMETERS%202019%20PROTOCOL.pdf[Accessed:18 August 2022]

[2] Measurement Comparisons in the CIPM MRA (CIPM MRA-D05 Vers 1.6)[Online]. Available from: <u>https://www.bipm.org/utils/common/documents/CIPM-MRA/CIPM-MRA-D-05.pdf</u>[Accessed: 10 April 2019]

[3] CIPM MRA Guidelines for Authorship of Key, Supplementary and Pilot study comparison reports (CIPM MRA- G-04 vers 1[Online]. Available from:

https://www.bipm.org/utils/common/documents/CIPM-MRA/CIPM-MRA-G-04.pdf [Accessed: 10 April 2019]

[4] BIPM (2020). CCL Length Services Classification (DimVIM) Ver. 12[Online]. Available from:

https://www.bipm.org/documents/20126/41414840/Classification+of+services+in+Length/ [Accessed:18 August 2022]

[5] CCL-GD-3.2 KC Report Template[Online]. Available from: https://www.bipm.org/documents/20126/30125612/CCL-GD-3.2 KC Report Template.doc [Accessed:18 August 2022]

[6]KRISS(2020). Final Report APMP Key comparison APMP. L-K7 Calibration of line scales[Online]. Available from: <u>https://www.bipm.org/documents/20126/45451722/APMP.L-K7.pdf/</u>[Accessed:20 August 2022]

[7]BIPM (2021). Measurement comparisons in the CIPM MRA .[Online]. Available from: <u>https://www.bipm.org/documents/20126/43742162/CIPM-MRA-G-11.pdf/</u> [Accessed 19 January 2023]