

SIM.L-S2.2.n02

Gauge blocks measured by with mechanical probing techniques

SUPPLEMENTARY COMPARISON

© 2025, J. Campbell *et al*This report is published by the BIPM.

Original content from this Report may be used under the terms of the <u>Creative Commons Attribution 4.0 International (CC BY 4.0) Licence</u>.

Any further distribution of this Report must be cited as:

J. Campbell et al 2025 CIPM MRA Comparison reports 04002

https://doi.org/10.59161/ZECS3134

The CIPM MRA Comparison reports are made available under the Creative Commons Attribution International licence:

Attribution 4.0 International (CC BY 4.0)

By using this Report, you accept to be bound by the terms of this licence

(https://creativecommons.org/licenses/by/4.0/).

Distribution – you may distribute the Report according to the stipulations below.

Attribution – you must cite the Report.

Adaptations – you must cite the original Report, identify changes to the original and add the following text: This is an adaptation of an original Report by the Author(s). The opinions expressed and arguments employed in this adaptation should not be reported as representing the views of the Authors.

Translations – you must cite the original Report, identify changes to the original and add the following text: In the event of any discrepancy between the original work and the translation, only the text of the original Report should be considered valid.

Third-party material – the licence does not apply to third-party material in the Report. If using such material, you are responsible for obtaining permission from the third-party and of any claims of

Report on SIM Supplementary Comparison Gauge blocks measured by with mechanical probing techniques

SIM.L-S2.2.n02

Final Report

J. Campbell (INTI), B Eves (NRC), C Castellanos (CENAM), R Morales (DICTUC), D Cano (INACAL), W Barros (INMETRO), E Stanfield (NIST), David Plazas (INM)

Nov 2025

Table of Contents

D	ocumei	nt control	2
1	Intr	oduction	2
1	Org	anization	3
	1.1	Participants	3
	1.2	Schedule	4
2	Arte	efacts	4
	2.1	Description of artefacts	4
	2.2	Stability of artefacts	5
	2.3	Condition of artefacts at start/end of comparison	6
3	Mea	asuring instructions	8
	3.1	Measurands	8
4	Res	ults	8
	4.1	Results and standard uncertainties as reported by participants	8
	4.2	Measurement uncertainties	12
	4.3	Changes to results after Draft A.1	12
5	Ana	lysis	12
	5.1	Calculation of the comparison reference value	12
	5.2	Calculation of Degrees of Equivalence	13
	5.3	Discussion of results	14
6	App	endices	15
	6.1	Appendix A: Equipment and measuring processes of the participants	15
	6.2	Appendix B: Measurements Uncertainly Budgets of the participants	20

Document control

Version Draft A.1 Issued on 16 April 2024.
Version Draft A.2 Issued on 27 May 2024.
Version Draft B Issued on Aug 2024.

1 Introduction

The metrological equivalence of national measurement standards and of calibration certificates issued by national metrology institutes is established by a set of key and supplementary comparisons chosen and organized by the Consultative Committees of the CIPM or by the regional metrology organizations in collaboration with the Consultative Committees.

During the June 2019 SIM Length Working Group meeting, it was decided to run a supplementary comparison of the measurement of long gauge blocks by mechanical comparison, SIM.L-S2.2.n02, with INTI, the National Metrology Institute (NMI) of Argentina as pilot of the comparison, and the National Research Council (NRC) Canada as co-pilot.

INTI provided the gauge blocks, registered the participants, processed the results and generated the reports in collaboration with NRC who provided the reference interferometry measurements for the gauges and served as a neutral third party for collection of the results.

1 Organization

1.1 Participants

Table 1. List of participant laboratories and their contacts.

Laboratory Code	Contact person, Laboratory	Phone, Fax, email
CENAM	Miguel Viliesid Alonso	Tel. +52 442 211 0500
CLIVAIVI	Carlos Colin Castellanos	Fax +52 442 211 0500
	CENAM, Centro Nacional de Metrología - km 4,5 Carretera	e-mail: mviliesi@cenam.mx
	a los Cues, El Marqués	e-mail: ccolin@cenam.mx
	CP 76241, Querétaro, MEXICO	
DICTUC	Roberto Morales	Tel. 56 2 354 4624
	Patricia Suazo	Fax 56 2 354 4624
	DICTUC, Laboratorio Nacional de Longitud	e-mail: rmoralez@dictuc.cl
	Avenida Vicuña Mackenna 4860 – Macul – Santiago –	e-mail: psuazo@dictuc.cl
	(edificio nº 9 metrología), CHILE	
INACAL	Daniel Cano	Tel. 511 640 8820 Ext 1513
	INACAL, Instituto Nacional de la Calidad, Calle De La Prosa	e-mail: jdcano@inacal.gob.pe
	N° 150 San Borja, Lima 41, PERÚ	
INM	Victor Hugo Gil	Tel. (571) 2542222
	David Plazas	e-mail: vgil@inm.gov.co
	Jorge Luis Galvis Arroyave	e-mail: dalplazas@inm.gov.co
	INM, Instituto Nacional de Metrología de Colombia	e-mail: jlugalvis@inm.gov.co
	Av. Carrera 50 No 26 - 55 Int. 2 Bogotá, D.C COLOMBIA	
INMETRO	Wellington S. Barros	Tel. +55 21 2679-9271
	INMETRO, Instituto Nacional de Metrologia,	Fax +55 21 2679-9207
	Normalização e Qualidade Industrial.	e-mail:
	Av. N.Sra. das Graças, 50 – Villa Operária –Xerém – Duque	wsbarros@inmetro.gov.br
	de Caixas – RJ. CEP 25250-020, BRASIL	
INTI (pilot)	Jorge Campbell (pilot)	Tel. +54 11 4724 6200 Ext: 7267
	INTI, Instituto Nacional de Tecnología Industrial,	Fax +54 11 4713 4140
	Av.General Paz 5445, B1650WAB San Martin ARGENTINA	e-mail: jcampbell@inti.gob.ar
NIST	Eric Stanfield	Tel. 1 301-975-4882
	NIST, National Institute of Standards and Technology	Fax. 1 301 975-8291
	Building 220, Room A109 Gaithersburg, MD 20899-8211	e-mail: eric.stanfield@nist.gov
	USA	
NRC (co-pilot)	Brian Eves	Tel. 1 613 991 3279
	NRC, National Research Council 1200 Montreal Road,	e-mail:
	Building M36 Ottawa, Ontario K1A OR6 Canada	brian.eves@nrc-cnrc.gc.ca

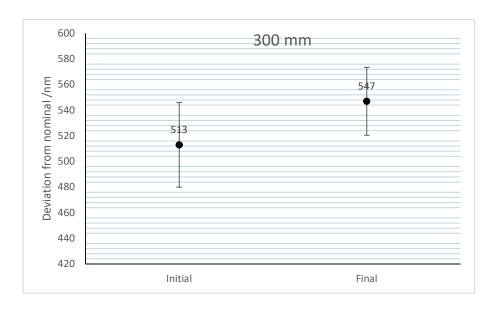
1.2 Schedule

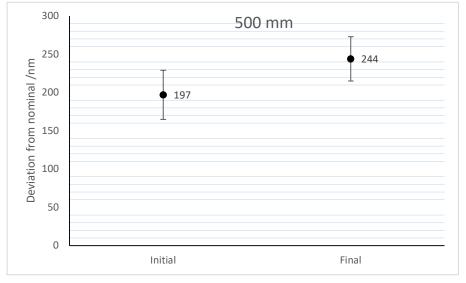
Table 2. Schedule of the comparison.

Laboratory	Original schedule	Date of measurement	Results received
NRC	January 2020	May 2021	May 2021
NIST	July 2020	June 2021	January 2024
INTI	February 2020	September 2021	February 2023
DICTUC	March 2020	May 2022	June 2022
INM	April 2020	September 2022	September 2022
INACAL	June 2020	November 2022	May 2023
CENAM	August 2020	April 2023	May 2023
INMETRO	October 2020	December 2023	December 2023
NRC	November 2020	July 2023	August 2023
INTI	December 2020	January 2024	January 2024

2 Artefacts

2.1 Description of artefacts


Two long gauge blocks made of steel with rectangular cross section according to the International Standard ISO 3650.


Table 3. List of artefacts.

Identification	Nominal length /mm	Expansion coefficient /10 ⁻⁶ K ⁻¹	Manufacturer
None	300	11.5 ± 0.1	Hommel Werke
87333	500	11.2 ± 0.1	КОВА

2.2 Stability of artefacts

The stability of the artefacts was established using the initial and final interferometric length measurements of NRC. The difference between the measurements were within the 95% confidence level of the measurement uncertainty and the artifacts are considered stable for the purposes of this comparison.

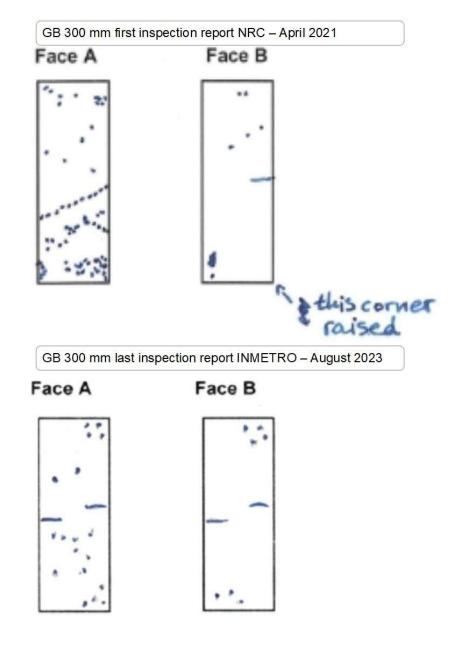
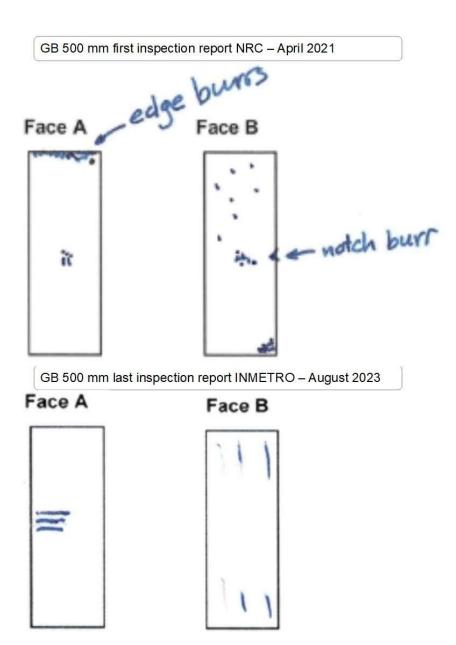


Figure 1. Stability of the (top) 300 mm gauge block and (bottom) 500 mm gauge block with serial number 87333 during comparison: initial and final reference length measurements of the co-pilot laboratory. Uncertainty bars show standard uncertainty (k=1).


2.3 Condition of artefacts at start/end of comparison

No damage was observed during the circulation.

The inspection reports of the first and last laboratory of the round are shown below in figure 2. (NRC and INMETRO)

Figure 2.a The inspection reports for the first and last laboratory to measure the 300 mm block (NRC and INMETRO).

Figure 2.b The inspection reports for the first and last laboratory to measure the 500 mm block (NRC and INMETRO).

3 Measuring instructions

3.1 Measurands

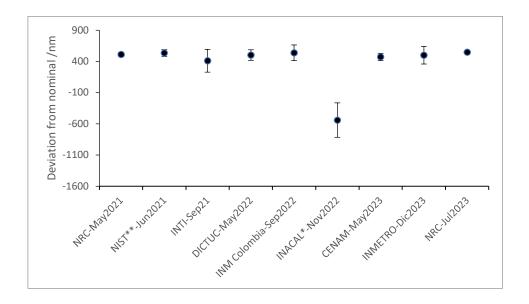
The measurand is the deviation of the central length of the GB with respect to its nominal length, as defined in ISO 3650. Deviation of the central length l is the difference between the measured central length l_c and the nominal length l_n calculated as:

$$l = l_{\rm c} - l_{\rm n}$$

4 Results

4.1 Results and standard uncertainties as reported by participants

The deviation from nominal length for the gauge blocks is shown in table 4 and the standard uncertainties reported by the participants is shown in table 5.


Table 4. Deviation from nominal length (in nm) of the steel gauge blocks, as reported by the laboratories.

	Gauge blocks r	nominal length
	300 mm	500 mm
Lab	Deviation from no	minal length (nm)
NRC	513	197
NIST	535	165
INTI	452	50
DICTUC	503	470
INM	538	409
INACAL	-540	-1090
CENAM	473	324
INMETRO	500	140
NRC	547	244

Table 5. Standard uncertainties (in nm), as reported by the laboratories.

	Gauge blocks i	nominal length		
	300 mm	500 mm		
Lab	Standard uncertainties (nm)			
NRC	33	32		
NIST	55	86		
INTI	182	287		
DICTUC	85	125		
INM	126	228		
INACAL	275	335		
CENAM	59	95		
INMETRO	140	216		
NRC	27	29		

Shown in figure 3 are the results for both gauge blocks. The error bars represent the standard uncertainty of the measurements.

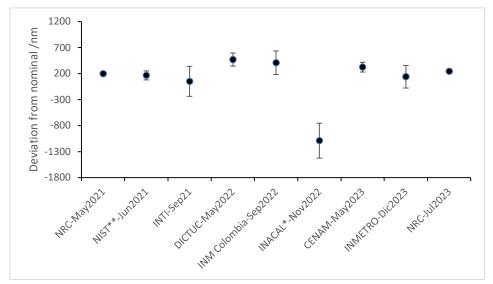


Figure 3. Deviation from nominal length for the 300 mm steel gauge block (top) and the 500 mm steel gauge block (bottom). The error bars represent the standard uncertainty bars.

* values revised before draft A

Because the results sent by INACAL were far from the consensus values (and were of the opposite sign) the co-pilot (who collected and processed the data) invited them to review them.

Hi Daniel, I've just finished aggregating the results for the SIM.L-S8.2019 comparison. Please have a careful look at your results as there appears to be a discrepancy between them and the consensus values. Your measurement values as communicated to me are as follows:

Block Value /nm Uncertainty (k=2) /nm 300 mm -1180 550 500 mm -210 670 Brian EVES - February 01, 2024 I have reviewed my results and it appears that there is a sign error when performing the calculation, please consider these measurements.

DANIEL CANO URIBE - February 13, 2024

** revised after draft A

NIST provided lengths of the blocks with a correction for the orientation of the block and they wished to change the orientation reported from vertical to horizontal.

Brian: Just curious, is this data shown all based on the vertical or horizontal length? Mechanical, I suspect, could be done on a horizontal length measuring machine instead of a vertical comparator like we use.

Eric Stanfiel - February 16, 2024

The protocol states that the measurand is the central length deviation as specified in ISO 3650. In ISO 3650 Section 5.4 it states that the measurand for gauges under 100 mm is specified with the gauges oriented vertically while the measurand for gauges greater than 100 mm the gauges are oriented horizontally. I don't actually know how the individual labs measured their master gauges but they should be reporting the length for the horizontal orientation.

..... Brian EVES - February 16, 2024

... For steel, we use in simplified form from vertical to horizontal $+0.18E-06L^2$. That would be +16 nm for the 300 mm and +45 nm for the 500 mm.

For horizontal orientation our results should be:

300 mm +535 nm 500 mm +165 nm Eric Stanfield - February 16, 2024

4.2 Measurement uncertainties

Shown in table 6 are the uncertainty equations for the CMCs of the participants. Note that the uncertainty equations have been reformatted into quantity equations as necessary. The uncertainty budgets for the submitted results can be found in Appendix B.

Table 6. Expanded uncertainty equations for the CMCs of the participants as listed in the KCDB. The uncertainty equations have been reformatted into quantity equations where necessary.

Lab	CMC equation
NIST	31 nm + 0.26e-6 L
INTI	Q[150 nm, 1.1e-6 L]
DICTUC	Q[81 nm, 0.46e-6 L]
INM	Q[65 nm, 0.91e-6 L]
INACAL	-
CENAM	Q[21 nm, 0.49e-6 L]
INMETRO	Q[100 nm, 0.70e-6 L]
NRC	Q[30 nm, 0.10E-6 L]

4.3 Changes to results after Draft A.1

The NIST values for both gauges were revised after the release of draft A.1. The changes were minor and did not impact the agreement between the NIST results and the comparison reference value. The results shown in tables 4 and 5 are the modified results.

5 Analysis

5.1 Calculation of the comparison reference value

The comparison reference values for the measurands are derived from a weighted fit of the initial and final interferometry measurements performed by NRC. The weights are calculated according to

$$w_i = C \cdot \frac{1}{\left[u(x_i)\right]^2},\tag{1}$$

where the measurements are given by the measured values, x_i , and their associated standard uncertainty $u(x_i)$. The normalising factor, C, is

$$C = \frac{1}{\sum_{i=1}^{J} \left(\frac{1}{u(x_i)}\right)^2},$$
(2)

where the total number of NRC measurements, in this case only two, is represented by I. The calculated weighted mean, $\overline{\mathcal{X}}_w$, is simply

$$\bar{x}_{w} = \sum_{i=1}^{I} w_{i} \cdot x_{i} , \qquad (3)$$

and the associated uncertainty of the weighted mean is

$$u(\bar{x}_w) = \sqrt{\frac{1}{\sum_{i=1}^{I} \left(\frac{1}{u(x_i)}\right)^2}} = \sqrt{C}.$$
 (4)

The reference values and the associated uncertainties for the measurands are shown in table 7.

Table 7. Comparison reference value $\overline{\mathcal{X}}_w$ and associated standard uncertainty $u(\overline{x}_w)$.

	Deviation from nominal value /nm		
	300 500		
$\overline{\mathcal{X}}_{_{\mathcal{W}}}$ / nm	534	223	
$u(\overline{x}_w)$ / nm	21	21	

The initial and final reference measurements at NRC were performed by different operators and used independently-evaluated phase corrections as well as separate calibrations of the laser wavelengths, temperature sensors, barometer and hygrometer. The dominant uncertainty contributions are thus expected to be uncorrelated between these two measurements, which is why we use the usual weighted mean to combine them. If the initial and final reference measurements were instead treated as fully-correlated, the standard uncertainty of the comparison reference value would increase to ca. 30 nm. This increase does not affect the outcome of the comparison: the same participant results are deemed equivalent with either choice of reference value calculation.

5.2 Calculation of Degrees of Equivalence

The Degree of Equivalence, DoE, for a laboratory result x_i is calculated simply as $\mathcal{X}_i = \overline{\mathcal{X}}_w$. The uncertainty of the DoE is calculated using the normal rules for the propagation of uncertainty. Note that unlike a key comparison the reference value is independent of the participating laboratories results. The normalized error is given by

$$E_n = \frac{x_i - \overline{x}_w}{2\sqrt{u^2(x_i) + u^2(\overline{x}_w)}}.$$
 (5)

The DoE and E_n values for the two gauge blocks are shown in table 7.

Table 8. The degrees of equivalence $X_i = \overline{X}_w$, the associated expanded uncertainty $u(x_i - \overline{x}_w)$, and the normalized error for both gauge blocks.

	300			500	
Degree of Equivalence /nm			Degree of Equivalence /nm		_
$x_i - \overline{x}_w$	$u(x_i-\bar{x}_w)$	En	$x_i - \overline{x}_w$	$u(x_i-\bar{x}_w)$	E_n

NIST	1	120	0.01	-58	180	-0.33
INTI	-123	370	-0.34	-173	580	-0.30
DICTUC	-31	180	-0.18	247	250	0.97
INM	4	250	0.02	186	460	0.41
INACAL	-1074	550	-1.95	-1313	670	-1.96
CENAM	-61	130	-0.49	101	190	0.52
INMETRO	-34	280	-0.12	-83	430	-0.19

5.3 Discussion of results

The only disagreement between the comparison reference values and the participating laboratories is for both results of INACAL. Both measurands are shorter than the reference by approximately a micrometre. INACAL revised their submission before the release of draft A.1.

6 Appendices

6.1 Appendix A: Equipment and measuring processes of the participants

Participant	Equipment
NRC	Interferometer (reference value)
NIST	Two-Point Contact Comparator Mahr/Federal 130B-16 (Vertical operating device)
INTI	Heterodyne Laser Measurement System Hewlett Packard 5518A
DICTUC	Universal measuring machine MAHR ULM 600E
INM-Colombia	Tesa UPD comparator - (Vertical operating device)
INACAL	Horizontal Measuring Instrument LABCONCENPT Nano 1100
CENAM	Vertical Gauge Blocks Comparator Model : UPD
INMETRO	Aus Jena 1-D Universal Measuring Machine

NRC

Туре.	Model.	Serial number.	Measurement range mm	Date of last calibration
Twyman-Green Interferometer	NRC Gauge- Block Interferometer	N/A	0 to 1000	N/A

Instrument description: The NRC Gauge-Block Interferometer, constructed and developed inhouse, is a Twyman-Green interferometer employing frequency-stabilized HeNe lasers at 544 nm, 612 nm, and 633 nm. Readout is by phase-stepping interferometry. Part temperature is monitored by thermistors in copper blocks held in contact with the gauge near the Airy points.

Type of instrument: Twyman-Green Interferometer.

Traceability: To NRC's realization of the SI second.

Calibration method of your reference: The 633 nm laser was calibrated by beat-note comparison with an iodine-stabilized HeNe laser which is itself regularly calibrated using an optical frequency comb. The 544 nm and 612 nm lasers were calibrated using the optical frequency comb directly. The repetition rate and carrier-envelope offset of the comb are traceable to NRC's realization of the SI second.

Interval of temperature during measurements: 19.984 °C to 20.017 °C

Orientation in which the block has been measured: Horizontal

NIST

Туре.	Model.	Serial number.	Measurement range mm	Date of last calibration
Two-Point Contact Comparator (Mahr/Federal)	130B-16		125 - 500	Computer program controlled based on number of measurements or every 3 months, whichever comes first.

Orientation: Vertical

INTI

1-D measuring machine (SIP MUL1000 Two-Point Contact), stylus, gauge blocks substitution and length interferometer (Heterodyne Laser Measurement System Hewlett Packard 5518A)

DICTUC

Instrument description:

Universal measuring machine inside an acrylic dome, with 5 pt100 contact temperature sensors, and software to correct deviations of the reference and to apply temperature corrections. The calibration is performed by mechanical comparison.

Type of instrument:

1-D horizontal comparator stylus. Measuring with gauge blocks substitution

INM-Colombia

Instrument description:

Mitutoyo steel block 300 mm and 500 mm Tesa UPD comparator, 0.5 mm to 500 mm Fluke Thermometer

Type of instrument:

- Mitutoyo Metric rectangular steel gage block set 300 mm and 500 mm
- Tesa UPD comparator; direct measurement of gauge blocks
- Fluke Therommeter

Orientation: Vertical

INACAL

Туре	Model	Serial number	Measurement range	Date of last calibration		
Gauge Block grade K	BM1-8R-K/YJ	808611	125 mm a 500 mm	18/1/2022		
Horizontal Measuring Instrument	LABCONCEPT NANO 1100	1136/V3	0 m a 1m (measurement comparison)	10/10/2017		
Digital thermometer	2490-2	H17060348	-200°C a 400°C	2022-05-24		
Instrument description	:	Gaug	ge Block of 125 mm to 50	0 mm		
Type of instrument:			Grade K (Steel)			
Traceability:		Centro Esp.	añol de Metrología (CEI	M-SPAIN)		
Calibration method of	your reference:	Comparison Interferometer laser He-Ne (633 nm)				
Interval of temperature measurements:	during	20°C±0,5°C				
Orientation in which th measured:	e block has been		Horizontally			
Instrument description	:	Universa	ersal length Measuring Machine 1D			
Type of instrument:		0ma1	m (measurement comp	easurement comparison)		
Traceability:			TRIMOS/METAS			
Calibration method of	your reference:	Соп	nparison with interferom	eter		
Instrument description		Digital thermometer				
Type of instrument:		-200 °C a 400 °C / 0,01 °C / PT100 class A				
Traceability:		INSTITUTO NA	NACIONAL DE METROLOGÍA (INACAL)			
Calibration method of	your reference:	Comparison with two Digital thermometer of uncertainty 0,0164 °C to 0,0199 °C				

CENAM

Type.	Model.	Serial number.	Measurement range mm	Date of last calibration
VERTICAL 6106E BLOCKS COMPADATOR	upd	7001	0.5-500	2021-12-15 cum-cc-740.

Instrument description: VERTICAL GOUGE BLOCKS COMPONITOR USING A GB DEFERENCE COLUMNITED BY INTERFEROMETRY	
Type of instrument: ECECTROMECHONICAL GOVGE BLOCK: COMPONDITOR	
Traceability UNIT LENGTH MÉXICO UNT LENGTH GERMANY	
Calibration method of your reference: GB BY INTERPERAMETRY	
Interval of temperature during measurements: GB 300 mm 20.05 - 20.09 °C GB 500 mm 19.98 - 20.12 °C (1.0000 P	ROBE
Orientation in which the block has been measured: UERT CAL	
Laboratory: CENOM (MEXILO) FACEB ATTIONER PR	20BF
Date: 2023-05-18 Name and Signature CARES COULD C	1
14	1

INMETRO

Type.	Model.	Serial number.	Measurement range	Date of last calibration
1-D measuring machine	Aus Jena	N/A	1000 mm	N/A
Thermometer	Onset	UX100-003	18 °C – 22°C	08/02/2023
Gauge Blocks Steel	Frank	BP 006 – BP008	100 mm – 1000 mm	02/01/2023
Laser Measurement System	Agilent	5519B		09/02/2023

Instrument description. Type of instrument:

1-D Universal Measuring Machine (Two-Point Contact);

Gauge Blocks Steel: 300 and 500 mm Grade K;

Laser Measurement System (He Ne - 633 nm).

Traceability:

Gauge Blocks - Laboratório de Interferometria - Laint (Inmetro);

Laser Measurement System - Laboratório de Interferometria - Laint (Inmetro);

Thermometer - Laboratório de Termometria - Later (Inmetro);

Calibration method of your reference: Gauge Block by Interferometry.

Orientation in which the block has been measured: Horizontallly.

Interval of temperature during measurements: 19,9 °C – 20,2 °C.

Laboratory: Laboratório de Metrologia Dimensional (Lamed) – Inmetro.

6.2 Appendix B: Measurements Uncertainly Budgets of the participants

NIST

Source of uncertainty x _i	Standard uncertainty u(x _i)	Sensitivity Coefficient. c _i ≡∂I/∂x _i	Combined Standard Uncertainty. $u_{i}\!\!\equiv c_i ~u(x_i)~(nm)$
Masters (I _S)	6.5 + 0.05L	1	(6.5 + 0.05L)
Reproducibility ¹ (I _R)	8.1 + 0.11L	1	(8.1 + 0.11L)
Scale (S)	3.0 nm	1	3.0
CTE _{Test} (α _T)	0.66 °C ⁻¹	0.1	0.066L
CTE _{Master #1} (α _S)	0.66 °C ⁻¹	0.1	0.066L
Thermometer (T)	0.01 °C	$\alpha_T - \alpha_S^2$	0
Thermal Gradient (δ) ³	0.003 °C	α _{AVG}	0.033L
Elastic Deformation (Δ)	7 nm	1	7
COMBINED STANDAR	D UNCERTAINTY	(k = 1)	u _{c LINEAR} = (10.3 + 0.15L) nm, L is in mm
Expanded Unc., U (k=2		c = 169 nm	
Range 125 mm to 500 mm			
Effective degrees of freedom			

INTI

Gage Block :	300 mm	NN	0,0000115 1/K
Source of uncertainty	Standard uncertainty	Sensitivity Coefficient	Combined Standard Uncertainty
xi	u(xi)	$ ci = \delta I/\delta xi$	ui=lcil.u(xi)
			μm
Calibration of the standard	0,06	1,00	0,06
Difference in lengths (standard desviation)	0,05	1,00	0,05
Difference in lengths (laser vaccum wavelengtl	6,00E-008	0,43	0,00
Temperature of standard gage	0,03	3,51	0,11
Temperature of unknow gage	0,03	3,45	0,11
Thermal expansion coefficient standard gage	5,77E-007	3959,30	0,00
Thermal expansion coefficient unknow gage	5,77E-007	2209,31	0,00
Misalignment	0.03	1	0,03
Zero detection on standard gage	0,01	1	0,01
Zero detection on unknow gage	0,01	1	0,01
Refractive index	4,00E-007	0,43	0,00
Suma cuadrática			0,03
COMBINED STANDARD UNCERTAINTY (k = 1	1)		0,18
Effective degrees of freedom			32
Gage Block:	500 mm	87333	0,0000112 1/K
Source of uncertainty	Standard uncertainty	Sensitivity Coefficient	Combined Standard Uncertainty
хi	u(xi)	$ ci = \delta I/\delta xi$	ui=lcil.u(xi)
			μm
Calibration of the standard	0,19	1,00	0,19
Difference in lengths (standard desviation)	0,06	1,00	0,06
Difference in lengths (laser vaccum wavelengtl	6,00E-008	0,15	0,00
Temperature of standard gage	0,03	5,75	0,15
Temperature of unknow gage	0,03	5,60	0,14
Thermal expansion coefficient standard gage	5,77E-007	59317,83	0,03
Thermal expansion coefficient unknow gage	5,77E-007	57567,83	0,03
Misalignment	0,03	1	0,03
Zero detection on standard gage	0,01	1	0,01
Zero detection on unknow gage	0,01	1	0,01
Refractive index		0 4 5	0.00
	4,00E-007	0,15	0,00
Suma cuadrática		0,15	0,00
Suma cuadrática COMBINED STANDARD UNCERTAINTY (k = Effective degrees of freedom		0,15	

DICTUC

Nominal length : 300 mm Material : Steel

Thermal exp. standard gauge block
Thermal exp. gauge block
Thermal exp. gauge block
Temperature during all calibration
Date of measurement

1.14*10-5 1/°C
1.1,15*10-5 1/°C
1.1,

Source of uncertainty	Standa		Sensitivity Coefficient.	Combined Standard Uncertainty.	
Xi	uncerta u(x _i)	-	c ≡∂l/∂xi	u _i ≡ c _i u(x _i)	
2000-2000 02 2 0 0 0 0 02 0			G =CI/CX	ui= u u(xi)	
u (/s) Calibration of standard gauge block	18,58	nm			
u (l cer) standard gauge block certificate	16,00	nm	1	18,58	
u (I der) standard gauge block drift	9,45	nm			
u (d) Measured difference between gauge blocks	24,98	nm]		
u (d com) gauge blocks comparator	20,00	nm			
u (d rep) repeated observations	2,76	nm]		
u (d res) comparator indication	2,89	nm	1	24,98	
u (d al) sensor alignment	8,16 nm		1		
u (d des) probing deviation	11,89	nm	1		
u (d defe) elastic deformation	0,18	nm	1		
u (αr) Thermal expansion standard gauge block	6,58E-07	1/°C	0		
u (αc) Thermal expansion gauge block	6,64E-07	1/°C	· ·	0	
u (θ) Temperature	0,029	°c			
u (cal) termistor certificate	0,025	°c			
u (res) indication termistor	0,003	°c	0	0	
u (△) thermal gradient	0,014	°c	1		
u ($\delta \theta$) Temperature difference between gauge blocks	0,012	°c	-lsas	39,84	
$u~(\delta a)$ Thermal exp. difference between gauge blocks	2,9E-07	1/°C	-lsθ	1,73	
Second order terms:					
Effects of temperature on standard gauge block θε αε	1,90E-08		ls	5,70	
Effects of temperature on gauge block $\theta_s \alpha$	1,92E-08	1/°C	ls	5,75	
Temperature difference between gauge blocks $\delta \! heta lpha$	7,67E-09	1/°C	ls	2,30	
COMBINED STANDARD UNCERTAINTY (k	51 nm				
CMC declared (k=1). This will be our official	al result			85 nm	
Effective degrees of freedom					

Nominal length : 500 mm Material : Steel

Thermal exp. standard gauge block
Thermal exp. gauge block
Temperature during all calibration
Date of measurement

1,14*10-5 1/°C
1,12*10-5 1/°C
1,12*10-5 1/°C
1,19,95 to 19,99) °C
2,4 April 20 / 2022

Source of uncertainty x _i	Standard uncertainty u(x _i)		Sensitivity Coefficient. c _i ≡∂I/∂x _i	Combined Standard Uncertainty. $u_i = c_i u(x_i)$
u (/s) Calibration of standard gauge block	31,45	nm		
u (l cer) standard gauge block certificate	30,00	nm	1	31,45
u (l der) standard gauge block drift	9,45	nm		
u (d) Measured difference between gauge blocks	31,75	nm		
u (d com) gauge blocks comparator	20,00	nm]	
u (d rep) repeated observations	16,10	nm]	
u (d res) comparator indication	2,89	2,89 nm 1		31,75
u (d al) sensor alignment	8,16 nm]	
u (d des) probing deviation	16,54	nm]	
u (d defe) elastic deformation	0,18	nm		
u (αr) Thermal expansion standard gauge block	6,58E-07	1/°C	0	
u (αc) Thermal expansion gauge block	6,47E-07	1/°C] "	0
u (θ) Temperature	0,033	°c		
u (cal) termistor certificate	0,025	°c	0	
u (res) indication termistor	°c	0	0	
u (△) thermal gradient	0,021	°c		
$u\left(\delta\theta\right)$ Temperature difference between gauge blocks	0,012	°c	-lsas	64,66
$u\left(\delta \alpha\right)$ Thermal exp. difference between gauge blocks	2,9E-07	1/°C	-lsθ	2,89
Second order terms:				
Effects of temperature on standard gauge block θε αε	2,17E-08		ls	10,83
Effects of temperature on gauge block $\theta_8 \alpha$	2,13E-08	_	ls	10,64
Temperature difference between gauge blocks $\delta \theta \alpha$	7,47E-09	1/°C	ls	3,73
COMBINED STANDARD UNCERTAINTY (k	80 nm			
CMC declared (k=1). This will be our official	al result			125 nm
Effective degrees of freedom				

INM

Block 300 mm

Source of uncertain	ty <i>xi</i>	Standard uncertainty		Sensitivity Coefficient Ci ≡∂I/∂xi		Combined Standard Uncertainty ui= ci u(xi)
Difference between blocks	d	u(d)	52.8	1		52.8
Comparator	comp	u(comp)	30.5			
Standard gauge block drift	drift	u(drift)	36.4			
Comparator Resolution	res	u(res)	1.4			
Damaged measuring faces	δν	u(δv)	11.5			
Block compression	δς	u(δc)	19.9			
CTE standard gauge block	αs	u(as)	2.9E-07	Is θs	-123449886	-35.6
CTE test gauge block	α	u(α)	5.8E-07	$-L(\delta\theta+\theta s)$	1.18E+08	68.2
Temperature difference between gauge blocks	$\delta\theta$	u(δθ)	2.3E-02	-L α	-3.45E+03	-80.9
Temperature Measurement	θ s	u(θs)	2.3E-02	(Is α S-L α)	-2.10E+02	-4.9
Standard gauge block calibration	Is	u(Is)	15.0		1	15.0
		$u(d)u(\alpha)$	3.0E-05	$-(\delta\theta+\theta s)$	0.394	1.2E-05
		$u(ls)u(\alpha)$	8.7E-06	$(\delta\theta + \theta s)$	-0.394	-3.4E-06
		$u(\alpha)u(\delta\theta)$	1.4E-08	-L	-300000580	-4.06
		$u(\alpha)u(\theta s)$	1.4E-08	-L	-300000741	-4.06
		$u(\delta\theta)u(d)$	1.24	-α	-1.15E-05	-1.4E-05
		$u(\delta\theta)u(ls)$	0.35	- α	-1.15E-05	-4.0E-06
		u(θs)u(d)	1.24	-α	-1.15E-05	-1.4E-05
		u(θ\$)u(ls)	0.35	α5-α	-7.00E-07	-2.5E-07
		u(as)u(ls)	4.3E-06	θ s	-0.4115	-1.8E-06
		$u(\alpha s)u(\theta s)$	6.8E-09	Is	299999723	2.03
COMBINED STANDARD UNCERTA	AINTY $(k=1)$ (nr	n)				125
Effective degrees of freedom						194.8

Block 500 mm (87333)

Source of uncertainty <i>xi</i>		Standard uncertainty u(xi)		Sensitivity Coefficient ci ≘∂I/∂xi		Combined Standard Uncertainty ui≡ ci u(xi)
Difference between blocks	d	u(d)	80.8		1	80.8
Comparator	comp	u(comp)	30.5			
Standard gauge block drift	drift	u(drift)	47.3			
Comparator Resolution	res	u(res)	1.4			
Damaged measuring faces	δν	u(δv)	11.5			
Block compression	δc	u(δc)	56.7			
CTE standard gauge block	ας	u(as)	2.9E-07	Is θs	-106249888.7	-30.7
CTE test gauge block	α	u(α)	5.8E-07	$-L(\delta\theta+\theta s)$	7.13E+07	41.1
Temperature difference between gauge blocks	$\delta\theta$	u(δθ)	3.6E-02	-Lα	-5.60E+03	-203.2
Temperature Measurement	θ s	u(θs)	3.6E-02	(Is α S-L α)	-2.00E+02	-7.3
Standard gauge block calibration	Is	u(ls)	20.0		1	20.0
		u(d)u(α)	4.7E-05	$-(\delta\theta+\theta s)$	0.1425	6.6E-06
		$u(ls)u(\alpha)$	1.2E-05	$(\delta\theta+\theta s)$	-0.1425	-1.6E-06
		$u(\alpha)u(\delta\theta)$	2.1E-08	-L	-500000759	-1.0E+01
		$u(\alpha)u(\theta s)$	2.1E-08	-L	-500000759	-1.0E+01
		$u(\delta\theta)u(d)$	2.93	- α	-1.12E-05	-3.3E-05
		$u(\delta\theta)u(ls)$	0.73	-α	-1.12E-05	-8.1E-06
		$u(\theta s)u(d)$	2.93	-α	-1.12E-05	-3.3E-05
		u(θs)u(ls)	0.73	α5-α	-4.00E-07	-2.9E-07
		$u(\alpha s)u(ls)$	5.8E-06	θs	-0.2125	-1.2E-06
		$u(\alpha s)u(\theta s)$	1.0E-08	Is	499999476	5.24
COMBINED STANDARD UNCERTA	AINTY CENTRAL	LENGTH (k =1) (nm)				226.2
Effective degrees of freedom						146

INACAL

UNCERTAINTY BUDGET OF GUAGE BLOCK 300 mm					
Source of uncertainty x_i	Standard uncertainty $u(x_i)$	Sensitivity Coefficient $ c_i = \frac{\partial I}{\partial x_i}$	Combined Standard Uncertainty $u_t = c_t u(x_t)$		
$u(l_s)$	193	1	193		
u(d)	112	1	112		
$u(\theta_s)$	0,17	0,7*L	0,12*L		
υ(δθ)	0,029	0,029 11,5*L			
$u(\alpha_s)$	0,29 0,5*L		0,14*L		
u(α)	0,66	0,66 -0,55*L			
$u(\alpha_s) * u(\theta_s)$	0,05	L	0,05*L		
$u(\alpha) * u(\theta_s)$	0,12	L	0,12*L		
$u(\delta\theta)*u(\alpha)$	0,02	L	0,02*L		
Combi	$\sqrt{49822 \text{ nm} + 0.30 * L^2}$				
Combine	277				
Ef	fective degrees of freedo	m	90		

UNCERTAINTY BUDGET OF GUAGE BLOCK 500 mm						
Source of uncertainty x_i	Standard uncertainty $u(x_i)$	Sensitivity Coefficient $ c_i = \frac{\partial I}{\partial x_i}$	Combined Standard Uncertainty $u_i = \sigma_i u(x_i)$			
$u(l_s)$	159	1	193			
u(d)	114	1	112			
$u(\theta_s)$	0,17	0,7*L	0,12*L			
υ(δθ)	0,029	11,5*L	0,33*L			
$u(\alpha_s)$	0,29	0,5*L	0,14*L			
$u(\alpha)$	0,66	-0,55*L	-0,37*L			
$u(\alpha_s) * u(\theta_s)$	0,05	L	0,05*L			
$u(\alpha) * u(\theta_s)$	0,12	L	0,12*L			
$u(\delta\theta)*u(\alpha)$	0,02	L	0,02*L			
Combined standard Uncertainty (k=1)			$\sqrt{38156} \text{ nm} + 0.30 * L^2$			
Combined standard Uncertainty (k=1) (nm)			336			
Effective degrees of freedom			90			

CENAM

Source of uncertainty	Standard uncertainty	Sensitivity Coefficient.	Combined Standard Uncertainty. u= c u(x)	
X _i	u(x _i)	c =∂l/∂xi		
GB LENGTH	_		300	500
COM PARATOR	6.51	1	5.73	5.73
reperence gb	8+0.14	1	38.00	58.00
TEMP. MEASUREMENT	0.026	L80	3.12	9,20
DIFF. WEF. EXP. TE	0.28	h Os	21.00	35.00
CET GB REF.	0.25	- 180	090	1.52
DIFF. TEMP. GB	0.012	- L X	39.24	65.40
SECONO DEG. TERMS	1.624	=(&x, oz, 507x, L)	0.46	0.65
COMBINED STANDARD UNCERTAINTY (k = 1)			118	189
Effective degrees of freedom			253	243

INMETRO

Not available