Bundesamt für Eich- und Vermessungswesen

Bundesamt für Eich- und Vermessungswesen (BEV) Vienna, Austria

Report on on-going CCL Key Comparison for the period 2018 to 2020

Comparison of optical frequency and wavelength standards

CCL-K11

Michael Matus, Georg Zechner (BEV) Lucija Črepinšek Lipuš (MIRS) Faith Hungwe (NMISA) Christos Bantis (EIM) Gábor Szikszai (BFKH)

Vienna, Austria, December 2021

Contents

1	Doc	rument control	3
2	Intr	oduction	3
	2.1	Technical protocol version	3
3	Org	anization	4
	3.1	Participants	4
	3.2	Schedule	4
4	Arte	efacts	5
	4.1	Description of artefacts	5
5	Mea	asuring instructions	5
	5.1	Measurands	5
6	Res	ults	6
	6.1	Results and standard uncertainties as reported by participants	6
7	Ana	lysis	7
	7.1	Calculation of the key comparison reference value (KCRV)	7
	7.2	Calculation of Degrees of Equivalence	8
	7.3	Discussion of results	9
	7.4	Linking of result to other comparisons	9
Α	ppendi	x A Equipment and measuring processes of the participants	9

1 Document control

Version Draft B Issued on 04. August 2021

Version Draft B.2 Issued on 03. September 2021 (misspelling for NMISA laser corrected)

Version Final Issued on 10. December 2021

2 Introduction

The metrological equivalence of national measurement standards and of calibration certificates issued by national metrology institutes is established by a set of key and supplementary comparisons chosen and organized by the Consultative Committees of the CIPM or by the regional metrology organizations in collaboration with the Consultative Committees.

At its meeting in September 2007, the CCL decided upon a key comparison of optical frequency and wavelength standards, named CCL-K11, with BEV as the pilot laboratory. The comparison was registered in 2008 and it is supposed as an on-going comparison.

The scheme outlined in this document covers the technical procedure to be followed during the measurements. The goal of the CCL key comparisons is to demonstrate the equivalence of routine calibration services offered by NMIs to clients, as listed in Appendix C of the Mutual Recognition Agreement (MRA). To this end, participants in this comparison agree to use the same apparatus and methods as routinely applied to calibrations of client artefacts.

By their declared intention to participate in this key comparison, laboratories accept the general instructions and to strictly follow the technical protocol of this document.

This document constitutes the tenth final report for the ongoing key comparison CCL-K11.

2.1 Technical protocol version

As an on-going comparison the technical protocol of CCL-K11 was updated to account for unforeseeable events. Additionally it was desirable to clarify the calculations of the KCRV and to streamline the reporting needs.

The campaign reported here spanned a period of three years. During this time the technical protocol was updated incrementally but in essence the individual comparisons were in line with the current approved version 3.0. The measurement reports (Draft A reports) in Appendix A have been reformatted somewhat for a standardized look.

3 Organization

3.1 Participants

Table 1. List of participant (and node) laboratories and their contacts.

Laboratory Code	Contact person, Laboratory	Phone, Fax, email
BEV	Michael Matus	Tel. +43 1 21110 826540
(pilot, node)	Bundesamt für Eich- und Vermessungswesen (BEV) Arltgasse 35, 1160 Wien Austria	E-mail: michael.matus@bev.gv.at
MIRS	Lucija Črepinšek Lipuš	Tel. +386 2 220 7762
	University of Maribor, Faculty of Mechanical Engineering Smetanova 17, 2000 Maribor Slovenia	E-Mail: lucija.lipus@um.si
NMISA	Faith Hungwe	Tel. +27 12 841 4936
	National Metrology Institute of South Africa (NMISA) Building 5 CSIR Campus, Brummeria, Pretoria 0184 South Africa	E-mail: fhungwe@nmisa.org
EIM	Christos Bantis	Tel. +30 2310 569 952
	Hellenic Institute of Metrology (EIM) Industrial Area of Thessaloniki, Block 45 57022 Sindos, Thessaloniki Greece	E-mail: bandis@eim.gr
BFKH	Gábor Szikszai	Tel. +36 1 458 5854
	Government Office of the Capital City Budapest (BFKH) 37-39 Németvölgyi road, Budapest 1124 Hungary	E-mail: szikszai.gabor@bfkh.gov.hu

3.2 Schedule

Table 2 lists the measurements in chronological order, specifying the participants, the places and the dates. It is a characteristic of this comparison to receive the data immediately after completing the measurements which are performed in the respective node or host laboratories. For the period 2018 to 2020 four participants took part in the comparison.

Table 2. Schedule of the comparison.

RMO	Laboratory (country code)	Date of measurement	Node laboratory (place of measurements)	Comments
EURAMET	MIRS (SI)	November 2018	BEV	2 nd participation
AFRIMETS	NMISA (ZA)	November 2018	BEV	2 nd participation
EURAMET	EIM (GR)	January 2019	BEV	-
EURAMET	BFKH (HU)	February 2020	BEV	2 nd participation (then MKEH)

4 Artefacts

4.1 Description of artefacts

The artefacts in this campaign are iodine stabilized HeNe-lasers at $\lambda \approx 633$ nm, stabilized on the f component of the ¹²⁷I₂ R(127) 11-5 transition. The designation of the artefacts, as chosen by the owner, is given in table 3.

Table 3. Artefacts participating.

Laboratory (country code)	Designation of standard	Description
MIRS (SI)	MIRS1	MeP, Lasertex Ltd., Wroclaw, Poland LJSC-3-11, 1/2008
NMISA (ZA)	NMISA-MUFASA	MeP, Winters Electro Optics, W100, SN: 294
EIM (GR)	EIM-1	MeP, NPL type, SN: LL0401/R16
BFKH (HU)	BFKH-1	MeP, Winters Electro Optics, W100, SN: 237

5 Measuring instructions

5.1 Measurands

All measurements reported here were performed according to the so-called method m1 as discussed in Appendix E of the technical protocol (Absolute frequency measurement traceable to the realisation of the SI second). The setup of the node laboratory is outlined in the Appendix A of this report.

In advance of to the actual measurements each participating laboratory had to state:

- The expected frequency of the standard, $f_{\rm e}$. This should normally be the frequency used in their calibration service. It is either the recommended value or a value determined by some other means.
- The standard uncertainty u_e of the expected value. This should be a value compatible with the uncertainty given in the CMC for this service (if applicable).
- The operational parameters used to obtain the two values mentioned above (if applicable).
- Sensitivity coefficients with uncertainties for parameters appearing in the uncertainty budget for the standard (if applicable).

The stated frequency $f_{\rm e}$ is the actual measurand in this type of key comparison. It is compared on a per lab basis with the measured frequency $f_{\rm m}$ possibly corrected to the reference operational parameters as given below. One has to note, that the comparison is blind; the participant are not told the result of the measurement before stating their value for $f_{\rm e}$.

The standard uncertainty of the determined frequency is composed of two parts, one from the frequency measurement, u_0 , and one from the uncertainty in the settings of the working (and other) parameters, u_p . The latter, the uncertainties related to the standard itself are to be estimated by each operator in accordance with their quality system. The uncertainty stemming from the measurements, u_0 , is estimated by the operator of the experiment alone, or together with personnel involved in the comparison, again in accordance with a quality procedure. These uncertainties are reported in appendix C.2 and C.3 of the Technical Protocol and are given as standard uncertainties following GUM practice.

The combined uncertainty of u_0 and u_p , u_m , reported in C.4 of the technical protocol is given as the root sum squares of u_0 and u_p .

Table 4 gives the values used for the most important reference working parameters for the respective laser. Additional information can be found in the appendix.

Table 4. Reference working parameter values for the standards as given in B.3 of the measurement report included in the appendix.

Standard	Power in μW	Modulation width (peak to peak) in MHz	I ₂ cold-finger temperature in °C	Cell wall temperature in °C
MIRS1	60	6.0	15.0	25
NMISA-MUFASA	70	6.0	15.0	25
EIM-1	86	6.0	15.0	25
BFKH-1	90	6.0	15.0	25

6 Results

6.1 Results and standard uncertainties as reported by participants

The stated frequencies $f_{\rm e}$, the measured frequencies $f_{\rm 0}$ (see section 7) and $f_{\rm m}$ are given in table 5. The allocated standard uncertainties $u_{\rm e}$, $u_{\rm 0}$ and $u_{\rm m}$, respectively, are included in parenthesis.

NMISA and EIM estimate $f_{\rm e}$ and $u_{\rm e}$ from the values as published in the MEP 2003 when the standards are operated at the working conditions as laid out in table 4.

MIRS and BFKH make use of a long history of comparisons and absolute laser frequency calibrations to estimate the respective values.

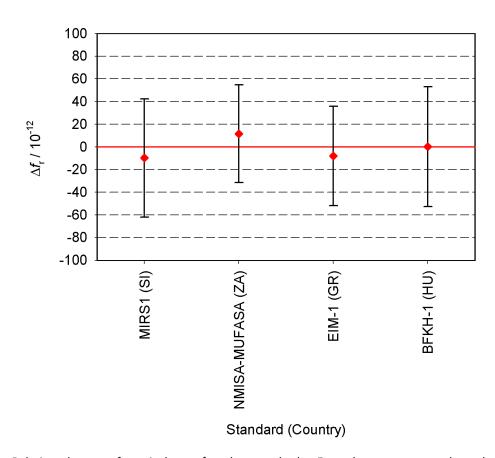

The data from table 5 are used to calculate the final results according to equations (5-7). The results are given in table 6 and figure 1, respectively.

Table 5. Expected frequency f_e , measured (uncorrected) frequency f_0 , and measured frequency, corrected for influence of operational parameters f_m , together with the respective standard uncertainties of the values.

Chandand	All frequencies given are offset by 473 612 353 MHz			
Standard	$f_{ m e}\left(u_{ m e} ight)$ / kHz	$f_{0}\left(u_{0} ight)$ / kHz	$f_{ m m}\left(u_{ m m} ight)$ / kHz	
MIRS1	600.0 (12.0)	603.383 (0.118)	604.655 (2.835)	
NMISA-MUFASA	604.0 (10.0)	602.068 (0.064)	598.520 (2.091)	
EIM-1	604.0 (10.0)	607.133 (0.205)	607.802 (2.814)	
BFKH-1	607.2 (12.0)	608.565 (0.116)	607.072 (3.534)	

-			
Standard	$\Delta f_{ m r}$	$U_{\rm r}=2u_{\rm r}$	$E_{ m n}$ = $\Delta f_{ m r}/U_{ m r}$
MIRS1	$-9.8 \cdot 10^{-12}$	$52.1 \cdot 10^{-12}$	-0.19
NMISA-MUFASA	+11.6 · 10 ⁻¹²	$43.1 \cdot 10^{-12}$	+0.27
EIM-1	-8.0 · 10 ⁻¹²	43.9 · 10 ⁻¹²	-0.18
BFKH-1	+0.3 · 10 ⁻¹²	52.8 · 10 ⁻¹²	+0.01

Table 6. Degree of equivalence and $E_{\rm n}$ value for the standard.

Figure 1. Relative degree of equivalence for the standards. Error bars represent the relative expanded uncertainties $U_{\rm r}(i)$ for k = 2.

7 Analysis

7.1 Calculation of the key comparison reference value (KCRV)

It is a distinctive feature of this key comparison, that the KCRV is determined on a per participant basis. Thus each participant has its own KCRV which is used to test consistency.

Denote the measured (uncorrected) frequency f_0 with standard uncertainty u_0 , and the measured frequency, corrected for influence of operational parameters $f_{\rm m}$ with standard uncertainty $u_{\rm m}$.

$$f_{\rm m} = f_0 + f_{\rm p} \tag{1}$$

The symbol f_p denotes the condensed information about the influence of the actual working parameters and other quantities on the laser frequency. It is defined here as a correction so it must be added to the raw value. A linear model is usually sufficient:

$$f_{p} = \sum_{i} s_{i} \cdot \Delta x_{i} \tag{2}$$

Where the s_i denotes the sensitivity coefficients and Δx_i the deviations of the respective working parameters from the reference values (care must be taken choosing the correct signs for both quantities). The uncertainties are thus derived in a straightforward way as:

$$u_{p} = \sqrt{\sum_{i} (u(s_{i}) \cdot \Delta x_{i})^{2} + \sum_{i} (s_{i} \cdot u(\Delta x_{i}))^{2}}$$
(3)

and

$$u_{\rm m} = \sqrt{u_{\rm p}^2 + u_0^2} \tag{4}$$

In the case that no correction due to working parameters is requested by the participant, one can formally set f_p and u_p equal to zero.

Denote the expected frequency $f_{\rm e}$ with standard uncertainty $u_{\rm e}$, and the measured frequency, corrected for influence of operational parameters $f_{\rm m}$ with standard uncertainty $u_{\rm m}$. In the nomenclature of the CIPM-MRA $f_{\rm m}$ (together with its standard uncertainty $u_{\rm m}$) denotes the KCRV and $f_{\rm e}$ (together with its standard uncertainty $u_{\rm e}$) denotes the measurand.

For a particular standard, i, construct the dimensionless quantities

$$\Delta f_{\rm r}(i) = \frac{f_{\rm e}(i) - f_{\rm m}(i)}{f_{\rm m}(i)} \tag{5}$$

$$u_{\rm r}(i) = \frac{\sqrt{u_{\rm e}^2(i) + u_{\rm m}^2(i)}}{f_{\rm m}(i)} \tag{6}$$

It must be noted that $f_{\rm e}$ and $f_{\rm m}$ should be transferred to the same (usually nominal) working parameters for the standard, which would be expected to coincide with those for which $f_{\rm e}$ is valid if no other instructions are given by the participating laboratory.

7.2 Calculation of Degrees of Equivalence

To test consistency between the measured values and the expected ones, hypothesis testing at a confidence level of 95 % is to be performed. The result will serve as a basis for the review of the CMC and indicate the compatibility with the claimed capabilities. In this framework the "degree of equivalence" (DoE) can be obtained in the usual way. Thus the (relative) DoE is $\Delta f_{\rm r}$ (equ. 5) with its standard uncertainty $u_{\rm r}$ (equ. 6). The consistency can thus be checked by the following condition:

$$-1 \leq E_{\rm n} = \frac{\Delta f_{\rm r}(i)}{U_{\rm r}(i)} \leq 1 \quad \text{with} \quad U_{\rm r}(i) = 2 \cdot u_{\rm r}(i)$$
 (7)

As discussed at the 14th CCL meeting, June 2009, it is neither necessary nor useful to determine a pairwise degree of equivalence. For all results reported the expanded uncertainty to a 95 % confidence level can be obtained by multiplying the standard uncertainties with k = 2.

BFKH (HU)

7.3 Discussion of results

Frequency measurements have been carried out on four national wavelength standards. A good agreement between the stated and the measured frequency values was found.

All participants have respective CMC for this kind of service. The entry for NMISA is apparently erroneous (maybe caused by the transformation to KCDB 2.0). The uncertainties stated in this comparison are equal to or smaller than the claimed CMC uncertainty. Since the actual entries in the KCDB allow for some flexibility, the values summarized in table 7 are somewhat homogenized.

Laboratory (country code)	$U_{\rm e} = 2u_{\rm e}$		$U_{ m CMC}$	KCDB entry
MIRS1 (SI)	24 kHz	≤	24 kHz	2.4E1 kHz @ 474 THz
NMISA (ZA)	20 kHz	<	2.4 MHz	2.4E0 MHz @ 474 THz ¹
EIM (GR)	20 kHz	<	24 kHz	4.0E-2 fm @ 633 nm

≤

24 kHz

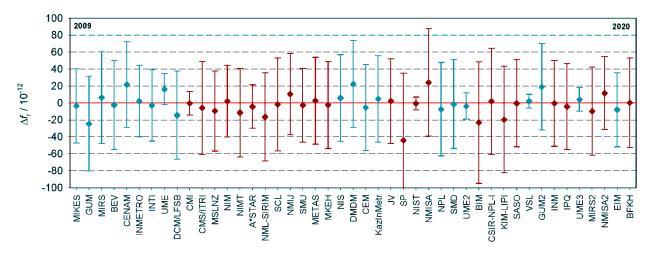

2.4E1 kHz @ 474 THz

Table 7. CMCs and claimed uncertainties in the comparison (expanded uncertainties for k = 2)

24 kHz

7.4 Linking of result to other comparisons

Plotting the DoE of all participants in the same graph links the results of this on-going key comparison as shown in Figure 2. This is possible even for different nominal frequencies since the DoE are defined as relative quantities.

Figure 2. Relative degree of equivalence for all standards taking part in CCL-K11 since the start of this comparison. Error bars represent the relative expanded (for k = 2) uncertainties $U_r(i)$.

Appendix A Equipment and measuring processes of the participants

Details on the individual equipment and standards can be found in the following measurement reports These files are electronic copies; the respective node laboratories keep the signed originals.

¹ At the time of writing the entry in the KCDB 2.0 was 10 %. This is obviously a changeover mistake. The value stated here is taken from the current accreditation scope which is in line with the "old" KCDB value.

Comparison of optical frequency and wavelength standards

Draft A.2 Report

Participant data

Details of the participant must be provided in advance to the actual measurements by sending the completed Table A to the pilot lab's contact (michael.matus@bev.gv.at). An agreement with the node laboratory is a matter of course. The actual date of measurement might be updated in the final report at a later stage.

A.1 Participant data				
Laboratory (Country code)	MIRS (SI)			
	Metrology Institute of republic Slovenia,			
	Laboratory for Production Measurements			
RMO	EURAMET			
Contact person, Operator	Lucija Črepinšek Lipuš			
Address	University of Maribor, Faculty of Mechanical Engineering			
	Smetanova 17, 2000 Maribor			
	Slovenia			
Phone, Fax, Email	Tel. +386 2 220 7762			
	E-Mail: lucija.lipus@um.si			
Artefact's designation	MIRS1			
CMC	24 kHz			
Date of measurements	23.11.2018			

A.2 Host/node data		
Laboratory (Country code)	BEV (AT)	
Contact person, Operator	Michael Matus	
Address	Bundesamt für Eich- und Vermessungswesen Arltgasse 35, 1160 Wien Austria	
Phone, Fax, Email	Tel. +43 1 21110 826540 Fax +43 1 21110 996000 E-Mail: michael.matus@bev.gv.at	

MIRS (SI) at BEV - 2018

page 1/4

Comparison of optical frequency and wavelength standards

Draft A.2 Report

Description of artefact

Details of the standard relevant to the comparison are collated in the following tables. The participant had to decide in advance of the actual measurements to what extent they wish to correct for deviations of working parameters. The parenthesis notation for stating <u>standard</u> uncertainties is used in table B.3.

B.1 Description of artefact (mandatory)		
Designation	MIRS1	
Manufacturer	Lasertex Ltd., Wroclaw, Poland	
Model / Type	LJSC-3-11	
Serial Number	1/2008	
Wavelength (approx.)	633 nm	
Operation principle	MEP 2003	
Last compared	2009 during CCL-K11	
Comments	Laser tube changed and calibrated at GUM (PL)	

B.2 Detail information of artefact (mutable)			
Laser type	Iodine stabilised HeNe Laser		
Stabilisation technique	Saturation spectroscopy on iodine vapour, 3f frequency modulation		
Dither frequency	1.6 kHz		
Modulation width	6.0 MHz		
Iodine cell	Lasertex, 6 cm, double Brewster		
Laser cavity length	33 cm		
Cavity mirrors (curvature,	M1: 0.6 %, cell side, output mirror		
transmission, location)	M2: 0.3 %, tube side		

B.3 Reference conditions and sensitivity coefficients of artefact (optional)			
Parameter	Nominal value	Sensitivity coefficient (standard uncertainty)	Comment
Output power	60 μW	-0.15 (0.03) kHz/μW	measured
Modulation width	6.0 MHz	-15.7 (1.8) kHz/MHz	measured
Iodine cell cold finger	15.0 °C	−17.0 (1.9) kHz/°C	measured
temperature			
Cell wall temperature	25 °C	+0.16 (0.12) kHz/°C	estimated

MIRS (SI) at BEV – 2018

page 2/4

Comparison of optical frequency and wavelength standards

Draft A.2 Report

Participant Results Report Form

The measurement result (C.1) of the comparison has to be determined by the participant in advance, before measurements are performed by the node/host lab. The remainder of the table has to be filled by the node laboratory. The parenthesis notation for stating <u>standard</u> uncertainties is used here.

C.1 "Measurement result" of participant (stated before C.2!)		
Expected frequency <i>f</i> _e 473 612 353 600.0 (12.0) kHz		

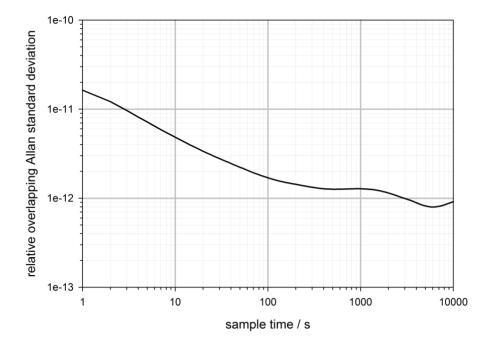
C.2 Frequency measurement of host laboratory (to be performed after C.1!)		
Measured frequency f_0 (uncorrected)	473 612 353 603.383 (0.118) kHz	

C.3 Correction due to working parameters (optional)		
Parameter	Measured value	Frequency correction
Output power	97 (5) μW	+5.550 (1.340) kHz
Modulation width	5.66 (0.10) MHz	−5.338 (1.685) kHz
lodine cell cold finger temperature	15.1 (0.1) °C	+1.700 (1.711) kHz
Cell wall temperature	29.0 (3.0) °C	-0.640 (0.679) kHz
Overall frequency correction f_p	+1.272(2.832) kHz	

C.4 Measurement of host laboratory (KCRV)		
Measured frequency $f_{\rm m} = (f_0 + f_{\rm p})$	473 612 353 604.655 (2.835) kHz	

C.5 Comparison Result		
Frequency difference $\Delta f = f_e - f_m$	-4.655 (12.330) kHz	
Fractional frequency difference $\Delta\!f/f_{ m e}$	-9.8 (26.0) · 10 ⁻¹²	
Degree of equivalence stated as $E_{\rm n}$ value	-0.19	

MIRS (SI) at BEV – 2018


page 3/4

CCL-K11
Comparison of optical frequency and wavelength standards

Draft A.2 Report

Description of Measurements

- Method: A femtosecond fibre laser comb generator (BEV) is used to measure the absolute frequency of the 633 nm standard. The output beam of the standard is transferred to the comb via free space, avoiding optical feedback using a double stage Faraday isolator. All counters and synthesizers are referenced to an active hydrogen maser. This maser is part of the BEV clock assemble which takes part in the CCTF-K001.UTC key comparison thus providing a link to the SI.
- Conditions: The measurements are made in accordance with the BEV quality system (respective working document A_0118). After some test runs, mainly to use the warm up period, one 6 000 s long measurement was made with a sample time of 1 s (raw data filename mirs_04_K11.dat). This measurement started 24 h after switching on the standard, as determined by the participant. Possible cycle slips and outliers are automatically detected and removed using a schema described in the references of the technical protocol and the working document A_0118.
- <u>Special observation:</u> The laser shows a significant frequency drift, the frequency stated and measured is valid 24 h after switching on and for a averaging time of 6 000 s.
- Allan variance stability: A long run absolute frequency measurement of the laser was used to determine the relative overlapping Allan standard deviation (raw data filename mirs_05.dat, 252 000 s).

MIRS (SI) at BEV - 2018

page 4/4

Comparison of optical frequency and wavelength standards

Draft A.3 Report

Participant data

Details of the participant must be provided in advance to the actual measurements by sending the completed Table A to the pilot lab's contact (michael.matus@bev.gv.at). An agreement with the node laboratory is a matter of course. The actual date of measurement might be updated in the final report at a later stage.

A.1 Participant data		
Laboratory (Country code)	NMISA (ZA)	
RMO	AFRIMETS	
Contact person, Operator	Faith Hungwe	
Address	s Building 5 CSIR Campus,	
	Brummeria, Pretoria 0184	
	South Africa	
none, Fax, Email Tel. +27 12 841 4936		
The state of the s	E-mail: fhungwe@nmisa.org	
Artefact's designation	NMISA-MUFASA	
CMC	U = 2.4 MHz @ 474 THz	
Date of measurements	15.11.2018 – 20.11.2018	

A.2 Host/node data			
Laboratory (Country code)	BEV (AT)		
Contact person, Operator	Michael Matus		
Address	Bundesamt für Eich- und Vermessungswesen		
	Arltgasse 35, 1160 Wien		
	Austria		
Phone, Fax, Email	Tel. +43 1 21110 826540		
	Fax +43 1 21110 996000		
	E-Mail: michael.matus@bev.gv.at		

NMISA (ZA) at BEV - 2018

page 1/4

Comparison of optical frequency and wavelength standards

Draft A.3 Report

Description of artefact

Details of the standard relevant to the comparison are collated in the following tables. The participant had to decide in advance of the actual measurements to what extent they wish to correct for deviations of working parameters. The parenthesis notation for stating <u>standard</u> uncertainties is used in table B.3.

B.1 Description of artefact (mandatory)		
Designation	NMISA-MUFASA	
Manufacturer	Winters Electro Optics, USA	
Model / Type	W100	
Serial Number	294	
Wavelength (approx.)	633 nm	
Operation principle	MEP 2003	
Last compared	Never	
Comments	New laser	

B.2 Detail information of artefact (mutable)		
Laser type	Iodine stabilised HeNe Laser	
Stabilisation technique	Saturation spectroscopy on iodine vapour, 3f frequency modulation	
Dither frequency	8.33334 kHz	
Modulation width	6.0 MHz	
Iodine cell	BIPM 1114, 10 cm, Brewster windows	
Laser cavity length	26.5 cm	
Cavity mirrors (curvature,	M1: 30 cm, 0.7 %, front, output mirror	
transmission, location)	M2: ∞, 0.25 %, rear	

B.3 Reference conditions and sensitivity coefficients of artefact (optional)			
Parameter	Nominal value	Sensitivity coefficient (standard uncertainty)	Comment
Output power	70 μW	+0.007 (0.01) kHz/μW	From literature
Modulation width	6.0 MHz	-10.0 (1.0) kHz/MHz	From literature
lodine cell cold finger temperature	15.0 °C	−15.0 (0.2) kHz/°C	From literature
Cell wall temperature	25 °C	+0.5 (0.5) kHz/°C	From literature

NMISA (ZA) at BEV - 2018

page 2/4

Comparison of optical frequency and wavelength standards

Draft A.3 Report

Participant Results Report Form

The measurement result (C.1) of the comparison has to be determined by the participant in advance, before measurements are performed by the node/host lab. The remainder of the table has to be filled by the node laboratory. The parenthesis notation for stating <u>standard</u> uncertainties is used here.

C.1 "Measurement result" of participant (stated before C.2!)		
Expected frequency $f_{\rm e}$ 473 612 353 604.0 (10.0) kHz		

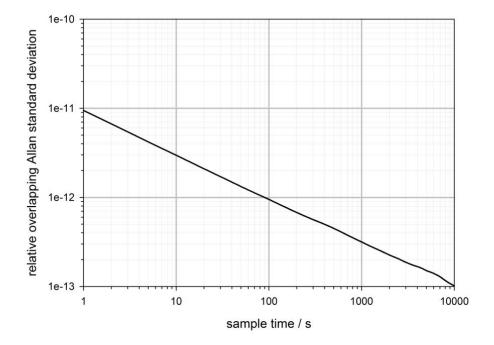
C.2 Frequency measurement of host laboratory (to be performed after C.1!)			
Measured frequency f_0 (uncorrected) 473 612 353 602.068 (0.064) kHz			

C.3 Correction due to working parameters (optional)			
Parameter	Measured value	Frequency correction	
Output power	88.8 (5) μW	-0.132 (0.191) kHz	
Modulation width	5.725 (0.100) MHz	-2.740 (1.037) kHz	
lodine cell cold finger temperature	14.955 (0.050) °C	-0.600 (1.503) kHz	
Cell wall temperature	25 (3) °C	+0.000 (1.000) kHz	
Overall frequency correction $f_{\rm p}$	-3.557	-3.557 (2.091) kHz	

C.4 Measurement of host laboratory (KCRV)		
Measured frequency $f_{\rm m} = (f_0 + f_{\rm p})$	473 612 353 598.520 (2.091) kHz	

C.5 Comparison Result	
Frequency difference $\Delta f = f_{\rm e} - f_{\rm m}$	+5.480 (10.216) kHz
Fractional frequency difference $\Delta f/f_{ m e}$	+11.6 (21.6) · 10 ⁻¹²
Degree of equivalence stated as $E_{\rm n}$ value	+0.27

NMISA (ZA) at BEV – 2018


page 3/4

CCL-K11
Comparison of optical frequency and wavelength standards

Draft A.3 Report

Description of Measurements

- Method: A femtosecond fibre laser comb generator (BEV) is used to measure the absolute frequency of the 633 nm standard. The output beam of the standard is transferred to the comb via free space, avoiding optical feedback using a double stage Faraday isolator. All counters and synthesizers are referenced to an active hydrogen maser. This maser is part of the BEV clock assemble which takes part in the CCTF-K001.UTC key comparison thus providing a link to the SI.
- <u>Conditions:</u> The measurements are made in accordance with the BEV quality system (respective
 working document A_0118). After some test runs, mainly to use the warm up period, one
 420 000 s long measurement was made with a sample time of 1 s (raw data filename
 NMISA_03.dat). Possible cycle slips and outliers are automatically detected and removed using
 a schema described in the references of the technical protocol and the working document
 A_0118.
- Special observation: —
- Allan variance stability: A long run absolute frequency measurement of the laser was used to determine the relative overlapping Allan standard deviation (raw data filename NMISA_03.dat, 420 000 s).

NMISA (ZA) at BEV - 2018

page 4/4

Comparison of optical frequency and wavelength standards

Draft A.2 Report

Participant data

Details of the participant must be provided in advance to the actual measurements by sending the completed Table A to the pilot lab's contact (michael.matus@bev.gv.at). An agreement with the node laboratory is a matter of course. The actual date of measurement might be updated in the final report at a later stage.

A.1 Participant data		
Laboratory (Country code)	EIM (GR)	
RMO	EURAMET	
Contact person, Operator	Christos Bantis	
Address	Hellenic Institute of Metrology (EIM) Industrial Area of Thessaloniki, Block 45 57022 Sindos, Thessaloniki	
Phone, Fax, Email	Greece Tel. +30 2310 569 952 E-mail: bandis@eim.gr	
Artefact's designation	EIM-1	
CMC	24 kHz (KCDB: 4.0E-2 fm @ 633 nm)	
Date of measurements	28.01.2019 – 31.01.2019	

A.2 Host/node data		
Laboratory (Country code)	BEV (AT)	
Contact person, Operator	Michael Matus	
Address	Bundesamt für Eich- und Vermessungswesen Arltgasse 35, 1160 Wien Austria	
Phone, Fax, Email	Tel. +43 1 21110 826540 Fax +43 1 21110 996000 E-Mail: michael.matus@bev.gv.at	

EIM (GR) at BEV - 2019

page 1/4

Comparison of optical frequency and wavelength standards

Draft A.2 Report

Description of artefact

Details of the standard relevant to the comparison are collated in the following tables. The participant had to decide in advance of the actual measurements to what extent they wish to correct for deviations of working parameters. The parenthesis notation for stating <u>standard</u> uncertainties is used in table B.3.

B.1 Description of artefact (mandatory)		
Designation	EIM-1	
Manufacturer	NPL	
Model / Type	_	
Serial Number	SN: LL0401/R16	
Wavelength (approx.)	633 nm	
Operation principle	MEP 2003	
Last compared	2005 (BIPM.L-K11)	
Comments	_	

B.2 Detail information of artefact (mutable)		
Laser type	Iodine stabilised HeNe Laser	
Stabilisation technique	Saturation spectroscopy on iodine vapour, 3f frequency modulation	
Dither frequency	586 Hz	
Modulation width	6 MHz	
Iodine cell	SN: 6p-7/96, active length 85mm, Brewster window	
Laser cavity length	353 mm	
Cavity mirrors (curvature,	M1: ∞, 0.86 %, front - output mirror	
transmission, location)	M2: 100 cm concave, rear - iodine cell end	

B.3 Reference conditions and sensitivity coefficients of artefact (optional)			
Parameter	Nominal value	Sensitivity coefficient (standard uncertainty)	Comment
Output power	86 μW	-0.06 (0.03) kHz/μW	Measured at BIPM.L-K11
Modulation width	6.0 MHz	-7.6 (1.0) kHz/MHz	Measured at BIPM.L-K11
lodine cell cold finger temperature	15.0 °C	−12.9 (0.6) kHz/°C	Measured at BIPM.L-K11
Cell wall temperature	25 °C	+0.2 (0.6) kHz/°C	Estimated like in BIPM.L-K11

EIM (GR) at BEV - 2019

page 2/4

Comparison of optical frequency and wavelength standards

Draft A.2 Report

Participant Results Report Form

The measurement result (C.1) of the comparison has to be determined by the participant in advance, before measurements are performed by the node/host lab. The remainder of the table has to be filled by the node laboratory. The parenthesis notation for stating <u>standard</u> uncertainties is used here.

C.1 "Measurement result" of participant (stated before C.2!)	
Expected frequency <i>f</i> _e 473 612 353 604 (10.0) kHz	

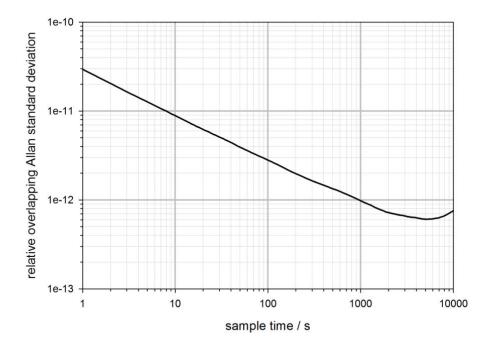
C.2 Frequency measurement of host laboratory (to be performed after C.1!)			
Measured frequency f_0 (uncorrected) 473 612 353 607.133 (0.205) kHz			

C.3 Correction due to working parameters (optional)			
Parameter	Measured value	Frequency correction	
Output power	103 (5) μW	+1.020 (0.592) kHz	
Modulation width	5.938 (0.100) MHz	-0.471 (0.763) kHz	
Iodine cell cold finger temperature	15.0 (0.2) °C	+0.000 (2.580) kHz	
Cell wall temperature	24.4 (2.0) °C	+0.120 (0.538) kHz	
Overall frequency correction f_p	+0.669	+0.669 (2.807) kHz	

C.4 Measurement of host laboratory (KCRV)		
Measured frequency $f_{\rm m} = (f_0 + f_{\rm p})$	473 612 353 607.802 (2.814) kHz	

C.5 Comparison Result	
Frequency difference $\Delta f = f_e - f_m$	-3.802 (10.388) kHz
Fractional frequency difference $\Delta f/f_{ m e}$	-8.0 (21.9) · 10 ⁻¹²
Degree of equivalence stated as $E_{\rm n}$ value	-0.18

EIM (GR) at BEV – 2019


page 3/4

CCL-K11
Comparison of optical frequency and wavelength standards

Draft A.2 Report

Description of Measurements

- Method: A femtosecond fibre laser comb generator (BEV) is used to measure the absolute frequency of the 633 nm standard. The output beam of the standard is transferred to the comb via free space, avoiding optical feedback using a double stage Faraday isolator. All counters and synthesizers are referenced to an active hydrogen maser. This maser is part of the BEV clock assemble which takes part in the CCTF-K001.UTC key comparison thus providing a link to the SI.
- <u>Conditions:</u> The measurements are made in accordance with the BEV quality system (respective working document A_0118). After some test runs, mainly to use the warm up period, one 10 000 s long measurement was made with a sample time of 1 s (raw data filename EIM_003.dat). Possible cycle slips and outliers are automatically detected and removed using a schema described in the references of the technical protocol and the working document A_0118.
- <u>Special observation:</u> The laser shows a frequency drift which correlates with the drift of the optical output power. The frequency stated and measured is corrected for by using the corresponding coefficient in Table B.3.
- Allan variance stability: A long run absolute frequency measurement of the laser was used to determine the relative overlapping Allan standard deviation (raw data filename EIM_004.dat, 64 000 s).

EIM (GR) at BEV - 2019

page 4/4

Comparison of optical frequency and wavelength standards

Draft A.2 Report

Participant data

Details of the participant must be provided in advance to the actual measurements by sending the completed Table A to the pilot lab's contact (michael.matus@bev.gv.at). An agreement with the node laboratory is a matter of course. The actual date of measurement might be updated in the final report at a later stage.

A.1 Participant data		
Laboratory (Country code)	BFKH (HU)	
RMO	EURAMET	
Contact person, Operator	Gábor Szikszai	
Address	37-39 Németvölgyi road,	
	Budapest 1124	
	Hungary	
Phone, Fax, Email	Tel. +36 1 458 5854	
	E-mail: szikszai.gabor@bfkh.gov.hu	
Artefact's designation	BFKH-1	
CMC	U = 24 kHz @ 633 nm (iodine stabilized He-Ne laser)	
Date of measurements	13.02.2020 – 14.02.2020	

A.2 Host/node data	
Laboratory (Country code)	BEV (AT)
Contact person, Operator	Michael Matus
Address	Bundesamt für Eich- und Vermessungswesen
	Arltgasse 35, 1160 Wien
	Austria
Phone, Fax, Email	Tel. +43 1 21110 826540
	Fax +43 1 21110 996000
	E-Mail: michael.matus@bev.gv.at

BFKH (HU) at BEV – 2020

Pg. 1/4

Comparison of optical frequency and wavelength standards

Draft A.2 Report

Description of artefact

Details of the standard relevant to the comparison are collated in the following tables. The participant had to decide in advance of the actual measurements to what extent they wish to correct for deviations of working parameters. The parenthesis notation for stating <u>standard</u> uncertainties is used in table B.3.

B.1 Description of artefact (mandatory)	
Designation	BFKH-1
Manufacturer	Winters Electro Optics
Model / Type	Model 100
Serial Number	237
Wavelength (approx.)	633 nm
Operation principle	MEP 2003
Last compared	2010 CCL-K11
Comments	Laser tube replaced since last participation

B.2 Detail information of artefact (mutable)		
Laser type	Iodine stabilised HeNe Laser	
Stabilisation technique	Saturation spectroscopy on iodine vapour, 3f frequency modulation	
Dither frequency	8.333 kHz	
Modulation width	6.0 MHz	
Iodine cell	BIPM 543, 10 cm, Brewster windows	
Laser cavity length	26.5 cm	
Cavity mirrors (curvature,	M1: 30 cm, 0.7 %, front, output mirror	
transmission, location)	M2: ∞, 0.25 %, rear	

Parameter	Nominal value	Sensitivity coefficient (standard uncertainty)	Comment
Output power	90 μW	-0.048 (0.050) kHz/μW	As in 2010 participation
Modulation width	6.0 MHz	-9.0 (2.0) kHz/MHz	As in 2010 participation
lodine cell cold finger temperature	15.0 °C	–14.0 (1.0) kHz/°C	As in 2010 participation
Cell wall temperature	25 °C	+0.0 (0.5) kHz/°C	As in 2010 participation

BFKH (HU) at BEV - 2020

Pg. 2/4

Comparison of optical frequency and wavelength standards

Draft A.2 Report

Participant Results Report Form

The measurement result (C.1) of the comparison has to be determined by the participant in advance, before measurements are performed by the node/host lab. The remainder of the table has to be filled by the node laboratory. The parenthesis notation for stating <u>standard</u> uncertainties is used here.

C.1 "Measurement result" of participant (stated before C.2!)	
Expected frequency $f_{\rm e}$ 473 612 353 607.2 (12.0) kHz	

C.2 Frequency measurement of host laboratory (to be performed after C.1!)	
Measured frequency f_0 (uncorrected)	473 612 353 608.565 (0.116) kHz

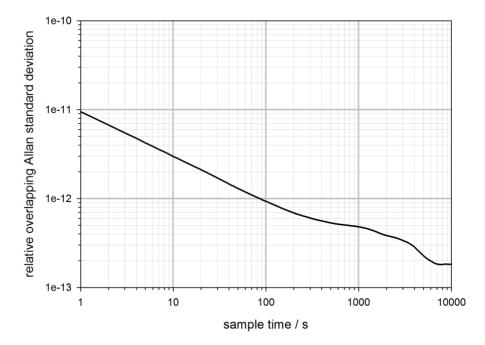
C.3 Correction due to working parameters (optional)		
Parameter	Measured value	Frequency correction
Output power	127.1 (5.0) μW	+1.781 (1.870) kHz
Modulation width	5.714 (0.100) MHz	-2.574 (1.066) kHz
Iodine cell cold finger temperature	14.95 (0.20) °C	-0.700 (2.800) kHz
Cell wall temperature	25 (2) °C	+0.000 (0.000) kHz
Overall frequency correction f_p	-1.493	(3.532) kHz

C.4 Measurement of host laboratory (KCRV)		
Measured frequency $f_{\rm m} = (f_0 + f_{\rm p})$	473 612 353 607.072 (3.534) kHz	

C.5 Comparison Result	
Frequency difference $\Delta f = f_{\rm e} - f_{\rm m}$	+0.128 (12.510) kHz
Fractional frequency difference $\Delta f/f_{ m e}$	+0.3 (26.4) · 10 ⁻¹²
Degree of equivalence stated as $E_{\rm n}$ value	+0.01

BFKH (HU) at BEV – 2020

Pg. 3/4


CCL-K11
Comparison of optical frequency and wavelength standards

Draft A.2 Report

Description of Measurements

Here a short summary of the actual measurement technique shall be given by the node lab.

- Method: A femtosecond fiber laser comb generator (BEV) is used to measure the absolute frequency of the 633 nm standard. The output beam of the standard is transferred to the comb via free space, avoiding optical feedback using a double stage Faraday isolator. All counters and synthesizers are referenced to an active hydrogen maser. This maser is part of the BEV clock assemble which takes part in the CCTF-K001.UTC key comparison thus providing a link to the SI.
- <u>Conditions:</u> The measurements are made in accordance with the BEV quality system (respective working document A_0118). After some test runs, mainly to use the warm up period, one 230 000 s long measurement was made with a sample time of 1 s (raw data filename BFKH_03.dat). Out of this data a 2200 s long section was used to determine the KCRV. Immediately before and after this section the working parameters have been determined. Possible cycle slips and outliers are automatically detected and removed using a schema described in the references of the technical protocol and the working document A_0118.
- <u>Special observation:</u> After power on the laser did not emit light. At some time overnight output appeared. The output power increased during the measurements monotonically. This is a well-known peculiarity of this brand of laser.
- Allan variance stability: A long run absolute frequency measurement of the laser was used to determine the relative overlapping Allan standard deviation (raw data filename BFKH_03.dat, 230 000 s).

BFKH (HU) at BEV - 2020

Pg. 4/4