Results from the regional APMP.L-K11 comparison hosted by NIM in November 2004.

J. QIAN, X. Y. LIU, C. Y. SHI, Z. Y. LIU, H. P. TAN, S. CAI, NIM, 18, Bei san huan donglu, Bejing, China T. K. Chan. SCL, 36/F, Immigration Tower, 7 Gloucester Road, Wanchai, Hong Kong. Y-P. Lan, CMS/ITRI, 321 Kuang Fu Road, Sec. 2, Hsinchu, Taiwan, Chinese Taipei J. Ishikawa, AIST/NMIJ, Tsukuba Central 3,1-1, Umezono-1, Tsukuba-shi, Ibaraki 305-8563, japan A. M Dahlan, NML-SIRIM, SIRIM Berhad, Lot PT 4803, Bandar Baru Salak, Tinggi 43900 Sepang, Selangor, Malaysia E. Howick. MSLNZ, Industrial Research, Gracefield Road, PO Box 31-310, Gracefield, Lower Hutt, New Zealand M. Louise, CSIR-NML, Dimensional Laboratory CSIR-NML, South Africa A. Tonmueanwai, NIMT, 3/5 Moo 3, Klong 5, Klong Luang, Pathumthani, 12120 Thailand

Abstract

Lasers from 8 national metrological institutes (NMIs) were brought to the NIM in Bejing in November 2004 for the APMP.L-K11 regional comparison. The frequency difference between the f components of the R(127) 11-5 transition was measured for these lasers following the Protocol for BIPM.L-K11. The absolute frequencies of three of the participating lasers have been measured with the comb technique either before or after the comparison. The absolute frequencies for the other lasers were then deduced using the three lasers as a link. The results of these measurements are compiled in the present paper. The comparison reports, as communicated by each participant, are included as Appendices.

Introduction

The BIPM.L-K10 (K10) key comparison was initiated in 1993 to provide a basis for demonstrating equivalence of national realizations of wavelength-standards used for the realization of the definition of the SI *metre* according to method (c) in the *Mise en Pratique* (MeP) [1]. The K10 took only the 633 nm He-Ne standards into consideration. Such a comparison seemed of particular importance since these lasers were most often used in the whole field of dimensional metrology to provide traceability to the *metre*. The measurand of the comparison was the difference between lasers of the *average* frequency of the components d, e, f, and g in the R(127) 11-5 line as obtained by matrix measurements [2]. The frequency of the reference laser BIPM-4 was used as the key comparison reference value.

During the last few years, the situation for realization of the *metre* has changed due to the introduction of new techniques for absolute frequency measurements. This has opened up the method (b) in the MeP for the realization of wavelength standards traceable to the *second*. The practical consequence of this development is that, at least, two methods are today being used for the realization of the *metre*, and several wavelengths, important for dimensional metrology applications, can now demonstrate traceability with relative ease. Considering these circumstances, the 11th CCL meeting, held in October 2003, decided to close the K10 comparison and initiate a new key comparison named BIPM.L-K11 (K11) [3].

The K11 concerns those wavelengths present in the list of recommended radiations in the MeP, which are used in the field of dimensional metrology. Typical examples would be the 633 nm, 612 nm, 543 nm and 532 nm iodine-stabilized standards but others may also become appropriate to include. The CCL also proposed to include absolute frequency measurements, matrix measurements as well as direct frequency heterodyne measurements in which only the difference in frequency between two standards is measured. Besides being a key comparison, K11 will not only provide reduced uncertainties for the frequencies listed in the MeP but also extend the ways in which participants can claim traceability to the definition of the *metre* to comply with the MRA and the related ISO/IEC 17025 [4]. In connection to the ongoing BIPM.L-K11 comparison a RMO comparison APMP.L-K11 was organized in NIM in Beijing in October 2004. 8 national or regional labs took part in the measurement campaign. These institutes are listed in Table 1.

Measurements

The measurements carried out are compatible with the protocol of K11. For these laser
standards, all working at 633 nm, the f-component of the 127(R) 11-5 transition in iodine was
measured being the reference component recommended in the MeP.

<u> </u>	<u> </u>		
Country	NMI	Contact person	Standard
China	NIM	J. Oian	NIM-D1 &NIM-C4
Hong Kong, PRC	SCL	T. K. Chan	SCL-1
Chinese Taipei	CMS/ITRI	Y-P. Lan	NML-04
Japan	AIST/NMIJ	J. Ishikawa	NRLM 03
Malaysia	NML-SIRIM	A. M Dahlan	NML-SIRIM-1
New Zealand	MSLNZ	E. Howick	MSL-1
South Africa	CSIR-NML	M. Louise	CSIR-4
Thailand	NIMT	A. Tonmueanwai	NIMT-1

Table 1. Participants

Standard	Power ¹	I_2 temp. ²	Modulation width ³	Appendix
	[µW]	[°C]	[MHz]	
NIM-D1	92 (2)	14.87(0.1)	6.0(0.1)	1
NML-SIRIM-1	93(2)	15.0(0.1)	6.0(0.1)	6
CSIR-4	92.2(2.0)	15.0(0.1)	6.0(0.25)	8
SCL-1	79(2)	15.0(0.1)	6.0(0.25)	3
NIMT-1	52(2)	15.0(0.1)	6.0(0.1)	9
NIM-D1	92 (2)	14.87(0.1)	6.0(0.1)	1
NRLM-3	60(1)	15.00 (0.03)	6.03(0.03)	5
NIM-C4	75(2)	15(0.1)	6.0(0.1)	2
MSL-1	85.0(2.1)	15.0(0.1)	6.0(0.1)	7
NML-04	92(2)	15.0(0.1)	6.0(0.1)	4

The measurements were made in two groups according to the division given in table 2. In this table are also the most important working parameters compiled.

Table 2. Working parameter values for the standards with estimated standard uncertainty in parenthesis as given in the measurement reports included in Appendices 1-9.

The m3 method described in the Protocol for BIPM.L-K11 was used. An Acousto- Optic Modulator (AOM) employed to shift the frequency of one of two lasers, both locked to the f component of the 127(R) 11-5 transition. The frequency of the AOM was controlled by a signal generator (ROHDE & SCHWARZ 300.1000.53). The frequency was measured by a frequency counter and then used to correct the beat frequency.

Data reduction and results

The results of the difference frequency measurements are given in table 3. The frequencies given in column 3 are referenced to the mean value of all measurement results in each group.

Standard	Ν	⊿f [kHz]	<i>s(f)</i> [kHz]
NIM-D1	10	-7.82	1.05
NML-SIRIM-1	8	5.75	0.31
CSIR-4	10	-6.45	2.18
SCL-1	10	2.16	0.50
NIMT-1	10	6.39	0.91
NIM-D1	14	-7.68	0.83
NRLM-3	10	2.65	0.27
NIM-C4	10	3.50	1.44
MSL-1	8	1.38	0.26
NML-4	10	5.79	1.14

Table 3. The frequency difference measurement results. N – number of measurements, Δf – frequency difference, and s(f) – the statistical fluctuations of the measured frequency difference given as one standard deviation of the mean.

¹ Output power when laser stabilised to the f component. ² Cold-finger temperature.

³ Peak to peak modulation width.

Link to Absolute values.

3 of the lasers participating in the difference frequency measurements have been measured absolutely either before or after the comparison. These lasers are listed in table 4 together with their absolute frequency and estimated uncertainty. The frequency values are given relative to the frequency 473 612 353 000 kHz.

Standard	f [kHz]	$u_1(f)$ [kHz]	<i>u</i> ₂ (<i>f</i>) [kHz]	<i>u</i> _c (<i>f</i>) [kHz]	Power CW]	I ₂ temp. [°C]	Modulatio n width
					L		[MHz]
NIM-D1 ⁴	595.1	0.1	1.9	1.9	92(2)	14.87(0.1)	6.0(0.1)
CSIR-4 ⁵	599.0	0.5	3.3	3.3	92.2(2.0)	15.0(0.1)	6.0(0.25)
NRLM-03 ⁶	607.2	0.7	5.3	5.3	60(0.9)	15.00(0.03)	6.03(0.03)

Table 4. Absolute frequency measurements on lasers that participated in the comparison that have been measured absolutely either before or after.

 u_1 represents the uncertainty in the frequency determination while u_2 originates from the uncertainty in the parameter settings of the lasers. A weighted least squares minimisation approach is used to take both the absolute (table 4) and the difference measurements (table 3) into account and is exposed to a Birge ratio equal to a one condition. The weights are based on the uncertainties for each one of the three standards, column 5 table 4, combined with the uncertainties of each difference measurement, table 3 column 4. The resulting absolute frequency values of the lasers during APMP.L-K11 are given in table 5 for the three lasers, calculated at the working parameters given in table 2. Information about the frequency of these lasers is thus based on the direct absolute frequency measurements and the difference frequency measurements in Beijing.

Standard	<i>f</i> [kHz]	<i>u(f)</i> [kHz]
NIM-D1	595.5	0.6
CSIR-4	598.2	0.9
NRLM-03	606.5	1.3

Table 5. Weighted average frequencies for the three absolutely measured lasers with their uncertainty.

Based on these values we can calculate the absolute frequencies of the remaining lasers using the difference frequency measurements, see table 6. The uncertainty of the determined frequency is composed of two parts, one from the frequency determination, u_1 , and one from the uncertainty in the settings of the working parameters, u_2 . The latter, the uncertainties related to the standard itself are to be estimated by each operator and are detailed in Appendices 1-9 and given in column 4 in table 6.

 ⁴ Reported in CI-2004 under BIPM.L-K11 in the KCDB at www.BIPM.org
⁵ Reported in CII-2004 under BIPM.L-K11 in the KCDB at www.BIPM.org

⁶ Measurement made as part of the BIPM.L-K11. Report under preparation

Standard	<i>f</i> [kHz]	$u_1(f)$ [kHz]	<i>u</i> ₂ (<i>f</i>) [kHz]	$u_{\rm c}(f)$ [kHz]
NIM-D1	595.5	0.7	1.9	2.0
NRLM-03	606.5	1.5	5.1	5.3
CSIR-04	598.2	1.0	3.3	3.4
NML-SIRIM-1	609.0	0.7	1.9	2.0
SCL-1	605.5	0.8	3.4	3.5
NIMT-1	609.7	1.1	2.0	2.3
NIM-C4	606.7	1.6	2.1	2.6
MSL-1	604.5	0.7	2.1	2.2
NML-4	608.9	1.3	1.9	2.3

Table 6. The absolute frequencies of the 6 lasers only participating in the frequency difference measurements.

Here u_1 is taken as the root-sum-square (RSS) of the uncertainty of the NIM-D1 laser as obtained by the least squares adjustment within the group of the NIM-D1, the CSIR-4 and the NRLM-03 laser and the uncertainty of the difference frequency measurements as given in table 3.

Figure 1. The final frequency values.

The final frequency values are depicted in figure 1 as given in column 2 in Table 6 for each laser with individual uncertainties given at a confidence level of 68% assuming a large number of degrees of freedom. The solid line represents the present recommended value for the 633 nm laser standard and the dotted lines its uncertainty [1].

Conclusion

Frequency measurements have been carried out on 9 primary wavelength standards. Good agreement between the lasers and also with the frequency value recommended in the MeP was found. The uncertainty of the laser frequencies is estimated to be of few kHz, which is considerably smaller than the uncertainty obtained by using the method (c) in the MeP, i.e. 10 kHz. The average frequency of the group is 604.9 kHz with a standard deviation of 4.9 kHz. This frequency value is in excellent agreement with the value recommended in the MeP giving further support to the validity of this recommendation.

References

- [1] T. J. Quinn, "Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001)", *Metrologia*, vol. 40, pp. 103-133, 2003.
- [2] Bayer-Melms F., Chartier J.-M., Helmcke J., Wallard A. J., *PTB-Bericht*, 1977, **PTP-ME 17**, 139-146.
- [3] Proceedings from the 11th CCL meeting.
- [4] International Organization of Standardization, ISO/IEC 17025, Geneva Switzerland.

<u>Appendix 1, NIM, NIM-D1.</u> <u>Comparison report, APMP.L-K11.</u>

Add new lines in the tables as needed and modify names of sensitivity coefficients and operational parameters as relevant for the standard being compared.

D1. Host laboratory⁷

Lab. Name	NIM
Contact person	J. Qian
Address	NIM, 18, Bei san huan donglu, Bejing, China
Tel.	
e-mail	qianjin@nim.ac.cn

D2. Measurements⁵

Quantity compared	The frequency of the output beam of the laser when this is stabilized to the f component of the 11-5, $R(127)$ transition in $^{127}I_2$ contained in a glass tube.
Period	25/11 - 5/12 2004
Describe measurements	The frequency difference between lasers was measured using the heterodyn technique following the technical protocol for the method BIPM.L-K11 m3. A AOM was used to shift the frequency of one of the lasers to access direct frequency difference between same component.
References and/or other documentation	

⁷ To be filled in by the host laboratory

Detailed description of standard⁸

Give description of the standard, one page for each participating standard (here examples for 633 nm)

Lab. Name	NIM
Operators	LIU Xiuying
Address	18, BEISANDONGLU BEIJING, China
Tel.	
e-mail	qianjin@nim.ac.cn

D3. Laboratory

D4. Standard

Designation of laser standard	NIM D1
Standard last compared	1997 in Beijing
Modification on standard since	
Spectroscopy	Intracavity saturation spectroscopy
Modulation technique	3 rd harmonic
Modulation frequency /kHz	2.77
Modulation width or index /	6 MHz p.p Nominal
Laser cavity length /cm	33
Mirror curvature R1 (tube side) /cm	60
Mirror curvature R2 (cell side) /cm	120
Mirror transmission T1 (tube side) / %	0.8
Mirror transmission T2 (cell side) / %	0.3
Output mirror, 1 or 2.	
Designation of iodine cell	PTB 1987
Cell length /Brewster /flat windows/origin	10 cm / Brewster/PTB

⁸ To be filled in by the participating NMI.

Give a brief description of the measurements made and the techniques used.

Method: The method described in the Protocol for BIPM.L-K11 method m3 was used. An Acousto-Optic Modulator (AOM) was used to shift the frequency of one of two lasers, both locked to the f component of the 127(R) 11-5 transition. The frequency of the AOM was controlled by a signal generator (ROHDE & SCHWARZ 300.1000.53). The frequency was measured by a frequency counter and then used to correct the beat frequency.

Parameter	Sens. Coeff. Value	Uncertainty	Unit	Comments.
Modulation width	-11.1	1.1	kHz/MHz	
Iodine pressure	-7.9	0.4	kHz/Pa	
Power (output)	-0.155	0.028	kHz/µW	
Cell wall temperature	0.20	0.06	kHz/ °C	This parameter is not wellknown so the value 0.2 isproposed as default value .The uncertainty of 0.06results from a tolerance of ± 0.1

D6. Sensitivity coefficients⁶

The list of parameters that influence the frequency of the standard might vary for different wavelengths and system. Some of the ones relevant for a typical 633 nm standard is included in the list.

D7. Measurements and parameter settings⁶

Parameter settings (different parameters can be important for different kind of standards)

Parameter	value	Uncertainty	Unit	Comments
Output power	92	2	μW	
Modulation width	6.0	0.1	MHz	
Iodine cell cold	14.87	0.1	°C	
finger temperature				
Cell wall	26	0.6	°C	Uncertainty from 2°C with a
temperature				rectangular distribution

Compilation of measurement and results

Two types of uncertainty can be identified in the measurements, the one that comes from the <u>measurement</u> of the standard, u_1 , and the one that results from the <u>uncertainty in the parameter setting</u> for the standard, u_2 .

D8. *u*₁.

Typical sources of uncertainty in the measurements could be ^{5.6}					
source	Value	unit	comments		
See in report					

<u>D9. u_2 .</u> Typical contributions to the uncertainty from the parameter settings⁶

~ 1		1	0
Source	Value	unit	comments
Laser power	0.32	kHz	
Modulation width	1.12	kHz	
Iodine cold finger	1.26	kHz	
temperature			
Cell wall temp	0.12	kHz	
Electronic offset	0.5	kHz	
Alignment	0.58	kHz	
Total	1.88	kHz	

<u>Appendix 2, NIM, NIM-C4.</u> <u>Comparison report, APMP.L-K11.</u>

Add new lines in the tables as needed and modify names of sensitivity coefficients and operational parameters as relevant for the standard being compared.

D1. Host laboratory⁹

Lab. Name	NIM
Contact person	J. Qian
Address	NIM, 18, Bei san huan donglu, Bejing, China
Tel.	
e-mail	qianjin@nim.ac.cn

D2. Measurements⁵

Quantity compared	The frequency of the output beam of the laser when this is stabilized to the f component of the 11-5, $R(127)$ transition in $^{127}I_2$ contained in a glass tube.
Period	25/11 - 5/12 2004
Describe measurements	The frequency difference between lasers was measured using the heterodyn technique following the technical protocol for the method BIPM.L-K11 m3. A AOM was used to shift the frequency of one of the lasers to access direct frequency difference between same component.
References and/or other documentation	

⁹ To be filled in by the host laboratory

Detailed description of standard¹⁰

Give description of the standard, one page for each participating standard (here examples for 633 nm)

Lab. Name	NIM
Operators	LIU Xiuying
Address	18, BEISANDONGLU BEIJING, China
Tel.	
e-mail	qianjin@nim.ac.cn

D3. Laboratory

D4. Standard

Designation of laser standard	NIM C4 / Tube and laser from NIM
Standard last compared	
Modification on standard since	
Spectroscopy	Intracavity saturation spectroscopy
Modulation technique	3 rd harmonic
Modulation frequency /kHz	1.04
Modulation width or index /	6 MHz p.p Nominal
Laser cavity length /cm	33
Mirror curvature R1 (tube side) /cm	60
Mirror curvature R2 (cell side) /cm	120
Mirror transmission T1 (tube side) / %	0.8
Mirror transmission T2 (cell side) / %	0.3
Output mirror, 1 or 2.	
Designation of iodine cell	NIM 1997
Cell length /Brewster /flat windows/origin	10 cm / Brewster/NIM

¹⁰ To be filled in by the participating NMI.

Give a brief description of the measurements made and the techniques used.

Method: The method described in the Protocol for BIPM.L-K11 method m3 was used. An Acousto-Optic Modulator (AOM) was used to shift the frequency of one of two lasers, both locked to the f component of the 127(R) 11-5 transition. The frequency of the AOM was controlled by a signal generator (ROHDE & SCHWARZ 300.1000.53). The frequency was measured by a frequency counter and then used to correct the beat frequency.

Parameter	Sens. Coeff.	Uncertainty	Unit	Comments.
	Value			
Modulation	-12.3	1.1	kHz/MHz	
width				
Iodine pressure	-10.4	1	kHz/Pa	
Power (output)	-0.17	0.028	kHz/µW	
Cell wall	0.5		kHz/ °C	
temperature				

D6. Sensitivity coefficients⁶

The list of parameters that influence the frequency of the standard might vary for different wavelengths and system. Some of the ones relevant for a typical 633 nm standard is included in the list.

D7. <u>Measurements and parameter settings⁶</u>

Parameter settings (different parameters can be important for different kind of standards)

Parameter	value	Uncertainty	Unit	Comments
Output power	75	2	μW	
Modulation width	6.0	0.1	MHz	
Iodine cell cold	15	0.1	°C	
finger temperature				
Cell wall	26	0.6	°C	Uncertainty from 2°C with a
temperature				rectangular distribution

Compilation of measurement and results

Two types of uncertainty can be identified in the measurements, the one that comes from the <u>measurement</u> of the standard, u_1 , and the one that results from the <u>uncertainty in the parameter setting</u> for the standard, u_2 .

<u>D8. *u*₁.</u>

Typical sources of uncertainty in the measurements could be ^{5.6}					
source	Value	unit	comments		

<u>D9. u_2 .</u> Typical contributions to the uncertainty from the parameter settings⁶

Source	Value	unit	comments
Laser power	0.34	kHz	
Modulation width	1.23	kHz	
Iodine cold finger	1.67	kHz	
temperature			
Cell wall temp	0.29	kHz	
Electronic offset	0	kHz	
Alignment	0	kHz	
Total	2.13	kHz	

<u>Appendix 3, SCL, SCL-1.</u> <u>Comparison report, APMP.L-K11.</u>

Add new lines in the tables as needed and modify names of sensitivity coefficients and operational parameters as relevant for the standard being compared.

D1. Host laboratory¹¹

Lab. Name	NIM
Contact person	J. Qian
Address	NIM, 18, Bei san huan donglu, Bejing, China
Tel.	
e-mail	qianjin@nim.ac.cn

D2. Measurements⁵

Quantity compared	The frequency of the output beam of the laser when this is stabilized to the f component of the 11-5, $R(127)$ transition in $^{127}I_2$ contained in a glass tube.
Period	25/11 - 5/12 2004
Describe measurements	The frequency difference between lasers was measured using the heterodyne technique following the technical protocol for the method BIPM.L-K11 m3. A AOM was used to shift the frequency of one of the lasers to access direct frequency difference between same component.
References and/or other documentation	

¹¹ To be filled in by the host laboratory

Detailed description of standard¹²

Give description of the standard, one page for each participating standard (here examples for 633 nm)

Lab. Name	The Government of the HKSAR Standards and Calibration Laboratory
Operators	T.K.Chan
Address	36/F, Immigration Tower, 7 Gloucester Road, Wanchai, Hong Kong.
Tel.	28294835
e-mail	tkchan@itc.gov.hk

D3. Laboratory

D4. Standard

Designation of laser standard	SCL-1, REO, LTRP-0051-BW
Standard last compared	August 1998
Modification on standard since	Nil
Spectroscopy	Saturation spectroscopy
Modulation technique	Frequency modulation
Modulation frequency /kHz	1.172
Modulation width or index /	6 MHz peak-to-peak
Laser cavity length /cm	26
Mirror curvature R1 (tube side) /cm	30
Mirror curvature R2 (cell side) /cm	\propto (plane mirror)
Mirror transmission T1 (tube side) / %	0.7
Mirror transmission T2 (cell side) / %	0.5
Output mirror, 1 or 2.	1
Designation of iodine cell	BIPM 235
Cell length /Brewster /flat windows/origin	10 cm, Brewster, BIPM

 $^{^{12}}$ To be filled in by the participating NMI.

Give a brief description of the measurements made and the techniques used.

Method: The method described in the Protocol for BIPM.L-K11 method m3 was used. An Acousto-Optic Modulator (AOM) was used to shift the frequency of one of two lasers, both locked to the f component of the 127(R) 11-5 transition. The frequency of the AOM was controlled by a signal generator (ROHDE & SCHWARZ 300.1000.53). The frequency was measured by a frequency counter and then used to correct the beat frequency. 24 °C, 24-48 %RH

Parameter	Sens. Coeff.	Uncertainty	Unit	Comments.
	Value			
Modulation	-9.3	1	kHz/MHz	
width				
Iodine pressure	-7.6	1	kHz/Pa	
Power (output)	-0.1	0.03	kHz/µW	
Cell wall	1	0	kHz/ °C	
temperature				

D6. Sensitivity coefficients⁶

The list of parameters that influence the frequency of the standard might vary for different wavelengths and system. Some of the ones relevant for a typical 633 nm standard is included in the list.

D7. Measurements and parameter settings⁶

Parameter settings (different parameters can be important for different kind of standards)

Parameter	value	Uncertainty	Unit	Comments
Output power	79	2	μW	
Modulation width	6.0	0.25	MHz	
Iodine cell cold	15.0	0.1	°C	
finger temperature				
Cell wall	25	0.3	°C	Uncertainty from 1°C with a
temperature				rectangular distribution

Compilation of measurement and results

Two types of uncertainty can be identified in the measurements, the one that comes from the <u>measurement</u> of the standard, u_1 , and the one that results from the <u>uncertainty in the parameter setting</u> for the standard, u_2 .

<u>D8. *u*₁.</u>

Typical sources of uncertainty in the measurements could be ^{5.6}					
source	Value	unit	comments		

<u>D9. u_2 .</u> Typical contributions to the uncertainty from the parameter settings⁶

Source	Value	unit	comments
Laser power	0.21	kHz	
Modulation width	2.34	kHz	
Iodine cold finger	1.23	kHz	
temperature			
Cell wall temp	0.29	kHz	
Electronic offset	2.0	kHz	
Alignment	0.58	kHz	
Total	3.38	kHz	

Appendix 4, CMS/ITRI, NML-04. Comparison report, APMP.L-K11.

Add new lines in the tables as needed and modify names of sensitivity coefficients and operational parameters as relevant for the standard being compared.

D1. Host laboratory¹³

Lab. Name	NIM
Contact person	J. Qian
Address	NIM, 18, Bei san huan donglu, Bejing, China
Tel.	
e-mail	qianjin@nim.ac.cn

D2. Measurements⁵

Quantity compared	The frequency of the output beam of the laser when this is stabilized to the f component of the 11-5, $R(127)$ transition in $^{127}I_2$ contained in a glass tube.
Period	25/11 - 5/12 2004
Describe measurements	The frequency difference between lasers was measured using the heterodyne technique following the technical protocol for the method BIPM.L-K11 m3. A AOM was used to shift the frequency of one of the lasers to access direct frequency difference between same component.
References and/or other documentation	

¹³ To be filled in by the host laboratory

Detailed description of standard¹⁴

Give description of the standard, one page for each participating standard (here examples for 633 nm)

Lab. Name	CMS/ITRI
Operators	Yu-Ping Lan
Address	321 Kuang Fu Road, Sec. 2, Hsinchu, Taiwan, Chinese Taipei
Tel.	
e-mail	Yu-PingLan@itri.org.tw

D3. Laboratory

D4. Standard

Designation of laser standard	NML-04 / REO,LTRP-0051-BW
Standard last compared	
Modification on standard since	
Spectroscopy	Saturation spectroscopy
Modulation technique	Frequency modulation
Modulation frequency /kHz	8.3
Modulation width or index /	6 MHz peak-to-peak
Laser cavity length /cm	26
Mirror curvature R1 (tube side) /cm	30
Mirror curvature R2 (cell side) /cm	∞ (plane mirror)
Mirror transmission T1 (tube side) / %	0.7
Mirror transmission T2 (cell side) / %	0.25
Output mirror, 1 or 2.	
Designation of iodine cell	BIPM 359
Cell length /Brewster /flat windows/origin	10 cm, Brewster, BIPM

¹⁴ To be filled in by the participating NMI.

Give a brief description of the measurements made and the techniques used.

Method: The method described in the Protocol for BIPM.L-K11 method m3 was used. An Acousto-Optic Modulator (AOM) was used to shift the frequency of one of two lasers, both locked to the f component of the 127(R) 11-5 transition. The frequency of the AOM was controlled by a signal generator (ROHDE & SCHWARZ 300.1000.53). The frequency was measured by a frequency counter and then used to correct the beat frequency.

Parameter	Sens. Coeff.	Uncertainty	Unit	Comments.
	Value			
Modulation	-9.3	1.1	kHz/MHz	
width				
Iodine pressure	-8.3	1.0	kHz/Pa	
Power (output)	-0.02	0.04	kHz/µW	
Cell wall	1	0	kHz/ °C	
temperature				

D6. Sensitivity coefficients⁶

The list of parameters that influence the frequency of the standard might vary for different wavelengths and system. Some of the ones relevant for a typical 633 nm standard is included in the list.

D7. Measurements and parameter settings⁶

Parameter settings (different parameters can be important for different kind of standards)

Parameter	value	Uncertainty	Unit	Comments
Output power	92	2	μW	
Modulation width	6.0	0.1	MHz	
Iodine cell cold	15.0	0.1	°C	
finger temperature				
Cell wall	25	0.6	°C	Uncertainty from 2°C with a
temperature				rectangular distribution

Compilation of measurement and results

Two types of uncertainty can be identified in the measurements, the one that comes from the <u>measurement</u> of the standard, u_1 , and the one that results from the <u>uncertainty in the parameter setting</u> for the standard, u_2 .

<u>D8. *u*₁.</u>

Typical sources of uncertain	ty in the me	asurements	could be ^{5.6}
source	Value	unit	comments

<u>D9. u_2 .</u> Typical contributions to the uncertainty from the parameter settings⁶

Source	Value	unit	comments
Laser power	0.09	kHz	
Modulation width	0.94	kHz	
Iodine cold finger	1.34	kHz	
temperature			
Cell wall temp	0.58	kHz	
Electronic offset	0.5	kHz	
Alignment	0.58	kHz	
Total	1.89	kHz	

Appendix 5, AIST/NMIJ, NRLM 03. Comparison report, APMP.L-K11.

Add new lines in the tables as needed and modify names of sensitivity coefficients and operational parameters as relevant for the standard being compared.

D1. Host laboratory¹⁵

Lab. Name	NIM
Contact person	J. Qian
Address	NIM, 18, Bei san huan donglu, Bejing, China
Tel.	
e-mail	qianjin@nim.ac.cn

D2. Measurements⁵

Quantity compared	The frequency of the output beam of the laser when this is stabilized to the f component of the 11-5, $R(127)$ transition in $^{127}I_2$ contained in a glass tube.
Period	25/11 - 5/12 2004
Describe measurements	The frequency difference between lasers was measured using the heterodyne technique following the technical protocol for the method BIPM.L-K11 m3. A AOM was used to shift the frequency of one of the lasers to access direct frequency difference between same component.
References and/or other documentation	

¹⁵ To be filled in by the host laboratory

Detailed description of standard¹⁶

Give description of the standard, one page for each participating standard (here examples for 633 nm)

Lab. Name	AIST/NMIJ
Operators	Jun Ishikawa
Address	Tsukuba Central 3,1-1, Umezono-1, Tsukuba-shi, Ibaraki 305-8563, japan
Tel.	
e-mail	j.ishikawa@aist.go.jp

D3. Laboratory

D4. Standard

Designation of laser standard	NRLM Open Laser (03)/ Neoark, HNC-92SI
Standard last compared	10/11/04 abs. freq. meas. in NMIJ
Modification on standard since	
Spectroscopy	Saturation spectroscopy
Modulation technique	Frequency modulation
Modulation frequency /kHz	3
Modulation width or index /	6 MHz peak-to-peak
Laser cavity length /cm	25
Mirror curvature R1 (tube side) /cm	\propto (plane mirror)
Mirror curvature R2 (cell side) /cm	60
Mirror transmission T1 (tube side) / %	0.5
Mirror transmission T2 (cell side) / %	0.5
Output mirror, 1 or 2.	
Designation of iodine cell	AIST, 040925-1, 25/9/2004
Cell length /Brewster /flat windows/origin	7 cm, Brewster, AIST

¹⁶ To be filled in by the participating NMI.

Give a brief description of the measurements made and the techniques used.

Method: The method described in the Protocol for BIPM.L-K11 method m3 was used. An Acousto-Optic Modulator (AOM) was used to shift the frequency of one of two lasers, both locked to the f component of the 127(R) 11-5 transition. The frequency of the AOM was controlled by a signal generator (ROHDE & SCHWARZ 300.1000.53). The frequency was measured by a frequency counter and then used to correct the beat frequency.

Parameter	Sens. Coeff. Value	Uncertainty	Unit	Comments.
Modulation	-9.8	1.1	kHz/MHz	
width				
Iodine pressure	-8.6	1.0	kHz/Pa	
Power (output)	0.13	0.028	kHz/µW	
Cell wall	0.5		kHz/ °C	
temperature				

D6. Sensitivity coefficients⁶

The list of parameters that influence the frequency of the standard might vary for different wavelengths and system. Some of the ones relevant for a typical 633 nm standard is included in the list.

D7. <u>Measurements and parameter settings⁶</u>

Parameter settings (different parameters can be important for different kind of standards)

Parameter	value	Uncertainty	Unit	Comments
Output power	60	0.9	μW	
Modulation width	6.03	0.03	MHz	
Iodine cell cold	15.0	0.03	°C	
finger temperature				
Cell wall	24	0.3	°C	Uncertainty from 1°C with a
temperature				rectangular distribution

Compilation of measurement and results

Two types of uncertainty can be identified in the measurements, the one that comes from the <u>measurement</u> of the standard, u_1 , and the one that results from the <u>uncertainty in the parameter setting</u> for the standard, u_2 .

Typical sources of uncertainty in the measurements could be ^{5.6}	
Typical sources of uncertainty in the measurements could be	

source	Value	unit	comments
See in report			

<u>D9. u_2 .</u> Typical contributions to the uncertainty from the parameter settings⁶

Source	Value	unit	comments
Laser power	0.12	kHz	
Modulation width	0.28	kHz	
Iodine cold finger	0.4	kHz	
temperature			
Cell wall temp	0.14	kHz	
Electronic offset	0.5	kHz	
Alignment	5.0	kHz	
Total	5.05	kHz	

Appendix 6, NML-SIRIM, NML-SIRIM-1. Comparison report, APMP.L-K11.

Add new lines in the tables as needed and modify names of sensitivity coefficients and operational parameters as relevant for the standard being compared.

D1. Host laboratory¹⁷

Lab. Name	NIM
Contact person	J. Qian
Address	NIM, 18, Bei san huan donglu, Bejing, China
Tel.	
e-mail	qianjin@nim.ac.cn

D2. Measurements⁵

Quantity compared	The frequency of the output beam of the laser when this is stabilized to the f component of the 11-5, $R(127)$ transition in $^{127}I_2$ contained in a glass tube.
Period	25/11 - 5/12 2004
Describe measurements	The frequency difference between lasers was measured using the heterodyne technique following the technical protocol for the method BIPM.L-K11 m3. A AOM was used to shift the frequency of one of the lasers to access direct frequency difference between same component.
References and/or other documentation	

¹⁷ To be filled in by the host laboratory

Detailed description of standard¹⁸

Give description of the standard, one page for each participating standard (here examples for 633 nm)

Lab. Name	NML-SIRIM
Operators	Ahmad M Dahlan
Address	SIRIM Berhad,Lot PT 4803,Bandar Baru Salak, Tinggi 43900 Sepang,
	Selangor, Malaysia
Tel.	
e-mail	ahmadmd@sirim.my

D3. Laboratory

D4. Standard

Designation of logar standard	NML SIDIM 1 DEO LTDD 0051 DW
Designation of faser standard	WWL-SIKIWI-1, KEO,LIKP-0031-DW
Standard last compared	24/11/2000 at the BIPM
Modification on standard since	
Spectroscopy	Saturation spectroscopy
Modulation technique	Frequency modulation
Modulation frequency /kHz	8.33
Modulation width or index /	6 MHz peak-to-peak
Laser cavity length /cm	26
Mirror curvature R1 (tube side) /cm	30
Mirror curvature R2 (cell side) /cm	∞ (plane mirror)
Mirror transmission T1 (tube side) / %	0.7
Mirror transmission T2 (cell side) / %	0.25
Output mirror, 1 or 2.	
Designation of iodine cell	BIPM #336S
Cell length /Brewster /flat windows/origin	10 cm, Brewster, BIPM

¹⁸ To be filled in by the participating NMI.

Give a brief description of the measurements made and the techniques used.

Method: The method described in the Protocol for BIPM.L-K11 method m3 was used. An Acousto-Optic Modulator (AOM) was used to shift the frequency of one of two lasers, both locked to the f component of the 127(R) 11-5 transition. The frequency of the AOM was controlled by a signal generator (ROHDE & SCHWARZ 300.1000.53). The frequency was measured by a frequency counter and then used to correct the beat frequency.

Parameter	Sens. Coeff.	Uncertainty	Unit	Comments.
T al ameter	Value			
Modulation	-5.5	1.1	kHz/MHz	
width				
Iodine pressure	-8.3	1.0	kHz/Pa	
Power (output)	-0.02	0.04	kHz/µW	
Cell wall	0.2	0.06	kHz/ °C	
temperature				

D6. Sensitivity coefficients⁶

The list of parameters that influence the frequency of the standard might vary for different wavelengths and system. Some of the ones relevant for a typical 633 nm standard is included in the list.

D7. <u>Measurements and parameter settings⁶</u>

Parameter settings (different parameters can be important for different kind of standards)

Parameter	value	Uncertainty	Unit	Comments
Output power	<i>93</i>	2	μW	
Modulation width	6.0	0.1	MHz	
Iodine cell cold	15.0	0.1	°C	
finger temperature				
Cell wall	28	0.6	°C	Uncertainty from 2°C with a
temperature				rectangular distribution

Compilation of measurement and results

Two types of uncertainty can be identified in the measurements, the one that comes from the <u>measurement</u> of the standard, u_1 , and the one that results from the <u>uncertainty in the parameter setting</u> for the standard, u_2 .

Typical sources of uncertainty in the measurements could be ^{5.6}	
Typical sources of uncertainty in the measurements could be	

source	Value	unit	comments
See in report			

<u>D9. u_2 .</u> Typical contributions to the uncertainty from the parameter settings⁶

Source	Value	unit	comments
Laser power	0.09	kHz	
Modulation width	0.56	kHz	
Iodine cold finger	1.34	kHz	
temperature			
Cell wall temp	0.12	kHz	
Electronic offset	1.0	kHz	
Alignment	0.58	kHz	
Total	1.86	kHz	

<u>Appendix 7, MSLNZ,MSL-1.</u> <u>Comparison report, APMP.L-K11.</u>

Add new lines in the tables as needed and modify names of sensitivity coefficients and operational parameters as relevant for the standard being compared.

D1. Host laboratory¹⁹

Lab. Name	NIM
Contact person	J. Qian
Address	NIM, 18, Bei san huan donglu, Bejing, China
Tel.	
e-mail	qianjin@nim.ac.cn

D2. Measurements⁵

Quantity compared	The frequency of the output beam of the laser when this is stabilized to the f component of the 11-5, $R(127)$ transition in $^{127}I_2$ contained in a glass tube.
Period	25/11 - 5/12 2004
Describe	The frequency difference between lasers was measured using the heterodyne
measurements	technique following the technical protocol for the method BIPM.L-K11 m3. A
	AOM was used to shift the frequency of one of the lasers to access direct
	frequency difference between same component.
References and/or	
other	
documentation	

¹⁹ To be filled in by the host laboratory

Detailed description of standard²⁰

Give description of the standard, one page for each participating standard (here examples for 633 nm)

Lab. Name	MSLNZ
Operators	Eleanor Howick
Address	Industrial Research, Gracefield Road, PO Box 31-310, Gracefield, Lower Hutt,
	New Zealand
Tel.	
e-mail	E.Howick@irl.cri.nz

D3. Laboratory

D4. Standard

Designation of laser standard	MSL-1, REO, LTRP-0051-BW / SN 153
Standard last compared	12 Cell in BIPM 7 14/8/1996
Modification on standard since	
Spectroscopy	Saturation spectroscopy
Modulation technique	Frequency modulation
Modulation frequency /kHz	8.33kHz
Modulation width or index /	6 MHz peak-to-peak
Laser cavity length /cm	26
Mirror curvature R1 (tube side) /cm	30
Mirror curvature R2 (cell side) /cm	\propto (plane mirror)
Mirror transmission T1 (tube side) / %	0.7
Mirror transmission T2 (cell side) / %	0.4
Output mirror, 1 or 2.	
Designation of iodine cell	BIPM #236 S
Cell length /Brewster /flat windows/origin	10 cm, Brewster, BIPM

 $[\]frac{1}{20}$ To be filled in by the participating NMI.

Give a brief description of the measurements made and the techniques used.

Method: The method described in the Protocol for BIPM.L-K11 method m3 was used. An Acousto-Optic Modulator (AOM) was used to shift the frequency of one of two lasers, both locked to the f component of the 127(R) 11-5 transition. The frequency of the AOM was controlled by a signal generator (ROHDE & SCHWARZ 300.1000.53). The frequency was measured by a frequency counter and then used to correct the beat frequency.

Parameter	Sens. Coeff.	Uncertainty	Unit	Comments.
	value			
Modulation	-9.5	2.6	kHz/MHz	
width				
Iodine pressure	-8.3	0.2	kHz/Pa	
Power (output)	-0.063	0.04	kHz/µW	
Cell wall	0.5	1	kHz/ °C	
temperature				

D6. Sensitivity coefficients⁶

The list of parameters that influence the frequency of the standard might vary for different wavelengths and system. Some of the ones relevant for a typical 633 nm standard is included in the list.

D7. Measurements and parameter settings⁶

Parameter settings (different parameters can be important for different kind of standards)

Parameter	value	Uncertainty	Unit	Comments
Output power	85	2.1	μW	
Modulation width	6.0	0.1	MHz	
Iodine cell cold	15.0	0.1	°C	Uncertainty from 0.4°C with a
finger temperature				rectangular distribution
Cell wall	27.6	1.0	°C	Uncertainty from 1°C with a
temperature				rectangular distribution

Compilation of measurement and results

Two types of uncertainty can be identified in the measurements, the one that comes from the <u>measurement</u> of the standard, u_1 , and the one that results from the <u>uncertainty in the parameter setting</u> for the standard, u_2 .

Typical sources of uncertainty in the measurements could be ^{5.6}	
Typical sources of uncertainty in the measurements could be	

source	Value	unit	comments
See in report			

<u>D9. u_2 .</u> Typical contributions to the uncertainty from the parameter settings⁶

Source	Value	unit	comments
Laser power	0.16	kHz	
Modulation width	0.98	kHz	
Iodine cold finger	1.51	kHz	
temperature			
Cell wall temp	0.58	kHz	
Electronic offset	0.58	kHz	
Alignment	0.58	kHz	
Total	2.07	kHz	

Appendix 8, CSIR-NML,CSIR-4. Comparison report, APMP.L-K11.

Add new lines in the tables as needed and modify names of sensitivity coefficients and operational parameters as relevant for the standard being compared.

D1. Host laboratory²¹

Lab. Name	NIM
Contact person	J. Qian
Address	NIM, 18, Bei san huan donglu, Bejing, China
Tel.	
e-mail	qianjin@nim.ac.cn

D2. Measurements⁵

Quantity compared	The frequency of the output beam of the laser when this is stabilized to the f component of the 11-5, $R(127)$ transition in $^{127}I_2$ contained in a glass tube.
Period	25/11 - 5/12 2004
Describe measurements	The frequency difference between lasers was measured using the heterodyne technique following the technical protocol for the method BIPM.L-K11 m3. A AOM was used to shift the frequency of one of the lasers to access direct frequency difference between same component.
References and/or other documentation	

²¹ To be filled in by the host laboratory

Detailed description of standard²²

Give description of the standard, one page for each participating standard (here examples for 633 nm)

Lab. Name	CSIR-NML
Operators	Louise Mostert
Address	Dimensional Laboratory CSIR-NML, South Africa
Tel.	
e-mail	LMostert@csir.co.za

D3. Laboratory

D4. Standard

Designation of laser standard	CSIR-4, Micro G Solutions tube
Standard last compared	May-04
Modification on standard since	
Spectroscopy	Saturation spectroscopy
Modulation technique	Frequency modulation
Modulation frequency /kHz	1.024
Modulation width or index /	6 MHz peak-to-peak
Laser cavity length /cm	32.5
Mirror curvature R1 (tube side) /cm	60
Mirror curvature R2 (cell side) /cm	\propto (plane mirror)
Mirror transmission T1 (tube side) / %	0.9
Mirror transmission T2 (cell side) / %	0.9
Output mirror, 1 or 2.	
Designation of iodine cell	BIPM 119
Cell length /Brewster /flat windows/origin	7.5 cm, Brewster, BIPM

 $[\]frac{1}{2^2}$ To be filled in by the participating NMI.

Give a brief description of the measurements made and the techniques used.

Method: The method described in the Protocol for BIPM.L-K11 method m3 was used. An Acousto-Optic Modulator (AOM) was used to shift the frequency of one of two lasers, both locked to the f component of the 127(R) 11-5 transition. The frequency of the AOM was controlled by a signal generator (ROHDE & SCHWARZ 300.1000.53). The frequency was measured by a frequency counter and then used to correct the beat frequency.

Parameter	Sens. Coeff.	Uncertainty	Unit	Comments.
	Value			
Modulation	-9.9	0.6	kHz/MHz	
width				
Iodine pressure	-7.4	1.1	kHz/Pa	
Power (output)	-0.23	0.06	kHz/µW	
Cell wall	0.2	0.06	kHz/ °C	
temperature				

D6. Sensitivity coefficients⁶

The list of parameters that influence the frequency of the standard might vary for different wavelengths and system. Some of the ones relevant for a typical 633 nm standard is included in the list.

D7. <u>Measurements and parameter settings⁶</u>

Parameter settings (different parameters can be important for different kind of standards)

Parameter	value	Uncertainty	Unit	Comments
Output power	92.2	2	μW	
Modulation width	6.0	0.25	MHz	
Iodine cell cold	15.0	0.1	°C	
finger temperature				
Cell wall	22	1.2	°C	
temperature				

Compilation of measurement and results

Two types of uncertainty can be identified in the measurements, the one that comes from the <u>measurement</u> of the standard, u_1 , and the one that results from the <u>uncertainty in the parameter setting</u> for the standard, u_2 .

Typical sources of uncertainty in the measurements could be ^{5.6}	
Typical sources of uncertainty in the measurements could be	

source	Value	unit	comments
See in report			

<u>D9. u_2 .</u> Typical contributions to the uncertainty from the parameter settings⁶

Source	Value	unit	comments
Laser power	0.48	kHz	
Modulation width	2.48	kHz	
Iodine cold finger	1.2	kHz	
temperature			
Cell wall temp	0.25	kHz	
Electronic offset	1.0	kHz	
Alignment	1.44	kHz	
Total	3.31	kHz	

<u>Appendix 9, NIMT, NIMT-1.</u> <u>Comparison report, APMP.L-K11.</u>

Add new lines in the tables as needed and modify names of sensitivity coefficients and operational parameters as relevant for the standard being compared.

D1. Host laboratory²³

Lab. Name	NIM
Contact person	J. Qian
Address	NIM, 18, Bei san huan donglu, Bejing, China
Tel.	
e-mail	qianjin@nim.ac.cn

D2. Measurements⁵

Quantity compared	The frequency of the output beam of the laser when this is stabilized to the f component of the 11-5, $R(127)$ transition in $^{127}I_2$ contained in a glass tube.
Period	25/11 - 5/12 2004
Describe measurements	The frequency difference between lasers was measured using the heterodyne technique following the technical protocol for the method BIPM.L-K11 m3. A AOM was used to shift the frequency of one of the lasers to access direct frequency difference between same component.
References and/or other documentation	

²³ To be filled in by the host laboratory

Detailed description of standard²⁴

Give description of the standard, one page for each participating standard (here examples for 633 nm)

Lab. Name	NIMT-1
Operators	Anusorn Tonmueanwai
Address	3/5 Moo 3, Klong 5, Klong Luang, Pathumthani, 12120 Thailand
Tel.	
e-mail	anusorn@nimt.or.th

D3. Laboratory

D4. Standard

Designation of laser standard	NIMT-1,Neoark / AIST Model: NEO-92SI-NF-H /
	SN 02023
Standard last compared	
Modification on standard since	
Spectroscopy	Saturation spectroscopy
Modulation technique	Frequency modulation
Modulation frequency /kHz	3
Modulation width or index /	6 MHz peak-to-peak
Laser cavity length /cm	25
Mirror curvature R1 (tube side) /cm	\propto (plane mirror)
Mirror curvature R2 (cell side) /cm	60
Mirror transmission T1 (tube side) / %	0.5
Mirror transmission T2 (cell side) / %	0.5
Output mirror, 1 or 2.	
Designation of iodine cell	051,November 22, 2002
Cell length /Brewster /flat windows/origin	6.5 cm, Brewster,

²⁴ To be filled in by the participating NMI.

Give a brief description of the measurements made and the techniques used.

Method: The method described in the Protocol for BIPM.L-K11 method m3 was used. An Acousto-Optic Modulator (AOM) was used to shift the frequency of one of two lasers, both locked to the f component of the 127(R) 11-5 transition. The frequency of the AOM was controlled by a signal generator (ROHDE & SCHWARZ 300.1000.53). The frequency was measured by a frequency counter and then used to correct the beat frequency.

Parameter	Sens. Coeff.	Uncertainty	Unit	Comments.
	Value			
Modulation	-11.4	1.2	kHz/MHz	
width				
Iodine pressure	-8.2	1	kHz/Pa	
Power (output)	-0.22	0.05	kHz/µW	
Cell wall	1	0.5	kHz/ °C	
temperature				

D6. Sensitivity coefficients⁶

The list of parameters that influence the frequency of the standard might vary for different wavelengths and system. Some of the ones relevant for a typical 633 nm standard is included in the list.

D7. <u>Measurements and parameter settings⁶</u>

Parameter settings (different parameters can be important for different kind of standards)

Parameter	value	Uncertainty	Unit	Comments
Output power	52	2	μW	
Modulation width	6.0	0.1	MHz	
Iodine cell cold	15.0	0.1	°C	
finger temperature				
Cell wall	25	0.7	°C	Uncertainty from 2.5°C with a
temperature				rectangular distribution

Compilation of measurement and results

Two types of uncertainty can be identified in the measurements, the one that comes from the <u>measurement</u> of the standard, u_1 , and the one that results from the <u>uncertainty in the parameter setting</u> for the standard, u_2 .

Typical sources of uncertainty in the measurements could be ^{5.6}	
Typical sources of uncertainty in the measurements could be	

source	Value	unit	comments
See in report			

<u>D9. u_2 .</u> Typical contributions to the uncertainty from the parameter settings⁶

Source	Value	unit	comments
Laser power	0.45	kHz	
Modulation width	1.15	kHz	
Iodine cold finger	1.32	kHz	
temperature			
Cell wall temp	0.81	kHz	
Electronic offset	0.0	kHz	
Alignment	0.0	kHz	
Total	1.98	kHz	