# **EUROMET.EM-S24**

(EUROMET Project 830)

# **Supplementary Comparison of Small Current Sources**

# REPORT

G.-D. Willenberg Physikalisch-Technische Bundesanstalt Braunschweig, Germany

# **Table of Contents**

|      | <b>.</b>   |                    |                                                                     | page    |
|------|------------|--------------------|---------------------------------------------------------------------|---------|
| 1.   | Intro      | duction            |                                                                     | 3       |
| 2.   | Parti      | cipants ar         | nd organization of the comparison                                   | 3       |
|      | 2.1        | Co-ordi            | nator and members of the support group                              | 3       |
|      | 2.2        | List of p          | participants                                                        | 4       |
| 2    | 2.3        | Organiz            | ation and comparison schedule                                       | 5       |
| 3.   | Trav       | elling star        | ndards and measurement instructions                                 | 6       |
|      | 3.1        | Descrip            | tion of the travelling standards                                    | 6       |
|      | 3.2        | Quantiti           | ies to be measured and conditions of measurements                   | 6       |
|      | 3.3        | Measure            | ement instructions                                                  | 6       |
|      | 3.4<br>2.5 | Deviatio           | ons from the protocol                                               | /       |
|      | 3.5        | Unexpe             | cted incidents and effects                                          | /       |
|      |            | 3.3.1              | PTW Unidos E<br>DTW Unidos Et lasting offect                        | / 7     |
|      |            | 3.3.1.1            | PTW Unidos E: locking effect                                        | /       |
|      |            | 3.5.1.2            | PTW Unidos E: Zero-offset problem                                   | ð       |
|      |            | 5.5.2<br>2.5.2     | Kenney 0430                                                         | ð       |
| 4    | Cali       | J.J.J<br>motion ma | Unexpectedly large ac-uc-difference of capacitances                 | 8       |
| 4.   |            | Gonorot            | ing the calibrating current by charging/discharging a canacitor     | 9       |
|      | 4.1        | Generat            | ing the calibrating current by e voltage source and a register      | 9       |
|      | 4.2        | Compar             | ison of the transfer instruments with a traceable niceemmeter       | 9<br>10 |
| 5    | 4.5<br>Moo | Compar             | and results of the portioinents                                     | 10      |
| 5.   | 5 1        | Moasur             | aments of the participants                                          | 10      |
|      | 5.1        | 5 1 1              | Measurements of PTB (pilot institute)                               | 10      |
|      |            | 512                | Measurements of VSI                                                 | 10      |
|      |            | 5.1.2              | Measurements of VSL                                                 | 11      |
|      |            | 5.1.5              | Measurements of INRIM                                               | 11      |
|      |            | 515                | Measurements of METAS                                               | 11      |
|      |            | 516                | Measurements of IMF                                                 | 12      |
|      |            | 517                | Measurements of VNIIM                                               | 12      |
|      |            | 518                | Measurements of VIS                                                 | 12      |
|      |            | 519                | Measurements of IPO                                                 | 12      |
|      |            | 5 1 10             | Measurements of LNE                                                 | 13      |
|      |            | 5 1 11             | Measurements of CEM                                                 | 13      |
|      |            | 5.1.12             | Measurements of KRISS                                               | 13      |
|      |            | 5.1.13             | Measurements of MIKES                                               | 14      |
|      | 5.2        | Behavio            | or of the travelling standards                                      | 15      |
|      |            | 5.2.1              | PTW Unidos E                                                        | 15      |
|      |            | 5.2.2              | Keithlev 6430                                                       | 15      |
|      |            | 5.2.3              | Graphical representation of the results of the pilot laboratory     | 15      |
| 6.   | Anal       | vsis of co         | omparison data sets                                                 | 20      |
|      | 6.1        | Method             | of analysis                                                         | 20      |
|      |            | 6.1.1              | Modification due to a linear drift of a transfer standard           | 20      |
|      |            | 6.1.2              | Modification due to the limited stability of the transfer standards | 21      |
|      |            | 6.1.3              | Modification due to further instabilities of the transfer standards | 22      |
|      | 6.2        | Results            |                                                                     | 23      |
|      |            | 6.2.1              | Results for the PTW Unidos E                                        | 23      |
|      |            | 6.2.2              | Results for the Keithley 6430                                       | 47      |
| 7.   | With       | drawals o          | or changes of results                                               | 71      |
| 8.   | Sum        | mary and           | conclusions                                                         | 71      |
| 9.   | Refe       | rences             |                                                                     | 71      |
| Appe | endix A    | A: Result          | s of the participants in chronological order                        | 72      |
| Appe | endix I    | B: Uncert          | ainty budgets of the participants                                   | 98      |

# 1. Introduction

In the last few years, there has been an increased need for calibrations of picoammeters, used e.g. in the field of dosimetry. Therefore, several European and non-European National Measurement Institutes (NMIs) have developed precision DC current sources to be used for traceable calibrations of picoammeters in the current range between about 100 fA and 100 pA. In order to support their calibration and measurement capabilities (CMCs), thirteen participants compared their calibration systems by means of this supplementary comparison EUROMET EM-S24. This is the first international comparison of this scale in the field of small DC currents.

# 2. Participants and organization of the comparison

# 2.1 Co-ordinator and members of the support group

The pilot laboratory for the comparison was the Physikalisch-Technische Bundesanstalt (PTB), Germany.

Co-ordinator:

Dr. Gerd-Dietmar Willenberg Tel.: +49 531 592 2141 E-mail: gerd-dietmar.willenberg@ptb.de

Support group:

Dr. Helko van den Brom, VSL, The Netherlands. E-mail: hvdbrom@vsl.nl

Dr. François Piquemal, Laboratoire national de métrologie et d'essais (LNE), France. E-mail: francois.piquemal@lne.fr

# 2.2 List of participants

There were thirteen NMIs participating in this comparison; they are listed in Table 2.1. When the comparison started, it was scheduled for only eleven NMIs, two institutes (KRISS and MIKES) joined later when the comparison was already running.

| Acronym           | Institute                                                           | Country        |
|-------------------|---------------------------------------------------------------------|----------------|
| CEM               | Centro Español de Metrología                                        | Spain          |
| IPQ <sup>*)</sup> | Instituto Português da Qualidade                                    | Portugal       |
| INRIM **)         | Istituto Nazionale di Ricerca Metrologica                           | Italy          |
| KRISS             | Korea Research Institute of Standards and Science                   | South Korea    |
| LNE               | Laboratoire national de métrologie et d'essais                      | France         |
| METAS             | Eidgenössisches Institut für Metrologie                             | Switzerland    |
| MIKES             | Centre for Metrology and Accreditation                              | Finland        |
| NIS               | National Institute for Standards                                    | Egypt          |
| NPL               | National Physical Laboratory                                        | United Kingdom |
| PTB (Pilot)       | Physikalisch-Technische Bundesanstalt                               | Germany        |
| UME               | Tübitak / Ulusal Metroloji Enstitüsü                                | Turkey         |
| VNIIM             | D. I. Mendeleyev Scientific and Research Institute for<br>Metrology | Russia         |
| VSL ***)          | VSL                                                                 | Netherlands    |

Table 2.1: List of participants in alphabetical order

<sup>\*)</sup> During the comparison, the responsibilities of INETI Instituto Nacional de Engenharia, Tecnologia e Inovação, have changed to IPQ Instituto Português da Qualidade

<sup>\*\*)</sup> During the comparison, the formerly named Istituto Electrotecnico Nazionale Galileo Ferraris (IEN) changed its name to Istituto Nazionale di Ricerca Metrologica (INRIM).

<sup>\*\*\*)</sup> During the comparison, the formerly named Nederlands Meetinstituut Van Swinden Laboratorium (NMi-VSL) changed its name to VSL.

# 2.3 Organization and comparison schedule

The comparison was organized in nine loops. In principle, for each laboratory, a period of one month was scheduled including transportation time, but there were some exceptions, e.g., when there were problems with customs or with transportation.

Due to the irregular behavior of one of the travelling standards (Keithley 6430) during the first measurement of the pilot laboratory (see Section 3.5.2.), the first loop was repeated at the end of the circulation scheme.

About 1.5 years after completing the measuring loops, one of the transfer standards (Keithley 6430) was measured again in order to obtain more reliable data for its drift behavior. This auxiliary measurement is denoted below as "PTB-12".

| Institute     | Country        | Mean date of measurements | Label used in diagrams or used as an index |  |
|---------------|----------------|---------------------------|--------------------------------------------|--|
| PTB (Pilot)   | Germany        | 18.9.2005                 | PTB-1                                      |  |
| VSL           | Netherlands    | 18.10.2005                | VSL-1                                      |  |
| NPL           | United Kingdom | 29.12.2005                | NPL-1                                      |  |
| PTB (Pilot)   | Germany        | 21.1.2006                 | PTB-2                                      |  |
| INRIM         | Italy          | 9.3.2006                  | INRIM                                      |  |
| METAS         | Switzerland    | 4.6.2006                  | METAS                                      |  |
| UME           | Turkey         | 29.8.2006                 | UME                                        |  |
| PTB (Pilot)   | Germany        | 18.9.2006                 | PTB-3                                      |  |
| VNIIM         | Russia         | 9.1.2007                  | VNIIM                                      |  |
| PTB (Pilot)   | Germany        | 15.2.2007                 | PTB-4                                      |  |
| NIS           | Egypt          | 14.4.2007                 | NIS                                        |  |
| PTB (Pilot)   | Germany        | 22.5.2007                 | PTB-5                                      |  |
| IPQ           | Portugal       | 1.7.2007                  | IPQ                                        |  |
| LNE           | France         | 2.8.2007                  | LNE                                        |  |
| PTB (Pilot)   | Germany        | 30.8.2007                 | PTB-6                                      |  |
| CEM           | Spain          | 12.10.2007                | CEM                                        |  |
| PTB (Pilot)   | Germany        | 14.11.2007                | PTB-7                                      |  |
| KRISS         | South Korea    | 8.1.2008                  | KRISS                                      |  |
| PTB (Pilot)   | Germany        | 5.2.2008                  | PTB-8                                      |  |
| MIKES         | Finland        | 19.3.2008                 | MIKES                                      |  |
| PTB (Pilot)   | Germany        | 30.4.2008                 | PTB-9                                      |  |
| PTB (Pilot)   | Germany        | 10.2.2009                 | PTB-10                                     |  |
| VSL           | Netherlands    | 2.4.2009                  | VSL-2                                      |  |
| NPL           | United Kingdom | 15.7.2009                 | NPL-2                                      |  |
| PTB (Pilot)   | Germany        | 31.7.2009                 | PTB-11                                     |  |
| PTB (Pilot) * | Germany        | 25.1.2011                 | PTB-12                                     |  |

Table 2.2: Circulation time schedule

# **3.** Travelling standards and measurement instructions

# **3.1** Description of the travelling standards

Two picoamperemeters were used as travelling standards:

- A modified commercial PTW Unidos E S/N T10008 Y-80130. It had been modified by the manufacturer in such a way that it provides a one digit higher resolution than the standard instrument.
- A commercial Keithley 6430 Source Meter S/N 1036593. It came fresh from the factory.

Both instruments were shipped in a single package together with their operating manuals. Since they had very special input connectors, they were accompanied by appropriate adapters with male BNC connectors.

As both instruments were commercial picoamperemeters which were not specifically designed as standards, in the following text they are preferably denoted as transfer instruments or travelling instruments instead of transfer standards or travelling standards.

# 3.2 Quantities to be measured and conditions of measurements

The measurements were carried out by calibrating the transfer instruments, i.e. by supplying a DC current specified by the participant's current source and recording the instruments' readings. The measurand was then the calibration factor "Q" of the transfer instrument, defined as the ratio of the reading of the transfer instrument over the supplied current:  $Q = I_{readout} / I_{supplied}$ .

The nominal values of the eight measuring points were: +100 fA, -100 fA, +1 pA, -1 pA, +10 pA, -10 pA, +100 pA, and -100 pA. Throughout this document, the current is defined as positive when it is flowing <u>out of</u> the picoammeter and it is defined as negative when it is flowing <u>out of</u> the picoammeter. It is important to mention this definition because the measurement data of the Keithley 6430 show the reverse sign. Furthermore, throughout this paper the calibration factors "Q" are regarded as being positive, despite the fact that the numerical ratio of the value displayed by the Keithley 6430 over the supplied current always has a negative value.

The measurements were to be carried out at an ambient temperature of  $(23 \pm 0.5)$  °C.

# **3.3** Measurement instructions

In order to take full advantage of the transfer instruments' resolution and to avoid internal range switching or overflows, the calibration points had to be slightly below the nominal values. Therefore, the calibration points were to be about 95 % of the nominal values, i.e. 95 fA, 0.95 pA, and so on. Only if for some technical reasons this was proved to be impossible, could the exact nominal values be used.

Both instruments, the Keithley 6430 as well as the modified PTW Unidos E, had to be operated remotely. Both instruments had RS-232 connectors, in addition, the Keithley had a GP-IB connector.

After transportation a minimum settling and warm-up time of one day had to be allowed for the instruments. Ambient temperature, pressure, and humidity had to be recorded and reported.

The transfer instruments had considerable time constants. To take these into account, a settling time of 15 s after each current change had to be allowed for.

# **3.4** Deviations from the protocol

There were some changes in the circulation time schedule:

a) Due to the timing requirements of some participants, the arrangement of the loops was slightly modified.

b) After starting the comparison, two institutes (KRISS and MIKES) joined the comparison which required two additional loops.

c) Due to the irregular behavior of one of the travelling instruments (as explained in Section 3.5.2), the first loop was repeated at the end of the circulation scheme.

d) While evaluating the results, a drift of the Keithley 6430 was discovered. In order to obtain more reliable data for the drift behavior, an auxiliary measurement was performed by the pilot institute about 1.5 years after the last measuring loop. This measurement is labeled below as "PTB-12".

# 3.5 Unexpected incidents and effects

# 3.5.1 PTW Unidos E

# 3.5.1.1 PTW Unidos E: locking effect

During the measurements at INRIM, an irregular feature of the Unidos E was discovered: When the current was slowly varied, the instrument's readout stayed on certain preferred values. After reporting these findings to the pilot laboratory, the effect was verified at the pilot laboratory by performing special measurements where the input current was varied continuously. The results for input currents close to 95 pA are shown in Fig. 3.1. It can be seen that the current "I(readout)" indicated by the Unidos is not linear with respect to the supplied current "I(source)". Instead, the graph shows steps with a height of typically 6 in the last digit. This effect was found to be most pronounced at the high currents of nominally 100 pA, while at 10 pA it was smeared out to a larger extent. At currents below 10 pA it was smeared out completely.



Fig. 3.1: Unidos E: indicated current versus applied current showing "locking" at certain steps

This behavior had not been recognized during the preparation of the comparison, probably because the calibration current was always sufficiently constant.

After contacting the instrument's manufacturer, the pilot laboratory received the explanation that the observed behavior is due to the instrument's specific electronics: the resolution of the analog-to-digital converter (ADC) is limited to about 0.05 % of the range's maximum value (112 pA in the "Low" range), the output of the ADC is then averaged over several measurements by software and the result is rounded to 4 digits. Therefore, the effect depends strongly on the presence of noise: at high currents there is a low relative noise level, hence, the reduced resolution is fully visible while at low currents the quantization is smeared out by a high relative noise level.

This behavior was communicated immediately to the participants in order to enable them to take this effect into account in their error budgets.

#### 3.5.1.2 PTW Unidos E: zero-offset problem

During the compilation of the results, it was found that at nominal current values of 1 pA and above, the calibration factors  $Q_+$  for the positive current direction and  $Q_-$  for the negative current direction vary strongly (see Figures 5.2 ... 5.4), but a closer look revealed that they vary in a characteristic way: positive excursions of  $Q_+$  correspond to negative excursions of  $Q_-$  of about the same amount and vice versa. This happens at least in situations where both values are determined from a simultaneously generated data set for positive and negative currents, which is generally the case when the calibration cycles are arranged as follows: zero current, positive current, zero current, negative current, zero current and so on. In this case, the variation of the mean calibration factor  $Q_{\pm}$  defined as  $Q_{\pm} = (Q_+ + Q_-)/2$  is much smaller than the variation of  $Q_+$  or  $Q_-$  alone as shown in Figures 5.1 to 5.4.

As has now been confirmed by the manufacturer, this behavior is explained as follows: the picoammeter uses - in addition to the three current ranges "High", "Med" and "Low" being accessible from the front panel - four internal gain stages which are selected automatically and which cannot be controlled from the outside. This means that when the applied current is zero, the instrument internally switches to the highest gain stage which is in most cases not identical to the gain stage used for the previously or subsequently applied non-zero current. Therefore, the instrument's zero-offset value is usually determined in the "wrong" gain stage. As a consequence,  $Q_+$  might be too high by a certain amount and  $Q_-$  too low by the same amount, or vice versa.

The effect described above was found after receiving the results at the pilot institute and was not communicated to the participants before the end of the measurements. This effect might be responsible for some participants' observation that the Unidos is far more unstable than the Keithley.

# 3.5.2 Keithley 6430

After a first analysis of the comparison data, it became visible that the results obtained for the Keithley 6430 during the first PTB measurement were remarkably low compared to later measurements (see e.g. Fig. 5.8b). In principle, this effect could be due to the PTB calibration set-up, but as this behavior is not visible in the Unidos results, it is more probable that it is due to some kind of aging of the Keithley 6430, since at the beginning of the comparison this instrument was quite new. As this behavior affects the analysis of the whole first measuring loop ("PTB-1" – "NPL-1" – "VSL-1" – "PTB-1"), it was decided to repeat the first loop at the end of the comparison.

#### 3.5.3 Unexpectedly large ac-dc difference of capacitances

The calibration method described below in Section 4.1 relies on charging a capacitor. After finishing all measuring loops, it was found by NPL, PTB and Nick Fletcher from BIPM (which was not a participant of this comparison), that the dc capacitance effective for the calibration and the ac capacitance measured with an ac capacitance bridge differed more than might be expected before the

beginning of the comparison [1]. This was communicated to the participants in spring 2010 and all participants had the opportunity to adjust their uncertainties in the light of these findings until summer 2010.

# 4. Calibration methods used by the participants

Within this comparison, three basically different calibrating methods were used by the participants:

# 4.1 Generating the calibrating current by charging/discharging a capacitor

The calibrating current *I* is generated by charging or discharging a gas-filled capacitor *C* with a linearly increasing or decreasing voltage of slope dV/dt. The calibrating current is then  $I=C\cdot dV/dt$ . Thus, it is traced back to the volt, the second and the farad. Typically, a trapezoidal voltage pattern symmetrical to zero voltage is used which allows the eliminating of linear drifts and the influence of leakage currents across the capacitor. This is discussed in more detail in [2].



Fig. 4.1: Schematic calibration set-up for using the capacitor-charging method

This method was used by PTB, VSL, NPL, INRIM, METAS, VNIIM, NIS, IPQ, KRISS and MIKES.

# 4.2 Generating the calibrating current by a voltage source and a resistor

The calibrating current *I* is generated by a voltage source *V* (e.g. a DC calibrator) and a resistor *R*: It is then I = V/R. Thus, the current is traced back to the volt and the ohm.



Fig. 4.2: Schematic calibration set-up for using the voltage-resistor method

This method was used by UME and CEM.

# 4.3 Comparison of the transfer instruments with a traceable picoammeter

In this method used exclusively by LNE, the calibrating current is generated by a current source consisting of a voltage source and a resistor, but, in contrast to the method described above in Section 4.2, the generated current is not directly traced back to the volt and the ohm. Instead, in a second step, the current source is calibrated by a traceable current measuring set-up. This method is described in more detail in Section 5.1.10.

# 5. Measurements and results of the participants

# 5.1 Measurements of the participants

In this section, the measuring set-up is briefly described for each laboratory in chronological order. Descriptions of the traceability chains are not given here, since traceability is not a matter of significance if viewed in the light of the uncertainties achieved.

# 5.1.1 Measurements of PTB (pilot institute)

The measurements were performed by using the capacitor charging method described in Section 4.1.

The voltage ramp was generated by a non-commercial ramp generator based on an electronic integrator, its nonlinearity being compensated by an analog feedback network as described in [3]. The generator delivered a fixed voltage slope of 10 mV/s. The slope could be fine-tuned by using a Kelvin-Varley voltage divider and increased by a factor of ten using an additional amplifier stage. During the time when this comparison was running, a new ramp generator based on digital-to-analog converters was developed [4], but, for reasons of continuity, it was not used for measurements in the framework of this comparison.

The ramp slope was measured using an Agilent 3458A multimeter (DMM). The DMM's triggering was performed by a precision time base consisting of an oven-stabilized 10 MHz quartz-oscillator and binary divider circuits.

For generating 100 pA and 10 pA, a commercial capacitor of the type GR1404 (1000 pF) was used, for generating 1 pA and 100 fA, two commercial capacitors of the types GR 1403 (100 pF and 10 pF) were used. Their capacitances were measured before and after each run using an Andeen-Hagerling

AH2500 capacitance bridge. The whole set-up was situated in a temperature-controlled electrically shielded room. Humidity and air pressure were not stabilized.

For each current value, the measurement consisted of typically 60 cycles, each of them containing four phases: a) zero current, b) positive current, c) zero current, d) negative current. After the last cycle was completed, an additional zero-current phase was appended.

During the comparison, 11 sets of calibrations were carried out by PTB, denoted by "PTB-1" to "PTB-1".

# 5.1.2 Measurements of VSL

The measurements were performed by using the capacitor charging method described in Section 4.1.

The current source was based on a non-commercial voltage ramp generator with a software-controlled non-linearity compensation and a set of air-dielectric capacitors of the type GR1404. The special technique for the non-linearity compensation and the set-up is described in detail in [2]. The nominal current values 100 pA, 10 pA and 1 pA were generated using a voltage ramp rate of 0.1 V/s in combination with a 1000 pF, 100 pF and 10 pF capacitor respectively. The nominal current 100 fA was generated using a ramp rate of 0.01 V/s in combination with a 10 pF capacitor. The ramp time was at least 150 s. The ac-dc difference of the capacitors was verified by a comparison to a current generated by a calibrator applying a voltage to a temperature-controlled 100 G $\Omega$  resistor.

Since the Keithley 6430 showed irregular behavior at the beginning of the comparison (as described in Section 3.5.2), the first measuring loop was repeated at the end. Therefore, VSL carried out two series of measurements, one in the first loop of the comparison and one in the final loop, denoted as "VSL-1" and "VSL-2", respectively.

# 5.1.3 Measurements of NPL

The measurements were performed by using the capacitor charging method described in Section 4.1.

The voltage ramp was generated by a non-commercial ramp generator based on an electronic integrator. The ramp slope was measured by an Agilent 3458A multimeter. The capacitors used to generate the current were of type HP16381A (1pF), 16382A (10pF) and 16383A (100 pF) for the first set of measurements. These capacitors were of unsealed air-dielectric type, and were subsequently found to have a large frequency dependence. For the second set of measurements, denoted "NPL-2", a GR1404 100 pF sealed-gas capacitor was used for all current values. The capacitors were measured before and after each calibration run using a calibrated AH-2500 capacitance bridge. The triggering was performed by a precision time base consisting of a 10MHz oscillator and binary divider circuits. The transfer instrument as well as the current generating capacitor were situated in a temperature- and humidity-controlled cabinet. The set-up is described in more detail in [5].

Since the Keithley 6430 showed irregular behavior at the beginning of the comparison (as described in Section 3.5.1), the first measuring loop was repeated at the end. Therefore, NPL carried out two series of measurements, one in the first loop of the comparison and one in the final loop, denoted as "NPL-1" and "NPL-2", respectively. The NPL reference current capability at the time of publication of this report is represented by the measurements NPL-2.

# 5.1.4 Measurements of INRIM

The measurements were performed by using the capacitor charging method described in Section 4.1.

The voltage ramp was generated by a non-commercial ramp generator based on an electronic integrator circuit, developed by INRIM. The ramp slope was measured by an Agilent 34401

multimeter triggered by a non-commercial time base. A set of commercial capacitors with capacitances of 1 pF, 10 pF, 100 pF and 1000 pF was used for the different current values. A more detailed description of the set-up can be found in [6].

# 5.1.5 Measurements of METAS

The measurements were performed by using the capacitor charging method described in Section 4.1.

The current source consisted basically of a non-commercial voltage ramp generator developed at METAS and a set of gas-dielectric capacitors with capacitances between 1 pF and 1 nF. The current source was based on an electronic integrator, where a high degree of linearity was achieved by a PID-controller which monitored the generators output slope.

Since METAS is situated about 550 m above sea level, the ambient air pressure was about 960 hPa, a value considerably lower than that of the other participants, with the exception of CEM.

#### 5.1.6 Measurements of UME

The measurements were performed by applying the "voltage source and resistor" method as described in Section 4.2.

The voltage was supplied by a voltage calibrator of type the Fluke 5440B. Two resistors of the type Guildline 65206 with resistances of 100 G $\Omega$  and 1 T $\Omega$  were used and the voltage was checked using an Agilent 3458A digital multimeter. The resistor in use was situated in a shielded box.

# 5.1.7 Measurements of VNIIM

The measurements were performed by using the capacitor charging method described in Section 4.1.

Both, the voltage ramp generator as well as the capacitors being charged had been developed and manufactured by VNIIM. The voltage slope was measured by a digital voltmeter of the type SCH1516. It was triggered by a trigger device developed at VNIIM.

The voltage ramp was generated by a non-commercial ramp generator based on an electronic integrator, its nonlinearity being compensated by an analog feedback. The voltage slope could be changed by multiples of ten or fine-tuned by using a voltage divider in the range from 0.001 mV/s to 10 mV/s. A set of capacitors with gas dielectric and sapphire isolation with nominal values between 1 pF and 1000 pF was used. Their capacitance was measured by an Andeen-Hagerling AH2500 bridge before and after the small current measurements. The loss angle of the capacitors did not exceed  $5 \cdot 10^{-5}$ .

# 5.1.8 Measurements of NIS

The measurements were performed by using the capacitor charging method described in Section 4.1.

The current source consisted of a single air-dielectric "differentiating" capacitor  $C_1$  of the type GR1404 with a capacitance of 1 nF and a voltage slope generator based on an electronic integrator. The generator's output voltage slope was defined by its "integrating" capacitor  $C_2$  and the integrated current generated by a 100 M $\Omega$  Guildline resistor and a Wavetek 9100 voltage calibrator.

The different calibrating currents were generated by using different "integrating" capacitors  $C_2$  and injecting different currents into the integrator.

# 5.1.9 Measurements of IPQ

The measurements were performed by using the capacitor charging method described in Section 4.1.

The current was generated by a commercial 16-bit ramp generator and a set of GR1404 capacitors with capacitances of 1 pF, 10 pF and 100 pF. The ramp slope was measured using an Agilent 3458A sampling voltmeter triggered by a 1pps source disciplined from a GPS-based frequency reference.

# 5.1.10 Measurements of LNE

Within this comparison, the method used by LNE is unique since it uses the two-step procedure mentioned in Section 4.3:

<u>Step 1:</u> the device under test (DUT) was calibrated using a current source consisting of a voltage source and a 100 G $\Omega$  resistor. Such a calibration consisted of several cycles each of them containing three phases: a) the voltage was adjusted in such a way that the DUT's readout was a minimum, b) the voltage was changed to a value appropriate for generating the required calibrating current, c) the voltage was adjusted to the same value as in the initial phase a).

<u>Step 2:</u> immediately following step 1, the current source is calibrated at the same current value as before using the special current measuring set-up described in more detail in [7]. That set-up is based on integrating the input current, thus the current is traced back to the volt, the farad and the second. The current measuring set-up acts as a primary standard while the current source used acts as a transfer standard. As in step 1, each measuring cycle consisted of the three phases a), b) and c). The measurements were carried out in a room with a temperature stabilized to  $23.0^{\circ}C \pm 0.5^{\circ}C$ . In addition, the 100 G $\Omega$  resistor was placed in a temperature-controlled air bath. The integrating current measuring set-up was situated in a temperature-controlled enclosure stabilized to 23 °C ± 0.001 °C.

# 5.1.11 Measurements of CEM

The measurements were performed by using the voltage/resistor method described in Section 4.2.

All current values were generated using a Fluke 5720 multifunction calibrator and a single 100 G $\Omega$  resistor manufactured by TPYCEA.

Since CEM is situated more than 600 m above sea level, the ambient air pressure was about 940 hPa, a value considerably lower than that of the other participants.

# 5.1.12 Measurements of KRISS

The measurements were performed by using the capacitor charging method described in Section 4.1.

The voltage ramp was generated by a non-commercial ramp generator based on an electronic integrator, its nonlinearity being compensated by an analog feedback network similar to that described in [3]. The generator delivered a fixed voltage slope of 10 mV/s. The slope could be fine-tuned by using a Kelvin-Varley voltage divider and increased by a factor of ten using an additional amplifier stage.

For generating the currents, a set of commercial gas-dielectric capacitors with nominal values between 1 pF and 1000 pF was used. Their capacitances were measured before and after each run using an Andeen-Hagerling AH2500 capacitance bridge.

# 5.1.13 Measurements of MIKES

The measurements were performed by using the capacitor charging method described in Section 4.1.

The voltage was generated by a non-commercial ramp generator developed by MIKES [8]. The generator was based on digital-to-analog converters (DACs) controlled by a microcontroller. The ramp slope was measured by an Agilent 3458A multimeter triggered by a digital signal provided by the ramp generator electronics which in turn was checked periodically using a calibrated frequency counter. Three capacitors of the type GR1404 were used with capacitances of 10pF, 100 pF and 1000 pF respectively. The capacitances were determined by an Andeen-Hagerling capacitance bridge traceable to BIPM.

The measurements were performed in a shielded room which was temperature and humidity controlled. The transfer instruments and the capacitors were situated in a special shielded cabinet which was temperature and humidity controlled as well.

# 5.2 Behavior of the travelling standards

It must be mentioned here again that the travelling instruments used are commercial measuring instruments which were not designed for the use as standards. In this comparison, they were used far beyond their specifications. At the beginning of the comparison, both travelling instruments were rather new. Therefore, there was no knowledge about their individual stabilities and eventual drift behavior.

In the following sections, the behavior of the travelling instruments will be discussed mainly by regarding the measurements of the pilot laboratory alone.

It is clear that measurements of the pilot laboratory reflect both the behavior of the travelling instruments as well as the behavior of the pilot laboratory's calibrating set-up. Nevertheless, the use of two instruments of different types, together with regarding the results of the other participants, helps to separate these effects to a large extent.

At the beginning of the comparison, it was intended to evaluate the temperature coefficients of the travelling instruments from the data obtained during the comparison, but this proved not to be feasible since any correlation with temperature was hidden by the scatter of the results.

# 5.2.1 PTW Unidos E

As already discussed in Section 3.5.1, the Unidos E suffered from a low internal resolution and a problem with its zero-offset. This led to relatively large uncertainties and to differences in the results for positive and negative current directions. Due to the latter effect, the calibration factors  $Q_+$  for positive current direction and  $Q_-$  for negative current direction show strong variations, whereas the variations are strongly reduced when the mean  $Q_{\pm} = (Q_+ + Q_-)/2$  is calculated, at least when  $Q_+$  and  $Q_-$  are measured in the same run (see e.g. Fig. 5.2).

Besides these properties, no further systematic effects were found.

MIKES reported a pressure dependence of the Unidos E. This dependence could not be supported by an analysis of the correlation of the participants' results with their associated ambient pressure data. If there were a noticeable pressure dependence, specifically the results of METAS and CEM, which are situated much higher above sea level than the other institutes, should differ significantly from the results of the remaining participants, but no such effect could be observed.

# 5.2.2 Keithley 6430

The results of the first PTB measurement "PTB-1" were considerably below the results of all succeeding measurements (see Figures 5.5 ... 5.8), which was attributed to some kind of aging of the instrument as already discussed in Section 3.5.2. Therefore, the whole first measuring loop containing the measurements of NPL and VSL was repeated at the end of the comparison.

Besides that irregular behavior at the first measurements, at current values of 1 pA, 10 pA and 100 pA a linear drift was observed superimposed by an additional wiggle (see e.g. Fig. 5.8).

# 5.2.3 Graphical representation of the results of the pilot laboratory

The graphs in this section show the results of only the pilot laboratory in order visualize more clearly the behavior of the travelling standards during the comparison.

#### Unidos E at 100 fA:



*Fig.* 5.1: Calibration factors  $Q_+$  and  $Q_-$  for the Unidos E at 100 fA, pilot institute only.

Unidos E at 1 pA:



*Fig.* 5.2: Calibration factors  $Q_+$  and  $Q_-$  for the Unidos E at 1 pA, pilot institute only.



#### Unidos E at 10 pA:

*Fig. 5.3:* Calibration factors  $Q_+$  and  $Q_-$  for the Unidos E at 10 pA, pilot institute only.



Unidos E at 100 pA:

*Fig. 5.4:* Calibration factors  $Q_+$  and  $Q_-$  for the Unidos E at 100 pA, pilot institute only.



#### Keithley 6430 at 100fA:

Fig. 5.5: Calibration factors  $Q_+$  and  $Q_-$  for the Keithley 6430 at 100 fA, pilot institute only.



# Keithley 6430 at 1 pA:

*Fig. 5. 6:* Calibration factors  $Q_+$  and  $Q_-$  for the Keithley 6430 at 1 pA, pilot institute only.

# Keithley 6430 at 10 pA:



*Fig.* 5.7: Calibration factors  $Q_+$  and  $Q_-$  for the Keithley 6430 at 10 pA, pilot institute only.



# Keithley 6430 at 100 pA:

*Fig.* 5.8: Calibration factors  $Q_+$  and  $Q_-$  for the Keithley 6430 at 100 pA, pilot institute only.

# 6. Analysis of comparison data sets

The data sets reported by the participants (see Appendix A) mainly contain the calibration factors  $Q_+$  (defined as the ratio of the transfer instrument's reading / supplied current) for a current flowing into the transfer instrument and  $Q_-$  for a current flowing out of the transfer instrument, accompanied by their standard uncertainties  $u(Q_+)$  and  $u(Q_-)$  and their effective degrees of freedom.

From these uncertainties and effective degrees of freedom, the pilot laboratory calculated expansion factors *k* corresponding to a 95% coverage and the corresponding expanded uncertainties  $U(Q_+)$  and  $U(Q_-)$ . These data are also given in the tables of Appendix A.

As already discussed in Section 3.5.1.2, there was a zero-offset problem with the Unidos E leading to relatively large excursions of  $Q_+$  and of  $Q_-$  of about the same amount, but in opposite directions. Due to this effect, the mean of  $Q_+$  and  $Q_-$  is much more stable than the values themselves. Hence, it was found valuable to consider in addition to  $Q_+$  and  $Q_-$  also their mean value  $Q_{\pm} = (Q_+ + Q_-)/2$ .

Since typically the sources for type B uncertainties are the same for  $Q_+$  and  $Q_-$ , a high degree of correlation can be assumed and the uncertainty of  $Q_{\pm}$  is approximated by  $U(Q_{\pm}) = (U(Q_{\pm}) + U(Q_{-}))/2$ . In reality, the correlation is not perfect and, therefore, this formula may overestimate the correct uncertainties, especially at the lower current values where the type A uncertainty components may contribute to a larger extent to the overall uncertainty than at the higher current values.

# 6.1 Method of analysis

The aim of the analysis is to establish

i) for each transfer instrument and for each current value a reference value  $Q_{\text{ref}}$  and ii) for each result  $Q_i$  of a participant a corresponding degree of equivalence  $(d_i, U(d_i))$ , with  $d_i = Q_i - Q_{\text{ref}}$  and  $U(d_i)$  being the expanded uncertainty of  $d_i$  for a coverage of 95% (see [9]).

In general, the data sets were not completely consistent. Therefore, the method described by Cox in [10] is used to determine the reference values  $Q_{ref}$  and the largest consistent data sets. This method is described briefly in Section 6.1.1.

Furthermore, two modifications were necessary in order to take into account the drift behavior of the Keithley 6430 and the additional instability of both transfer instruments. They are described in Sections 6.1.2 and 6.1.3.

#### 6.1.1 Method of determining the reference values and the degrees of equivalence

A reference value  $Q_{ref}$  is calculated as a weighted mean of the largest consistent subset of the results  $Q_i$  (i = 1...N) following the procedure described in more detail in [10]:

For each result  $Q_{i}$ , a function  $e_i(Q_{ref})$  is defined as

$$e_{i}(Q_{ref}) = \frac{\oint_{i} - Q_{ref}^{2}}{u^{2}(Q_{i})}, \qquad (1)$$

where  $Q_{ref}$  is still unknown. The sum  $F_r$  over these functions is again a function of  $Q_{ref}$ .

$$F_{r}(Q_{nf}) = \sum_{i=1}^{r} e_{i}(Q_{nf}) .$$
(2)

 $Q_{ref}$  is then determined by numerically searching the minimum of  $F_r(Q_{ref})$  using the method described in Section 5.2 of [10].

In a first step, all results are taken into account, i.e. r = N.

The results are regarded as consistent and the value for  $Q_{ref}$  is accepted if

$$F_r \oint_{r = 1, \alpha} \leq \chi^2_{r^{-1}, \alpha}$$
(3)

where  $\chi^{2}_{\nu,\alpha}$  denotes the 100 $\alpha$  percentage point of the chi-squared distribution with  $\nu$  degrees of freedom.  $\alpha$  was taken here as 0.05.

If the results are not consistent, r is decremented by one, i.e. *N*-r results with the largest values of  $e_i$  are discarded from calculating  $Q_{ref}$  and the procedure is restarted at equation (1). This cycle is repeated until consistency is achieved. For a more detailed description of the method of selecting the discarded results see section 2.1 in [10].

After the reference value is determined, it's uncertainty  $u(Q_{ref})$  is calculated according to

$$\frac{1}{u^2(Q_{ref})} = \sum_{i=1}^r \frac{1}{u^2(Q_i)}$$
(4)

For each result  $Q_i$ , the degree of equivalence

$$(d_{i}, U_{i}) = (Q_{i} - Q_{ref}, k \cdot u(d_{i}))$$
(5)

is calculated with

$$u^{2}(d_{\rm i}) = u^{2}(Q_{\rm i}) - u^{2}(Q_{\rm ref})$$
 for the undiscarded results, (6)

and

$$u^{2}(d_{i}) = u^{2}(Q_{i}) + u^{2}(Q_{ref})$$
 for the discarded results, (7)

with the expansion factor k=2.

#### 6.1.2 Modification due to a linear drift of a transfer standard

As mentioned above, the Keithley 6430 showed an obvious drift behavior at currents of 1 pA, 10 pA and 100 pA. This was taken into account by assuming a linear dependence of the reference value with time:

$$Q_{ref}(t) = A + B \cdot t, \tag{8}$$

where t (given in days) is the time of a measurement relative to the arithmetic mean all measurement dates.

Taking this into account, the functions  $e_i$  have now to be redefined as:

$$e_{i}(Q_{nf}) = \frac{\oint_{i} - A - B \cdot t_{i}^{2}}{u^{2}(Q_{i}) + u^{2}(B) \cdot t_{i}^{2}},$$
(9)

and the uncertainty  $u(Q_{ref})$  is given by

$$\frac{1}{u^2(Q_{ref})} = \sum_{i=1}^r \frac{1}{u^2(Q_i) + u^2(B) \cdot t_1^2}$$
(10)

In order to avoid any distortion by possibly differently biased results of the different participants, the drift rate B and its uncertainty u(B) were determined by calculating linear regressions using only the results of the pilot laboratory "PTB-2" to "PTB-11". The results of "PTB-1" were excluded from this calculation due to their irregular behavior as mentioned above.

#### 6.1.3 Modification due to further instabilities of the transfer standards

Even if the linear drift is subtracted, there is a remaining superimposed "wiggle", as can be seen for example in Fig. 5.6. For a proper description of the transfer instruments, this instability has to be taken into account.

This judgment is supported by initial calculations which show that, if this instability is not taken into account, the largest consistent data sets are rather small, i.e. a very high percentage of the results (up to 48% for the Unidos and up to 39% for the Keithley) would have to be discarded from the calculation of the reference values.

In order to describe this type of instability of the transfer standards, an additional uncertainty term  $u_{TS}$  is defined. It is determined by using the standard deviations  $\sigma(Q_+)$  for the positive current direction and  $\sigma(Q_-)$  for the negative current direction of the results of "PTB-2" ... "PTB-11". In those cases where a drift has to be taken into account, the corresponding standard deviations with respect to the linear regression lines are used. This method is justified by the fact that the variations of the pilot laboratory's results for the Keithley on one side and for the Unidos on the other side are not correlated, which means that these variations are more likely due to the transfer standards and less likely to the pilot laboratory's calibration set-up.

As  $u_{TS}$  depends on the same internal components of the transfer instruments, it should be the same for both current directions. It is estimated as

$$u_{\tau_{5}} = \mathbf{f}_{(Q_{+})} + \sigma_{(Q_{-})} \not\supseteq_{2} \tag{11}$$

and the functions  $e_i$  have finally to be redefined as

$$e_{i}(Q_{nf}) = \frac{\oint_{i} - A - B \cdot t_{i}^{2}}{u^{2}(Q_{i}) + u^{2}(B) \cdot t_{i}^{2} + u_{TS}^{2}}$$
(12)

In those cases where no obvious drift is observed, i.e. for the results of the Keithley at 100 fA and for all results of the Unidos, equation (12) is simplified by setting B=0, u(B)=0 and  $A=Q_{ref}$ .

The uncertainty  $u(Q_{ref})$  is now given by

$$\frac{1}{u^{2}(Q_{nef})} = \sum_{i=1}^{r} \frac{1}{u^{2}(Q_{i}) + u^{2}(B) \cdot t_{1}^{2} + u_{TS}^{2}}$$
(13)

# 6.2 Results

# 6.2.1 Results for the PTW Unidos E

# Results for the PTW Unidos E at 100 fA, positive current direction:

Reference value:  $Q_{ref} = 1.00097982$ ,  $u(Q_{ref}) = 1.18 \cdot 10^{-4}$ Uncertainty describing the instability of the transfer standard:  $u_{TS} = 3.47 \cdot 10^{-4}$ 

**Table 6.1:** Summary of the results, containing each participant's result  $Q_i$ , its uncertainty  $u(Q_i)$ ,  $e_i$  as defined in equation (12), indication if the result had to be discarded from calculating the reference value due to a too large value of  $e_i$ , and the degree of equivalence  $(d_i, U(d_i))$ .

| Institute | $Q_i$     | $u(Q_i)$             | ei     | discard | $d_i$                 | $U(d_i)$             |
|-----------|-----------|----------------------|--------|---------|-----------------------|----------------------|
| PTB-1     | 1.0015230 | $2.3 \cdot 10^{-4}$  | 1.71   | Ν       | 5.5.10-4              | 8.0.10-4             |
| VSL-1     | 1.0022500 | $1.3 \cdot 10^{-4}$  | 11.76  | Y       | $1.3 \cdot 10^{-3}$   | $7.8 \cdot 10^{-4}$  |
| NPL-1     | 1.1388000 | 5.3·10 <sup>-3</sup> | 674.36 | Y       | $1.4 \cdot 10^{-1}$   | $1.1 \cdot 10^{-2}$  |
| PTB-2     | 1.0010490 | 3.6.10-4             | 0.02   | Ν       | 7.2·10 <sup>-5</sup>  | 9.7·10 <sup>-4</sup> |
| INRIM     | 1.0007740 | $1.4 \cdot 10^{-3}$  | 0.02   | Ν       | $-2.0 \cdot 10^{-4}$  | $2.8 \cdot 10^{-3}$  |
| METAS     | 1.0019420 | $8.8 \cdot 10^{-3}$  | 0.01   | Ν       | 9.6·10 <sup>-4</sup>  | $1.8 \cdot 10^{-2}$  |
| UME       | 0.8710000 | $4.3 \cdot 10^{-2}$  | 9.28   | Ν       | -1.3·10 <sup>-1</sup> | 8.5·10 <sup>-2</sup> |
| PTB-3     | 1.0008310 | $2.7 \cdot 10^{-4}$  | 0.11   | Ν       | -1.5·10 <sup>-4</sup> | $8.4 \cdot 10^{-4}$  |
| VNIIM     | 1.0007800 | $2.6 \cdot 10^{-4}$  | 0.21   | Ν       | $-2.0 \cdot 10^{-4}$  | 8.3.10-4             |
| PTB-4     | 1.0009960 | $2.5 \cdot 10^{-4}$  | 0.00   | Ν       | $1.9 \cdot 10^{-5}$   | $8.2 \cdot 10^{-4}$  |
| NIS       | 0.9833000 | $4.6 \cdot 10^{-3}$  | 14.68  | Y       | -1.8·10 <sup>-2</sup> | 9.2·10 <sup>-3</sup> |
| PTB-5     | 1.0015030 | 3.3.10-4             | 1.21   | Ν       | 5.3.10-4              | 9.3·10 <sup>-4</sup> |
| IPQ       | 1.0040000 | $2.4 \cdot 10^{-2}$  | 0.02   | Ν       | $3.0 \cdot 10^{-3}$   | $4.8 \cdot 10^{-2}$  |
| LNE       | 0.9969000 | $1.7 \cdot 10^{-3}$  | 5.52   | Ν       | $-4.1 \cdot 10^{-3}$  | $3.5 \cdot 10^{-3}$  |
| PTB-6     | 1.0012170 | $4.2 \cdot 10^{-4}$  | 0.20   | Ν       | $2.4 \cdot 10^{-4}$   | $1.1 \cdot 10^{-3}$  |
| CEM       | 1.0009000 | $4.2 \cdot 10^{-4}$  | 0.02   | Ν       | -7.7·10 <sup>-5</sup> | $1.1 \cdot 10^{-3}$  |
| PTB-7     | 1.0006460 | $1.9 \cdot 10^{-4}$  | 0.70   | Ν       | -3.3·10 <sup>-4</sup> | 7.6.10-4             |
| KRISS     | 1.0013280 | $3.5 \cdot 10^{-4}$  | 0.51   | Ν       | $3.5 \cdot 10^{-4}$   | 9.5.10-4             |
| PTB-8     | 1.0003500 | $2.9 \cdot 10^{-4}$  | 1.90   | Ν       | -6.3·10 <sup>-4</sup> | $8.8 \cdot 10^{-4}$  |
| MIKES     | 1.0033790 | 8.6.10-4             | 6.71   | Ν       | $2.4 \cdot 10^{-3}$   | $1.8 \cdot 10^{-3}$  |
| PTB-9     | 1.0006540 | $2.5 \cdot 10^{-4}$  | 0.56   | Ν       | -3.2·10 <sup>-4</sup> | 8.3.10-4             |
| PTB-10    | 1.0008600 | $2.4 \cdot 10^{-4}$  | 0.08   | Ν       | $-1.2 \cdot 10^{-4}$  | $8.1 \cdot 10^{-4}$  |
| VSL-2     | 1.0023703 | $1.2 \cdot 10^{-4}$  | 14.30  | Y       | $1.4 \cdot 10^{-3}$   | $7.7 \cdot 10^{-4}$  |
| NPL-2     | 1.0010700 | 7.5.10-4             | 0.01   | Ν       | 9.3·10 <sup>-5</sup>  | 1.6.10-3             |
| PTB-11    | 1.0010450 | 3.3.10-4             | 0.02   | Ν       | 6.8·10 <sup>-5</sup>  | 9.3·10 <sup>-4</sup> |

Number of discarded results = 4, percentage = 16 %.

 $F_{\rm r} = \sum e_{\rm i} = 28.82$ , summed over the undiscarded contributions.

Degree of freedom v = r-1 = 20.



*Fig. 6.1:* Calibration factors for the Unidos at 100 fA for positive current direction, together with the reference value (solid line) and its uncertainty for k=2 (dashed lines). Results not shown in the graph are located outside of the plotting area.

### **Results for the PTW Unidos E at 100 fA, negative current direction:**

Reference value:  $Q_{ref} = 1.00164994$ ,  $u(Q_{ref}) = 1.20 \cdot 10^{-4}$ Uncertainty describing the instability of the transfer standard:  $u_{TS} = 3.47 \cdot 10^{-4}$ 

**Table 6.2:** Summary of the results, containing each participant's result  $Q_i$ , its uncertainty  $u(Q_i)$ ,  $e_i$  as defined in equation (12), indication if the result had to be discarded from calculating the reference value due to a too large value of  $e_i$ , and the degree of equivalence  $(d_i, U(d_i))$ .

| Institute | $Q_i$     | $u(Q_i)$             | ei      | discard | $d_i$                 | $U(d_i)$             |
|-----------|-----------|----------------------|---------|---------|-----------------------|----------------------|
| PTB-1     | 1.0015710 | $2.7 \cdot 10^{-4}$  | 0.03    | N       | -8.2·10 <sup>-5</sup> | $8.5 \cdot 10^{-4}$  |
| VSL-1     | 0.9991700 | 1.3.10-4             | 44.80   | Y       | -2.5·10 <sup>-3</sup> | 7.8·10 <sup>-4</sup> |
| NPL-1     | 0.8654000 | 3.0·10 <sup>-3</sup> | 2063.98 | Y       | -1.4·10 <sup>-1</sup> | 6.0·10 <sup>-3</sup> |
| PTB-2     | 1.0011690 | $2.5 \cdot 10^{-4}$  | 1.29    | N       | $-4.8 \cdot 10^{-4}$  | 8.2.10-4             |
| INRIM     | 1.0008320 | $1.0 \cdot 10^{-3}$  | 0.56    | N       | $-8.2 \cdot 10^{-4}$  | $2.2 \cdot 10^{-3}$  |
| METAS     | 0.9998170 | 9.2·10 <sup>-3</sup> | 0.04    | N       | -1.8·10 <sup>-3</sup> | $1.8 \cdot 10^{-2}$  |
| UME       | 1.1250000 | 1.1.10-2             | 125.81  | Y       | $1.2 \cdot 10^{-1}$   | $2.2 \cdot 10^{-2}$  |
| PTB-3     | 1.0016680 | $2.6 \cdot 10^{-4}$  | 0.00    | N       | $1.5 \cdot 10^{-5}$   | $8.4 \cdot 10^{-4}$  |
| VNIIM     | 1.0007500 | 3.4.10-4             | 3.43    | N       | -9.0·10 <sup>-4</sup> | 9.4·10 <sup>-4</sup> |
| PTB-4     | 1.0016360 | $2.2 \cdot 10^{-4}$  | 0.00    | N       | -1.7·10 <sup>-5</sup> | 7.9·10 <sup>-4</sup> |
| NIS       | 1.0150000 | $4.4 \cdot 10^{-3}$  | 9.10    | N       | $1.3 \cdot 10^{-2}$   | 8.8·10 <sup>-3</sup> |
| PTB-5     | 1.0017180 | 3.0.10-4             | 0.02    | N       | 6.5·10 <sup>-5</sup>  | 8.8·10 <sup>-4</sup> |
| IPQ       | 1.0010000 | $2.6 \cdot 10^{-2}$  | 0.00    | N       | -6.5·10 <sup>-4</sup> | $5.2 \cdot 10^{-2}$  |
| LNE       | 1.0055000 | $1.1 \cdot 10^{-3}$  | 11.12   | Y       | $3.8 \cdot 10^{-3}$   | $2.3 \cdot 10^{-3}$  |
| PTB-6     | 1.0018110 | 4.3·10 <sup>-4</sup> | 0.08    | N       | 1.6.10-4              | $1.1 \cdot 10^{-3}$  |
| CEM       | 1.0009500 | 5.2·10 <sup>-4</sup> | 1.28    | N       | $-7.0 \cdot 10^{-4}$  | $1.2 \cdot 10^{-3}$  |
| PTB-7     | 1.0018580 | $2.0 \cdot 10^{-4}$  | 0.26    | N       | $2.0 \cdot 10^{-4}$   | 7.6·10 <sup>-4</sup> |
| KRISS     | 1.0010370 | 3.6.10-4             | 1.51    | N       | -6.2·10 <sup>-4</sup> | 9.7·10 <sup>-4</sup> |
| PTB-8     | 1.0022140 | 3.4.10-4             | 1.34    | N       | 5.6.10-4              | 9.4·10 <sup>-4</sup> |
| MIKES     | 0.9989070 | 6.0·10 <sup>-4</sup> | 15.66   | Y       | -2.7·10 <sup>-3</sup> | $1.4 \cdot 10^{-3}$  |
| PTB-9     | 1.0025960 | $2.5 \cdot 10^{-4}$  | 4.87    | N       | 9.4·10 <sup>-4</sup>  | 8.2.10-4             |
| PTB-10    | 1.0017440 | $2.5 \cdot 10^{-4}$  | 0.04    | N       | 9.1·10 <sup>-5</sup>  | 8.3.10-4             |
| VSL-2     | 0.9993321 | $1.2 \cdot 10^{-4}$  | 39.72   | Y       | -2.3·10 <sup>-3</sup> | 7.7.10-4             |
| NPL-2     | 1.0014500 | 5.4·10 <sup>-4</sup> | 0.10    | Ν       | -2.0·10 <sup>-4</sup> | $1.3 \cdot 10^{-3}$  |
| PTB-11    | 1.0020120 | 3.9.10-4             | 0.47    | Ν       | 3.6.10-4              | $1.0 \cdot 10^{-3}$  |

Number of discarded results = 6, percentage = 24 %.

 $F_{\rm r} = \sum e_{\rm i} = 24.44$ , summed only over the undiscarded contributions.

Degree of freedom v = r-1 = 18.



*Fig. 6.2:* Calibration factors for the Unidos at 100 fA for negative current direction, together with the reference value (solid line) and its uncertainty for k=2 (dashed lines). Results not shown in the graph are located outside of the plotting area.

### **Results for the PTW Unidos E at 100 fA, mean of both current directions:**

Reference value:  $Q_{ref} = 1.00120970$ ,  $u(Q_{ref}) = 1.08 \cdot 10^{-4}$ Uncertainty describing the instability of the transfer standard:  $u_{TS} = 3.47 \cdot 10^{-4}$ 

**Table 6.3:** Summary of the results, containing each participant's result  $Q_i$ , its uncertainty  $u(Q_i)$ ,  $e_i$  as defined in equation (12), indication if the result had to be discarded from calculating the reference value due to a too large value of  $e_i$ , and the degree of equivalence  $(d_i, U(d_i))$ .

| Institute | $Q_i$     | $u(Q_i)$             | ei   | discard | $d_i$                 | $U(d_i)$             |
|-----------|-----------|----------------------|------|---------|-----------------------|----------------------|
| PTB-1     | 1.0015470 | $2.5 \cdot 10^{-4}$  | 0.61 | N       | 3.4.10-4              | 8.3·10 <sup>-4</sup> |
| VSL-1     | 1.0007100 | 1.3.10-4             | 1.83 | N       | -5.0·10 <sup>-4</sup> | 7.1.10-4             |
| NPL-1     | 1.0021000 | $4.1 \cdot 10^{-3}$  | 0.05 | N       | 8.9·10 <sup>-4</sup>  | 8.3·10 <sup>-3</sup> |
| PTB-2     | 1.0011090 | 3.0.10-4             | 0.05 | Ν       | $-1.0 \cdot 10^{-4}$  | 9.0·10 <sup>-4</sup> |
| INRIM     | 1.0008030 | $1.2 \cdot 10^{-3}$  | 0.11 | Ν       | $-4.1 \cdot 10^{-4}$  | $2.5 \cdot 10^{-3}$  |
| METAS     | 1.0008795 | 9.0·10 <sup>-3</sup> | 0.00 | Ν       | -3.3·10 <sup>-4</sup> | $1.8 \cdot 10^{-2}$  |
| UME       | 0.9980000 | $2.7 \cdot 10^{-2}$  | 0.01 | Ν       | -3.2·10 <sup>-3</sup> | 5.4·10 <sup>-2</sup> |
| PTB-3     | 1.0012495 | $2.7 \cdot 10^{-4}$  | 0.01 | Ν       | 3.8·10 <sup>-5</sup>  | $8.5 \cdot 10^{-4}$  |
| VNIIM     | 1.0007650 | 3.0.10-4             | 0.95 | N       | $-4.5 \cdot 10^{-4}$  | 8.9·10 <sup>-4</sup> |
| PTB-4     | 1.0013160 | 2.3.10-4             | 0.06 | Ν       | $1.0 \cdot 10^{-4}$   | $8.1 \cdot 10^{-4}$  |
| NIS       | 0.9991500 | $4.5 \cdot 10^{-3}$  | 0.21 | N       | -2.1·10 <sup>-3</sup> | 9.0·10 <sup>-3</sup> |
| PTB-5     | 1.0016105 | 3.1.10-4             | 0.73 | N       | 4.0.10-4              | 9.1·10 <sup>-4</sup> |
| IPQ       | 1.0025000 | $2.5 \cdot 10^{-2}$  | 0.00 | N       | $1.3 \cdot 10^{-3}$   | 5.0·10 <sup>-2</sup> |
| LNE       | 1.0012000 | $1.4 \cdot 10^{-3}$  | 0.00 | N       | -1.2·10 <sup>-5</sup> | $2.9 \cdot 10^{-3}$  |
| PTB-6     | 1.0015140 | $4.2 \cdot 10^{-4}$  | 0.30 | Ν       | 3.0.10-4              | $1.1 \cdot 10^{-3}$  |
| CEM       | 1.0009250 | 4.7·10 <sup>-4</sup> | 0.24 | N       | $-2.9 \cdot 10^{-4}$  | $1.1 \cdot 10^{-3}$  |
| PTB-7     | 1.0012520 | $2.0 \cdot 10^{-4}$  | 0.01 | N       | $4.0 \cdot 10^{-5}$   | $7.7 \cdot 10^{-4}$  |
| KRISS     | 1.0011825 | 3.5.10-4             | 0.00 | Ν       | -2.9·10 <sup>-5</sup> | 9.7·10 <sup>-4</sup> |
| PTB-8     | 1.0012820 | 3.2.10-4             | 0.02 | N       | 7.0·10 <sup>-5</sup>  | 9.1·10 <sup>-4</sup> |
| MIKES     | 1.0011430 | 7.3.10-4             | 0.01 | N       | -6.9·10 <sup>-5</sup> | $1.6 \cdot 10^{-3}$  |
| PTB-9     | 1.0016250 | $2.5 \cdot 10^{-4}$  | 0.93 | N       | $4.1 \cdot 10^{-4}$   | 8.3·10 <sup>-4</sup> |
| PTB-10    | 1.0013020 | $2.5 \cdot 10^{-4}$  | 0.05 | N       | 9.0·10 <sup>-5</sup>  | $8.2 \cdot 10^{-4}$  |
| VSL-2     | 1.0008512 | $1.2 \cdot 10^{-4}$  | 0.96 | N       | -3.6·10 <sup>-4</sup> | 7.0.10-4             |
| NPL-2     | 1.0012600 | 6.4·10 <sup>-4</sup> | 0.00 | Ν       | 4.8·10 <sup>-5</sup>  | $1.4 \cdot 10^{-3}$  |
| PTB-11    | 1.0015285 | 3.6.10-4             | 0.40 | N       | 3.2.10-4              | 9.8·10 <sup>-4</sup> |

Number of discarded results = 0, percentage = 0 %.

 $F_{\rm r} = \sum e_{\rm i} = 7.54$ , summed over the undiscarded contributions.

Degree of freedom v = r-1 = 24.



*Fig. 6.3:* Calibration factors for the Unidos at 100 fA for the mean of both current directions, together with the reference value (solid line) and its uncertainty for k=2 (dashed lines). Results not shown in the graph are located outside of the plotting area.

#### Results for the PTW Unidos E at 1 pA, positive current direction:

Reference value:  $Q_{ref} = 1.00053547$ ,  $u(Q_{ref}) = 6.24 \cdot 10^{-5}$ Uncertainty describing the instability of the transfer standard:  $u_{TS} = 2.52 \cdot 10^{-4}$ 

**Table 6.4:** Summary of the results, containing each participant's result  $Q_i$ , its uncertainty  $u(Q_i)$ ,  $e_i$  as defined in equation (12), indication if the result had to be discarded from calculating the reference value due to a too large value of  $e_i$ , and the degree of equivalence  $(d_i, U(d_i))$ .

| Institute | $Q_i$     | $u(Q_i)$             | ei     | discard | $d_i$                 | $U(d_i)$             |
|-----------|-----------|----------------------|--------|---------|-----------------------|----------------------|
| PTB-1     | 1.0009310 | $7.4 \cdot 10^{-5}$  | 2.27   | N       | $4.0 \cdot 10^{-4}$   | 5.1.10-4             |
| VSL-1     | 1.0003500 | 6.2·10 <sup>-5</sup> | 0.51   | N       | -1.9·10 <sup>-4</sup> | 5.0·10 <sup>-4</sup> |
| NPL-1     | 1.0136400 | 1.3·10 <sup>-3</sup> | 101.10 | Y       | 1.3.10-2              | $2.6 \cdot 10^{-3}$  |
| PTB-2     | 1.0007060 | 7.7·10 <sup>-5</sup> | 0.42   | N       | $1.7 \cdot 10^{-4}$   | $5.1 \cdot 10^{-4}$  |
| INRIM     | 1.0003030 | $5.5 \cdot 10^{-4}$  | 0.15   | Ν       | $-2.3 \cdot 10^{-4}$  | $1.2 \cdot 10^{-3}$  |
| METAS     | 0.9999390 | 9.8·10 <sup>-4</sup> | 0.35   | N       | -6.0·10 <sup>-4</sup> | $2.0 \cdot 10^{-3}$  |
| UME       | 0.9840000 | $4.8 \cdot 10^{-3}$  | 12.07  | Y       | -1.7·10 <sup>-2</sup> | 9.5·10 <sup>-3</sup> |
| PTB-3     | 1.0006730 | $1.1 \cdot 10^{-4}$  | 0.25   | N       | $1.4 \cdot 10^{-4}$   | $5.4 \cdot 10^{-4}$  |
| VNIIM     | 1.0004100 | $1.5 \cdot 10^{-4}$  | 0.18   | Ν       | -1.3·10 <sup>-4</sup> | $5.7 \cdot 10^{-4}$  |
| PTB-4     | 1.0002400 | 6.7·10 <sup>-5</sup> | 1.28   | N       | -3.0·10 <sup>-4</sup> | 5.1.10-4             |
| NIS       | 0.9885500 | 3.6·10 <sup>-3</sup> | 10.97  | Y       | -1.2·10 <sup>-2</sup> | 7.2·10 <sup>-3</sup> |
| PTB-5     | 1.0005030 | 8.4·10 <sup>-5</sup> | 0.01   | N       | -3.2·10 <sup>-5</sup> | 5.2·10 <sup>-4</sup> |
| IPQ       | 1.0011000 | $1.9 \cdot 10^{-3}$  | 0.08   | N       | 5.6.10-4              | 3.9·10 <sup>-3</sup> |
| LNE       | 1.0011000 | $2.0 \cdot 10^{-4}$  | 3.08   | N       | 5.6.10-4              | 6.3·10 <sup>-4</sup> |
| PTB-6     | 1.0001620 | 7.5·10 <sup>-5</sup> | 2.01   | Ν       | -3.7·10 <sup>-4</sup> | $5.1 \cdot 10^{-4}$  |
| CEM       | 1.0000100 | $1.8 \cdot 10^{-4}$  | 2.93   | N       | -5.3·10 <sup>-4</sup> | $6.0 \cdot 10^{-4}$  |
| PTB-7     | 1.0005050 | 6.5·10 <sup>-5</sup> | 0.01   | Ν       | -3.0·10 <sup>-5</sup> | $5.1 \cdot 10^{-4}$  |
| KRISS     | 1.0004100 | 5.6·10 <sup>-5</sup> | 0.23   | N       | -1.3·10 <sup>-4</sup> | $5.0 \cdot 10^{-4}$  |
| PTB-8     | 1.0007630 | 8.1·10 <sup>-5</sup> | 0.74   | Ν       | $2.3 \cdot 10^{-4}$   | 5.1.10-4             |
| MIKES     | 1.0011020 | 3.1.10-4             | 2.04   | N       | 5.7.10-4              | $7.8 \cdot 10^{-4}$  |
| PTB-9     | 1.0006520 | $6.4 \cdot 10^{-5}$  | 0.20   | Ν       | $1.2 \cdot 10^{-4}$   | $5.0 \cdot 10^{-4}$  |
| PTB-10    | 1.0002010 | 9.1·10 <sup>-5</sup> | 1.55   | N       | -3.3·10 <sup>-4</sup> | 5.2·10 <sup>-4</sup> |
| VSL-2     | 1.0012101 | 5.0·10 <sup>-5</sup> | 6.90   | N       | 6.8·10 <sup>-4</sup>  | 5.0.10-4             |
| NPL-2     | 1.0006300 | 1.5.10-4             | 0.10   | Ν       | 9.5·10 <sup>-5</sup>  | 5.7.10-4             |
| PTB-11    | 1.0000410 | 6.7·10 <sup>-5</sup> | 3.59   | N       | $-4.9 \cdot 10^{-4}$  | 5.1.10-4             |

Number of discarded results = 3, percentage = 12 %.

 $F_{\rm r} = \sum e_{\rm i} = 28.90$ , summed over the undiscarded contributions.

Degree of freedom v = r-1 = 21.



*Fig. 6.4:* Calibration factors for the Unidos at 1 pA for positive current direction, together with the reference value (solid line) and its uncertainty for k=2 (dashed lines). Results not shown in the graph are located outside of the plotting area.

#### Results for the PTW Unidos E at 1 pA, negative current direction:

Reference value:  $Q_{ref} = 1.00135313$ ,  $u(Q_{ref}) = 6.45 \cdot 10^{-5}$ Uncertainty describing the instability of the transfer standard:  $u_{TS} = 2.52 \cdot 10^{-4}$ 

**Table 6.5:** Summary of the results, containing each participant's result  $Q_i$ , its uncertainty  $u(Q_i)$ ,  $e_i$  as defined in equation (12), indication if the result had to be discarded from calculating the reference value due to a too large value of  $e_i$ , and the degree of equivalence  $(d_i, U(d_i))$ .

| Institute | $Q_i$     | $u(Q_i)$             | $e_{\mathrm{i}}$ | discard | $d_i$                 | $U(d_i)$             |
|-----------|-----------|----------------------|------------------|---------|-----------------------|----------------------|
| PTB-1     | 1.0011840 | 8.7.10-5             | 0.41             | N       | $-1.7 \cdot 10^{-4}$  | $5.2 \cdot 10^{-4}$  |
| VSL-1     | 1.0012700 | 6.3·10 <sup>-5</sup> | 0.11             | Ν       | -8.4·10 <sup>-5</sup> | 5.0.10-4             |
| NPL-1     | 0.9882700 | 1.3.10-3             | 94.55            | Y       | -1.3·10 <sup>-2</sup> | $2.7 \cdot 10^{-3}$  |
| PTB-2     | 1.0014150 | $1.2 \cdot 10^{-4}$  | 0.05             | Ν       | 6.1·10 <sup>-5</sup>  | $5.5 \cdot 10^{-4}$  |
| INRIM     | 1.0014760 | 3.0.10-4             | 0.10             | Ν       | $1.2 \cdot 10^{-4}$   | $7.8 \cdot 10^{-4}$  |
| METAS     | 1.0017180 | $7.9 \cdot 10^{-4}$  | 0.19             | Ν       | 3.6·10 <sup>-4</sup>  | 1.6.10-3             |
| UME       | 1.0100000 | 1.9·10 <sup>-3</sup> | 21.06            | Y       | 8.6·10 <sup>-3</sup>  | 3.8·10 <sup>-3</sup> |
| PTB-3     | 1.0012680 | $1.2 \cdot 10^{-4}$  | 0.10             | Ν       | -8.6·10 <sup>-5</sup> | $5.4 \cdot 10^{-4}$  |
| VNIIM     | 1.0004300 | $1.5 \cdot 10^{-4}$  | 9.94             | Ν       | -9.2·10 <sup>-4</sup> | $5.7 \cdot 10^{-4}$  |
| PTB-4     | 1.0016700 | $1.4 \cdot 10^{-4}$  | 1.21             | Ν       | 3.2·10 <sup>-4</sup>  | 5.6.10-4             |
| NIS       | 0.9991400 | 3.4.10-4             | 27.55            | Y       | $-2.2 \cdot 10^{-3}$  | $8.5 \cdot 10^{-4}$  |
| PTB-5     | 1.0013910 | 8.0·10 <sup>-5</sup> | 0.02             | Ν       | 3.7·10 <sup>-5</sup>  | 5.1.10-4             |
| IPQ       | 1.0008000 | $1.4 \cdot 10^{-3}$  | 0.15             | Ν       | -5.5·10 <sup>-4</sup> | $2.9 \cdot 10^{-3}$  |
| LNE       | 1.0014700 | $2.1 \cdot 10^{-4}$  | 0.12             | Ν       | $1.2 \cdot 10^{-4}$   | $6.4 \cdot 10^{-4}$  |
| PTB-6     | 1.0017300 | 7.5·10 <sup>-5</sup> | 2.04             | Ν       | 3.8·10 <sup>-4</sup>  | 5.1.10-4             |
| CEM       | 1.0015740 | $1.7 \cdot 10^{-4}$  | 0.51             | Ν       | $2.2 \cdot 10^{-4}$   | $6.0 \cdot 10^{-4}$  |
| PTB-7     | 1.0011660 | 8.5·10 <sup>-5</sup> | 0.50             | Ν       | $-1.9 \cdot 10^{-4}$  | $5.2 \cdot 10^{-4}$  |
| KRISS     | 1.0016580 | 5.2·10 <sup>-5</sup> | 1.39             | Ν       | 3.0.10-4              | 5.0.10-4             |
| PTB-8     | 1.0012390 | $7.4 \cdot 10^{-5}$  | 0.19             | Ν       | -1.2.10-4             | 5.1.10-4             |
| MIKES     | 1.0008890 | 3.1.10-4             | 1.37             | Ν       | $-4.7 \cdot 10^{-4}$  | $7.8 \cdot 10^{-4}$  |
| PTB-9     | 1.0012990 | 6.3·10 <sup>-5</sup> | 0.05             | Ν       | -5.5·10 <sup>-5</sup> | 5.0.10-4             |
| PTB-10    | 1.0018340 | 9.3·10 <sup>-5</sup> | 3.19             | Ν       | $4.8 \cdot 10^{-4}$   | $5.2 \cdot 10^{-4}$  |
| VSL-2     | 1.0003789 | 8.5·10 <sup>-5</sup> | 13.44            | Y       | -9.8·10 <sup>-4</sup> | $5.5 \cdot 10^{-4}$  |
| NPL-2     | 1.0007800 | $1.5 \cdot 10^{-4}$  | 3.84             | Ν       | $-5.7 \cdot 10^{-4}$  | 5.7.10-4             |
| PTB-11    | 1.0016110 | 6.8·10 <sup>-5</sup> | 0.97             | N       | $2.6 \cdot 10^{-4}$   | 5.1.10-4             |

Number of discarded results = 4, percentage = 16 %.

 $F_{\rm r} = \sum e_{\rm i} = 26.45$ , summed over the undiscarded contributions.

Degree of freedom v = r-1 = 20.



*Fig. 6.5:* Calibration factors for the Unidos at 1 pA for negative current direction, together with the reference value (solid line) and its uncertainty for k=2 (dashed lines). Results not shown in the graph are located outside of the plotting area.

# **Results for the PTW Unidos E at 1 pA, mean of both current directions:**

Reference value:  $Q_{ref} = 1.00090691$ ,  $u(Q_{ref}) = 6.25 \cdot 10^{-5}$ Uncertainty describing the instability of the transfer standard:  $u_{TS} = 2.52 \cdot 10^{-4}$ 

**Table 6.6:** Summary of the results, containing each participant's result  $Q_i$ , its uncertainty  $u(Q_i)$ ,  $e_i$  as defined in equation (12), indication if the result had to be discarded from calculating the reference value due to a too large value of  $e_i$ , and the degree of equivalence  $(d_i, U(d_i))$ .

| Institute | $Q_i$     | $u(Q_i)$             | $e_{\mathrm{i}}$ | discard | $d_i$                 | $U(d_i)$             |
|-----------|-----------|----------------------|------------------|---------|-----------------------|----------------------|
| PTB-1     | 1.0010575 | 8.1.10-5             | 0.33             | Ν       | $1.5 \cdot 10^{-4}$   | $5.1 \cdot 10^{-4}$  |
| VSL-1     | 1.0008100 | 6.2·10 <sup>-5</sup> | 0.14             | Ν       | -9.6·10 <sup>-5</sup> | 5.0.10-4             |
| NPL-1     | 1.0009550 | $1.3 \cdot 10^{-3}$  | 0.00             | Ν       | 4.9·10 <sup>-5</sup>  | $2.6 \cdot 10^{-3}$  |
| PTB-2     | 1.0010605 | $1.0 \cdot 10^{-4}$  | 0.33             | Ν       | $1.5 \cdot 10^{-4}$   | 5.3·10 <sup>-4</sup> |
| INRIM     | 1.0008895 | $4.3 \cdot 10^{-4}$  | 0.00             | Ν       | -1.6·10 <sup>-5</sup> | 9.8·10 <sup>-4</sup> |
| METAS     | 1.0008285 | $8.8 \cdot 10^{-4}$  | 0.01             | Ν       | -7.7·10 <sup>-5</sup> | $1.8 \cdot 10^{-3}$  |
| UME       | 0.9970000 | 3.3·10 <sup>-3</sup> | 1.38             | Ν       | -3.9·10 <sup>-3</sup> | 6.6·10 <sup>-3</sup> |
| PTB-3     | 1.0009705 | $1.1 \cdot 10^{-4}$  | 0.05             | Ν       | 6.5·10 <sup>-5</sup>  | $5.4 \cdot 10^{-4}$  |
| VNIIM     | 1.0004200 | $1.5 \cdot 10^{-4}$  | 2.74             | Ν       | $-4.9 \cdot 10^{-4}$  | 5.7·10 <sup>-4</sup> |
| PTB-4     | 1.0009550 | $1.0 \cdot 10^{-4}$  | 0.03             | Ν       | 4.9·10 <sup>-5</sup>  | 5.3·10 <sup>-4</sup> |
| NIS       | 0.9938450 | $2.0 \cdot 10^{-3}$  | 12.59            | Ν       | -7.1·10 <sup>-3</sup> | $4.0 \cdot 10^{-3}$  |
| PTB-5     | 1.0009470 | 8.2·10 <sup>-5</sup> | 0.02             | Ν       | 4.1·10 <sup>-5</sup>  | $5.2 \cdot 10^{-4}$  |
| IPQ       | 1.0009500 | $1.7 \cdot 10^{-3}$  | 0.00             | Ν       | $4.4 \cdot 10^{-5}$   | $3.4 \cdot 10^{-3}$  |
| LNE       | 1.0012850 | $2.1 \cdot 10^{-4}$  | 1.36             | Ν       | 3.8·10 <sup>-4</sup>  | $6.4 \cdot 10^{-4}$  |
| PTB-6     | 1.0009460 | 7.5·10 <sup>-5</sup> | 0.02             | Ν       | $4.0 \cdot 10^{-5}$   | 5.1·10 <sup>-4</sup> |
| CEM       | 1.0007920 | $1.7 \cdot 10^{-4}$  | 0.14             | Ν       | -1.1·10 <sup>-4</sup> | $6.0 \cdot 10^{-4}$  |
| PTB-7     | 1.0008355 | $7.5 \cdot 10^{-5}$  | 0.07             | Ν       | -7.0·10 <sup>-5</sup> | $5.1 \cdot 10^{-4}$  |
| KRISS     | 1.0010340 | 5.4.10-5             | 0.25             | Ν       | $1.3 \cdot 10^{-4}$   | 5.0.10-4             |
| PTB-8     | 1.0010010 | 7.8·10 <sup>-5</sup> | 0.13             | Ν       | 9.5·10 <sup>-5</sup>  | 5.1·10 <sup>-4</sup> |
| MIKES     | 1.0009955 | 3.1.10-4             | 0.05             | Ν       | 9.0·10 <sup>-5</sup>  | $7.8 \cdot 10^{-4}$  |
| PTB-9     | 1.0009755 | 6.3·10 <sup>-5</sup> | 0.07             | Ν       | 7.0·10 <sup>-5</sup>  | 5.0·10 <sup>-4</sup> |
| PTB-10    | 1.0010175 | 9.2·10 <sup>-5</sup> | 0.17             | Ν       | $1.1 \cdot 10^{-4}$   | $5.2 \cdot 10^{-4}$  |
| VSL-2     | 1.0007945 | 6.8·10 <sup>-5</sup> | 0.18             | Ν       | $-1.1 \cdot 10^{-4}$  | 5.1.10-4             |
| NPL-2     | 1.0007050 | $1.5 \cdot 10^{-4}$  | 0.47             | Ν       | $-2.0 \cdot 10^{-4}$  | $5.7 \cdot 10^{-4}$  |
| PTB-11    | 1.0008260 | 6.8·10 <sup>-5</sup> | 0.09             | Ν       | -8.0·10 <sup>-5</sup> | $5.1 \cdot 10^{-4}$  |

Number of discarded results = 0, percentage = 0 %.

 $F_{\rm r} = \sum e_{\rm i} = 20.65$ , summed over the undiscarded contributions.

Degree of freedom v = r-1 = 24.



*Fig. 6.6:* Calibration factors for the Unidos at 1 pA for the mean of both current directions, together with the reference value (solid line) and its uncertainty for k=2 (dashed lines). Results not shown in the graph are located outside of the plotting area.

#### **Results for the PTW Unidos E at 10 pA, positive current direction:**

Reference value:  $Q_{ref} = 1.00038719$ ,  $u(Q_{ref}) = 4.45 \cdot 10^{-5}$ Uncertainty describing the instability of the transfer standard:  $u_{TS} = 1.38 \cdot 10^{-4}$ 

**Table 6.7:** Summary of the results, containing each participant's result  $Q_i$ , its uncertainty  $u(Q_i)$ ,  $e_i$  as defined in equation (12), indication if the result had to be discarded from calculating the reference value due to a too large value of  $e_i$ , and the degree of equivalence  $(d_i, U(d_i))$ .

| Institute | $Q_i$     | $u(Q_i)$             | ei    | discard | $d_i$                 | $U(d_i)$             |
|-----------|-----------|----------------------|-------|---------|-----------------------|----------------------|
| PTB-1     | 1.0002710 | $1.7 \cdot 10^{-4}$  | 0.29  | Ν       | $-1.2 \cdot 10^{-4}$  | $4.3 \cdot 10^{-4}$  |
| VSL-1     | 1.0005500 | $1.5 \cdot 10^{-4}$  | 0.62  | Ν       | 1.6.10-4              | $4.0 \cdot 10^{-4}$  |
| NPL-1     | 1.0019920 | $4.5 \cdot 10^{-4}$  | 11.56 | Ν       | $1.6 \cdot 10^{-3}$   | 9.4·10 <sup>-4</sup> |
| PTB-2     | 1.0001570 | $1.7 \cdot 10^{-4}$  | 1.12  | Ν       | $-2.3 \cdot 10^{-4}$  | $4.3 \cdot 10^{-4}$  |
| INRIM     | 1.0003910 | $1.4 \cdot 10^{-4}$  | 0.00  | Ν       | $2.6 \cdot 10^{-6}$   | 3.8·10 <sup>-4</sup> |
| METAS     | 1.0001480 | $1.7 \cdot 10^{-4}$  | 1.18  | Ν       | $-2.4 \cdot 10^{-4}$  | 4.3·10 <sup>-4</sup> |
| UME       | 0.9960000 | $5.2 \cdot 10^{-4}$  | 66.24 | Y       | $-4.4 \cdot 10^{-3}$  | $1.1 \cdot 10^{-3}$  |
| PTB-3     | 1.0002250 | $1.9 \cdot 10^{-4}$  | 0.50  | Ν       | -1.6·10 <sup>-4</sup> | $4.5 \cdot 10^{-4}$  |
| VNIIM     | 1.0006300 | 8.9·10 <sup>-5</sup> | 2.17  | Ν       | $2.4 \cdot 10^{-4}$   | 3.2.10-4             |
| PTB-4     | 1.0004620 | $1.7 \cdot 10^{-4}$  | 0.11  | Ν       | $7.4 \cdot 10^{-5}$   | 4.3·10 <sup>-4</sup> |
| NIS       | 1.0000200 | $4.3 \cdot 10^{-4}$  | 0.67  | Ν       | -3.7·10 <sup>-4</sup> | 9.0·10 <sup>-4</sup> |
| PTB-5     | 1.0003100 | $1.7 \cdot 10^{-4}$  | 0.13  | Ν       | -7.8·10 <sup>-5</sup> | 4.3·10 <sup>-4</sup> |
| IPQ       | 1.0002900 | $4.0 \cdot 10^{-4}$  | 0.06  | Ν       | -9.8·10 <sup>-5</sup> | 8.3·10 <sup>-4</sup> |
| LNE       | 1.0004000 | $1.5 \cdot 10^{-4}$  | 0.00  | Ν       | $1.2 \cdot 10^{-5}$   | $4.0 \cdot 10^{-4}$  |
| PTB-6     | 1.0001630 | $1.7 \cdot 10^{-4}$  | 1.05  | Ν       | -2.3·10 <sup>-4</sup> | 4.3·10 <sup>-4</sup> |
| CEM       | 1.0007900 | $1.9 \cdot 10^{-4}$  | 2.90  | Ν       | $4.0 \cdot 10^{-4}$   | $4.6 \cdot 10^{-4}$  |
| PTB-7     | 1.0003700 | $1.7 \cdot 10^{-4}$  | 0.01  | Ν       | -1.8·10 <sup>-5</sup> | $4.3 \cdot 10^{-4}$  |
| KRISS     | 1.0000700 | $2.9 \cdot 10^{-5}$  | 5.10  | Ν       | -3.2·10 <sup>-4</sup> | $2.7 \cdot 10^{-4}$  |
| PTB-8     | 1.0004880 | $1.7 \cdot 10^{-4}$  | 0.21  | Ν       | $1.0 \cdot 10^{-4}$   | 4.3·10 <sup>-4</sup> |
| MIKES     | 1.0008980 | $2.1 \cdot 10^{-4}$  | 4.09  | Ν       | $5.1 \cdot 10^{-4}$   | 5.0.10-4             |
| PTB-9     | 1.0003680 | $1.7 \cdot 10^{-4}$  | 0.01  | Ν       | $-2.0 \cdot 10^{-5}$  | 4.3·10 <sup>-4</sup> |
| PTB-10    | 1.0003690 | $1.7 \cdot 10^{-4}$  | 0.01  | Ν       | -1.9·10 <sup>-5</sup> | $4.3 \cdot 10^{-4}$  |
| VSL-2     | 1.0001974 | $1.8 \cdot 10^{-4}$  | 0.70  | Ν       | $-1.9 \cdot 10^{-4}$  | $4.5 \cdot 10^{-4}$  |
| NPL-2     | 1.0005200 | $1.3 \cdot 10^{-4}$  | 0.49  | Ν       | 1.3.10-4              | 3.7.10-4             |
| PTB-11    | 1.0004490 | $1.7 \cdot 10^{-4}$  | 0.08  | N       | 6.1.10 <sup>-5</sup>  | $4.3 \cdot 10^{-4}$  |

Number of discarded results = 1, percentage = 4 %.

 $F_{\rm r} = \sum e_{\rm i} = 33.02$ , summed over the undiscarded contributions.

Degree of freedom v = r-1 = 23.



*Fig. 6.7:* Calibration factors for the Unidos at 10 pA for positive current direction, together with the reference value (solid line) and its uncertainty for k=2 (dashed lines). Results not shown in the graph are located outside of the plotting area.
#### **Results for the PTW Unidos E at 10 pA, negative current direction:**

Reference value:  $Q_{ref} = 1.00123118$ ,  $u(Q_{ref}) = 4.79 \cdot 10^{-5}$ Uncertainty describing the instability of the transfer standard:  $u_{TS} = 1.38 \cdot 10^{-4}$ 

**Table 6.8:** Summary of the results containing: the result  $Q_i$  of each participant, its uncertainty  $u(Q_i)$ ,  $e_i$  as defined in equation (12), indication if the result had to be discarded from calculating the reference value due to a too large value of  $e_i$ , and the degree of equivalence  $(d_i, U(d_i))$ .

| Institute | $Q_i$     | $u(Q_i)$             | ei    | discard | $d_i$                 | $U(d_i)$             |
|-----------|-----------|----------------------|-------|---------|-----------------------|----------------------|
| PTB-1     | 1.0013990 | $1.7 \cdot 10^{-4}$  | 0.59  | Ν       | $1.7 \cdot 10^{-4}$   | $4.3 \cdot 10^{-4}$  |
| VSL-1     | 1.0010300 | $1.5 \cdot 10^{-4}$  | 0.96  | Ν       | -2.0·10 <sup>-4</sup> | $4.0 \cdot 10^{-4}$  |
| NPL-1     | 0.9998520 | 5.0.10-4             | 7.02  | Ν       | -1.4·10 <sup>-3</sup> | $1.0 \cdot 10^{-3}$  |
| PTB-2     | 1.0015710 | $1.7 \cdot 10^{-4}$  | 2.41  | Ν       | $3.4 \cdot 10^{-4}$   | $4.3 \cdot 10^{-4}$  |
| INRIM     | 1.0013510 | $1.4 \cdot 10^{-4}$  | 0.38  | Ν       | $1.2 \cdot 10^{-4}$   | 3.7·10 <sup>-4</sup> |
| METAS     | 1.0014080 | $2.6 \cdot 10^{-4}$  | 0.36  | Ν       | $1.8 \cdot 10^{-4}$   | 5.8·10 <sup>-4</sup> |
| UME       | 0.9997000 | $8.2 \cdot 10^{-4}$  | 3.41  | Ν       | -1.5·10 <sup>-3</sup> | $1.7 \cdot 10^{-3}$  |
| PTB-3     | 1.0014090 | $1.8 \cdot 10^{-4}$  | 0.60  | Ν       | $1.8 \cdot 10^{-4}$   | $4.5 \cdot 10^{-4}$  |
| VNIIM     | 1.0006400 | 9.5·10 <sup>-5</sup> | 12.44 | Y       | -5.9·10 <sup>-4</sup> | 3.5·10 <sup>-4</sup> |
| PTB-4     | 1.0012730 | $1.7 \cdot 10^{-4}$  | 0.04  | Ν       | $4.2 \cdot 10^{-5}$   | 4.3·10 <sup>-4</sup> |
| NIS       | 1.0003000 | $4.3 \cdot 10^{-4}$  | 4.28  | Ν       | -9.3·10 <sup>-4</sup> | 9.0·10 <sup>-4</sup> |
| PTB-5     | 1.0012810 | $1.7 \cdot 10^{-4}$  | 0.05  | Ν       | 5.0·10 <sup>-5</sup>  | 4.3·10 <sup>-4</sup> |
| IPQ       | 1.0013100 | 6.3·10 <sup>-4</sup> | 0.01  | Ν       | 7.9·10 <sup>-5</sup>  | $1.3 \cdot 10^{-3}$  |
| LNE       | 1.0019000 | $1.5 \cdot 10^{-4}$  | 10.76 | Y       | $6.7 \cdot 10^{-4}$   | $4.2 \cdot 10^{-4}$  |
| PTB-6     | 1.0013850 | $1.7 \cdot 10^{-4}$  | 0.49  | Ν       | $1.5 \cdot 10^{-4}$   | 4.3·10 <sup>-4</sup> |
| CEM       | 1.0008000 | $1.7 \cdot 10^{-4}$  | 3.85  | Ν       | $-4.3 \cdot 10^{-4}$  | $4.3 \cdot 10^{-4}$  |
| PTB-7     | 1.0012560 | $1.7 \cdot 10^{-4}$  | 0.01  | Ν       | $2.5 \cdot 10^{-5}$   | 4.3·10 <sup>-4</sup> |
| KRISS     | 1.0013590 | $2.9 \cdot 10^{-5}$  | 0.82  | Ν       | $1.3 \cdot 10^{-4}$   | $2.7 \cdot 10^{-4}$  |
| PTB-8     | 1.0011100 | $1.7 \cdot 10^{-4}$  | 0.31  | Ν       | -1.2·10 <sup>-4</sup> | 4.3·10 <sup>-4</sup> |
| MIKES     | 1.0010810 | $2.1 \cdot 10^{-4}$  | 0.35  | Ν       | $-1.5 \cdot 10^{-4}$  | 5.0.10-4             |
| PTB-9     | 1.0011310 | $1.7 \cdot 10^{-4}$  | 0.21  | Ν       | -1.0·10 <sup>-4</sup> | $4.3 \cdot 10^{-4}$  |
| PTB-10    | 1.0014890 | $1.7 \cdot 10^{-4}$  | 1.36  | Ν       | $2.6 \cdot 10^{-4}$   | $4.3 \cdot 10^{-4}$  |
| VSL-2     | 1.0013678 | $1.8 \cdot 10^{-4}$  | 0.36  | Ν       | $1.4 \cdot 10^{-4}$   | $4.5 \cdot 10^{-4}$  |
| NPL-2     | 1.0011700 | $1.3 \cdot 10^{-4}$  | 0.11  | Ν       | $-6.1 \cdot 10^{-5}$  | $3.7 \cdot 10^{-4}$  |
| PTB-11    | 1.0009890 | $1.7 \cdot 10^{-4}$  | 1.23  | N       | $-2.4 \cdot 10^{-4}$  | $4.3 \cdot 10^{-4}$  |

Number of discarded results = 2, percentage = 8 %.

 $F_{\rm r} = \sum e_{\rm i} = 29.21$ , summed over the undiscarded contributions.

Degree of freedom v = r-1 = 22.



*Fig. 6.8:* Calibration factors for the Unidos at 10 pA for negative current direction, together with the reference value (solid line) and its uncertainty for k=2 (dashed lines). Results not shown in the graph are located outside of the plotting area.

#### **Results for the PTW Unidos E at 10 pA, mean of both current directions:**

Reference value:  $Q_{ref} = 1.00079514$ ,  $u(Q_{ref}) = 4.47 \cdot 10^{-5}$ Uncertainty describing the instability of the transfer standard:  $u_{TS} = 1.38 \cdot 10^{-4}$ 

**Table 6.9:** Summary of the results, containing each participant's result  $Q_i$ , its uncertainty  $u(Q_i)$ ,  $e_i$  as defined in equation (12), indication if the result had to be discarded from calculating the reference value due to a too large value of  $e_i$ , and the degree of equivalence  $(d_i, U(d_i))$ .

| Institute | $Q_i$     | $u(Q_i)$             | ei    | discard | $d_i$                 | $U(d_i)$             |
|-----------|-----------|----------------------|-------|---------|-----------------------|----------------------|
| PTB-1     | 1.0008350 | $1.7 \cdot 10^{-4}$  | 0.03  | Ν       | $4.1 \cdot 10^{-5}$   | 4.3·10 <sup>-4</sup> |
| VSL-1     | 1.0007900 | $1.5 \cdot 10^{-4}$  | 0.00  | Ν       | $-4.4 \cdot 10^{-6}$  | $4.0 \cdot 10^{-4}$  |
| NPL-1     | 1.0009220 | $4.8 \cdot 10^{-4}$  | 0.07  | Ν       | 1.3.10-4              | 9.9·10 <sup>-4</sup> |
| PTB-2     | 1.0008640 | $1.7 \cdot 10^{-4}$  | 0.10  | Ν       | 7.0·10 <sup>-5</sup>  | $4.3 \cdot 10^{-4}$  |
| INRIM     | 1.0008710 | $1.4 \cdot 10^{-4}$  | 0.16  | Ν       | 7.7·10 <sup>-5</sup>  | 3.8·10 <sup>-4</sup> |
| METAS     | 1.0007780 | $2.2 \cdot 10^{-4}$  | 0.00  | Ν       | -1.6·10 <sup>-5</sup> | 5.1·10 <sup>-4</sup> |
| UME       | 0.9978500 | $6.7 \cdot 10^{-4}$  | 18.55 | Ν       | -2.9·10 <sup>-3</sup> | $1.4 \cdot 10^{-3}$  |
| PTB-3     | 1.0008170 | $1.8 \cdot 10^{-4}$  | 0.01  | Ν       | $2.3 \cdot 10^{-5}$   | $4.5 \cdot 10^{-4}$  |
| VNIIM     | 1.0006350 | 9.2·10 <sup>-5</sup> | 0.92  | Ν       | -1.6·10 <sup>-4</sup> | $3.2 \cdot 10^{-4}$  |
| PTB-4     | 1.0008675 | $1.7 \cdot 10^{-4}$  | 0.11  | Ν       | 7.3·10 <sup>-5</sup>  | 4.3·10 <sup>-4</sup> |
| NIS       | 1.0001600 | $4.3 \cdot 10^{-4}$  | 1.99  | Ν       | -6.3·10 <sup>-4</sup> | 9.0·10 <sup>-4</sup> |
| PTB-5     | 1.0007955 | $1.7 \cdot 10^{-4}$  | 0.00  | Ν       | $1.1 \cdot 10^{-6}$   | 4.3·10 <sup>-4</sup> |
| IPQ       | 1.0008000 | $5.1 \cdot 10^{-4}$  | 0.00  | Ν       | 5.6·10 <sup>-6</sup>  | $1.1 \cdot 10^{-3}$  |
| LNE       | 1.0011500 | $1.5 \cdot 10^{-4}$  | 3.04  | Ν       | 3.6·10 <sup>-4</sup>  | $4.0 \cdot 10^{-4}$  |
| PTB-6     | 1.0007740 | $1.7 \cdot 10^{-4}$  | 0.01  | Ν       | -2.0·10 <sup>-5</sup> | 4.3·10 <sup>-4</sup> |
| CEM       | 1.0007950 | $1.8 \cdot 10^{-4}$  | 0.00  | Ν       | $6.2 \cdot 10^{-7}$   | $4.5 \cdot 10^{-4}$  |
| PTB-7     | 1.0008130 | $1.7 \cdot 10^{-4}$  | 0.01  | Ν       | 1.9·10 <sup>-5</sup>  | $4.3 \cdot 10^{-4}$  |
| KRISS     | 1.0007145 | $2.9 \cdot 10^{-5}$  | 0.32  | Ν       | -8.0·10 <sup>-5</sup> | $2.7 \cdot 10^{-4}$  |
| PTB-8     | 1.0007990 | $1.7 \cdot 10^{-4}$  | 0.00  | Ν       | $4.6 \cdot 10^{-6}$   | 4.3·10 <sup>-4</sup> |
| MIKES     | 1.0009895 | $2.1 \cdot 10^{-4}$  | 0.60  | Ν       | $2.0 \cdot 10^{-4}$   | 5.0.10-4             |
| PTB-9     | 1.0007495 | $1.7 \cdot 10^{-4}$  | 0.04  | Ν       | -4.5·10 <sup>-5</sup> | $4.3 \cdot 10^{-4}$  |
| PTB-10    | 1.0009290 | $1.7 \cdot 10^{-4}$  | 0.37  | Ν       | $1.3 \cdot 10^{-4}$   | $4.3 \cdot 10^{-4}$  |
| VSL-2     | 1.0007826 | $1.8 \cdot 10^{-4}$  | 0.00  | Ν       | -1.2·10 <sup>-5</sup> | $4.5 \cdot 10^{-4}$  |
| NPL-2     | 1.0008450 | $1.3 \cdot 10^{-4}$  | 0.07  | Ν       | $5.1 \cdot 10^{-5}$   | $3.7 \cdot 10^{-4}$  |
| PTB-11    | 1.0007190 | $1.7 \cdot 10^{-4}$  | 0.12  | Ν       | -7.5.10-5             | $4.3 \cdot 10^{-4}$  |

Number of discarded results = 0, percentage = 0 %.

 $F_{\rm r} = \sum e_{\rm i} = 26.53$ , summed over the undiscarded contributions.

Degree of freedom v = r-1 = 24.



*Fig. 6.9:* Calibration factors for the Unidos at 10 pA for the mean of both current directions, together with the reference value (solid line) and its uncertainty for k=2 (dashed lines). Results not shown in the graph are located outside of the plotting area.

#### **Results for the PTW Unidos E at 100 pA, positive current direction:**

Reference value:  $Q_{ref} = 1.00042401$ ,  $u(Q_{ref}) = 5.35 \cdot 10^{-5}$ Uncertainty describing the instability of the transfer standard:  $u_{TS} = 2.0 \cdot 10^{-4}$ 

**Table 6.10:** Summary of the results, containing each participant's result  $Q_i$ , its uncertainty  $u(Q_i)$ ,  $e_i$  as defined in equation (12), indication if the result had to be discarded from calculating the reference value due to a too large value of  $e_i$ , and the degree of equivalence  $(d_i, U(d_i))$ .

| Institute | $Q_i$     | $u(Q_i)$            | ei     | discard | $d_i$                 | $U(d_i)$             |
|-----------|-----------|---------------------|--------|---------|-----------------------|----------------------|
| PTB-1     | 1.0001450 | $1.7 \cdot 10^{-4}$ | 1.16   | Ν       | $-2.8 \cdot 10^{-4}$  | $5.1 \cdot 10^{-4}$  |
| VSL-1     | 1.0004200 | 3.1.10-4            | 0.00   | Ν       | -5.8·10 <sup>-6</sup> | 7.3·10 <sup>-4</sup> |
| NPL-1     | 1.0007210 | $4.5 \cdot 10^{-4}$ | 0.36   | Ν       | 3.0.10-4              | 9.8·10 <sup>-4</sup> |
| PTB-2     | 1.0005960 | $1.7 \cdot 10^{-4}$ | 0.43   | Ν       | $1.7 \cdot 10^{-4}$   | 5.1·10 <sup>-4</sup> |
| INRIM     | 1.0003110 | $1.6 \cdot 10^{-4}$ | 0.21   | Ν       | $-1.1 \cdot 10^{-4}$  | $4.9 \cdot 10^{-4}$  |
| METAS     | 1.0000390 | $7.4 \cdot 10^{-5}$ | 3.38   | Ν       | -3.9·10 <sup>-4</sup> | $4.1 \cdot 10^{-4}$  |
| UME       | 0.9963000 | $2.4 \cdot 10^{-4}$ | 177.87 | Y       | $-4.1 \cdot 10^{-3}$  | 6.3·10 <sup>-4</sup> |
| PTB-3     | 1.0001640 | $1.7 \cdot 10^{-4}$ | 1.02   | Ν       | $-2.6 \cdot 10^{-4}$  | 5.1·10 <sup>-4</sup> |
| VNIIM     | 1.0004170 | $4.1 \cdot 10^{-5}$ | 0.00   | Ν       | -8.8·10 <sup>-6</sup> | 3.9·10 <sup>-4</sup> |
| PTB-4     | 1.0005990 | $1.7 \cdot 10^{-4}$ | 0.44   | Ν       | $1.7 \cdot 10^{-4}$   | 5.1·10 <sup>-4</sup> |
| NIS       | 1.0016000 | $3.4 \cdot 10^{-4}$ | 8.99   | Ν       | $1.2 \cdot 10^{-3}$   | $7.8 \cdot 10^{-4}$  |
| PTB-5     | 1.0004670 | $1.7 \cdot 10^{-4}$ | 0.03   | Ν       | $4.1 \cdot 10^{-5}$   | 5.1.10-4             |
| IPQ       | 1.0002800 | 3.8.10-4            | 0.12   | N       | -1.5·10 <sup>-4</sup> | $8.4 \cdot 10^{-4}$  |
| LNE       | 1.0006400 | $1.4 \cdot 10^{-4}$ | 0.79   | Ν       | $2.1 \cdot 10^{-4}$   | $4.7 \cdot 10^{-4}$  |
| PTB-6     | 1.0001150 | $1.7 \cdot 10^{-4}$ | 1.43   | Ν       | -3.1.10-4             | 5.1.10-4             |
| CEM       | 1.0007000 | $1.7 \cdot 10^{-4}$ | 1.10   | Ν       | $2.7 \cdot 10^{-4}$   | 5.1·10 <sup>-4</sup> |
| PTB-7     | 1.0001440 | $1.7 \cdot 10^{-4}$ | 1.19   | Ν       | $-2.8 \cdot 10^{-4}$  | $5.1 \cdot 10^{-4}$  |
| KRISS     | 1.0006400 | $2.9 \cdot 10^{-5}$ | 1.16   | Ν       | $2.1 \cdot 10^{-4}$   | 3.8·10 <sup>-4</sup> |
| PTB-8     | 1.0005730 | $1.7 \cdot 10^{-4}$ | 0.32   | Ν       | $1.5 \cdot 10^{-4}$   | 5.1.10-4             |
| MIKES     | 1.0005900 | $1.5 \cdot 10^{-4}$ | 0.45   | Ν       | $1.6 \cdot 10^{-4}$   | $4.8 \cdot 10^{-4}$  |
| PTB-9     | 1.0002470 | $1.7 \cdot 10^{-4}$ | 0.48   | Ν       | -1.8·10 <sup>-4</sup> | 5.0.10-4             |
| PTB-10    | 1.0005720 | $1.7 \cdot 10^{-4}$ | 0.32   | Ν       | $1.5 \cdot 10^{-4}$   | 5.0.10-4             |
| VSL-2     | 1.0007296 | 3.6.10-4            | 0.55   | Ν       | 3.0.10-4              | 8.2.10-4             |
| NPL-2     | 1.0000700 | $1.2 \cdot 10^{-4}$ | 2.38   | N       | $-3.6 \cdot 10^{-4}$  | $4.5 \cdot 10^{-4}$  |
| PTB-11    | 1.0004710 | $1.7 \cdot 10^{-4}$ | 0.03   | Ν       | $4.5 \cdot 10^{-5}$   | 5.0.10-4             |

Number of discarded results = 1, percentage = 4 %.

 $F_{\rm r} = \sum e_{\rm i} = 26.33$ , summed over the undiscarded contributions.

Degree of freedom v = r-1 = 23.



*Fig. 6.10:* Calibration factors for the Unidos at 100 pA for positive current direction, together with the reference value (solid line) and its uncertainty for k=2 (dashed lines). Results not shown in the graph are located outside of the plotting area.

#### Results for the PTW Unidos E at 100 pA, negative current direction:

Reference value:  $Q_{ref} = 1.00080189$ ,  $u(Q_{ref}) = 5.42 \cdot 10^{-5}$ Uncertainty describing the instability of the transfer standard:  $u_{TS} = 2.0 \cdot 10^{-4}$ 

**Table 6.11:** Summary of the results, containing each participant's result  $Q_i$ , its uncertainty  $u(Q_i)$ ,  $e_i$  as defined in equation (12), indication if the result had to be discarded from calculating the reference value due to a too large value of  $e_i$ , and the degree of equivalence  $(d_i, U(d_i))$ .

| Institute | $Q_i$     | $u(Q_i)$             | ei    | discard | $d_i$                 | $U(d_i)$             |
|-----------|-----------|----------------------|-------|---------|-----------------------|----------------------|
| PTB-1     | 1.0011940 | $1.7 \cdot 10^{-4}$  | 2.29  | Ν       | $3.9 \cdot 10^{-4}$   | $5.1 \cdot 10^{-4}$  |
| VSL-1     | 1.0008200 | 3.1.10-4             | 0.00  | Ν       | 1.9·10 <sup>-5</sup>  | $7.2 \cdot 10^{-4}$  |
| NPL-1     | 1.0005340 | $4.5 \cdot 10^{-4}$  | 0.29  | Ν       | $-2.7 \cdot 10^{-4}$  | 9.8·10 <sup>-4</sup> |
| PTB-2     | 1.0007210 | $1.7 \cdot 10^{-4}$  | 0.09  | Ν       | -8.0·10 <sup>-5</sup> | 5.1·10 <sup>-4</sup> |
| INRIM     | 1.0010710 | $1.5 \cdot 10^{-4}$  | 1.22  | Ν       | $2.7 \cdot 10^{-4}$   | $4.8 \cdot 10^{-4}$  |
| METAS     | 1.0011010 | $7.4 \cdot 10^{-5}$  | 2.04  | Ν       | 3.0.10-4              | $4.1 \cdot 10^{-4}$  |
| UME       | 0.9973000 | 5.3·10 <sup>-4</sup> | 38.68 | Y       | -3.5·10 <sup>-3</sup> | $1.1 \cdot 10^{-3}$  |
| PTB-3     | 1.0009570 | $1.7 \cdot 10^{-4}$  | 0.36  | Ν       | $1.6 \cdot 10^{-4}$   | 5.1·10 <sup>-4</sup> |
| VNIIM     | 1.0004290 | $3.8 \cdot 10^{-5}$  | 3.43  | Ν       | $-3.7 \cdot 10^{-4}$  | 3.9·10 <sup>-4</sup> |
| PTB-4     | 1.0009590 | $1.7 \cdot 10^{-4}$  | 0.37  | Ν       | $1.6 \cdot 10^{-4}$   | 5.1·10 <sup>-4</sup> |
| NIS       | 0.9990000 | $3.4 \cdot 10^{-4}$  | 21.15 | Y       | -1.8·10 <sup>-3</sup> | $7.9 \cdot 10^{-4}$  |
| PTB-5     | 1.0008210 | $1.7 \cdot 10^{-4}$  | 0.01  | Ν       | $2.0 \cdot 10^{-5}$   | $5.1 \cdot 10^{-4}$  |
| IPQ       | 1.0010000 | 6.9·10 <sup>-4</sup> | 0.08  | Ν       | $2.0 \cdot 10^{-4}$   | $1.4 \cdot 10^{-3}$  |
| LNE       | 1.0006500 | $1.4 \cdot 10^{-4}$  | 0.39  | Ν       | -1.5·10 <sup>-4</sup> | $4.7 \cdot 10^{-4}$  |
| PTB-6     | 1.0010050 | $1.7 \cdot 10^{-4}$  | 0.61  | Ν       | $2.0 \cdot 10^{-4}$   | 5.1.10-4             |
| CEM       | 1.0006860 | $1.7 \cdot 10^{-4}$  | 0.19  | Ν       | $-1.1 \cdot 10^{-4}$  | $5.1 \cdot 10^{-4}$  |
| PTB-7     | 1.0011100 | $1.7 \cdot 10^{-4}$  | 1.44  | Ν       | 3.1·10 <sup>-4</sup>  | $5.1 \cdot 10^{-4}$  |
| KRISS     | 1.0004220 | $2.9 \cdot 10^{-5}$  | 3.61  | Ν       | -3.8·10 <sup>-4</sup> | 3.8·10 <sup>-4</sup> |
| PTB-8     | 1.0007710 | $1.7 \cdot 10^{-4}$  | 0.01  | Ν       | -3.0·10 <sup>-5</sup> | $5.0 \cdot 10^{-4}$  |
| MIKES     | 1.0007090 | $1.5 \cdot 10^{-4}$  | 0.14  | Ν       | -9.2·10 <sup>-5</sup> | $4.8 \cdot 10^{-4}$  |
| PTB-9     | 1.0006260 | $1.7 \cdot 10^{-4}$  | 0.46  | Ν       | $-1.7 \cdot 10^{-4}$  | $5.0 \cdot 10^{-4}$  |
| PTB-10    | 1.0005840 | $1.7 \cdot 10^{-4}$  | 0.71  | Ν       | $-2.2 \cdot 10^{-4}$  | $5.0 \cdot 10^{-4}$  |
| VSL-2     | 1.0004756 | $3.6 \cdot 10^{-4}$  | 0.63  | Ν       | $-3.2 \cdot 10^{-4}$  | $8.1 \cdot 10^{-4}$  |
| NPL-2     | 1.0012200 | $1.2 \cdot 10^{-4}$  | 3.31  | Ν       | $4.2 \cdot 10^{-4}$   | $4.5 \cdot 10^{-4}$  |
| PTB-11    | 1.0006340 | $1.7 \cdot 10^{-4}$  | 0.42  | Ν       | $-1.7 \cdot 10^{-4}$  | $5.0 \cdot 10^{-4}$  |

Number of discarded results = 2, percentage = 8 %.

 $F_{\rm r} = \sum e_{\rm i} = 22.09$ , summed over the undiscarded contributions.

Degree of freedom v = r-1 = 22.



*Fig. 6.11:* Calibration factors for the Unidos at 100 pA for negative current direction, together with the reference value (solid line) and its uncertainty for k=2 (dashed lines). Results not shown in the graph are located outside of the plotting area.

#### Results for the PTW Unidos E at 100 pA, mean of both current direction:

Reference value:  $Q_{ref} = 1.00059677$ ,  $u(Q_{ref}) = 5.37 \cdot 10^{-5}$ Uncertainty describing the instability of the transfer standard:  $u_{TS} = 2.0 \cdot 10^{-4}$ 

**Table 6.12:** Summary of the results, containing each participant's result  $Q_i$ , its uncertainty  $u(Q_i)$ ,  $e_i$  as defined in equation (12), indication if the result had to be discarded from calculating the reference value due to a too large value of  $e_i$ , and the degree of equivalence  $(d_i, U(d_i))$ .

| Institute | $Q_i$     | $u(Q_i)$             | ei    | discard | $d_i$                 | $U(d_i)$             |
|-----------|-----------|----------------------|-------|---------|-----------------------|----------------------|
| PTB-1     | 1.0006695 | $1.7 \cdot 10^{-4}$  | 0.08  | N       | $7.2 \cdot 10^{-5}$   | $5.1 \cdot 10^{-4}$  |
| VSL-1     | 1.0006200 | $3.1 \cdot 10^{-4}$  | 0.00  | Ν       | $2.2 \cdot 10^{-5}$   | $7.2 \cdot 10^{-4}$  |
| NPL-1     | 1.0006275 | $4.5 \cdot 10^{-4}$  | 0.00  | Ν       | 3.0·10 <sup>-5</sup>  | 9.8·10 <sup>-4</sup> |
| PTB-2     | 1.0006585 | $1.7 \cdot 10^{-4}$  | 0.05  | Ν       | 6.1·10 <sup>-5</sup>  | 5.1·10 <sup>-4</sup> |
| INRIM     | 1.0006910 | $1.5 \cdot 10^{-4}$  | 0.14  | Ν       | 9.3·10 <sup>-5</sup>  | $4.8 \cdot 10^{-4}$  |
| METAS     | 1.0005700 | $7.4 \cdot 10^{-5}$  | 0.02  | Ν       | -2.8·10 <sup>-5</sup> | $4.1 \cdot 10^{-4}$  |
| UME       | 0.9968000 | $3.8 \cdot 10^{-4}$  | 77.78 | Y       | -3.8·10 <sup>-3</sup> | 8.7·10 <sup>-4</sup> |
| PTB-3     | 1.0005605 | $1.7 \cdot 10^{-4}$  | 0.02  | Ν       | -3.7·10 <sup>-5</sup> | $5.1 \cdot 10^{-4}$  |
| VNIIM     | 1.0004230 | $4.0 \cdot 10^{-5}$  | 0.75  | Ν       | $-1.7 \cdot 10^{-4}$  | 3.9·10 <sup>-4</sup> |
| PTB-4     | 1.0007790 | $1.7 \cdot 10^{-4}$  | 0.48  | Ν       | $1.8 \cdot 10^{-4}$   | 5.1·10 <sup>-4</sup> |
| NIS       | 1.0003000 | $3.4 \cdot 10^{-4}$  | 0.58  | Ν       | -3.0·10 <sup>-4</sup> | $7.8 \cdot 10^{-4}$  |
| PTB-5     | 1.0006440 | $1.7 \cdot 10^{-4}$  | 0.03  | Ν       | $4.6 \cdot 10^{-5}$   | 5.1.10-4             |
| IPQ       | 1.0006400 | 5.3·10 <sup>-4</sup> | 0.01  | Ν       | $4.2 \cdot 10^{-5}$   | $1.1 \cdot 10^{-3}$  |
| LNE       | 1.0006450 | $1.4 \cdot 10^{-4}$  | 0.04  | Ν       | $4.7 \cdot 10^{-5}$   | $4.7 \cdot 10^{-4}$  |
| PTB-6     | 1.0005600 | $1.7 \cdot 10^{-4}$  | 0.02  | Ν       | -3.8·10 <sup>-5</sup> | 5.1.10-4             |
| CEM       | 1.0006930 | $1.7 \cdot 10^{-4}$  | 0.13  | Ν       | $9.5 \cdot 10^{-5}$   | $5.1 \cdot 10^{-4}$  |
| PTB-7     | 1.0006270 | $1.7 \cdot 10^{-4}$  | 0.01  | Ν       | $2.9 \cdot 10^{-5}$   | $5.1 \cdot 10^{-4}$  |
| KRISS     | 1.0005310 | $2.9 \cdot 10^{-5}$  | 0.11  | Ν       | -6.7·10 <sup>-5</sup> | 3.8·10 <sup>-4</sup> |
| PTB-8     | 1.0006720 | $1.7 \cdot 10^{-4}$  | 0.08  | Ν       | $7.4 \cdot 10^{-5}$   | 5.1·10 <sup>-4</sup> |
| MIKES     | 1.0006495 | $1.5 \cdot 10^{-4}$  | 0.04  | Ν       | 5.2·10 <sup>-5</sup>  | $4.8 \cdot 10^{-4}$  |
| PTB-9     | 1.0004365 | $1.7 \cdot 10^{-4}$  | 0.39  | Ν       | -1.6·10 <sup>-4</sup> | 5.0.10-4             |
| PTB-10    | 1.0005780 | $1.7 \cdot 10^{-4}$  | 0.01  | Ν       | -2.0·10 <sup>-5</sup> | 5.0.10-4             |
| VSL-2     | 1.0006026 | 3.6.10-4             | 0.00  | N       | 5.0·10 <sup>-6</sup>  | 8.1.10-4             |
| NPL-2     | 1.0006450 | $1.2 \cdot 10^{-4}$  | 0.04  | Ν       | $4.7 \cdot 10^{-5}$   | $4.5 \cdot 10^{-4}$  |
| PTB-11    | 1.0005525 | $1.7 \cdot 10^{-4}$  | 0.03  | Ν       | $-4.5 \cdot 10^{-5}$  | $5.0 \cdot 10^{-4}$  |

Number of discarded results = 1, percentage = 4 %.

 $F_{\rm r} = \sum e_{\rm i} = 3.08$ , summed over the undiscarded contributions.

Degree of freedom v = r-1 = 23.



*Fig. 6.12:* Calibration factors for the Unidos at 100 pA for the mean of both current directions, together with the reference value (solid line) and its uncertainty for k=2 (dashed lines). Results not shown in the graph are located outside of the plotting area.

## 6.2.2 Results for the Keithley 6430

### Results for the Keithley 6430 at 100 fA, positive current direction:

Reference value:  $Q_{ref} = 1.00093470$ ,  $u(Q_{ref}) = 1.32 \cdot 10^{-4}$ Uncertainty describing the instability of the transfer standard:  $u_{TS} = 4.56 \cdot 10^{-4}$ 

**Table 6.13:** Summary of the results, containing each participant's result  $Q_i$ , its uncertainty  $u(Q_i)$ ,  $e_i$  as defined in equation (12), indication if the result had to be discarded from calculating the reference value due to a too large value of  $e_i$ , and the degree of equivalence  $(d_i, U(d_i))$ .

| Institute | $Q_i$     | $u(Q_i)$             | ei    | discard | $d_i$                 | $U(d_i)$             |
|-----------|-----------|----------------------|-------|---------|-----------------------|----------------------|
| PTB-1     | 0.9993851 | 1.6.10-4             | 10.29 | Y       | -1.6·10 <sup>-3</sup> | $1.0 \cdot 10^{-3}$  |
| VSL-1     | 1.0024100 | $1.8 \cdot 10^{-4}$  | 9.03  | N       | $1.5 \cdot 10^{-3}$   | 9.4·10 <sup>-4</sup> |
| NPL-1     | 1.0214000 | $2.2 \cdot 10^{-3}$  | 86.58 | Y       | $2.0 \cdot 10^{-2}$   | $4.4 \cdot 10^{-3}$  |
| PTB-2     | 1.0018130 | 2.0.10-4             | 3.12  | Ν       | $8.8 \cdot 10^{-4}$   | 9.6·10 <sup>-4</sup> |
| INRIM     | 1.0005290 | $4.4 \cdot 10^{-4}$  | 0.41  | Ν       | $-4.1 \cdot 10^{-4}$  | $1.2 \cdot 10^{-3}$  |
| METAS     | 1.0002610 | 6.5·10 <sup>-4</sup> | 0.72  | Ν       | -6.8·10 <sup>-4</sup> | $1.6 \cdot 10^{-3}$  |
| UME       | 1.0360000 | $1.6 \cdot 10^{-2}$  | 4.89  | Ν       | $3.5 \cdot 10^{-2}$   | $3.2 \cdot 10^{-2}$  |
| PTB-3     | 1.0012420 | 2.3.10-4             | 0.36  | Ν       | 3.1.10-4              | 9.9·10 <sup>-4</sup> |
| VNIIM     | 1.0000300 | $2.4 \cdot 10^{-4}$  | 3.12  | Ν       | -9.1·10 <sup>-4</sup> | 9.9·10 <sup>-4</sup> |
| PTB-4     | 1.0009550 | 2.5.10-4             | 0.00  | N       | 1.9.10-5              | $1.0 \cdot 10^{-3}$  |
| NIS       | 1.0180000 | 1.9·10 <sup>-3</sup> | 74.97 | Y       | $1.7 \cdot 10^{-2}$   | $4.0 \cdot 10^{-3}$  |
| PTB-5     | 1.0014510 | 5.5.10-4             | 0.52  | Ν       | 5.1.10-4              | $1.4 \cdot 10^{-3}$  |
| IPQ       | 1.0038000 | 6.1·10 <sup>-3</sup> | 0.22  | Ν       | $2.9 \cdot 10^{-3}$   | $1.2 \cdot 10^{-2}$  |
| LNE       | 1.0001000 | $1.4 \cdot 10^{-3}$  | 0.32  | Ν       | -8.4·10 <sup>-4</sup> | $2.9 \cdot 10^{-3}$  |
| PTB-6     | 1.0012600 | 3.3.10-4             | 0.33  | Ν       | $3.2 \cdot 10^{-4}$   | $1.1 \cdot 10^{-3}$  |
| CEM       | 0.9999200 | 3.3.10-4             | 3.26  | Ν       | -1.0·10 <sup>-3</sup> | $1.1 \cdot 10^{-3}$  |
| PTB-7     | 1.0006230 | 3.7.10-4             | 0.28  | Ν       | -3.1·10 <sup>-4</sup> | $1.1 \cdot 10^{-3}$  |
| KRISS     | 1.0037350 | 5.2.10-4             | 16.54 | Y       | $2.8 \cdot 10^{-3}$   | $1.4 \cdot 10^{-3}$  |
| PTB-8     | 1.0006660 | $2.1 \cdot 10^{-4}$  | 0.29  | Ν       | $-2.7 \cdot 10^{-4}$  | 9.6·10 <sup>-4</sup> |
| MIKES     | 1.0015260 | 2.8.10-4             | 1.21  | Ν       | 5.9·10 <sup>-4</sup>  | $1.0 \cdot 10^{-3}$  |
| PTB-9     | 1.0005380 | $1.5 \cdot 10^{-4}$  | 0.68  | Ν       | $-4.0 \cdot 10^{-4}$  | 9.3·10 <sup>-4</sup> |
| PTB-10    | 1.0006280 | 2.6.10-4             | 0.35  | Ν       | $-3.1 \cdot 10^{-4}$  | $1.0 \cdot 10^{-3}$  |
| VSL-2     | 1.0024669 | $1.2 \cdot 10^{-4}$  | 10.59 | Y       | $1.5 \cdot 10^{-3}$   | 9.8·10 <sup>-4</sup> |
| NPL-2     | 1.0004600 | $1.5 \cdot 10^{-3}$  | 0.09  | Ν       | $-4.8 \cdot 10^{-4}$  | $3.2 \cdot 10^{-3}$  |
| PTB-11    | 1.0001630 | 2.8.10-4             | 2.10  | Ν       | -7.7·10 <sup>-4</sup> | $1.0 \cdot 10^{-3}$  |
| PTB-12    | 1.0015790 | 4.6.10-4             | 0.99  | Ν       | 6.4.10-4              | $1.3 \cdot 10^{-3}$  |

Number of discarded results = 5, percentage = 19%.

 $F_{\rm r} = \sum e_{\rm i} = 32.30$ , summed over the undiscarded contributions.

Degree of freedom = 20.



*Fig. 6.13:* Calibration factors for the Keithley at 100 fA for positive current direction, together with the reference value (solid line) and its uncertainty for k=2 (dashed lines). Results not shown in the graph are located outside of the plotting area.

### Results for the Keithley 6430 at 100 fA, negative current direction:

Reference value:  $Q_{ref} = 1.00089524$ ,  $u(Q_{ref}) = 1.37 \cdot 10^{-4}$ Uncertainty describing the instability of the transfer standard:  $u_{TS} = 4.56 \cdot 10^{-4}$ 

**Table 6.14:** Summary of the results, containing each participant's result  $Q_i$ , its uncertainty  $u(Q_i)$ ,  $e_i$  as defined in equation (12), indication if the result had to be discarded from calculating the reference value due to a too large value of  $e_i$ , and the degree of equivalence  $(d_i, U(d_i))$ .

| Institute | $Q_i$     | $u(Q_i)$             | ei     | discard | $d_i$                 | $U(d_i)$             |
|-----------|-----------|----------------------|--------|---------|-----------------------|----------------------|
| PTB-1     | 0.9995964 | $1.4 \cdot 10^{-4}$  | 7.46   | Y       | -1.3·10 <sup>-3</sup> | 9.9·10 <sup>-4</sup> |
| VSL-1     | 0.9991000 | $1.9 \cdot 10^{-4}$  | 13.20  | Y       | -1.8·10 <sup>-3</sup> | $1.0 \cdot 10^{-3}$  |
| NPL-1     | 0.9797000 | $1.4 \cdot 10^{-3}$  | 214.47 | Y       | -2.1·10 <sup>-2</sup> | $2.9 \cdot 10^{-3}$  |
| PTB-2     | 1.0010150 | $1.7 \cdot 10^{-4}$  | 0.06   | Ν       | $1.2 \cdot 10^{-4}$   | 9.3·10 <sup>-4</sup> |
| INRIM     | 1.0005050 | $4.6 \cdot 10^{-4}$  | 0.37   | Ν       | -3.9·10 <sup>-4</sup> | $1.3 \cdot 10^{-3}$  |
| METAS     | 1.0001150 | $6.0 \cdot 10^{-4}$  | 1.08   | Ν       | -7.8·10 <sup>-4</sup> | $1.5 \cdot 10^{-3}$  |
| UME       | 0.9510000 | $1.2 \cdot 10^{-2}$  | 18.52  | Y       | -5.0·10 <sup>-2</sup> | $2.3 \cdot 10^{-2}$  |
| PTB-3     | 1.0007100 | $2.5 \cdot 10^{-4}$  | 0.13   | Ν       | -1.9·10 <sup>-4</sup> | $1.0 \cdot 10^{-3}$  |
| VNIIM     | 1.0000200 | $2.7 \cdot 10^{-4}$  | 2.72   | Ν       | $-8.8 \cdot 10^{-4}$  | $1.0 \cdot 10^{-3}$  |
| PTB-4     | 1.0008960 | $2.9 \cdot 10^{-4}$  | 0.00   | Ν       | $-3.8 \cdot 10^{-7}$  | $1.0 \cdot 10^{-3}$  |
| NIS       | 0.9931000 | $3.2 \cdot 10^{-3}$  | 5.89   | Ν       | -7.8·10 <sup>-3</sup> | $6.4 \cdot 10^{-3}$  |
| PTB-5     | 1.0015070 | $5.2 \cdot 10^{-4}$  | 0.78   | Ν       | $6.1 \cdot 10^{-4}$   | $1.4 \cdot 10^{-3}$  |
| IPQ       | 1.0010000 | $3.1 \cdot 10^{-3}$  | 0.00   | Ν       | $1.0 \cdot 10^{-4}$   | 6.3·10 <sup>-3</sup> |
| LNE       | 1.0040200 | 9.6·10 <sup>-4</sup> | 8.61   | Y       | $3.1 \cdot 10^{-3}$   | $2.1 \cdot 10^{-3}$  |
| PTB-6     | 1.0012150 | 3.1.10-4             | 0.33   | Ν       | $3.2 \cdot 10^{-4}$   | $1.1 \cdot 10^{-3}$  |
| CEM       | 1.0015900 | $5.4 \cdot 10^{-4}$  | 0.97   | Ν       | 6.9·10 <sup>-4</sup>  | $1.4 \cdot 10^{-3}$  |
| PTB-7     | 1.0020040 | $3.7 \cdot 10^{-4}$  | 3.56   | Ν       | $1.1 \cdot 10^{-3}$   | $1.1 \cdot 10^{-3}$  |
| KRISS     | 0.9990720 | 5.0.10-4             | 7.32   | Ν       | -1.8·10 <sup>-3</sup> | $1.3 \cdot 10^{-3}$  |
| PTB-8     | 1.0012990 | $1.8 \cdot 10^{-4}$  | 0.67   | Ν       | $4.0 \cdot 10^{-4}$   | 9.4·10 <sup>-4</sup> |
| MIKES     | 1.0005880 | $2.8 \cdot 10^{-4}$  | 0.33   | Ν       | $-3.1 \cdot 10^{-4}$  | $1.0 \cdot 10^{-3}$  |
| PTB-9     | 1.0013280 | $1.6 \cdot 10^{-4}$  | 0.80   | Ν       | $4.3 \cdot 10^{-4}$   | 9.3·10 <sup>-4</sup> |
| PTB-10    | 1.0011560 | $2.2 \cdot 10^{-4}$  | 0.26   | Ν       | $2.6 \cdot 10^{-4}$   | $9.7 \cdot 10^{-4}$  |
| VSL-2     | 0.9994004 | $1.2 \cdot 10^{-4}$  | 10.10  | Y       | -1.5·10 <sup>-3</sup> | 9.8·10 <sup>-4</sup> |
| NPL-2     | 0.9994300 | $2.1 \cdot 10^{-3}$  | 0.48   | Ν       | $-1.5 \cdot 10^{-3}$  | $4.2 \cdot 10^{-3}$  |
| PTB-11    | 1.0014660 | 3.5.10-4             | 0.98   | Ν       | $5.7 \cdot 10^{-4}$   | $1.1 \cdot 10^{-3}$  |
| PTB-12    | 1.0003340 | $4.1 \cdot 10^{-4}$  | 0.85   | N       | $-5.6 \cdot 10^{-4}$  | $1.2 \cdot 10^{-3}$  |

Number of discarded results = 6, percentage = 23%.

 $F_{\rm r} = \sum e_{\rm i} = 27.59$ , summed over the undiscarded contributions.

Degree of freedom =19.



*Fig. 6.14:* Calibration factors for the Keithley at 100 pA for negative current direction, together with the reference value (solid line) and its uncertainty for k=2 (dashed lines). Results not shown in the graph are located outside of the plotting area.

## **Results for the Keithley 6430 at 100 fA, mean of both current directions:**

Reference value:  $Q_{ref} = 1.00094466$ ,  $u(Q_{ref}) = 1.25 \cdot 10^{-4}$ Uncertainty describing the instability of the transfer standard:  $u_{TS} = 4.56 \cdot 10^{-4}$ 

**Table 6.15:** Summary of the results, containing each participant's result  $Q_i$ , its uncertainty  $u(Q_i)$ ,  $e_i$  as defined in equation (12), indication if the result had to be discarded from calculating the reference value due to a too large value of  $e_i$ , and the degree of equivalence  $(d_i, U(d_i))$ .

| Institute | $Q_i$     | $u(Q_i)$             | ei   | discard | $d_i$                 | $U(d_i)$             |
|-----------|-----------|----------------------|------|---------|-----------------------|----------------------|
| PTB-1     | 0.9994908 | $1.5 \cdot 10^{-4}$  | 9.18 | Y       | -1.5·10 <sup>-3</sup> | 9.9·10 <sup>-4</sup> |
| VSL-1     | 1.0007550 | 1.9.10-4             | 0.15 | N       | -1.9·10 <sup>-4</sup> | 9.5·10 <sup>-4</sup> |
| NPL-1     | 1.0005500 | $1.8 \cdot 10^{-3}$  | 0.05 | N       | -3.9·10 <sup>-4</sup> | 3.6·10 <sup>-3</sup> |
| PTB-2     | 1.0014140 | $1.8 \cdot 10^{-4}$  | 0.92 | N       | $4.7 \cdot 10^{-4}$   | 9.5·10 <sup>-4</sup> |
| INRIM     | 1.0005170 | $4.5 \cdot 10^{-4}$  | 0.45 | N       | $-4.3 \cdot 10^{-4}$  | $1.3 \cdot 10^{-3}$  |
| METAS     | 1.0001880 | 6.3·10 <sup>-4</sup> | 0.95 | Ν       | -7.6·10 <sup>-4</sup> | $1.5 \cdot 10^{-3}$  |
| UME       | 0.9935000 | $1.4 \cdot 10^{-2}$  | 0.29 | Ν       | -7.4·10 <sup>-3</sup> | $2.7 \cdot 10^{-2}$  |
| PTB-3     | 1.0009760 | $2.4 \cdot 10^{-4}$  | 0.00 | Ν       | $3.2 \cdot 10^{-5}$   | $1.0 \cdot 10^{-3}$  |
| VNIIM     | 1.0000250 | $2.5 \cdot 10^{-4}$  | 3.10 | Ν       | $-9.2 \cdot 10^{-4}$  | $1.0 \cdot 10^{-3}$  |
| PTB-4     | 1.0009255 | $2.7 \cdot 10^{-4}$  | 0.00 | Ν       | -1.9·10 <sup>-5</sup> | $1.0 \cdot 10^{-3}$  |
| NIS       | 1.0055500 | $2.5 \cdot 10^{-3}$  | 3.16 | Ν       | $4.6 \cdot 10^{-3}$   | 5.2·10 <sup>-3</sup> |
| PTB-5     | 1.0014790 | $5.4 \cdot 10^{-4}$  | 0.58 | Ν       | 5.3.10-4              | $1.4 \cdot 10^{-3}$  |
| IPQ       | 1.0024000 | $4.6 \cdot 10^{-3}$  | 0.10 | Ν       | $1.5 \cdot 10^{-3}$   | $9.2 \cdot 10^{-3}$  |
| LNE       | 1.0020600 | $1.2 \cdot 10^{-3}$  | 0.78 | Ν       | $1.1 \cdot 10^{-3}$   | $2.5 \cdot 10^{-3}$  |
| PTB-6     | 1.0012375 | 3.2.10-4             | 0.28 | Ν       | $2.9 \cdot 10^{-4}$   | $1.1 \cdot 10^{-3}$  |
| CEM       | 1.0007550 | $4.3 \cdot 10^{-4}$  | 0.09 | Ν       | $-1.9 \cdot 10^{-4}$  | $1.2 \cdot 10^{-3}$  |
| PTB-7     | 1.0013135 | 3.7.10-4             | 0.40 | Ν       | $3.7 \cdot 10^{-4}$   | $1.1 \cdot 10^{-3}$  |
| KRISS     | 1.0014035 | 5.1.10-4             | 0.45 | Ν       | $4.6 \cdot 10^{-4}$   | $1.3 \cdot 10^{-3}$  |
| PTB-8     | 1.0009825 | $1.9 \cdot 10^{-4}$  | 0.01 | Ν       | 3.8·10 <sup>-5</sup>  | 9.6·10 <sup>-4</sup> |
| MIKES     | 1.0010570 | $2.8 \cdot 10^{-4}$  | 0.04 | Ν       | $1.1 \cdot 10^{-4}$   | $1.0 \cdot 10^{-3}$  |
| PTB-9     | 1.0009330 | $1.6 \cdot 10^{-4}$  | 0.00 | Ν       | -1.1·10 <sup>-5</sup> | 9.3·10 <sup>-4</sup> |
| PTB-10    | 1.0008920 | $2.4 \cdot 10^{-4}$  | 0.01 | Ν       | -5.2·10 <sup>-5</sup> | $1.0 \cdot 10^{-3}$  |
| VSL-2     | 1.0009336 | $1.2 \cdot 10^{-4}$  | 0.00 | Ν       | -1.0·10 <sup>-5</sup> | 9.1·10 <sup>-4</sup> |
| NPL-2     | 0.9999450 | $1.8 \cdot 10^{-3}$  | 0.29 | Ν       | -1.0·10 <sup>-3</sup> | 3.7·10 <sup>-3</sup> |
| PTB-11    | 1.0008145 | 3.1.10-4             | 0.05 | N       | -1.3·10 <sup>-4</sup> | $1.1 \cdot 10^{-3}$  |
| PTB-12    | 1.0009565 | 4.3.10-4             | 0.00 | Ν       | $1.2 \cdot 10^{-5}$   | $1.2 \cdot 10^{-3}$  |

Number of discarded results = 1, percentage = 4%.

 $F_{\rm r} = \sum e_{\rm i} = 12.15$ , summed over the undiscarded contributions.

Degree of freedom =24.



*Fig. 6.15:* Calibration factors for the Keithley at 100 fA for the mean of both current directions, together with the reference value (solid line) and its uncertainty for k=2 (dashed lines). Results not shown in the graph are located outside of the plotting area.

#### Results for the Keithley 6430 at 1 pA, positive current direction:

Reference value:  $Q_{ref} = A + B \cdot t$ , with: A = 1.00065496,  $u(A) = 3.03 \cdot 10^{-5}$   $B = 5.27 \cdot 10^{-8}$ ,  $u(B) = 3.73 \cdot 10^{-8}$ Uncertainty describing the instability of the transfer standard:  $u_{TS} = 9.37 \cdot 10^{-5}$ 

**Table 6.16:** Summary of the results, containing each participant's result  $Q_i$ , its uncertainty  $u(Q_i)$ ,  $e_i$  as defined in equation (12), indication if the result had to be discarded from calculating the reference value due to a too large value of  $e_i$ , and the degree of equivalence  $(d_i, U(d_i))$ .

| Institute | $Q_i$     | $u(Q_i)$             | $e_{\mathrm{i}}$ | discard | $d_i$                 | $U(d_i)$             |
|-----------|-----------|----------------------|------------------|---------|-----------------------|----------------------|
| PTB-1     | 0.9989833 | 5.4·10 <sup>-5</sup> | 215.32           | Y       | -1.6·10 <sup>-3</sup> | 2.3.10-4             |
| VSL-1     | 1.0010000 | 1.2.10-4             | 5.89             | Ν       | 3.8.10-4              | 3.1.10-4             |
| NPL-1     | 1.0043800 | $1.7 \cdot 10^{-3}$  | 5.14             | Ν       | 3.8·10 <sup>-3</sup>  | 3.3·10 <sup>-3</sup> |
| PTB-2     | 1.0006770 | 5.6·10 <sup>-5</sup> | 0.23             | Ν       | 5.3·10 <sup>-5</sup>  | $2.1 \cdot 10^{-4}$  |
| INRIM     | 1.0003950 | 7.8·10 <sup>-5</sup> | 3.50             | Ν       | $-2.3 \cdot 10^{-4}$  | $2.4 \cdot 10^{-4}$  |
| METAS     | 1.0003170 | $2.8 \cdot 10^{-4}$  | 1.10             | Ν       | -3.1·10 <sup>-4</sup> | 6.0·10 <sup>-4</sup> |
| UME       | 1.0019000 | $3.5 \cdot 10^{-3}$  | 0.13             | Ν       | $1.3 \cdot 10^{-3}$   | 6.9·10 <sup>-3</sup> |
| PTB-3     | 1.0006000 | 5.5·10 <sup>-5</sup> | 0.11             | Ν       | -3.7·10 <sup>-5</sup> | $2.1 \cdot 10^{-4}$  |
| VNIIM     | 0.9999800 | $1.2 \cdot 10^{-4}$  | 19.33            | Y       | -6.6·10 <sup>-4</sup> | 3.1.10-4             |
| PTB-4     | 1.0005010 | 5.7·10 <sup>-5</sup> | 1.71             | Ν       | -1.4·10 <sup>-4</sup> | $2.1 \cdot 10^{-4}$  |
| NIS       | 1.0015000 | 9.0·10 <sup>-5</sup> | 43.12            | Y       | 8.5·10 <sup>-4</sup>  | $2.7 \cdot 10^{-4}$  |
| PTB-5     | 1.0007620 | 6.8·10 <sup>-5</sup> | 0.94             | Ν       | $1.1 \cdot 10^{-4}$   | $2.2 \cdot 10^{-4}$  |
| IPQ       | 1.0009000 | 1.6.10-3             | 0.02             | Ν       | $2.5 \cdot 10^{-4}$   | 3.2·10 <sup>-3</sup> |
| LNE       | 1.0006700 | 1.6.10-4             | 0.01             | Ν       | $1.7 \cdot 10^{-5}$   | 3.7.10-4             |
| PTB-6     | 1.0008160 | 7.1·10 <sup>-5</sup> | 1.88             | Ν       | $1.6 \cdot 10^{-4}$   | $2.3 \cdot 10^{-4}$  |
| CEM       | 1.0005070 | 9.4·10 <sup>-5</sup> | 1.28             | Ν       | -1.5.10-4             | $2.6 \cdot 10^{-4}$  |
| PTB-7     | 1.0006800 | 8.1·10 <sup>-5</sup> | 0.03             | Ν       | $2.1 \cdot 10^{-5}$   | $2.4 \cdot 10^{-4}$  |
| KRISS     | 1.0013490 | $4.2 \cdot 10^{-5}$  | 44.61            | Y       | 6.9·10 <sup>-4</sup>  | $2.1 \cdot 10^{-4}$  |
| PTB-8     | 1.0006930 | 5.6·10 <sup>-5</sup> | 0.07             | Ν       | 3.0.10-5              | $2.1 \cdot 10^{-4}$  |
| MIKES     | 1.0009640 | 2.6.10-4             | 1.14             | Ν       | 3.0.10-4              | 5.6.10-4             |
| PTB-9     | 1.0005420 | 5.6·10 <sup>-5</sup> | 1.32             | Ν       | -1.3·10 <sup>-4</sup> | $2.1 \cdot 10^{-4}$  |
| PTB-10    | 1.0006750 | 5.8·10 <sup>-5</sup> | 0.00             | Ν       | -7.9·10 <sup>-6</sup> | $2.1 \cdot 10^{-4}$  |
| VSL-2     | 1.0010540 | 6.4·10 <sup>-5</sup> | 10.29            | Y       | 3.7.10-4              | $2.4 \cdot 10^{-4}$  |
| NPL-2     | 1.0008400 | $1.0 \cdot 10^{-4}$  | 1.09             | Ν       | $1.5 \cdot 10^{-4}$   | $2.8 \cdot 10^{-4}$  |
| PTB-11    | 1.0005700 | 6.2·10 <sup>-5</sup> | 1.12             | N       | -1.2·10 <sup>-4</sup> | $2.2 \cdot 10^{-4}$  |
| PTB-12    | 1.0007960 | 6.4·10 <sup>-5</sup> | 0.38             | Ν       | 7.6.10-5              | $2.4 \cdot 10^{-4}$  |

Number of discarded results = 5, percentage = 19%.

 $F_{\rm r} = \sum e_{\rm i} = 27.1$ , summed over the undiscarded contributions.

Effective degree of freedom =20.



*Fig. 6.16:* Calibration factors for the Keithley at 1 pA for positive current direction, together with the reference line (solid line) and its uncertainty for k=2 (dashed lines). Results not shown in the graph are located outside of the plotting area.

#### Results for the Keithley 6430 at 1 pA, negative current direction:

Reference value:  $Q_{ref} = A + B \cdot t$ , with: A = 1.00063836,  $u(A) = 3.05 \cdot 10^{-5}$   $B = 5.27 \cdot 10^{-8}$ ,  $u(B) = 3.73 \cdot 10^{-8}$ Uncertainty describing the instability of the transfer standard:  $u_{TS} = 9.37 \cdot 10^{-5}$ 

**Table 6.17:** Summary of the results, containing each participant's result  $Q_i$ , its uncertainty  $u(Q_i)$ ,  $e_i$  as defined in equation (12), indication if the result had to be discarded from calculating the reference value due to a too large value of  $e_i$ , and the degree of equivalence  $(d_i, U(d_i))$ .

| Institute | $Q_i$     | $u(Q_i)$             | ei     | discard | $d_i$                 | $U(d_i)$             |
|-----------|-----------|----------------------|--------|---------|-----------------------|----------------------|
| PTB-1     | 0.9989348 | 5.5·10 <sup>-5</sup> | 221.95 | Y       | -1.7·10 <sup>-3</sup> | 2.3·10 <sup>-4</sup> |
| VSL-1     | 1.0007300 | $1.2 \cdot 10^{-4}$  | 0.66   | Ν       | $1.3 \cdot 10^{-4}$   | 3.1.10-4             |
| NPL-1     | 0.9978600 | 1.2.10-3             | 4.86   | N       | $-2.7 \cdot 10^{-3}$  | $2.5 \cdot 10^{-3}$  |
| PTB-2     | 1.0006270 | 5.9·10 <sup>-5</sup> | 0.03   | N       | $2.0 \cdot 10^{-5}$   | $2.2 \cdot 10^{-4}$  |
| INRIM     | 1.0002990 | 6.4·10 <sup>-5</sup> | 7.28   | Y       | -3.1·10 <sup>-4</sup> | $2.4 \cdot 10^{-4}$  |
| METAS     | 1.0002390 | 2.9.10-4             | 1.47   | Ν       | -3.8·10 <sup>-4</sup> | 6.2·10 <sup>-4</sup> |
| UME       | 0.9899000 | 1.6.10-3             | 43.41  | Y       | -1.1·10 <sup>-2</sup> | 3.3·10 <sup>-3</sup> |
| PTB-3     | 1.0005640 | 6.1·10 <sup>-5</sup> | 0.25   | Ν       | -5.6·10 <sup>-5</sup> | $2.2 \cdot 10^{-4}$  |
| VNIIM     | 1.0000000 | 1.3.10-4             | 15.45  | Y       | -6.3·10 <sup>-4</sup> | 3.2.10-4             |
| PTB-4     | 1.0005780 | 5.7.10-5             | 0.20   | Ν       | -5.0·10 <sup>-5</sup> | $2.1 \cdot 10^{-4}$  |
| NIS       | 0.9991200 | 9.2·10 <sup>-5</sup> | 131.45 | Y       | -1.5·10 <sup>-3</sup> | $2.7 \cdot 10^{-4}$  |
| PTB-5     | 1.0005370 | 9.6·10 <sup>-5</sup> | 0.51   | N       | -9.6·10 <sup>-5</sup> | $2.6 \cdot 10^{-4}$  |
| IPQ       | 1.0002000 | $2.5 \cdot 10^{-3}$  | 0.03   | N       | -4.3·10 <sup>-4</sup> | 5.1·10 <sup>-3</sup> |
| LNE       | 1.0002200 | 1.9.10-4             | 3.78   | N       | $-4.2 \cdot 10^{-4}$  | $4.2 \cdot 10^{-4}$  |
| PTB-6     | 1.0008000 | 7.4.10-5             | 1.83   | N       | $1.6 \cdot 10^{-4}$   | $2.3 \cdot 10^{-4}$  |
| CEM       | 1.0004560 | 9.4·10 <sup>-5</sup> | 1.93   | Ν       | -1.8·10 <sup>-4</sup> | $2.6 \cdot 10^{-4}$  |
| PTB-7     | 1.0007280 | 8.0·10 <sup>-5</sup> | 0.49   | N       | 8.6·10 <sup>-5</sup>  | $2.4 \cdot 10^{-4}$  |
| KRISS     | 1.0003460 | 5.9·10 <sup>-5</sup> | 7.29   | Y       | $-3.0 \cdot 10^{-4}$  | $2.3 \cdot 10^{-4}$  |
| PTB-8     | 1.0006490 | 5.5·10 <sup>-5</sup> | 0.00   | N       | $2.6 \cdot 10^{-6}$   | $2.1 \cdot 10^{-4}$  |
| MIKES     | 1.0009210 | 2.6.10-4             | 0.95   | N       | $2.7 \cdot 10^{-4}$   | 5.6·10 <sup>-4</sup> |
| PTB-9     | 1.0005210 | 5.5.10-5             | 1.43   | N       | -1.3·10 <sup>-4</sup> | $2.1 \cdot 10^{-4}$  |
| PTB-10    | 1.0006820 | 5.7.10-5             | 0.02   | N       | 1.6.10-5              | $2.1 \cdot 10^{-4}$  |
| VSL-2     | 1.0008198 | 6.2·10 <sup>-5</sup> | 1.76   | N       | $1.5 \cdot 10^{-4}$   | $2.2 \cdot 10^{-4}$  |
| NPL-2     | 1.0009600 | 9.9·10 <sup>-5</sup> | 4.24   | N       | $2.9 \cdot 10^{-4}$   | $2.7 \cdot 10^{-4}$  |
| PTB-11    | 1.0005370 | 5.8.10-5             | 1.49   | N       | $-1.4 \cdot 10^{-4}$  | $2.2 \cdot 10^{-4}$  |
| PTB-12    | 1.0007830 | $6.2 \cdot 10^{-5}$  | 0.43   | Ν       | 7.9·10 <sup>-5</sup>  | $2.4 \cdot 10^{-4}$  |

Number of discarded results = 6, percentage = 23 %.

 $F_r = \sum e_i = 26.36$ , summed over the undiscarded contributions. Degree of freedom =19.



*Fig. 6.17:* Calibration factors for the Keithley at 1 pA for negative current direction, together with the reference line (solid line) and its uncertainty for k=2 (dashed lines). Results not shown in the graph are located outside of the plotting area.

#### Results for the Keithley 6430 at 1 pA, mean of both current directions:

Reference value:  $Q_{ref} = A + B \cdot t$ , with: A = 1.00066043,  $u(A) = 2.84 \cdot 10^{-5}$   $B = 5.27 \cdot 10^{-8}$ ,  $u(B) = 3.73 \cdot 10^{-8}$ Uncertainty describing the instability of the transfer standard:  $u_{TS} = 9.37 \cdot 10^{-5}$ 

**Table 6.18:** Summary of the results, containing each participant's result  $Q_i$ , its uncertainty  $u(Q_i)$ ,  $e_i$  as defined in equation (12), indication if the result had to be discarded from calculating the reference value due to a too large value of  $e_i$ , and the degree of equivalence  $(d_i, U(d_i))$ .

| Institute | $Q_i$     | $u(Q_i)$             | $e_{\mathrm{i}}$ | discard | $d_i$                 | $U(d_i)$             |
|-----------|-----------|----------------------|------------------|---------|-----------------------|----------------------|
| PTB-1     | 0.9989591 | 5.4·10 <sup>-5</sup> | 222.03           | Y       | -1.7·10 <sup>-3</sup> | 2.3.10-4             |
| VSL-1     | 1.0008650 | $1.2 \cdot 10^{-4}$  | 2.36             | N       | $2.4 \cdot 10^{-4}$   | 3.1.10-4             |
| NPL-1     | 1.0011200 | $1.4 \cdot 10^{-3}$  | 0.12             | N       | $4.9 \cdot 10^{-4}$   | $2.9 \cdot 10^{-3}$  |
| PTB-2     | 1.0006520 | 5.7·10 <sup>-5</sup> | 0.04             | N       | $2.4 \cdot 10^{-5}$   | $2.2 \cdot 10^{-4}$  |
| INRIM     | 1.0003470 | $7.1 \cdot 10^{-5}$  | 5.66             | Ν       | $-2.8 \cdot 10^{-4}$  | $2.3 \cdot 10^{-4}$  |
| METAS     | 1.0002780 | $2.9 \cdot 10^{-4}$  | 1.38             | N       | $-3.6 \cdot 10^{-4}$  | 6.1·10 <sup>-4</sup> |
| UME       | 0.9959000 | $2.5 \cdot 10^{-3}$  | 3.47             | N       | $-4.7 \cdot 10^{-3}$  | $5.1 \cdot 10^{-3}$  |
| PTB-3     | 1.0005820 | 5.8·10 <sup>-5</sup> | 0.28             | Ν       | -5.9·10 <sup>-5</sup> | $2.1 \cdot 10^{-4}$  |
| VNIIM     | 0.9999900 | $1.2 \cdot 10^{-4}$  | 17.98            | Y       | -6.6·10 <sup>-4</sup> | $3.2 \cdot 10^{-4}$  |
| PTB-4     | 1.0005395 | 5.7·10 <sup>-5</sup> | 0.99             | N       | $-1.1 \cdot 10^{-4}$  | $2.1 \cdot 10^{-4}$  |
| NIS       | 1.0003100 | 9.1·10 <sup>-5</sup> | 6.84             | Y       | $-3.4 \cdot 10^{-4}$  | $2.7 \cdot 10^{-4}$  |
| PTB-5     | 1.0006495 | 8.2·10 <sup>-5</sup> | 0.00             | N       | $-4.5 \cdot 10^{-6}$  | $2.4 \cdot 10^{-4}$  |
| IPQ       | 1.0005500 | $2.1 \cdot 10^{-3}$  | 0.00             | N       | $-1.1 \cdot 10^{-4}$  | $4.1 \cdot 10^{-3}$  |
| LNE       | 1.0004450 | $1.8 \cdot 10^{-4}$  | 1.13             | Ν       | $-2.1 \cdot 10^{-4}$  | $4.0 \cdot 10^{-4}$  |
| PTB-6     | 1.0008080 | 7.3·10 <sup>-5</sup> | 1.57             | Ν       | $1.5 \cdot 10^{-4}$   | $2.3 \cdot 10^{-4}$  |
| CEM       | 1.0004815 | 9.4·10 <sup>-5</sup> | 1.84             | Ν       | -1.8·10 <sup>-4</sup> | $2.6 \cdot 10^{-4}$  |
| PTB-7     | 1.0007040 | 8.0·10 <sup>-5</sup> | 0.11             | N       | $4.1 \cdot 10^{-5}$   | $2.4 \cdot 10^{-4}$  |
| KRISS     | 1.0008475 | 5.1.10-5             | 2.90             | N       | $1.8 \cdot 10^{-4}$   | $2.1 \cdot 10^{-4}$  |
| PTB-8     | 1.0006710 | 5.6·10 <sup>-5</sup> | 0.00             | N       | $3.4 \cdot 10^{-6}$   | $2.1 \cdot 10^{-4}$  |
| MIKES     | 1.0009425 | 2.6.10-4             | 0.95             | N       | $2.7 \cdot 10^{-4}$   | 5.6·10 <sup>-4</sup> |
| PTB-9     | 1.0005315 | 5.5·10 <sup>-5</sup> | 1.66             | N       | $-1.4 \cdot 10^{-4}$  | $2.1 \cdot 10^{-4}$  |
| PTB-10    | 1.0006785 | 5.7·10 <sup>-5</sup> | 0.01             | N       | -8.8·10 <sup>-6</sup> | $2.2 \cdot 10^{-4}$  |
| VSL-2     | 1.0009369 | 6.3·10 <sup>-5</sup> | 4.66             | N       | $2.5 \cdot 10^{-4}$   | $2.2 \cdot 10^{-4}$  |
| NPL-2     | 1.0009000 | $1.0 \cdot 10^{-4}$  | 2.11             | N       | $2.0 \cdot 10^{-4}$   | $2.8 \cdot 10^{-4}$  |
| PTB-11    | 1.0005535 | 6.0·10 <sup>-5</sup> | 1.56             | N       | $-1.4 \cdot 10^{-4}$  | $2.2 \cdot 10^{-4}$  |
| PTB-12    | 1.0007895 | 6.3·10 <sup>-5</sup> | 0.28             | Ν       | 6.5·10 <sup>-5</sup>  | $2.4 \cdot 10^{-4}$  |

Number of discarded results = 3, percentage = 12 %.

 $F_r = \sum e_i = 33.10$ , summed over the undiscarded contributions. Degree of freedom =22.



*Fig. 6.18:* Calibration factors for the Keithley at 1 pA for the mean of both current directions, together with the reference line (solid line) and its uncertainty for k=2 (dashed lines). Results not shown in the graph are located outside of the plotting area.

#### Results for the Keithley 6430 at 10 pA, positive current direction:

Reference value:  $Q_{ref} = A + B \cdot t$ , with: A = 1.00001214,  $u(A) = 1.14 \cdot 10^{-5}$   $B = 1.03 \cdot 10^{-7}$ ,  $u(B) = 2.23 \cdot 10^{-8}$ Uncertainty describing the instability of the transfer standard:  $u_{TS} = 3.23 \cdot 10^{-5}$ 

**Table 6.19:** Summary of the results, containing each participant's result  $Q_i$ , its uncertainty  $u(Q_i)$ ,  $e_i$  as defined in equation (12), indication if the result had to be discarded from calculating the reference value due to a too large value of  $e_i$ , and the degree of equivalence  $(d_i, U(d_i))$ .

| Institute | $Q_i$     | $u(Q_i)$             | $e_{\mathrm{i}}$ | discard | $d_i$                 | $U(d_i)$             |
|-----------|-----------|----------------------|------------------|---------|-----------------------|----------------------|
| PTB-1     | 0.9996577 | 4.5.10-5             | 27.20            | Y       | -2.8·10 <sup>-4</sup> | $1.1 \cdot 10^{-4}$  |
| VSL-1     | 0.9998710 | 1.3.10-5             | 3.56             | N       | -7.2·10 <sup>-5</sup> | 7.2·10 <sup>-5</sup> |
| NPL-1     | 1.0000390 | $7.4 \cdot 10^{-4}$  | 0.01             | N       | 9.1·10 <sup>-5</sup>  | $1.5 \cdot 10^{-3}$  |
| PTB-2     | 0.9998594 | 3.9·10 <sup>-5</sup> | 3.05             | N       | -9.1·10 <sup>-5</sup> | $1.0 \cdot 10^{-4}$  |
| INRIM     | 0.9998640 | 3.7.10-5             | 3.32             | N       | -9.2·10 <sup>-5</sup> | 9.8·10 <sup>-5</sup> |
| METAS     | 0.9998730 | 5.4·10 <sup>-5</sup> | 2.06             | N       | -9.2·10 <sup>-5</sup> | $1.3 \cdot 10^{-4}$  |
| UME       | 0.9951000 | $7.1 \cdot 10^{-4}$  | 47.37            | Y       | $-4.9 \cdot 10^{-3}$  | $1.4 \cdot 10^{-3}$  |
| PTB-3     | 1.0000020 | 5.4·10 <sup>-5</sup> | 0.18             | Ν       | $2.7 \cdot 10^{-5}$   | $1.2 \cdot 10^{-4}$  |
| VNIIM     | 1.0002100 | $2.3 \cdot 10^{-4}$  | 0.94             | Ν       | $2.2 \cdot 10^{-4}$   | $4.6 \cdot 10^{-4}$  |
| PTB-4     | 0.9999681 | 3.6.10-5             | 0.22             | N       | -2.3·10 <sup>-5</sup> | 9.4·10 <sup>-5</sup> |
| NIS       | 1.0014900 | $1.1 \cdot 10^{-4}$  | 177.88           | Y       | $1.5 \cdot 10^{-3}$   | $2.3 \cdot 10^{-4}$  |
| PTB-5     | 1.0000190 | 3.6·10 <sup>-5</sup> | 0.14             | Ν       | $1.8 \cdot 10^{-5}$   | 9.4·10 <sup>-5</sup> |
| IPQ       | 1.0003600 | $6.0 \cdot 10^{-4}$  | 0.35             | Ν       | 3.6.10-4              | $1.2 \cdot 10^{-3}$  |
| LNE       | 1.0001080 | $2.0 \cdot 10^{-5}$  | 6.85             | Ν       | $1.0 \cdot 10^{-4}$   | 7.3·10 <sup>-5</sup> |
| PTB-6     | 1.0000140 | 3.5.10-5             | 0.00             | N       | $2.9 \cdot 10^{-6}$   | 9.2·10 <sup>-5</sup> |
| CEM       | 0.9999670 | 9.3·10 <sup>-5</sup> | 0.25             | Ν       | -4.9·10 <sup>-5</sup> | $1.9 \cdot 10^{-4}$  |
| PTB-7     | 1.0000330 | 3.6·10 <sup>-5</sup> | 0.09             | Ν       | $1.4 \cdot 10^{-5}$   | 9.3·10 <sup>-5</sup> |
| KRISS     | 1.0000710 | 3.1.10-5             | 1.07             | N       | 4.6·10 <sup>-5</sup>  | 8.7·10 <sup>-5</sup> |
| PTB-8     | 0.9999927 | 3.8·10 <sup>-5</sup> | 0.49             | Ν       | -3.5·10 <sup>-5</sup> | 9.7·10 <sup>-5</sup> |
| MIKES     | 1.0002810 | 2.6.10-4             | 0.88             | N       | $2.5 \cdot 10^{-4}$   | 5.3·10 <sup>-4</sup> |
| PTB-9     | 1.0000600 | 3.6.10-5             | 0.23             | N       | $2.4 \cdot 10^{-5}$   | 9.5·10 <sup>-5</sup> |
| PTB-10    | 1.0000807 | 3.6·10 <sup>-5</sup> | 0.09             | Ν       | $1.5 \cdot 10^{-5}$   | 9.7·10 <sup>-5</sup> |
| VSL-2     | 1.0000978 | 1.3.10-5             | 0.58             | N       | $2.8 \cdot 10^{-5}$   | $7.1 \cdot 10^{-5}$  |
| NPL-2     | 1.0001760 | $2.7 \cdot 10^{-5}$  | 4.46             | N       | 9.4·10 <sup>-5</sup>  | 8.6·10 <sup>-5</sup> |
| PTB-11    | 1.0000200 | 3.7.10-5             | 1.52             | N       | -6.4·10 <sup>-5</sup> | $1.0 \cdot 10^{-4}$  |
| PTB-12    | 1.0001030 | $3.4 \cdot 10^{-5}$  | 0.45             | N       | -3.7·10 <sup>-5</sup> | $1.1 \cdot 10^{-4}$  |

Number of discarded results = 3, percentage = 12 %.

 $F_r = \sum e_i = 30.79$ , summed over the undiscarded contributions.

Degree of freedom = 22.



*Fig. 6.19:* Calibration factors for the Keithley at 10 pA for positive current direction, together with the reference line (solid line) and its uncertainty for k=2 (dashed lines). Results not shown in the graph are located outside of the plotting area.

#### Results for the Keithley 6430 at 10 pA, negative current direction:

Reference value:  $Q_{ref} = A + B \cdot t$ , with: A = 0.99986889,  $u(A) = 1.12 \cdot 10^{-5}$   $B = 1.03 \cdot 10^{-7}$ ,  $u(B) = 2.23 \cdot 10^{-8}$ Uncertainty describing the instability of the transfer standard:  $u_{TS} = 3.23 \cdot 10^{-5}$ 

**Table 6.20:** Summary of the results, containing each participant's result  $Q_i$ , its uncertainty  $u(Q_i)$ ,  $e_i$  as defined in equation (12), indication if the result had to be discarded from calculating the reference value due to a too large value of  $e_i$ , and the degree of equivalence  $(d_i, U(d_i))$ .

| Institute | $Q_i$     | $u(Q_i)$             | ei    | discard | $d_i$                 | $U(d_i)$             |
|-----------|-----------|----------------------|-------|---------|-----------------------|----------------------|
| PTB-1     | 0.9995943 | 3.7.10-5             | 14.94 | Y       | -2.0·10 <sup>-4</sup> | $1.1 \cdot 10^{-4}$  |
| VSL-1     | 0.9997970 | $1.3 \cdot 10^{-5}$  | 0.00  | Ν       | -2.0·10 <sup>-6</sup> | 7.2·10 <sup>-5</sup> |
| NPL-1     | 0.9997280 | $1.0 \cdot 10^{-3}$  | 0.01  | N       | -7.7·10 <sup>-5</sup> | $2.0 \cdot 10^{-3}$  |
| PTB-2     | 0.9997588 | 3.9·10 <sup>-5</sup> | 0.86  | N       | -4.8·10 <sup>-5</sup> | $1.0 \cdot 10^{-4}$  |
| INRIM     | 0.9997630 | $4.0 \cdot 10^{-5}$  | 0.87  | Ν       | -4.9·10 <sup>-5</sup> | $1.0 \cdot 10^{-4}$  |
| METAS     | 0.9997480 | 5.4.10-5             | 1.30  | Ν       | -7.3·10 <sup>-5</sup> | $1.3 \cdot 10^{-4}$  |
| UME       | 0.9950000 | 7.3·10 <sup>-4</sup> | 44.17 | Y       | $-4.8 \cdot 10^{-3}$  | $1.5 \cdot 10^{-3}$  |
| PTB-3     | 0.9998060 | 3.6·10 <sup>-5</sup> | 0.28  | Ν       | -2.6·10 <sup>-5</sup> | 9.6·10 <sup>-5</sup> |
| VNIIM     | 1.0001400 | $1.5 \cdot 10^{-4}$  | 3.50  | Ν       | 3.0.10-4              | 3.2.10-4             |
| PTB-4     | 0.9998149 | 3.7.10-5             | 0.44  | Ν       | -3.3·10 <sup>-5</sup> | 9.6·10 <sup>-5</sup> |
| NIS       | 0.9989000 | 9.9·10 <sup>-5</sup> | 83.36 | Y       | -9.5·10 <sup>-4</sup> | $2.1 \cdot 10^{-4}$  |
| PTB-5     | 0.9998987 | 3.5.10-5             | 0.76  | Ν       | $4.1 \cdot 10^{-5}$   | 9.2·10 <sup>-5</sup> |
| IPQ       | 1.0002800 | 6.1.10-4             | 0.47  | Ν       | 4.2.10-4              | $1.2 \cdot 10^{-3}$  |
| LNE       | 0.9998060 | $1.7 \cdot 10^{-5}$  | 2.59  | Ν       | -5.9·10 <sup>-5</sup> | 7.0.10-5             |
| PTB-6     | 0.9998571 | 3.7.10-5             | 0.05  | Ν       | -1.1·10 <sup>-5</sup> | 9.6·10 <sup>-5</sup> |
| CEM       | 0.9998790 | 9.3·10 <sup>-5</sup> | 0.00  | Ν       | 6.8·10 <sup>-6</sup>  | $1.9 \cdot 10^{-4}$  |
| PTB-7     | 0.9999042 | 3.7.10-5             | 0.34  | Ν       | 2.9·10 <sup>-5</sup>  | 9.5·10 <sup>-5</sup> |
| KRISS     | 0.9998260 | $2.9 \cdot 10^{-5}$  | 1.62  | Ν       | -5.5·10 <sup>-5</sup> | 8.4·10 <sup>-5</sup> |
| PTB-8     | 0.9999015 | 3.7.10-5             | 0.13  | Ν       | $1.7 \cdot 10^{-5}$   | 9.5·10 <sup>-5</sup> |
| MIKES     | 0.9999950 | 2.6.10-4             | 0.16  | Ν       | $1.1 \cdot 10^{-4}$   | 5.3·10 <sup>-4</sup> |
| PTB-9     | 0.9998808 | 3.7.10-5             | 0.06  | Ν       | -1.2·10 <sup>-5</sup> | 9.6·10 <sup>-5</sup> |
| PTB-10    | 0.9999392 | 3.8·10 <sup>-5</sup> | 0.11  | Ν       | $1.7 \cdot 10^{-5}$   | $1.0 \cdot 10^{-4}$  |
| VSL-2     | 0.9999978 | $1.7 \cdot 10^{-5}$  | 3.42  | Ν       | $7.2 \cdot 10^{-5}$   | $7.4 \cdot 10^{-5}$  |
| NPL-2     | 1.0000640 | $2.1 \cdot 10^{-5}$  | 9.13  | Ν       | 1.3.10-4              | 8.0.10-5             |
| PTB-11    | 0.9999127 | 3.8·10 <sup>-5</sup> | 0.28  | Ν       | -2.8·10 <sup>-5</sup> | $1.0 \cdot 10^{-4}$  |
| PTB-12    | 0.9999759 | $3.4 \cdot 10^{-5}$  | 0.14  | Ν       | -2.0·10 <sup>-5</sup> | $1.1 \cdot 10^{-4}$  |

Number of discarded results = 3, percentage = 12 %.

 $F_{\rm r} = \sum e_{\rm i} = 26.52$ , summed over the undiscarded contributions.

Degree of freedom = 22.



*Fig. 6.20:* Calibration factors for the Keithley at 10 pA for negative current direction, together with the reference line (solid line) and its uncertainty for k=2 (dashed lines). Results not shown in the graph are located outside of the plotting area.

#### Results for the Keithley 6430 at 10 pA, mean of both current directions:

Reference value:  $Q_{ref} = A + B \cdot t$ , with: A = 0.99994378,  $u(A) = 1.12 \cdot 10^{-5}$   $B = 1.03 \cdot 10^{-7}$ ,  $u(B) = 2.23 \cdot 10^{-8}$ Uncertainty describing the instability of the transfer standard:  $u_{TS} = 3.23 \cdot 10^{-5}$ 

**Table 6.21:** Summary of the results, containing each participant's result  $Q_i$ , its uncertainty  $u(Q_i)$ ,  $e_i$  as defined in equation (12), indication if the result had to be discarded from calculating the reference value due to a too large value of  $e_i$ , and the degree of equivalence  $(d_i, U(d_i))$ .

| Institute | $Q_i$     | $u(Q_i)$             | $e_{\mathrm{i}}$ | discard | $d_i$                 | $U(d_i)$             |
|-----------|-----------|----------------------|------------------|---------|-----------------------|----------------------|
| PTB-1     | 0.9996260 | 3.8·10 <sup>-5</sup> | 21.28            | Y       | $-2.4 \cdot 10^{-4}$  | $1.1 \cdot 10^{-4}$  |
| VSL-1     | 0.9998340 | 1.3.10-5             | 1.11             | N       | -4.0·10 <sup>-5</sup> | $7.2 \cdot 10^{-5}$  |
| NPL-1     | 0.9998835 | 8.8·10 <sup>-4</sup> | 0.00             | N       | 3.9·10 <sup>-6</sup>  | $1.8 \cdot 10^{-3}$  |
| PTB-2     | 0.9998091 | 3.9·10 <sup>-5</sup> | 1.95             | Ν       | -7.3·10 <sup>-5</sup> | $1.0 \cdot 10^{-4}$  |
| INRIM     | 0.9998135 | 3.8·10 <sup>-5</sup> | 2.04             | Ν       | -7.3·10 <sup>-5</sup> | $1.0 \cdot 10^{-4}$  |
| METAS     | 0.9998105 | 5.4·10 <sup>-5</sup> | 1.79             | Ν       | -8.5·10 <sup>-5</sup> | $1.3 \cdot 10^{-4}$  |
| UME       | 0.9950500 | $7.2 \cdot 10^{-4}$  | 45.79            | Y       | $-4.9 \cdot 10^{-3}$  | $1.4 \cdot 10^{-3}$  |
| PTB-3     | 0.9999040 | $4.5 \cdot 10^{-5}$  | 0.00             | Ν       | $-2.7 \cdot 10^{-6}$  | $1.1 \cdot 10^{-4}$  |
| VNIIM     | 1.0001750 | $1.9 \cdot 10^{-4}$  | 1.75             | Ν       | $2.6 \cdot 10^{-4}$   | 3.9·10 <sup>-4</sup> |
| PTB-4     | 0.9998915 | 3.6.10-5             | 0.40             | N       | -3.1·10 <sup>-5</sup> | 9.5·10 <sup>-5</sup> |
| NIS       | 1.0001950 | $1.0 \cdot 10^{-4}$  | 6.08             | N       | $2.7 \cdot 10^{-4}$   | $2.2 \cdot 10^{-4}$  |
| PTB-5     | 0.9999589 | 3.5·10 <sup>-5</sup> | 0.31             | N       | $2.7 \cdot 10^{-5}$   | 9.3·10 <sup>-5</sup> |
| IPQ       | 1.0003200 | 6.1·10 <sup>-4</sup> | 0.40             | Ν       | 3.8.10-4              | $1.2 \cdot 10^{-3}$  |
| LNE       | 0.9999570 | 1.9.10-5             | 0.21             | Ν       | $1.7 \cdot 10^{-5}$   | $7.1 \cdot 10^{-5}$  |
| PTB-6     | 0.9999356 | 3.6·10 <sup>-5</sup> | 0.02             | Ν       | -6.9·10 <sup>-6</sup> | 9.4·10 <sup>-5</sup> |
| CEM       | 0.9999230 | 9.3·10 <sup>-5</sup> | 0.06             | Ν       | -2.4·10 <sup>-5</sup> | 1.9.10-4             |
| PTB-7     | 0.9999686 | 3.6·10 <sup>-5</sup> | 0.14             | Ν       | $1.8 \cdot 10^{-5}$   | 9.4·10 <sup>-5</sup> |
| KRISS     | 0.9999485 | 3.0·10 <sup>-5</sup> | 0.03             | Ν       | -7.5·10 <sup>-6</sup> | 8.5·10 <sup>-5</sup> |
| PTB-8     | 0.9999471 | 3.7·10 <sup>-5</sup> | 0.06             | Ν       | -1.2·10 <sup>-5</sup> | 9.6·10 <sup>-5</sup> |
| MIKES     | 1.0001380 | $2.6 \cdot 10^{-4}$  | 0.43             | Ν       | $1.7 \cdot 10^{-4}$   | 5.3·10 <sup>-4</sup> |
| PTB-9     | 0.9999704 | 3.7.10-5             | 0.00             | Ν       | $2.7 \cdot 10^{-6}$   | 9.6·10 <sup>-5</sup> |
| PTB-10    | 1.0000100 | 3.7.10-5             | 0.06             | Ν       | 1.3.10-5              | 9.9·10 <sup>-5</sup> |
| VSL-2     | 1.0000478 | 1.5.10-5             | 1.53             | N       | $4.7 \cdot 10^{-5}$   | $7.2 \cdot 10^{-5}$  |
| NPL-2     | 1.0001200 | $2.4 \cdot 10^{-5}$  | 6.16             | N       | $1.1 \cdot 10^{-4}$   | 8.3·10 <sup>-5</sup> |
| PTB-11    | 0.9999664 | 3.8·10 <sup>-5</sup> | 0.89             | Ν       | -4.9·10 <sup>-5</sup> | $1.0 \cdot 10^{-4}$  |
| PTB-12    | 1.0000395 | $3.4 \cdot 10^{-5}$  | 0.34             | Ν       | -3.1·10 <sup>-5</sup> | $1.1 \cdot 10^{-4}$  |

Number of discarded results = 2, percentage = 8 %.

 $F_{\rm r} = \sum e_{\rm i} = 25.76$ , summed over the undiscarded contributions.

Degree of freedom = 23.



*Fig. 6.21:* Calibration factors for the Keithley at 10 pA for the mean of both current directions, together with the reference line (solid line) and its uncertainty for k=2 (dashed lines). Results not shown in the graph are located outside of the plotting area.

#### Results for the Keithley 6430 at 100 pA, positive current direction:

Reference value:  $Q_{ref} = A + B \cdot t$ , with: A = 1.00025007,  $u(A) = 7.33 \cdot 10^{-6}$   $B = 6.94 \cdot 10^{-8}$ ,  $u(B) = 7.45 \cdot 10^{-9}$ Uncertainty describing the instability of the transfer standard:  $u_{TS} = 2.67 \cdot 10^{-5}$ 

**Table 6.22:** Summary of the results, containing each participant's result  $Q_i$ , its uncertainty  $u(Q_i)$ ,  $e_i$  as defined in equation (12), indication if the result had to be discarded from calculating the reference value due to a too large value of  $e_i$ , and the degree of equivalence  $(d_i, U(d_i))$ .

| Institute | $Q_i$     | $u(Q_i)$             | ei     | discard | $d_i$                 | $U(d_i)$             |
|-----------|-----------|----------------------|--------|---------|-----------------------|----------------------|
| PTB-1     | 0.9999569 | 1.3.10-5             | 65.82  | Y       | $-2.4 \cdot 10^{-4}$  | 6.2·10 <sup>-5</sup> |
| VSL-1     | 1.0002420 | $1.1 \cdot 10^{-5}$  | 1.76   | N       | 3.9·10 <sup>-5</sup>  | $5.7 \cdot 10^{-5}$  |
| NPL-1     | 1.0002910 | $5.5 \cdot 10^{-4}$  | 0.02   | N       | 8.4·10 <sup>-5</sup>  | $1.1 \cdot 10^{-3}$  |
| PTB-2     | 1.0002600 | $1.2 \cdot 10^{-5}$  | 2.97   | N       | 5.1.10-5              | 5.8·10 <sup>-5</sup> |
| INRIM     | 1.0002100 | $4.0 \cdot 10^{-5}$  | 0.00   | N       | -2.0·10 <sup>-6</sup> | 9.5·10 <sup>-5</sup> |
| METAS     | 1.0002110 | $2.6 \cdot 10^{-5}$  | 0.04   | N       | -7.0·10 <sup>-6</sup> | $7.3 \cdot 10^{-5}$  |
| UME       | 0.9962000 | $3.5 \cdot 10^{-4}$  | 131.06 | Y       | $-4.0 \cdot 10^{-3}$  | $7.0 \cdot 10^{-4}$  |
| PTB-3     | 1.0002510 | $1.4 \cdot 10^{-5}$  | 0.73   | N       | $2.6 \cdot 10^{-5}$   | 5.9·10 <sup>-5</sup> |
| VNIIM     | 0.9999870 | 9.9·10 <sup>-5</sup> | 5.78   | N       | -2.5·10 <sup>-4</sup> | $2.0 \cdot 10^{-4}$  |
| PTB-4     | 1.0002350 | $1.2 \cdot 10^{-5}$  | 0.00   | N       | -7.9·10 <sup>-7</sup> | 5.7·10 <sup>-5</sup> |
| NIS       | 1.0017000 | $1.0 \cdot 10^{-4}$  | 198.89 | Y       | $1.5 \cdot 10^{-3}$   | $2.1 \cdot 10^{-4}$  |
| PTB-5     | 1.0002230 | $1.2 \cdot 10^{-5}$  | 0.44   | N       | -1.9·10 <sup>-5</sup> | $5.7 \cdot 10^{-5}$  |
| IPQ       | 1.0004400 | 6.7·10 <sup>-4</sup> | 0.09   | N       | 1.9.10-4              | $1.3 \cdot 10^{-3}$  |
| LNE       | 1.0002850 | $1.2 \cdot 10^{-5}$  | 1.65   | N       | 3.8·10 <sup>-5</sup>  | $5.7 \cdot 10^{-5}$  |
| PTB-6     | 1.0002400 | $1.2 \cdot 10^{-5}$  | 0.10   | N       | -9.3·10 <sup>-6</sup> | $5.7 \cdot 10^{-5}$  |
| CEM       | 1.0002530 | 9.1·10 <sup>-5</sup> | 0.00   | N       | 6.3·10 <sup>-7</sup>  | $1.9 \cdot 10^{-4}$  |
| PTB-7     | 1.0002410 | $1.2 \cdot 10^{-5}$  | 0.22   | N       | -1.4·10 <sup>-5</sup> | 5.7·10 <sup>-5</sup> |
| KRISS     | 1.0002000 | 6.6·10 <sup>-6</sup> | 4.50   | N       | -5.8·10 <sup>-5</sup> | 5.3·10 <sup>-5</sup> |
| PTB-8     | 1.0002120 | $1.2 \cdot 10^{-5}$  | 2.72   | N       | -4.8·10 <sup>-5</sup> | $5.7 \cdot 10^{-5}$  |
| MIKES     | 1.0003410 | $1.1 \cdot 10^{-4}$  | 0.51   | N       | 7.8·10 <sup>-5</sup>  | $2.2 \cdot 10^{-4}$  |
| PTB-9     | 1.0002520 | $1.2 \cdot 10^{-5}$  | 0.24   | N       | -1.4·10 <sup>-5</sup> | 5.7·10 <sup>-5</sup> |
| PTB-10    | 1.0002830 | $1.2 \cdot 10^{-5}$  | 0.01   | N       | -3.2·10 <sup>-6</sup> | 5.7·10 <sup>-5</sup> |
| VSL-2     | 1.0003364 | $1.1 \cdot 10^{-5}$  | 2.71   | N       | $4.8 \cdot 10^{-5}$   | 5.6·10 <sup>-5</sup> |
| NPL-2     | 1.0004210 | $2.1 \cdot 10^{-5}$  | 13.11  | Y       | $1.2 \cdot 10^{-4}$   | $7.0 \cdot 10^{-5}$  |
| PTB-11    | 1.0002820 | $1.2 \cdot 10^{-5}$  | 0.30   | N       | -1.6·10 <sup>-5</sup> | 5.8·10 <sup>-5</sup> |
| PTB-12    | 1.0003470 | $1.2 \cdot 10^{-5}$  | 0.14   | N       | $1.1 \cdot 10^{-5}$   | 5.9·10 <sup>-5</sup> |

Number of discarded results = 4, percentage = 15%.

 $F_{\rm r} = \sum e_{\rm i} = 24.92$ , summed over the undiscarded contributions.

Degree of freedom = 21.



*Fig. 6.22:* Calibration factors for the Keithley at 100 pA for positive current direction, together with the reference line (solid line) and its uncertainty for k=2 (dashed lines). Results not shown in the graph are located outside of the plotting area.

## Results for the Keithley 6430 at 100 pA, negative current direction:

Reference value:  $Q_{ref} = A + B \cdot t$ , with: A = 1.00026826,  $u(A) = 7.35 \cdot 10^{-6}$   $B = 6.94 \cdot 10^{-8}$ ,  $u(B) = 7.45 \cdot 10^{-9}$ Uncertainty describing the instability of the transfer standard:  $u_{TS} = 2.67 \cdot 10^{-5}$ 

**Table 6.23:** Summary of the results, containing each participant's result  $Q_i$ , its uncertainty  $u(Q_i)$ ,  $e_i$  as defined in equation (12), indication if the result had to be discarded from calculating the reference value due to a too large value of  $e_i$ , and the degree of equivalence  $(d_i, U(d_i))$ .

| Institute | $Q_i$     | $u(Q_i)$             | ei     | discard | $d_i$                 | $U(d_i)$             |
|-----------|-----------|----------------------|--------|---------|-----------------------|----------------------|
| PTB-1     | 0.9998817 | $1.2 \cdot 10^{-5}$  | 126.99 | Y       | $-3.4 \cdot 10^{-4}$  | 6.2·10 <sup>-5</sup> |
| VSL-1     | 1.0002640 | 1.3.10-5             | 1.98   | N       | $4.2 \cdot 10^{-5}$   | $5.8 \cdot 10^{-5}$  |
| NPL-1     | 1.0002350 | $4.7 \cdot 10^{-4}$  | 0.00   | N       | 9.5·10 <sup>-6</sup>  | $9.5 \cdot 10^{-4}$  |
| PTB-2     | 1.0001450 | 1.3.10-5             | 7.44   | N       | -8.2·10 <sup>-5</sup> | 5.8·10 <sup>-5</sup> |
| INRIM     | 1.0002400 | 3.8.10-5             | 0.04   | N       | 9.6·10 <sup>-6</sup>  | 9.1·10 <sup>-5</sup> |
| METAS     | 1.0002120 | $2.6 \cdot 10^{-5}$  | 0.43   | N       | $-2.4 \cdot 10^{-5}$  | $7.3 \cdot 10^{-5}$  |
| UME       | 0.9948000 | $4.3 \cdot 10^{-4}$  | 158.80 | Y       | $-5.4 \cdot 10^{-3}$  | $8.6 \cdot 10^{-4}$  |
| PTB-3     | 1.0002710 | $1.2 \cdot 10^{-5}$  | 0.86   | N       | $2.7 \cdot 10^{-5}$   | $5.7 \cdot 10^{-5}$  |
| VNIIM     | 0.9999810 | 6.2·10 <sup>-5</sup> | 16.03  | Y       | $-2.7 \cdot 10^{-4}$  | $1.4 \cdot 10^{-4}$  |
| PTB-4     | 1.0002630 | 1.2.10-5             | 0.09   | N       | 8.8·10 <sup>-6</sup>  | 5.7·10 <sup>-5</sup> |
| NIS       | 0.9987000 | $1.1 \cdot 10^{-4}$  | 191.82 | Y       | -1.6·10 <sup>-3</sup> | $2.3 \cdot 10^{-4}$  |
| PTB-5     | 1.0002510 | $1.2 \cdot 10^{-5}$  | 0.11   | N       | -9.9·10 <sup>-6</sup> | $5.7 \cdot 10^{-5}$  |
| IPQ       | 1.0004600 | 6.8·10 <sup>-4</sup> | 0.08   | N       | $2.0 \cdot 10^{-4}$   | $1.4 \cdot 10^{-3}$  |
| LNE       | 1.0003050 | $1.2 \cdot 10^{-5}$  | 1.79   | N       | 3.9·10 <sup>-5</sup>  | $5.7 \cdot 10^{-5}$  |
| PTB-6     | 1.0002610 | $1.2 \cdot 10^{-5}$  | 0.05   | N       | -6.8·10 <sup>-6</sup> | $5.7 \cdot 10^{-5}$  |
| CEM       | 1.0002790 | 9.1·10 <sup>-5</sup> | 0.01   | N       | 8.2·10 <sup>-6</sup>  | $1.9 \cdot 10^{-4}$  |
| PTB-7     | 1.0002570 | $1.2 \cdot 10^{-5}$  | 0.30   | N       | -1.6·10 <sup>-5</sup> | $5.7 \cdot 10^{-5}$  |
| KRISS     | 1.0002960 | $6.0 \cdot 10^{-6}$  | 0.49   | N       | 1.9.10-5              | $5.3 \cdot 10^{-5}$  |
| PTB-8     | 1.0002320 | $1.2 \cdot 10^{-5}$  | 2.55   | N       | -4.7·10 <sup>-5</sup> | $5.7 \cdot 10^{-5}$  |
| MIKES     | 1.0003480 | $1.1 \cdot 10^{-4}$  | 0.37   | N       | 6.6·10 <sup>-5</sup>  | $2.2 \cdot 10^{-4}$  |
| PTB-9     | 1.0002800 | 1.2.10-5             | 0.03   | N       | -4.7·10 <sup>-6</sup> | 5.7·10 <sup>-5</sup> |
| PTB-10    | 1.0002950 | $1.2 \cdot 10^{-5}$  | 0.11   | N       | -9.6·10 <sup>-6</sup> | 5.7·10 <sup>-5</sup> |
| VSL-2     | 1.0003571 | $1.1 \cdot 10^{-5}$  | 2.92   | N       | 5.0·10 <sup>-5</sup>  | $5.7 \cdot 10^{-5}$  |
| NPL-2     | 1.0004510 | 2.0.10-5             | 16.25  | Y       | $1.4 \cdot 10^{-4}$   | 6.9·10 <sup>-5</sup> |
| PTB-11    | 1.0002900 | 1.2.10-5             | 0.80   | N       | -2.7·10 <sup>-5</sup> | 5.8·10 <sup>-5</sup> |
| PTB-12    | 1.0003660 | $1.2 \cdot 10^{-5}$  | 0.15   | Ν       | $1.2 \cdot 10^{-5}$   | 5.9·10 <sup>-5</sup> |

Number of discarded results = 5, percentage = 19 %.

 $F_{\rm r} = \sum e_{\rm i} = 20.60$ , summed over the undiscarded contributions.

Degree of freedom = 20.



*Fig. 6.23:* Calibration factors for the Keithley at 100 pA for negative current direction, together with the reference line (solid line) and its uncertainty for k=2 (dashed lines). Results not shown in the graph are located outside of the plotting area.

#### Results for the Keithley 6430 at 100 pA, mean of both current directions:

Reference value:  $Q_{ref} = A + B \cdot t$ , with: A = 1.00025761,  $u(A) = 7.31 \cdot 10^{-6}$   $B = 6.94 \cdot 10^{-8}$ ,  $u(B) = 7.45 \cdot 10^{-9}$ Uncertainty describing the instability of the transfer standard:  $u_{TS} = 2.67 \cdot 10^{-5}$ 

**Table 6.24:** Summary of the results, containing each participant's result  $Q_i$ , its uncertainty  $u(Q_i)$ ,  $e_i$  as defined in equation (12), indication if the result had to be discarded from calculating the reference value due to a too large value of  $e_i$ , and the degree of equivalence  $(d_i, U(d_i))$ .

| Institute | $Q_i$     | $u(Q_i)$             | $e_{i}$ | discard | $d_i$                 | $U(d_i)$             |
|-----------|-----------|----------------------|---------|---------|-----------------------|----------------------|
| PTB-1     | 0.9999193 | 1.2.10-5             | 92.91   | Y       | -2.9.10-4             | 6.2·10 <sup>-5</sup> |
| VSL-1     | 1.0002530 | 1.2.10-5             | 2.01    | N       | 4.2·10 <sup>-5</sup>  | 5.7.10-5             |
| NPL-1     | 1.0002630 | $5.1 \cdot 10^{-4}$  | 0.01    | N       | 4.8·10 <sup>-5</sup>  | 1.0.10-3             |
| PTB-2     | 1.0002025 | 1.3.10-5             | 0.22    | N       | -1.4·10 <sup>-5</sup> | 5.8.10-5             |
| INRIM     | 1.0002250 | 3.9·10 <sup>-5</sup> | 0.01    | N       | 5.3·10 <sup>-6</sup>  | 9.3·10 <sup>-5</sup> |
| METAS     | 1.0002115 | $2.6 \cdot 10^{-5}$  | 0.15    | N       | -1.4·10 <sup>-5</sup> | 7.3.10-5             |
| UME       | 0.9955000 | 3.9.10-4             | 145.94  | Y       | $-4.7 \cdot 10^{-3}$  | $7.8 \cdot 10^{-4}$  |
| PTB-3     | 1.0002610 | 1.3.10-5             | 0.88    | Ν       | $2.8 \cdot 10^{-5}$   | 5.8.10-5             |
| VNIIM     | 0.9999840 | 8.0.10-5             | 9.18    | Ν       | $-2.6 \cdot 10^{-4}$  | $1.7 \cdot 10^{-4}$  |
| PTB-4     | 1.0002490 | $1.2 \cdot 10^{-5}$  | 0.03    | Ν       | $5.5 \cdot 10^{-6}$   | 5.7.10-5             |
| NIS       | 1.0002000 | $1.0 \cdot 10^{-4}$  | 0.19    | Ν       | $-4.7 \cdot 10^{-5}$  | $2.2 \cdot 10^{-4}$  |
| PTB-5     | 1.0002370 | $1.2 \cdot 10^{-5}$  | 0.20    | Ν       | -1.3·10 <sup>-5</sup> | 5.7.10-5             |
| IPQ       | 1.0004500 | $6.7 \cdot 10^{-4}$  | 0.09    | Ν       | $2.0 \cdot 10^{-4}$   | 1.3.10-3             |
| LNE       | 1.0002950 | $1.2 \cdot 10^{-5}$  | 1.85    | Ν       | $4.0 \cdot 10^{-5}$   | 5.7.10-5             |
| PTB-6     | 1.0002505 | $1.2 \cdot 10^{-5}$  | 0.05    | Ν       | -6.6·10 <sup>-6</sup> | 5.7.10-5             |
| CEM       | 1.0002660 | 9.1·10 <sup>-5</sup> | 0.00    | Ν       | $5.9 \cdot 10^{-6}$   | 1.9.10-4             |
| PTB-7     | 1.0002490 | $1.2 \cdot 10^{-5}$  | 0.21    | Ν       | -1.3·10 <sup>-5</sup> | 5.7.10-5             |
| KRISS     | 1.0002480 | 6.3·10 <sup>-6</sup> | 0.44    | Ν       | -1.8·10 <sup>-5</sup> | 5.3.10-5             |
| PTB-8     | 1.0002220 | $1.2 \cdot 10^{-5}$  | 2.48    | Ν       | $-4.6 \cdot 10^{-5}$  | 5.7.10-5             |
| MIKES     | 1.0003445 | $1.1 \cdot 10^{-4}$  | 0.46    | Ν       | 7.3·10 <sup>-5</sup>  | $2.2 \cdot 10^{-4}$  |
| PTB-9     | 1.0002660 | $1.2 \cdot 10^{-5}$  | 0.07    | Ν       | -8.0·10 <sup>-6</sup> | 5.7.10-5             |
| PTB-10    | 1.0002890 | $1.2 \cdot 10^{-5}$  | 0.03    | Ν       | -4.9·10 <sup>-6</sup> | 5.7.10-5             |
| VSL-2     | 1.0003468 | $1.1 \cdot 10^{-5}$  | 2.99    | Ν       | 5.0·10 <sup>-5</sup>  | 5.6.10-5             |
| NPL-2     | 1.0004360 | $2.0 \cdot 10^{-5}$  | 14.96   | Y       | $1.3 \cdot 10^{-4}$   | 7.0.10-5             |
| PTB-11    | 1.0002860 | $1.2 \cdot 10^{-5}$  | 0.45    | Ν       | -2.0·10 <sup>-5</sup> | 5.8.10-5             |
| PTB-12    | 1.0003565 | $1.2 \cdot 10^{-5}$  | 0.19    | N       | $1.3 \cdot 10^{-5}$   | 5.9.10-5             |

Number of discarded results = 3, percentage = 12 %.

 $F_r = \sum e_i = 22.19$ , summed over the undiscarded contributions. Degree of freedom = 22.



*Fig. 6.24:* Calibration factors for the Keithley at 100 pA for the mean of both current directions, together with the reference line (solid line) and its uncertainty for k=2 (dashed lines). Results not shown in the graph are located outside of the plotting area.

# 7. Withdrawals or changes of results

There were no withdrawals or changes of results.

## 8. Summary and conclusions

For the first time, a EUROMET comparison was performed in the field of small DC currents below 1 nA. The capabilities of thirteen European and non-European NMIs for traceable calibrations of picoammeters have been compared. For that purpose, two different commercial picoammeters were used as travelling instruments. They were calibrated at current values of  $\pm 100$  fA,  $\pm 1$  pA,  $\pm 10$  pA and  $\pm 100$  pA. The accuracy achieved was to a large extent limited by the stability of the travelling instruments. The expanded relative uncertainty (k=2) of the reference values varied between 2.7  $\cdot 10^{-4}$  and  $1.9 \cdot 10^{-5}$ , depending on the current ranges and the travelling instruments. There was a good agreement between most of the participants.

## 9. References

- [1] S. P. Giblin, G.-D. Willenberg, and N. E. Fletcher, *Frequency dependence of gas-dielectric capacitors used in sub-nA-reference current generators*, Conference Digest, CPEM 2010 (Daejeon, Korea, 13 18 June, 2010), 218-219.
- H. E. van den Brom, P. de la Court, and G. Rietveld, Accurate subpicoampere current source based on a differentiating capacitor with software-controlled nonlinearity compensation, IEEE Trans. Instrum. Meas. 54 (2005) 554-558.
- [3] G.-D. Willenberg, H. N. Tauscher, and P. Warnecke, *A traceable precision current source for currents between 100 aA and 10 pA*, IEEE Trans. Instrum. Meas. **52** (2003) 436-439.
- [4] G.-D. Willenberg and H. N. Tauscher, Novel digital voltage ramp generator for use in precision current sources in the picoampere range, IEEE Trans. Instrum. Meas. 58 (2009) 756-760.
- [5] N. E. Fletcher, S. P. Giblin, J. M. Williams, and K. J. Lines, *New capability for generating and measuring small DC currents at NPL*, IEEE Trans. Instrum. Meas. **56** (2007) 326-330.
- [6] L. Callegaro, V. D'Elia, and B. Trinchera, *A current source for picoammeter calibration*, IEEE Trans. Instrum. Meas. **56** (2007) 1198-1201.
- [7] N. Ruchaud, D. Leprat, O. Monnoye, R. Da Silva, and I. Blanc, *Measurement of ultra-low currents and high resistances values using the integration method*, Conference Digest, CPEM 2006 (Torino, Italy, 9 14 July, 2006), 232-233.
- [8] I. Iisakka, K. Kalliomäki, J. Seppälä, and A. Manninen, Subpicoampere current source based on a digital-to-analog converter, Conference Digest, CPEM 2008 (Broomfield, Colorado, USA, 8 - 13 June, 2008), 352 - 353.
- [9] M.G. Cox, *The evaluation of key comparison data*, Metrologia **39**, 2002, 589-595.
- [10] M.G. Cox, *The evaluation of key comparison data: determining the largest consistent subset,* Metrologia **44**, (2007) 187-200.

#### EUROMET.EM-S24: Comparison of Small Current Sources

## **Appendix A: Results of the participants in chronological order**

#### PTB-1

| Nominal   | D. (       | -     | U,     | _      | U       |        | U       | •           |         |             | •        |           | Eff. |     | U(Q)=   |
|-----------|------------|-------|--------|--------|---------|--------|---------|-------------|---------|-------------|----------|-----------|------|-----|---------|
| current   | Date       | Temp. | (Temp) | Press. | (Press) | Humid. | (Humid) | Current     | Range   | Reading     | Q        | u(Q), K=1 | DOF  | ĸ   | K^u(Q)  |
| Α         |            | °C    | °C     | hPa    | hPa     | % R.H. | % R.H.  | A           | A       | A           |          |           |      |     |         |
| K6430     |            |       |        |        |         |        |         |             |         |             |          |           |      |     |         |
| 1.00E-13  | 2005-10-05 | 23.1  | 0.5    | 1014   | 2       | 41.2   | 1       | 9.6803E-14  | 1.0E-12 | 9.6743E-14  | 0.999385 | 1.6E-04   | 34   | 2.1 | 3.2E-04 |
| -1.00E-13 | 2005-10-05 | 23.1  | 0.5    | 1014   | 2       | 41.2   | 1       | -9.5417E-14 | 1.0E-12 | -9.5378E-14 | 0.999596 | 1.3E-04   | 40   | 2.1 | 2.7E-04 |
| 1.00E-12  | 2005-10-03 | 23.1  | 0.5    | 1018   | 2       | 38.5   | 1       | 9.6691E-13  | 1.0E-12 | 9.6593E-13  | 0.998983 | 5.4E-05   | 1358 | 2.0 | 1.1E-04 |
| -1.00E-12 | 2005-10-03 | 23.1  | 0.5    | 1018   | 2       | 38.5   | 1       | -9.5308E-13 | 1.0E-12 | -9.5206E-13 | 0.998935 | 5.5E-05   | 906  | 2.0 | 1.1E-04 |
| 1.00E-11  | 2005-09-02 | 23.1  | 0.5    | 1016   | 2       | 34.7   | 1       | 9.6696E-12  | 1.0E-11 | 9.6663E-12  | 0.999658 | 3.9E-05   | 131  | 2.0 | 8.0E-05 |
| -1.00E-11 | 2005-09-02 | 23.1  | 0.5    | 1016   | 2       | 34.7   | 1       | -9.5303E-12 | 1.0E-11 | -9.5264E-12 | 0.999594 | 3.7E-05   | 261  | 2.0 | 7.4E-05 |
| 1.00E-10  | 2005-09-30 | 23.0  | 0.5    | 1001   | 2       | 38.8   | 1       | 9.5310E-11  | 1.0E-10 | 9.5306E-11  | 0.999957 | 1.3E-05   | 1453 | 2.0 | 2.5E-05 |
| -1.00E-10 | 2005-09-30 | 23.0  | 0.5    | 1001   | 2       | 38.8   | 1       | -9.3931E-11 | 1.0E-10 | -9.3920E-11 | 0.999882 | 1.2E-05   | 2224 | 2.0 | 2.5E-05 |
| Unidos E  |            |       |        |        |         |        |         |             |         |             |          |           |      |     |         |
| 1.00E-13  | 2005-09-26 | 22.9  | 0.5    | 1014   | 2       | 39.9   | 1       | 9.6808E-14  | LOW     | 9.6955E-14  | 1.001523 | 2.2E-04   | 28   | 2.1 | 4.6E-04 |
| -1.00E-13 | 2005-09-26 | 22.9  | 0.5    | 1014   | 2       | 39.9   | 1       | -9.5300E-14 | LOW     | -9.5450E-14 | 1.001571 | 2.6E-04   | 27   | 2.1 | 5.4E-04 |
| 1.00E-12  | 2005-09-27 | 23.1  | 0.5    | 1006   | 2       | 39.4   | 1       | 9.6697E-13  | LOW     | 9.6787E-13  | 1.000931 | 7.4E-05   | 132  | 2.0 | 1.5E-04 |
| -1.00E-12 | 2005-09-27 | 23.1  | 0.5    | 1006   | 2       | 39.4   | 1       | -9.5302E-13 | LOW     | -9.5415E-13 | 1.001184 | 8.6E-05   | 65   | 2.0 | 1.7E-04 |
| 1.00E-11  | 2005-09-28 | 23.0  | 0.5    | 1006   | 2       | 39.2   | 1       | 9.6692E-12  | LOW     | 9.6718E-12  | 1.000271 | 1.7E-04   | inf  | 2.0 | 3.4E-04 |
| -1.00E-11 | 2005-09-28 | 23.0  | 0.5    | 1006   | 2       | 39.2   | 1       | -9.5298E-12 | LOW     | -9.5431E-12 | 1.001399 | 1.7E-04   | inf  | 2.0 | 3.4E-04 |
| 1.00E-10  | 2005-09-29 | 23.0  | 0.5    | 1002   | 2       | 37.7   | 1       | 9.5306E-11  | LOW     | 9.5320E-11  | 1.000145 | 1.7E-04   | inf  | 2.0 | 3.4E-04 |
| -1.00E-10 | 2005-09-29 | 23.0  | 0.5    | 1002   | 2       | 37.7   | 1       | -9.3932E-11 | LOW     | -9.4044E-11 | 1.001194 | 1.7E-04   | inf  | 2.0 | 3.4E-04 |
| Mean:     |            | 23.0  |        | 1010   |         | 38.7   |         |             |         |             |          |           |      |     |         |

First day 2005-09-02

Last day 2005-10-05

Median date of

measurements 2005-09-18
#### VSL-1

| Nominal   | Data | Tomn        | U<br>(Tomp) | Pross  | U<br>(Pross) | Humid  | U<br>(Humid) | Current     | Pango   | Peading     | 0        | u(0) k=1  | Eff. | k   | U(Q)=   |
|-----------|------|-------------|-------------|--------|--------------|--------|--------------|-------------|---------|-------------|----------|-----------|------|-----|---------|
|           | Dale | remp.<br>∞⊂ |             | F1033. | (F1633)      |        |              | Current     | Nange   | A           | a a      | u(e), k=1 | DOI  | ĸ   | K U(W)  |
| <u>A</u>  |      | -0          | -0          | nPa    | nPa          | % К.П. | % K.H.       | A           | A       | A           |          |           |      |     |         |
| K6430     |      |             |             |        |              |        |              |             |         |             |          |           |      |     |         |
| 1.00E-13  |      | 23.0        | 0.2         | 1016   | 5            | 45.0   | 5            | 9.4999E-14  | 1.0E-12 | 9.5228E-14  | 1.002410 | 1.8E-04   | 182  | 2.0 | 3.6E-04 |
| -1.00E-13 |      | 23.0        | 0.2         | 1016   | 5            | 45.0   | 5            | -9.4999E-14 | 1.0E-12 | -9.4913E-14 | 0.999100 | 1.9E-04   | 235  | 2.0 | 3.8E-04 |
| 1.00E-12  |      | 23.0        | 0.2         | 1016   | 5            | 45.0   | 5            | 9.4998E-13  | 1.0E-12 | 9.5093E-13  | 1.001000 | 1.2E-04   | 52   | 2.0 | 2.5E-04 |
| -1.00E-12 |      | 23.0        | 0.2         | 1016   | 5            | 45.0   | 5            | -9.4999E-13 | 1.0E-12 | -9.5068E-13 | 1.000730 | 1.2E-04   | 52   | 2.0 | 2.5E-04 |
| 1.00E-11  |      | 23.0        | 0.2         | 1016   | 5            | 45.0   | 5            | 9.5001E-12  | 1.0E-11 | 9.4989E-12  | 0.999871 | 1.2E-05   | 17   | 2.2 | 2.6E-05 |
| -1.00E-11 |      | 23.0        | 0.2         | 1016   | 5            | 45.0   | 5            | -9.5001E-12 | 1.0E-11 | -9.4982E-12 | 0.999797 | 1.2E-05   | 17   | 2.2 | 2.6E-05 |
| 1.00E-10  |      | 23.0        | 0.2         | 1016   | 5            | 45.0   | 5            | 9.4997E-11  | 1.0E-10 | 9.5020E-11  | 1.000242 | 1.0E-05   | 19   | 2.1 | 2.1E-05 |
| -1.00E-10 |      | 23.0        | 0.2         | 1016   | 5            | 45.0   | 5            | -9.4997E-11 | 1.0E-10 | -9.5022E-11 | 1.000264 | 1.2E-05   | 18   | 2.1 | 2.6E-05 |
| Unidos E  |      |             |             |        |              |        |              |             |         |             |          |           |      |     |         |
| 1.00E-13  |      | 24.0        | 1.0         | 1016   | 5            | 45.0   | 5            | 9.5000E-14  | LOW     | 9.5214E-14  | 1.002250 | 1.3E-04   | 122  | 2.0 | 2.6E-04 |
| -1.00E-13 |      | 24.0        | 1.0         | 1016   | 5            | 45.0   | 5            | -9.5000E-14 | LOW     | -9.4921E-14 | 0.999170 | 1.3E-04   | 123  | 2.0 | 2.6E-04 |
| 1.00E-12  |      | 24.0        | 1.0         | 1016   | 5            | 45.0   | 5            | 9.5000E-13  | LOW     | 9.5033E-13  | 1.000350 | 6.0E-05   | 35   | 2.1 | 1.2E-04 |
| -1.00E-12 |      | 24.0        | 1.0         | 1016   | 5            | 45.0   | 5            | -9.5000E-13 | LOW     | -9.5121E-13 | 1.001270 | 6.0E-05   | 28   | 2.1 | 1.3E-04 |
| 1.00E-11  |      | 24.0        | 1.0         | 1016   | 5            | 45.0   | 5            | 9.5002E-12  | LOW     | 9.5054E-12  | 1.000550 | 1.5E-04   | 70   | 2.0 | 3.1E-04 |
| -1.00E-11 |      | 24.0        | 1.0         | 1016   | 5            | 45.0   | 5            | -9.5002E-12 | LOW     | -9.5100E-12 | 1.001030 | 1.5E-04   | 69   | 2.0 | 3.1E-04 |
| 1.00E-10  |      | 24.0        | 1.0         | 1016   | 5            | 45.0   | 5            | 9.4998E-11  | LOW     | 9.5038E-11  | 1.000420 | 3.0E-04   | 36   | 2.1 | 6.2E-04 |
| -1.00E-10 |      | 24.0        | 1.0         | 1016   | 5            | 45.0   | 5            | -9.4998E-11 | LOW     | -9.5076E-11 | 1.000820 | 3.0E-04   | 63   | 2.0 | 6.1E-04 |
| Mean:     |      | 23.5        |             | 1016   |              | 45.0   |              |             |         |             |          |           |      |     |         |

First day2005-10-18Last day2005-11-21

Median date of

measurements 2005-11-04

#### NPL-1

| Nominal<br>current | Date       | Temp. | U<br>(Temp) | Press. | U<br>(Press) | Humid. | U<br>(Humid) | Current     | Range   | Reading     | Q        | u(Q), k=1 | Eff.<br>DOF | k   | U(Q)=<br>k*u(Q) |
|--------------------|------------|-------|-------------|--------|--------------|--------|--------------|-------------|---------|-------------|----------|-----------|-------------|-----|-----------------|
| А                  |            | °C    | °C          | hPa    | hPa          | % R.H. | % R.H.       | А           | A       | A           |          |           |             |     | . ,             |
| K6430              |            |       |             |        |              |        |              |             |         |             |          |           |             |     |                 |
| 1.00E-13           | 2006-01-05 | 23.1  | 0.3         | 1021   | 0.3          | 36.0   | 5            | 9.4802E-14  | 1.0E-12 | 9.6832E-14  | 1.021400 | 1.3E-03   | 3           | 3.3 | 4.3E-03         |
| -1.00E-13          | 2006-01-05 | 23.1  | 0.3         | 1021   | 0.3          | 36.0   | 5            | -9.4768E-14 | 1.0E-12 | -9.2840E-14 | 0.979700 | 8.3E-04   | 3           | 3.3 | 2.7E-03         |
| 1.00E-12           | 2006-01-05 | 23.0  | 0.3         | 1021   | 0.3          | 36.0   | 5            | 9.4819E-13  | 1.0E-12 | 9.5235E-13  | 1.004380 | 1.0E-03   | 3           | 3.3 | 3.3E-03         |
| -1.00E-12          | 2006-01-05 | 23.0  | 0.3         | 1021   | 0.3          | 36.0   | 5            | -9.4782E-13 | 1.0E-12 | 9.4578E-13  | 0.997860 | 7.5E-04   | 3           | 3.3 | 2.5E-03         |
| 1.00E-11           | 2006-01-05 | 23.1  | 0.3         | 1020   | 0.3          | 38.0   | 5            | 9.4841E-12  | 1.0E-11 | 9.4845E-12  | 1.000039 | 4.5E-04   | 3           | 3.3 | 1.5E-03         |
| -1.00E-11          | 2006-01-05 | 23.1  | 0.3         | 1020   | 0.3          | 38.0   | 5            | -9.4801E-12 | 1.0E-11 | -9.4775E-12 | 0.999728 | 4.5E-04   | 2           | 4.5 | 2.0E-03         |
| 1.00E-10           | 2006-01-05 | 23.0  | 0.3         | 1020   | 0.3          | 38.9   | 5            | 9.5157E-11  | 1.0E-10 | 9.5184E-11  | 1.000291 | 4.5E-04   | 7           | 2.4 | 1.1E-03         |
| -1.00E-10          | 2006-01-05 | 23.0  | 0.3         | 1020   | 0.3          | 38.9   | 5            | -9.5120E-11 | 1.0E-10 | -9.5142E-11 | 1.000235 | 4.5E-04   | 26          | 2.1 | 9.5E-04         |
| Unidos E           |            |       |             |        |              |        |              |             |         |             |          |           |             |     |                 |
| 1.00E-13           | 2005-12-22 | 23.0  | 0.3         | 1030   | 0.3          | 38.8   | 5            | 9.4813E-14  | LOW     | 1.0797E-13  | 1.138800 | 3.2E-03   | 3           | 3.3 | 1.1E-02         |
| -1.00E-13          | 2005-12-22 | 23.0  | 0.3         | 1030   | 0.3          | 38.8   | 5            | -9.4770E-14 | LOW     | -8.2014E-14 | 0.865400 | 1.8E-03   | 3           | 3.3 | 6.0E-03         |
| 1.00E-12           | 2005-12-22 | 22.8  | 0.3         | 1030   | 0.3          | 37.2   | 5            | 9.4827E-13  | LOW     | 9.6120E-13  | 1.013640 | 8.9E-04   | 4           | 2.9 | 2.6E-03         |
| -1.00E-12          | 2005-12-22 | 22.8  | 0.3         | 1030   | 0.3          | 37.2   | 5            | -9.4784E-13 | LOW     | -9.3672E-13 | 0.988270 | 9.2E-04   | 4           | 2.9 | 2.6E-03         |
| 1.00E-11           | 2005-12-22 | 23.0  | 0.3         | 1031   | 0.3          | 37.9   | 5            | 9.4844E-12  | LOW     | 9.5032E-12  | 1.001992 | 4.5E-04   | 600         | 2.0 | 9.0E-04         |
| -1.00E-11          | 2005-12-22 | 23.0  | 0.3         | 1031   | 0.3          | 37.9   | 5            | -9.4802E-12 | LOW     | -9.4788E-12 | 0.999852 | 4.5E-04   | 12          | 2.2 | 1.0E-03         |
| 1.00E-10           | 2005-12-22 | 23.0  | 0.3         | 1031   | 0.3          | 38.6   | 5            | 9.5161E-11  | LOW     | 9.5230E-11  | 1.000721 | 4.5E-04   | inf         | 2.0 | 9.0E-04         |
| -1.00E-10          | 2005-12-22 | 23.0  | 0.3         | 1031   | 0.3          | 38.6   | 5            | -9.5119E-11 | LOW     | -9.5170E-12 | 1.000534 | 4.5E-04   | inf         | 2.0 | 9.0E-04         |
| Mean:              |            | 23.0  |             | 1025   |              | 37.7   |              |             |         |             |          |           |             |     |                 |
| First day          | 2005-12-22 |       |             |        |              |        |              |             |         |             |          |           |             |     |                 |

Last day 2006-01-05 Median date of

measurements 2005-12-29

PTB-2

| Nominal   | Dete       | Tomp   | U<br>(Tomn) | Drees  | U<br>(Drace) | امنصبال | U<br>(Liumid) | Current     | Danga   | Deeding     | 0        | u(0) k-1  | Eff. | Ŀ   | U(Q)=   |
|-----------|------------|--------|-------------|--------|--------------|---------|---------------|-------------|---------|-------------|----------|-----------|------|-----|---------|
| current   | Date       | remp.  | (remp)      | Press. | (Press)      |         |               | Current     | капде   | Reading     | Q        | u(Q), k=1 | DOF  | ĸ   | K°u(Q)  |
| <u>A</u>  |            | ٠<br>ت | ۰C          | nPa    | nPa          | % R.H.  | % R.H.        | A           | A       | A           |          |           |      |     |         |
| K6430     |            |        |             |        |              |         |               |             |         |             |          |           |      |     |         |
| 1.00E-13  | 2006-01-26 | 22.8   | 0.5         | 1011   | 2            | 26.6    | 1             | 9.6808E-14  | 1.0E-12 | 9.6984E-14  | 1.001813 | 1.9E-04   | 24   | 2.1 | 3.9E-04 |
| -1.00E-13 | 2006-01-26 | 22.8   | 0.5         | 1011   | 2            | 26.6    | 1             | -9.5430E-14 | 1.0E-12 | -9.5527E-14 | 1.001015 | 1.6E-04   | 27   | 2.1 | 3.3E-04 |
| 1.00E-12  | 2006-01-24 | 22.9   | 0.5         | 1010   | 2            | 26.1    | 1             | 9.6697E-13  | 1.0E-12 | 9.6762E-13  | 1.000677 | 5.6E-05   | 549  | 2.0 | 1.1E-04 |
| -1.00E-12 | 2006-01-24 | 22.9   | 0.5         | 1010   | 2            | 26.1    | 1             | -9.5318E-13 | 1.0E-12 | -9.5378E-13 | 1.000627 | 5.8E-05   | 309  | 2.0 | 1.2E-04 |
| 1.00E-11  | 2006-01-27 | 22.8   | 0.5         | 1000   | 2            | 21.0    | 1             | 9.6716E-12  | 1.0E-11 | 9.6702E-12  | 0.999859 | 3.9E-05   | 160  | 2.0 | 7.8E-05 |
| -1.00E-11 | 2006-01-27 | 22.8   | 0.5         | 1000   | 2            | 21.0    | 1             | 9.5323E-12  | 1.0E-11 | 9.5300E-12  | 0.999759 | 3.9E-05   | 267  | 2.0 | 7.8E-05 |
| 1.00E-10  | 2006-01-27 | 22.8   | 0.5         | 1000   | 2            | 21.0    | 1             | 9.5368E-11  | 1.0E-10 | 9.5393E-11  | 1.000260 | 1.2E-05   | 1814 | 2.0 | 2.5E-05 |
| -1.00E-10 | 2006-01-27 | 22.8   | 0.5         | 1000   | 2            | 21.0    | 1             | -9.3936E-11 | 1.0E-10 | -9.3950E-11 | 1.000145 | 1.3E-05   | 430  | 2.0 | 2.6E-05 |
| Unidos E  |            |        |             |        |              |         |               |             |         |             |          |           |      |     |         |
| 1.00E-13  | 2006-01-19 | 22.8   | 0.5         | 1014   | 2            | 27.8    | 1             | 9.6807E-14  | LOW     | 9.6909E-14  | 1.001049 | 3.4E-04   | 20   | 2.1 | 7.2E-04 |
| -1.00E-13 | 2006-01-19 | 22.8   | 0.5         | 1014   | 2            | 27.8    | 1             | -9.5418E-14 | LOW     | -9.5530E-14 | 1.001169 | 2.4E-04   | 22   | 2.1 | 5.0E-04 |
| 1.00E-12  | 2006-01-18 | 22.8   | 0.5         | 992    | 2            | 29.3    | 1             | 9.6689E-13  | LOW     | 9.6757E-13  | 1.000706 | 7.6E-05   | 111  | 2.0 | 1.5E-04 |
| -1.00E-12 | 2006-01-18 | 22.8   | 0.5         | 992    | 2            | 29.3    | 1             | -9.5302E-13 | LOW     | -9.5437E-13 | 1.001415 | 1.2E-04   | 32   | 2.1 | 2.5E-04 |
| 1.00E-11  | 2006-01-17 | 22.7   | 0.5         | 1011   | 2            | 28.6    | 1             | 9.6693E-12  | LOW     | 9.6708E-12  | 1.000157 | 1.7E-04   | inf  | 2.0 | 3.4E-04 |
| -1.00E-11 | 2006-01-17 | 22.7   | 0.5         | 1011   | 2            | 28.6    | 1             | -9.5294E-12 | LOW     | -9.5444E-12 | 1.001571 | 1.7E-04   | inf  | 2.0 | 3.4E-04 |
| 1.00E-10  | 2006-01-16 | 22.9   | 0.5         | 1000   | 2            | 28.5    | 1             | 9.5300E-11  | LOW     | 9.5357E-11  | 1.000596 | 1.7E-04   | inf  | 2.0 | 3.4E-04 |
| -1.00E-10 | 2006-01-16 | 22.9   | 0.5         | 1000   | 2            | 28.5    | 1             | -9.3935E-11 | LOW     | -9.4003E-11 | 1.000721 | 1.7E-04   | inf  | 2.0 | 3.4E-04 |
| Mean:     |            | 22.8   |             | 1005   |              | 26.1    |               |             |         |             |          |           |      |     |         |
| First day | 2006-01-16 |        |             |        |              |         |               |             |         |             |          |           |      |     |         |
| Last day  | 2006-01-27 |        |             |        |              |         |               |             |         |             |          |           |      |     |         |
| -         |            |        |             |        |              |         |               |             |         |             |          |           |      |     |         |

Median date of

measurements 2006-01-21

INRIM

| Nominal        | Date       | Tomn | U<br>(Temn)  | Pross | U<br>(Press) | Humid   | U<br>(Humid)      | Current      | Range   | Reading     | 0        | u(0) k-1  | Eff. | k   | U(Q)=<br>k*u(Q) |
|----------------|------------|------|--------------|-------|--------------|---------|-------------------|--------------|---------|-------------|----------|-----------|------|-----|-----------------|
| v v            | Date       | •C   | (remp)<br>∘⊂ | hDo   | hDo          | 0/ D Ц  | (паппа)<br>0/ Б Ц | ourient<br>^ | A       | A           | <u>v</u> | u(@), k=1 |      | n   | K U(Q)          |
| A K6420        |            | U    | C            | пга   | IIFa         | 70 К.П. | % К.П.            | A            | A       | A           |          |           |      |     |                 |
| N0430          |            |      |              |       |              |         |                   |              |         |             |          |           |      |     |                 |
| 1.00E-13       | 2006-03-09 | 23.1 | 0.2          | 983   | 50           | 22.4    | 4                 | 9.4530E-14   | 1.0E-12 | 9.4580E-14  | 1.000529 | 4.2E-04   | 30   | 2.1 | 8.8E-04         |
| -1.00E-13      | 2006-03-09 | 23.1 | 0.2          | 983   | 50           | 22.4    | 4                 | -9.5440E-14  | 1.0E-12 | -9.5488E-14 | 1.000505 | 4.4E-04   | 30   | 2.1 | 9.2E-04         |
| 1.00E-12       | 2006-03-13 | 23.1 | 0.2          | 983   | 50           | 22.4    | 4                 | 9.4530E-13   | 1.0E-12 | 9.4567E-13  | 1.000395 | 7.5E-05   | 30   | 2.1 | 1.6E-04         |
| -1.00E-12      | 2006-03-13 | 23.1 | 0.2          | 983   | 50           | 22.4    | 4                 | 9.5360E-01   | 1.0E-12 | 9.5389E-01  | 1.000299 | 6.1E-05   | 30   | 2.1 | 1.3E-04         |
| 1.00E-11       | 2006-03-08 | 23.1 | 0.2          | 986   | 50           | 24.3    | 7.2               | 9.4430E-12   | 1.0E-11 | 9.4417E-12  | 0.999864 | 3.5E-05   | 30   | 2.1 | 7.3E-05         |
| -1.00E-11      | 2006-03-08 | 23.1 | 0.2          | 986   | 50           | 24.3    | 7.2               | -9.5360E-12  | 1.0E-11 | -9.5337E-12 | 0.999763 | 3.8E-05   | 30   | 2.1 | 7.9E-05         |
| 1.00E-10       | 2006-03-09 | 23.1 | 0.2          | 982   | 50           | 26.3    | 5.5               | 9.4450E-11   | 1.0E-10 | 9.4470E-11  | 1.000210 | 3.8E-05   | 30   | 2.1 | 7.9E-05         |
| -1.00E-10      | 2006-03-09 | 23.1 | 0.2          | 982   | 50           | 26.3    | 5.5               | -9.5350E-11  | 1.0E-10 | -9.5373E-11 | 1.000240 | 3.6E-05   | 30   | 2.1 | 7.5E-05         |
| Unidos E       |            |      |              |       |              |         |                   |              |         |             |          |           |      |     |                 |
| 1.00E-13       | 2006-03-07 | 23.0 | 0.2          | 983   | 50           | 23.1    | 2.9               | 9.4510E-14   | LOW     | 9.4583E-14  | 1.000774 | 1.3E-03   | 30   | 2.1 | 2.7E-03         |
| -1.00E-13      | 2006-03-07 | 23.0 | 0.2          | 983   | 50           | 23.1    | 2.9               | -9.5430E-14  | LOW     | -9.5509E-14 | 1.000832 | 1.0E-03   | 30   | 2.1 | 2.1E-03         |
| 1.00E-12       | 2006-03-07 | 23.0 | 0.2          | 982   | 50           | 25.0    | 3.3               | 9.4440E-13   | LOW     | 9.4469E-13  | 1.000303 | 5.3E-04   | 30   | 2.1 | 1.1E-03         |
| -1.00E-12      | 2006-03-07 | 23.0 | 0.2          | 982   | 50           | 25.0    | 3.3               | -9.5350E-13  | LOW     | -9.5491E-13 | 1.001476 | 2.9E-04   | 30   | 2.1 | 6.1E-04         |
| 1.00E-11       | 2006-03-06 | 23.0 | 0.2          | 982   | 50           | 23.4    | 2.7               | 9.4450E-12   | LOW     | 9.4487E-12  | 1.000391 | 1.3E-04   | 30   | 2.1 | 2.7E-04         |
| -1.00E-11      | 2006-03-06 | 23.0 | 0.2          | 982   | 50           | 23.4    | 2.7               | -9.5360E-12  | LOW     | -9.5489E-12 | 1.001351 | 1.3E-04   | 30   | 2.1 | 2.7E-04         |
| 1.00E-10       | 2006-03-06 | 23.0 | 0.2          | 982   | 50           | 25.1    | 2.7               | 9.4430E-11   | LOW     | 9.4459E-11  | 1.000311 | 1.5E-04   | 30   | 2.1 | 3.1E-04         |
| -1.00E-10      | 2006-03-06 | 23.0 | 0.2          | 982   | 50           | 25.1    | 2.7               | -9.5340E-11  | LOW     | -9.5442E-11 | 1.001071 | 1.4E-04   | 30   | 2.1 | 2.9E-04         |
| Mean:          |            | 23.1 |              | 983   |              | 24.0    |                   |              |         |             |          |           |      |     |                 |
| First day      | 2006-03-06 |      |              |       |              |         |                   |              |         |             |          |           |      |     |                 |
| Last day       | 2006-03-13 |      |              |       |              |         |                   |              |         |             |          |           |      |     |                 |
| Median date of |            |      |              |       |              |         |                   |              |         |             |          |           |      |     |                 |
| measurements   | 2006-03-09 |      |              |       |              |         |                   |              |         |             |          |           |      |     |                 |

#### METAS

| Nominal   | Date       | Temn | U<br>(Temn) | Press | U<br>(Press) | Humid              | U<br>(Humid)                                 | Current     | Range   | Reading     | 0        | u(0) k-1  | Eff. | k   | U(Q)=<br>k*u(Q) |
|-----------|------------|------|-------------|-------|--------------|--------------------|----------------------------------------------|-------------|---------|-------------|----------|-----------|------|-----|-----------------|
| A         | Dute       | °C   | °C.         | hPa   | hPa          | % R H              | % R H                                        | Δ           | nA      | A           | •        | u(u), n=1 | 201  | ĸ   | K ((4)          |
| K6430     |            | 0    |             | ma    | in a         | <i>/0</i> 1 til li | <i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |             | pri     |             |          |           |      |     |                 |
| 1.00E-13  | 2006-06-01 | 24.1 | 0.5         | 958   | 5            | 43.8               | 5                                            | 9.4998E-14  | 1.0E-12 | 9.5022E-14  | 1.000261 | 6.0E-04   | 15   | 2.2 | 1.3E-03         |
| -1.00E-13 | 2006-06-01 | 24.1 | 0.5         | 958   | 5            | 43.8               | 5                                            | 9.4998E-14  | 1.0E-12 | 9.5008E-14  | 1.000115 | 5.5E-04   | 15   | 2.2 | 1.2E-03         |
| 1.00E-12  | 2006-05-31 | 23.8 | 0.5         | 950   | 5            | 46.5               | 5                                            | 9.5000E-13  | 1.0E-12 | 9.5030E-13  | 1.000317 | 2.6E-04   | 15   | 2.2 | 5.7E-04         |
| -1.00E-12 | 2006-05-31 | 23.8 | 0.5         | 950   | 5            | 46.5               | 5                                            | -9.5000E-13 | 1.0E-12 | -9.5023E-13 | 1.000239 | 2.7E-04   | 15   | 2.2 | 5.9E-04         |
| 1.00E-11  | 2006-06-01 | 23.8 | 0.5         | 958   | 5            | 45.3               | 5                                            | 9.5000E-12  | 1.0E-11 | 9.4988E-12  | 0.999873 | 5.0E-05   | 17   | 2.2 | 1.1E-04         |
| -1.00E-11 | 2006-06-01 | 23.8 | 0.5         | 958   | 5            | 45.3               | 5                                            | -9.5000E-12 | 1.0E-11 | -9.4976E-12 | 0.999748 | 5.0E-05   | 16   | 2.2 | 1.1E-04         |
| 1.00E-10  | 2006-06-04 | 23.4 | 0.5         | 959   | 5            | 44.8               | 5                                            | 9.5003E-11  | 1.0E-10 | 9.5023E-11  | 1.000211 | 2.5E-05   | 37   | 2.1 | 5.2E-05         |
| -1.00E-10 | 2006-06-04 | 23.4 | 0.5         | 959   | 5            | 44.8               | 5                                            | -9.5003E-11 | 1.0E-10 | -9.5023E-11 | 1.000212 | 2.5E-05   | 35   | 2.1 | 5.2E-05         |
| Unidos E  |            |      |             |       |              |                    |                                              |             |         |             |          |           |      |     |                 |
| 1.00E-13  | 2006-06-06 | 23.8 | 0.5         | 959   | 5            | 44.5               | 5                                            | 9.4999E-14  | LOW     | 9.5183E-14  | 1.001942 | 7.9E-03   | 12   | 2.2 | 1.8E-02         |
| -1.00E-13 | 2006-06-06 | 23.8 | 0.5         | 959   | 5            | 44.5               | 5                                            | -9.4996E-14 | LOW     | -9.4979E-14 | 0.999817 | 8.2E-03   | 12   | 2.2 | 1.8E-02         |
| 1.00E-12  | 2006-06-07 | 24.0 | 0.5         | 960   | 5            | 44.7               | 5                                            | 9.5000E-13  | LOW     | 9.4994E-13  | 0.999939 | 9.0E-04   | 15   | 2.2 | 2.0E-03         |
| -1.00E-12 | 2006-06-07 | 24.0 | 0.5         | 960   | 5            | 44.7               | 5                                            | -9.4999E-13 | LOW     | -9.5163E-13 | 1.001718 | 7.2E-04   | 15   | 2.2 | 1.6E-03         |
| 1.00E-11  | 2006-06-08 | 23.8 | 0.5         | 960   | 5            | 44.8               | 5                                            | 9.5000E-12  | LOW     | 9.5014E-12  | 1.000148 | 1.6E-04   | 16   | 2.2 | 3.5E-04         |
| -1.00E-11 | 2006-06-08 | 23.8 | 0.5         | 960   | 5            | 44.8               | 5                                            | -9.5000E-12 | LOW     | -9.5134E-12 | 1.001408 | 2.4E-04   | 16   | 2.2 | 5.2E-04         |
| 1.00E-10  | 2006-06-09 | 23.5 | 0.5         | 959   | 5            | 45.2               | 5                                            | 9.5004E-11  | LOW     | 9.5007E-11  | 1.000039 | 7.0E-05   | 24   | 2.1 | 1.5E-04         |
| -1.00E-10 | 2006-06-09 | 23.5 | 0.5         | 959   | 5            | 45.2               | 5                                            | -9.5002E-11 | LOW     | -9.5107E-11 | 1.001101 | 7.0E-05   | 25   | 2.1 | 1.5E-04         |
| Mean:     |            | 23.8 |             | 958   |              | 44.9               |                                              |             |         |             |          |           |      |     |                 |
| First day | 2006-05-31 |      |             |       |              |                    |                                              |             |         |             |          |           |      |     |                 |

Last day Median date of

measurements 2006-06-04

2006-06-09

#### UME

| Nominal   | Data                | Tomn  | U<br>(Tamn) | Drees  | U<br>(Drace) | Llumid | U<br>(Humid) | Current     | Danga   | Dooding     | 0        | w(0) k=1  | Eff. | Ŀ   | U(Q)=   |
|-----------|---------------------|-------|-------------|--------|--------------|--------|--------------|-------------|---------|-------------|----------|-----------|------|-----|---------|
| current   | Date                | remp. | (remp)      | Press. | (Press)      | Humia. | (Humia)      | Current     | Range   | Reading     | Q        | u(Q), K=1 | DOF  | ĸ   | K 'u(Q) |
| Α         |                     | °C    | ъС          | hPa    | hPa          | % R.H. | % R.H.       | A           | A       | A           |          |           |      |     |         |
| K6430     |                     |       |             |        |              |        |              |             |         |             |          |           |      |     |         |
| 1.00E-13  | 2006-08-24          | 22.9  | 0.4         | 991    | 1            | 38.5   | 1            | 9.4670E-14  | 1.0E-12 | 9.8040E-14  | 1.036000 | 7.0E-03   | 2    | 4.5 | 3.2E-02 |
| -1.00E-13 | 2006-08-24          | 22.9  | 0.4         | 991    | 1            | 38.6   | 1            | -9.4670E-14 | 1.0E-12 | -9.0000E-14 | 0.951000 | 7.0E-03   | 3    | 3.3 | 2.3E-02 |
| 1.00E-12  | 2006-08-24          | 22.8  | 0.4         | 991    | 1            | 40.5   | 1            | 9.4978E-13  | 1.0E-12 | 9.5160E-13  | 1.001900 | 2.1E-03   | 3    | 3.3 | 6.9E-03 |
| -1.00E-12 | 2006-08-28          | 22.9  | 0.4         | 992    | 1            | 39.4   | 1            | -9.4977E-13 | 1.0E-12 | -9.4015E-13 | 0.989900 | 1.0E-03   | 3.1  | 3.2 | 3.2E-03 |
| 1.00E-11  | 2006-08-24          | 22.8  | 0.4         | 993    | 1            | 39.7   | 1            | 9.5134E-12  | 1.0E-11 | 9.4669E-12  | 0.995100 | 4.0E-04   | 2.7  | 3.5 | 1.4E-03 |
| -1.00E-11 | 2006-08-24          | 22.8  | 0.4         | 993    | 1            | 39.7   | 1            | -9.5133E-12 | 1.0E-11 | -9.4659E-12 | 0.995000 | 4.0E-04   | 2.6  | 3.6 | 1.5E-03 |
| 1.00E-10  | 2006-08-23          | 22.8  | 0.4         | 991    | 1            | 39.7   | 1            | 9.5087E-11  | 1.0E-10 | 9.4722E-11  | 0.996200 | 3.0E-04   | 8.65 | 2.3 | 7.0E-04 |
| -1.00E-10 | 2008-08-24          | 22.8  | 0.4         | 993    | 1            | 40.2   | 1            | -9.5175E-11 | 1.0E-10 | -9.4682E-11 | 0.994800 | 3.0E-04   | 4    | 2.9 | 8.6E-04 |
| Unidos E  |                     |       |             |        |              |        |              |             |         |             |          |           |      |     |         |
| 1.00E-13  | 2006-08-29          | 23.0  | 0.4         | 988    | 1            | 37.4   | 1            | 9.9600E-14  | LOW     | 8.2000E-14  | 0.871000 | 3.0E-02   | 4.1  | 2.8 | 8.5E-02 |
| -1.00E-13 | 2006-08-29          | 22.8  | 0.4         | 988    | 1            | 37.6   | 1            | -9.4700E-14 | LOW     | -1.0700E-13 | 1.125000 | 7.0E-03   | 3.3  | 3.1 | 2.2E-02 |
| 1.00E-12  | 2006-08-29          | 23.1  | 0.4         | 988    | 1            | 38.3   | 1            | 9.4980E-13  | LOW     | 9.3400E-13  | 0.984000 | 2.2E-03   | 2.1  | 4.3 | 9.5E-03 |
| -1.00E-12 | 2006-08-29          | 23.0  | 0.4         | 988    | 1            | 37.7   | 1            | -9.4980E-13 | LOW     | -9.5900E-13 | 1.010000 | 1.0E-03   | 2.5  | 3.7 | 3.7E-03 |
| 1.00E-11  | 2006-08-21          | 23.2  | 0.4         | 990    | 1            | 38.3   | 1            | 9.5230E-12  | LOW     | 9.4850E-12  | 0.996000 | 4.0E-04   | 5.3  | 2.6 | 1.0E-03 |
| -1.00E-11 | 2006-08-21          | 23.3  | 0.4         | 990    | 1            | 38.4   | 1            | -9.5310E-12 | LOW     | -9.5280E-12 | 0.999700 | 6.0E-04   | 4.6  | 2.7 | 1.6E-03 |
| 1.00E-10  | 2006-08-21          | 23.3  | 0.4         | 992    | 1            | 41.3   | 1            | 9.5400E-11  | LOW     | 9.5040E-11  | 0.996300 | 2.0E-04   | 7.7  | 2.4 | 4.8E-04 |
| -1.00E-10 | 2006-08- <u>2</u> 1 | 23.2  | 0.4         | 991    | 1            | 41.1   | 1            | -9.5320E-11 | LOW     | -9.5070E-11 | 0.997300 | 4.0E-04   | 5.1  | 2.6 | 1.1E-03 |
| Mean:     |                     | 23.0  |             | 991    |              | 39.2   |              |             |         |             |          |           |      |     |         |
| First day | 2006-08-21          |       |             |        |              |        |              |             |         |             |          |           |      |     |         |

Last day 2006-08-30

Median date of

measurements 2006-08-25

#### PTB-3

| Nominal      | Date       | Tomp        | U<br>(Tomp) | Pross  | U<br>(Pross) | Humid  | U<br>(Humid) | Current     | Pango   | Peading     | 0        | u(0) k-1  | Eff. | k   | U(Q)=   |
|--------------|------------|-------------|-------------|--------|--------------|--------|--------------|-------------|---------|-------------|----------|-----------|------|-----|---------|
| current<br>^ | Date       | remp.<br>∞⊂ |             | F1033. | (F1033)      |        |              | ourient     | Nange   | A           | <u>a</u> | u(e), k=1 | DOI  | ĸ   | r u(w)  |
| <u>A</u>     |            | -U          | -U          | nPa    | nPa          | % K.H. | % K.H.       | A           | A       | A           |          |           |      |     |         |
| K6430        |            |             |             |        |              |        |              |             |         |             |          |           |      |     |         |
| 1.00E-13     | 2006-09-19 | 23.3        | 0.5         | 1000   | 2            | 44.7   | 1            | 9.6708E-14  | 1.0E-12 | 9.6828E-14  | 1.001242 | 2.1E-04   | 17   | 2.2 | 4.6E-04 |
| -1.00E-13    | 2006-09-19 | 23.3        | 0.5         | 1000   | 2            | 44.7   | 1            | -9.5313E-14 | 1.0E-12 | -9.5381E-14 | 1.000710 | 2.3E-04   | 16   | 2.2 | 4.9E-04 |
| 1.00E-12     | 2006-09-19 | 23.7        | 0.5         | 1005   | 2            | 41.3   | 1            | 9.6599E-13  | 1.0E-12 | 9.6657E-13  | 1.000600 | 5.5E-05   | 618  | 2.0 | 1.1E-04 |
| -1.00E-12    | 2006-09-19 | 23.7        | 0.5         | 1005   | 2            | 41.3   | 1            | -9.5208E-13 | 1.0E-12 | -9.5262E-13 | 1.000564 | 6.1E-05   | 143  | 2.0 | 1.2E-04 |
| 1.00E-11     | 2006-09-21 | 23.8        | 0.5         | 1005   | 2            | 39.8   | 1            | 9.6596E-12  | 1.0E-11 | 9.6596E-12  | 1.000002 | 5.2E-05   | 37   | 2.1 | 1.1E-04 |
| -1.00E-11    | 2006-09-21 | 23.8        | 0.5         | 1005   | 2            | 39.8   | 1            | -9.5204E-12 | 1.0E-11 | -9.5186E-12 | 0.999806 | 3.6E-05   | 336  | 2.0 | 7.3E-05 |
| 1.00E-10     | 2006-09-22 | 23.8        | 0.5         | 1005   | 2            | 39.8   | 1            | 9.5199E-11  | 1.0E-10 | 9.5223E-11  | 1.000251 | 1.4E-05   | 194  | 2.0 | 2.8E-05 |
| -1.00E-10    | 2006-09-22 | 23.8        | 0.5         | 1005   | 2            | 39.8   | 1            | -9.3830E-11 | 1.0E-10 | -9.3855E-11 | 1.000271 | 1.2E-05   | 6244 | 2.0 | 2.4E-05 |
| Unidos E     |            |             |             |        |              |        |              |             |         |             |          |           |      |     |         |
| 1.00E-13     | 2006-09-18 | 23.4        | 0.5         | 998    | 2            | 49.9   | 1            | 9.6709E-14  | LOW     | 9.6789E-14  | 1.000831 | 2.5E-04   | 16   | 2.2 | 5.3E-04 |
| -1.00E-13    | 2006-09-18 | 23.4        | 0.5         | 998    | 2            | 49.9   | 1            | -9.5307E-14 | LOW     | -9.5466E-14 | 1.001668 | 2.4E-04   | 16   | 2.2 | 5.3E-04 |
| 1.00E-12     | 2006-09-14 | 23.8        | 0.5         | 1001   | 2            | 42.8   | 1            | 9.6599E-13  | LOW     | 9.6664E-13  | 1.000673 | 1.1E-04   | 28   | 2.1 | 2.3E-04 |
| -1.00E-12    | 2006-09-14 | 23.8        | 0.5         | 1001   | 2            | 42.8   | 1            | -9.5206E-13 | LOW     | -9.5327E-13 | 1.001268 | 1.1E-04   | 26   | 2.1 | 2.3E-04 |
| 1.00E-11     | 2006-09-15 | 23.7        | 0.5         | 997    | 2            | 42.2   | 1            | 9.6598E-12  | LOW     | 9.6620E-12  | 1.000225 | 1.9E-04   | 785  | 2.0 | 3.7E-04 |
| -1.00E-11    | 2006-09-15 | 23.7        | 0.5         | 997    | 2            | 42.2   | 1            | -9.5199E-12 | LOW     | -9.5333E-12 | 1.001409 | 1.8E-04   | 864  | 2.0 | 3.7E-04 |
| 1.00E-10     | 2006-09-18 | 23.6        | 0.5         | 997    | 2            | 48.2   | 1            | 9.7986E-11  | LOW     | 9.8002E-11  | 1.000164 | 1.7E-04   | 8093 | 2.0 | 3.4E-04 |
| -1.00E-10    | 2006-09-18 | 23.6        | 0.5         | 997    | 2            | 48.2   | 1            | -9.6554E-11 | LOW     | -9.6646E-11 | 1.000957 | 1.7E-04   | 7360 | 2.0 | 3.4E-04 |
| Mean:        |            | 23.6        |             | 1001   |              | 43.6   |              |             |         |             |          |           |      |     |         |
| First day    | 2006-09-14 |             |             |        |              |        |              |             |         |             |          |           |      |     |         |

Last day Median date of

measurements 2006-09-18

2006-09-22

#### VNIIM

| Nominal   | Date       | Temn | U<br>(Temn)  | Press | U<br>(Press) | Humid         | U<br>(Humid)     | Current     | Range   | Reading     | 0        | u(Q) k–1           | Eff. | k   | U(Q)=<br>k*u(Q) |
|-----------|------------|------|--------------|-------|--------------|---------------|------------------|-------------|---------|-------------|----------|--------------------|------|-----|-----------------|
| Δ         | Date       | •∩   | (10mp)<br>∘∩ | hDa   | hDa          | ини.<br>% Р Н | (Паппа)<br>% Р Ц | Δ           | ۸       | ۸           | a a      | u( <b>u</b> ), k=1 | 501  | ĸ   |                 |
| K6430     |            | U    | U            | Πa    | ni a         | /0 11.11.     | /0 11.11.        | ~           | ~       | <u> </u>    |          |                    |      |     |                 |
| 4 005 40  | 0000 40 04 | 00.0 | 0.4          | 4044  | 0.5          | 07.0          | 4                |             |         |             | 4 000000 |                    | 40   | 0.4 | 4 75 04         |
| 1.00E-13  | 2006-12-21 | 23.0 | 0.1          | 1014  | 0.5          | 21.2          | 1                | 9.5000E-14  | 1.0E-12 | 9.5003E-14  | 1.000030 | 2.2E-04            | 19   | 2.1 | 4.7E-04         |
| -1.00E-13 | 2006-12-21 | 23.0 | 0.1          | 1014  | 0.5          | 27.2          | 1                | -9.5000E-14 | 1.0E-12 | -9.5002E-14 | 1.000020 | 2.5E-04            | 15   | 2.2 | 5.5E-04         |
| 1.00E-12  | 2006-12-22 | 23.1 | 0.1          | 1008  | 1            | 26.7          | 0.5              | 9.5000E-13  | 1.0E-12 | 9.4998E-13  | 0.999980 | 1.1E-04            | 19   | 2.1 | 2.4E-04         |
| -1.00E-12 | 2006-12-22 | 23.1 | 0.1          | 1008  | 1            | 26.7          | 0.5              | -9.5000E-13 | 1.0E-12 | -9.5000E-13 | 1.000000 | 1.2E-04            | 19   | 2.1 | 2.6E-04         |
| 1.00E-11  | 2006-12-26 | 23.0 | 0.2          | 1003  | 1            | 18.0          | 0.5              | 9.5000E-12  | 1.0E-11 | 9.5020E-12  | 1.000210 | 2.2E-04            | 39   | 2.1 | 4.5E-04         |
| -1.00E-11 | 2006-12-26 | 23.0 | 0.2          | 1003  | 1            | 18.0          | 0.5              | -9.5000E-12 | 1.0E-11 | -9.5013E-12 | 1.000140 | 1.5E-04            | 39   | 2.1 | 3.1E-04         |
| 1.00E-10  | 2007-01-29 | 23.2 | 0.2          | 985   | 2            | 21.5          | 0.5              | 9.5000E-11  | 1.0E-10 | 9.4999E-11  | 0.999987 | 9.6E-05            | 39   | 2.1 | 2.0E-04         |
| -1.00E-10 | 2007-01-29 | 23.2 | 0.2          | 985   | 2            | 21.5          | 0.5              | -9.5000E-11 | 1.0E-10 | -9.4998E-11 | 0.999981 | 6.0E-05            | 39   | 2.1 | 1.2E-04         |
| Unidos E  |            |      |              |       |              |               |                  |             |         |             |          |                    |      |     |                 |
| 1.00E-13  | 2007-01-15 | 23.0 | 0.1          | 987   | 2            | 26.1          | 0.1              | 9.5000E-14  | LOW     | 9.5074E-14  | 1.000780 | 2.4E-04            | 19   | 2.1 | 5.1E-04         |
| -1.00E-13 | 2007-01-15 | 23.0 | 0.1          | 987   | 2            | 26.1          | 0.1              | -9.5000E-14 | LOW     | -9.5071E-14 | 1.000750 | 3.2E-04            | 19   | 2.1 | 6.8E-04         |
| 1.00E-12  | 2007-01-16 | 23.1 | 0.1          | 988   | 1            | 26.2          | 0.05             | 9.5000E-13  | LOW     | 9.5039E-13  | 1.000410 | 1.4E-04            | 19   | 2.1 | 3.0E-04         |
| -1.00E-12 | 2007-01-16 | 23.1 | 0.1          | 988   | 1            | 26.2          | 0.05             | -9.5000E-13 | LOW     | -9.5041E-13 | 1.000430 | 1.4E-04            | 19   | 2.1 | 3.0E-04         |
| 1.00E-11  | 2007-01-17 | 23.2 | 0.1          | 986   | 3            | 18.0          | 0.5              | 9.5000E-12  | LOW     | 9.5060E-12  | 1.000630 | 8.3E-05            | 19   | 2.1 | 1.8E-04         |
| -1.00E-11 | 2007-01-17 | 23.2 | 0.1          | 986   | 3            | 18.0          | 0.5              | -9.5000E-12 | LOW     | -9.5061E-12 | 1.000640 | 8.9E-05            | 19   | 2.1 | 1.9E-04         |
| 1.00E-10  | 2007-01-19 | 22.8 | 0.1          | 965   | 1            | 26.7          | 0.2              | 9.5000E-11  | LOW     | 9.5040E-11  | 1.000417 | 3.9E-05            | 29   | 2.1 | 8.2E-05         |
| -1.00E-10 | 2007-01-19 | 22.8 | 0.1          | 965   | 1            | 26.7          | 0.2              | -9.5000E-11 | LOW     | -9.5041E-11 | 1.000429 | 3.6E-05            | 29   | 2.1 | 7.6E-05         |
| Mean:     |            | 23.1 |              | 992   |              | 23.8          |                  |             |         |             |          |                    |      |     |                 |
| First day | 2006-12-21 |      |              |       |              |               |                  |             |         |             |          |                    |      |     |                 |

Last day 2007-01-29

Median date of

measurements 2007-01-09

#### PTB-4

| Nominal   | Date       | Tomp        | U<br>(Tomp) | Dross  | U<br>(Pross) | Humid  | U<br>(Humid) | Current     | Pango   | Peading     | 0        | u(0) k=1  | Eff. | k   | U(Q)=   |
|-----------|------------|-------------|-------------|--------|--------------|--------|--------------|-------------|---------|-------------|----------|-----------|------|-----|---------|
| current   | Date       | remp.<br>∞⊂ |             | F1033. | (F1033)      |        |              | ourient     | Nange   | A           | <u>a</u> | u(e), k=1 | DOI  | ĸ   | r u(w)  |
| <u>A</u>  |            | -0          | -0          | nPa    | nPa          | % K.H. | % K.H.       | A           | A       | A           |          |           |      |     |         |
| K6430     |            |             |             |        |              |        |              |             |         |             |          |           |      |     |         |
| 1.00E-13  | 2007-02-19 | 23.1        | 0.5         | 1005   | 2            | 43.3   | 1            | 9.6820E-14  | 1.0E-12 | 9.6912E-14  | 1.000955 | 2.3E-04   | 16   | 2.2 | 5.0E-04 |
| -1.00E-13 | 2007-02-19 | 23.1        | 0.5         | 1005   | 2            | 43.3   | 1            | -9.5430E-14 | 1.0E-12 | -9.5516E-14 | 1.000896 | 2.7E-04   | 16   | 2.2 | 5.8E-04 |
| 1.00E-12  | 2007-02-20 | 23.3        | 0.5         | 1001   | 2            | 43.0   | 1            | 9.6706E-13  | 1.0E-12 | 9.6754E-13  | 1.000501 | 5.7E-05   | 336  | 2.0 | 1.1E-04 |
| -1.00E-12 | 2007-02-20 | 23.3        | 0.5         | 1001   | 2            | 43.0   | 1            | -9.5321E-13 | 1.0E-12 | -9.5376E-13 | 1.000578 | 5.7E-05   | 299  | 2.0 | 1.1E-04 |
| 1.00E-11  | 2007-02-21 | 23.3        | 0.5         | 1000   | 2            | 38.4   | 1            | 9.6701E-12  | 1.0E-11 | 9.6698E-12  | 0.999968 | 3.6E-05   | 493  | 2.0 | 7.1E-05 |
| -1.00E-11 | 2007-02-21 | 23.3        | 0.5         | 1000   | 2            | 38.4   | 1            | -9.5320E-12 | 1.0E-11 | -9.5302E-12 | 0.999815 | 3.7E-05   | 281  | 2.0 | 7.4E-05 |
| 1.00E-10  | 2007-02-22 | 23.1        | 0.5         | 999    | 2            | 39.0   | 1            | 9.7034E-11  | 1.0E-10 | 9.7057E-11  | 1.000235 | 1.2E-05   | inf  | 2.0 | 2.4E-05 |
| -1.00E-10 | 2007-02-22 | 23.1        | 0.5         | 999    | 2            | 39.0   | 1            | -9.5626E-11 | 1.0E-10 | -9.5651E-11 | 1.000263 | 1.2E-05   | inf  | 2.0 | 2.4E-05 |
| Unidos E  |            |             |             |        |              |        |              |             |         |             |          |           |      |     |         |
| 1.00E-13  | 2007-02-15 | 23.3        | 0.5         | 1008   | 2            | 39.1   | 1            | 9.6834E-14  | LOW     | 9.6930E-14  | 1.000996 | 2.4E-04   | 62   | 2.0 | 5.0E-04 |
| -1.00E-13 | 2007-02-15 | 23.3        | 0.5         | 1008   | 2            | 39.1   | 1            | -9.5421E-14 | LOW     | -9.5577E-14 | 1.001636 | 2.2E-04   | 64   | 2.0 | 4.4E-04 |
| 1.00E-12  | 2007-02-14 | 23.1        | 0.5         | 1004   | 2            | 38.2   | 1            | 9.6719E-13  | LOW     | 9.6742E-13  | 1.000240 | 6.7E-05   | 522  | 2.0 | 1.3E-04 |
| -1.00E-12 | 2007-02-14 | 23.1        | 0.5         | 1004   | 2            | 38.2   | 1            | -9.5312E-13 | LOW     | -9.5471E-13 | 1.001670 | 1.3E-04   | 51   | 2.0 | 2.7E-04 |
| 1.00E-11  | 2007-02-09 | 23.5        | 0.5         | 988    | 2            | 39.9   | 1            | 9.6728E-12  | LOW     | 9.6773E-12  | 1.000462 | 1.7E-04   | inf  | 2.0 | 3.4E-04 |
| -1.00E-11 | 2007-02-09 | 23.5        | 0.5         | 988    | 2            | 39.9   | 1            | -9.5319E-12 | LOW     | -9.5440E-12 | 1.001273 | 1.7E-04   | inf  | 2.0 | 3.4E-04 |
| 1.00E-10  | 2007-02-12 | 23.1        | 0.5         | 999    | 2            | 38.4   | 1            | 9.4909E-11  | LOW     | 9.4966E-11  | 1.000599 | 1.7E-04   | inf  | 2.0 | 3.4E-04 |
| -1.00E-10 | 2007-02-12 | 23.1        | 0.5         | 999    | 2            | 38.4   | 1            | -9.3540E-11 | LOW     | -9.3630E-11 | 1.000959 | 1.7E-04   | inf  | 2.0 | 3.4E-04 |
| Mean:     |            | 23.2        |             | 1001   |              | 39.9   |              |             |         |             |          |           |      |     |         |
| First day | 2007-02-09 |             |             |        |              |        |              |             |         |             |          |           |      |     |         |

Last day Median date of

measurements 2007-02-15

2007-02-22

#### NIS

| Nominal   | Date       | Tomp        | U<br>(Tomp) | Pross  | U<br>(Pross) | Humid  | U<br>(Humid) | Current     | Pango   | Peading     | 0        | u(0) k=1  | Eff. | k   | U(Q)=   |
|-----------|------------|-------------|-------------|--------|--------------|--------|--------------|-------------|---------|-------------|----------|-----------|------|-----|---------|
| current   | Date       | remp.<br>∞⊂ |             | F1033. | (F1033)      |        |              | ourient     | Nange   | A           | <u>a</u> | u(e), k=1 | DOI  | ĸ   | r u(w)  |
| <u>A</u>  |            | -U          | -U          | nPa    | nPa          | % K.H. | % K.H.       | A           | A       | A           |          |           |      |     |         |
| K6430     |            |             |             |        |              |        |              |             |         |             |          |           |      |     |         |
| 1.00E-13  | 2007-04-10 | 23.2        | 0.2         | 992    | 2            | 45.8   | 1            | 9.9826E-14  | 1.0E-12 | 1.0162E-13  | 1.018000 | 1.7E-03   | 11   | 2.3 | 3.8E-03 |
| -1.00E-13 | 2007-04-11 | 23.2        | 0.2         | 992    | 2            | 45.8   | 1            | -9.9830E-14 | 1.0E-12 | -9.9141E-14 | 0.993100 | 2.8E-03   | 11   | 2.3 | 6.4E-03 |
| 1.00E-12  | 2007-04-11 | 23.1        | 0.2         | 992    | 2            | 46.0   | 1            | 9.9820E-13  | 1.0E-12 | 9.9970E-13  | 1.001500 | 8.0E-05   | 11   | 2.3 | 1.8E-04 |
| -1.00E-12 | 2007-04-12 | 23.1        | 0.2         | 992    | 2            | 46.0   | 1            | -9.9820E-13 | 1.0E-12 | -9.9732E-13 | 0.999120 | 8.2E-05   | 11   | 2.3 | 1.8E-04 |
| 1.00E-11  | 2007-04-17 | 23.2        | 0.2         | 992    | 2            | 45.8   | 1            | 9.9840E-12  | 1.0E-11 | 9.9989E-12  | 1.001490 | 9.5E-05   | 11   | 2.3 | 2.1E-04 |
| -1.00E-11 | 2007-04-13 | 23.2        | 0.2         | 992    | 2            | 45.8   | 1            | 9.9840E-12  | 1.0E-11 | 9.9730E-12  | 0.998900 | 8.8E-05   | 11   | 2.3 | 2.0E-04 |
| 1.00E-10  | 2007-04-13 | 23.1        | 0.2         | 992    | 2            | 45.8   | 1            | 9.9840E-11  | 1.0E-10 | 1.0001E-10  | 1.001700 | 8.9E-05   | 11   | 2.3 | 2.0E-04 |
| -1.00E-10 | 2007-04-13 | 23.1        | 0.2         | 992    | 2            | 45.8   | 1            | -9.9840E-11 | 1.0E-10 | -9.9710E-11 | 0.998700 | 9.7E-05   | 11   | 2.3 | 2.2E-04 |
| Unidos E  |            |             |             |        |              |        |              |             |         |             |          |           |      |     |         |
| 1.00E-13  | 2007-04-14 | 23.1        | 0.2         | 992    | 2            | 45.8   | 1            | 9.9826E-14  | LOW     | 9.8159E-14  | 0.983300 | 4.1E-03   | 11   | 2.3 | 9.2E-03 |
| -1.00E-13 | 2007-04-14 | 23.1        | 0.2         | 992    | 2            | 45.8   | 1            | -9.9826E-14 | LOW     | -1.0132E-13 | 1.015000 | 3.9E-03   | 11   | 2.3 | 8.8E-03 |
| 1.00E-12  | 2007-04-15 | 23.1        | 0.2         | 992    | 2            | 46.0   | 1            | 9.9821E-13  | LOW     | 9.8678E-13  | 0.988550 | 3.2E-03   | 11   | 2.3 | 7.2E-03 |
| -1.00E-12 | 2007-04-15 | 23.1        | 0.2         | 992    | 2            | 46.0   | 1            | 9.9820E-13  | LOW     | 9.9734E-13  | 0.999140 | 3.0E-04   | 11   | 2.3 | 6.8E-04 |
| 1.00E-11  | 2007-04-16 | 23.2        | 0.2         | 992    | 2            | 45.8   | 1            | 9.9838E-12  | LOW     | 9.9840E-12  | 1.000020 | 3.8E-04   | 11   | 2.3 | 8.6E-04 |
| -1.00E-11 | 2007-04-17 | 23.2        | 0.2         | 992    | 2            | 45.8   | 1            | -9.9838E-12 | LOW     | -9.9868E-12 | 1.000300 | 3.8E-04   | 11   | 2.3 | 8.6E-04 |
| 1.00E-10  | 2007-04-14 | 23.2        | 0.2         | 992    | 2            | 45.8   | 1            | 9.9840E-11  | LOW     | 1.0000E-10  | 1.001600 | 3.0E-04   | 11   | 2.3 | 6.8E-04 |
| -1.00E-10 | 2007-04-18 | 23.2        | 0.2         | 992    | 2            | 45.8   | 1            | -9.9840E-11 | LOW     | -9.9740E-11 | 0.999000 | 3.0E-04   | 11   | 2.3 | 6.8E-04 |
| Mean:     |            | 23.2        |             | 992    |              | 45.9   |              |             |         |             |          |           |      |     |         |
| First day | 2007-04-10 |             |             |        |              |        |              |             |         |             |          |           |      |     |         |

Last day Median date of

measurements 2007-04-14

2007-04-18

#### PTB-5

| Nominal   | Data       | Tomp  | U<br>(Tomn) | Proce  | U<br>(Proce) | Humid  | U<br>(Humid) | Current     | Pango   | Pooding     | 0        | u(0) k-1  | Eff. | k   | U(Q)=   |
|-----------|------------|-------|-------------|--------|--------------|--------|--------------|-------------|---------|-------------|----------|-----------|------|-----|---------|
| current   | Dale       | nemp. | (remp)      | FIC33. | (FIE33)      |        |              | Current     | range   | Reauing     | 4        | u(u), k=1 | DOF  | r   | K U(W)  |
| <u>A</u>  |            | °U    | Ĵ           | nPa    | nPa          | % R.H. | % R.H.       | A           | A       | A           |          |           |      |     |         |
| K6430     |            |       |             |        |              |        |              |             |         |             |          |           |      |     |         |
| 1.00E-13  | 2007-05-25 | 23.1  | 0.5         | 1000   | 2            | 41.0   | 1            | 9.6793E-14  | 1.0E-12 | 9.6933E-14  | 1.001451 | 5.4E-04   | 40   | 2.1 | 1.1E-03 |
| -1.00E-13 | 2007-05-25 | 23.1  | 0.5         | 1000   | 2            | 41.0   | 1            | -9.5376E-14 | 1.0E-12 | -9.5520E-14 | 1.001507 | 5.0E-04   | 40   | 2.1 | 1.0E-03 |
| 1.00E-12  | 2007-05-24 | 23.1  | 0.5         | 1000   | 2            | 41.0   | 1            | 9.6680E-13  | 1.0E-12 | 9.6754E-13  | 1.000762 | 6.8E-05   | 179  | 2.0 | 1.4E-04 |
| -1.00E-12 | 2007-05-24 | 23.1  | 0.5         | 1000   | 2            | 41.0   | 1            | -9.5269E-13 | 1.0E-12 | -9.5320E-13 | 1.000537 | 9.5E-05   | 69   | 2.0 | 1.9E-04 |
| 1.00E-11  | 2007-05-29 | 23.4  | 0.5         | 1009   | 2            | 40.3   | 1            | 9.6651E-12  | 1.0E-11 | 9.6653E-12  | 1.000019 | 3.6E-05   | 1045 | 2.0 | 7.2E-05 |
| -1.00E-11 | 2007-05-29 | 23.4  | 0.5         | 1009   | 2            | 40.3   | 1            | -9.5256E-12 | 1.0E-11 | -9.5246E-12 | 0.999899 | 3.5E-05   | 2654 | 2.0 | 6.9E-05 |
| 1.00E-10  | 2007-05-30 | 23.4  | 0.5         | 1009   | 2            | 40.3   | 1            | 9.6966E-11  | 1.0E-10 | 9.6988E-11  | 1.000223 | 1.2E-05   | inf  | 2.0 | 2.4E-05 |
| -1.00E-10 | 2007-05-30 | 23.4  | 0.5         | 1009   | 2            | 40.3   | 1            | -9.5567E-11 | 1.0E-10 | -9.5591E-11 | 1.000251 | 1.2E-05   | 6064 | 2.0 | 2.5E-05 |
| Unidos E  |            |       |             |        |              |        |              |             |         |             |          |           |      |     |         |
| 1.00E-13  | 2007-05-21 | 22.7  | 0.5         | 1000   | 2            | 42.2   | 1            | 9.6763E-14  | LOW     | 9.6908E-14  | 1.001503 | 3.2E-04   | 64   | 2.0 | 6.6E-04 |
| -1.00E-13 | 2007-05-21 | 22.7  | 0.5         | 1000   | 2            | 42.2   | 1            | -9.5355E-14 | LOW     | -9.5519E-14 | 1.001718 | 2.9E-04   | 65   | 2.0 | 5.9E-04 |
| 1.00E-12  | 2007-05-22 | 22.7  | 0.5         | 1000   | 2            | 42.2   | 1            | 9.6671E-13  | LOW     | 9.6720E-13  | 1.000503 | 8.3E-05   | 299  | 2.0 | 1.7E-04 |
| -1.00E-12 | 2007-05-22 | 22.7  | 0.5         | 1000   | 2            | 42.2   | 1            | -9.5253E-13 | LOW     | -9.5385E-13 | 1.001391 | 8.0E-05   | 354  | 2.0 | 1.6E-04 |
| 1.00E-11  | 2007-05-16 | 22.9  | 0.5         | 1002   | 2            | 51.7   | 1            | 9.6681E-12  | LOW     | 9.6711E-12  | 1.000310 | 1.7E-04   | inf  | 2.0 | 3.4E-04 |
| -1.00E-11 | 2007-05-16 | 22.9  | 0.5         | 1002   | 2            | 51.7   | 1            | -9.5264E-12 | LOW     | -9.5386E-12 | 1.001281 | 1.7E-04   | inf  | 2.0 | 3.4E-04 |
| 1.00E-10  | 2007-05-15 | 22.5  | 0.5         | 999    | 2            | 45.1   | 1            | 9.6030E-11  | LOW     | 9.6075E-11  | 1.000467 | 1.7E-04   | inf  | 2.0 | 3.4E-04 |
| -1.00E-10 | 2007-05-15 | 22.5  | 0.5         | 999    | 2            | 45.1   | 1            | -9.4641E-11 | LOW     | -9.4719E-11 | 1.000821 | 1.7E-04   | inf  | 2.0 | 3.4E-04 |
| Mean:     |            | 23.0  |             | 1002   |              | 43.0   |              |             |         |             |          |           |      |     |         |
| First day | 2007-05-15 |       |             |        |              |        |              |             |         |             |          |           |      |     |         |

Last day Median date of

measurements 2007-05-22

2007-05-30

#### IPQ

| Nominal   | Dete       | Tomn  | U<br>(Tomn) | Drees  | U<br>(Drees) | Llum:d | U<br>(Uumid) | Current     | Dongo   | Deeding     | 0        | u(0) k-1  | Eff. | Ŀ   | U(Q)=   |
|-----------|------------|-------|-------------|--------|--------------|--------|--------------|-------------|---------|-------------|----------|-----------|------|-----|---------|
| current   | Date       | remp. | (Temp)      | Press. | (Press)      | Humia. | (Humia)      | Current     | капде   | Reading     | Q        | u(Q), K=1 | DOF  | ĸ   | K 'u(Q) |
| A         |            | °C    | °C          | hPa    | hPa          | % R.H. | % R.H.       | A           | A       | A           |          |           |      |     |         |
| K6430     |            |       |             |        |              |        |              |             |         |             |          |           |      |     |         |
| 1.00E-13  | 2007-07-05 | 22.8  | 0.3         | 1009   | 0.3          | 43.0   | 3            | 9.5040E-14  | 1.0E-12 | 9.5401E-14  | 1.003800 | 6.0E-03   | 142  | 2.0 | 1.2E-02 |
| -1.00E-13 | 2007-07-05 | 22.6  | 0.3         | 1009   | 0.3          | 42.0   | 3            | -9.5040E-14 | 1.0E-12 | -9.5135E-14 | 1.001000 | 3.1E-03   | 179  | 2.0 | 6.2E-03 |
| 1.00E-12  | 2007-06-27 | 23.1  | 0.3         | 1008   | 0.2          | 39.0   | 3            | 9.5018E-13  | 1.0E-12 | 9.5104E-13  | 1.000900 | 1.5E-03   | 25   | 2.1 | 3.2E-03 |
| -1.00E-12 | 2007-06-27 | 23.0  | 0.3         | 1008   | 0.2          | 39.0   | 3            | -9.5018E-13 | 1.0E-12 | -9.5037E-13 | 1.000200 | 2.4E-03   | 24   | 2.1 | 5.1E-03 |
| 1.00E-11  | 2007-06-29 | 23.1  | 0.3         | 1008   | 0.2          | 39.0   | 3            | 9.5032E-12  | 1.0E-11 | 9.5066E-12  | 1.000360 | 5.8E-04   | 35   | 2.1 | 1.2E-03 |
| -1.00E-11 | 2007-06-29 | 23.1  | 0.3         | 1008   | 0.2          | 41.0   | 3            | -9.5032E-12 | 1.0E-11 | -9.5059E-12 | 1.000280 | 5.9E-04   | 36   | 2.1 | 1.2E-03 |
| 1.00E-10  | 2007-06-28 | 21.8  | 0.3         | 1009   | 0.2          | 41.0   | 3            | 9.5022E-11  | 1.0E-10 | 9.5064E-11  | 1.000440 | 6.5E-04   | 54   | 2.0 | 1.3E-03 |
| -1.00E-10 | 2007-06-28 | 22.1  | 0.3         | 1009   | 0.2          | 43.0   | 3            | -9.5022E-11 | 1.0E-10 | -9.5066E-11 | 1.000460 | 6.6E-04   | 51   | 2.0 | 1.4E-03 |
| Unidos E  |            |       |             |        |              |        |              |             |         |             |          |           |      |     |         |
| 1.00E-13  | 2007-07-04 | 22.8  | 0.3         | 1007   | 0.2          | 49.0   | 3            | 9.5059E-14  | LOW     | 9.5439E-14  | 1.004000 | 2.4E-02   | 297  | 2.0 | 4.8E-02 |
| -1.00E-13 | 2007-07-04 | 23.3  | 0.3         | 1007   | 0.2          | 47.0   | 3            | -9.5059E-14 | LOW     | -9.5154E-14 | 1.001000 | 2.6E-02   | 205  | 2.0 | 5.2E-02 |
| 1.00E-12  | 2007-07-03 | 22.7  | 0.3         | 1005   | 0.2          | 49.0   | 3            | 9.5025E-13  | LOW     | 9.5130E-13  | 1.001100 | 1.9E-03   | 53   | 2.0 | 3.9E-03 |
| -1.00E-12 | 2007-07-04 | 23.4  | 0.3         | 1009   | 0.2          | 47.0   | 3            | -9.5034E-13 | LOW     | -9.5110E-13 | 1.000800 | 1.4E-03   | 56   | 2.0 | 2.9E-03 |
| 1.00E-11  | 2007-07-05 | 23.2  | 0.3         | 1007   | 0.2          | 47.0   | 3            | 9.5043E-12  | LOW     | 9.5071E-12  | 1.000290 | 3.9E-04   | 97   | 2.0 | 7.9E-04 |
| -1.00E-11 | 2007-07-05 | 22.7  | 0.3         | 1007   | 0.2          | 48.0   | 3            | -9.5043E-12 | LOW     | -9.5168E-12 | 1.001310 | 6.2E-04   | 76   | 2.0 | 1.3E-03 |
| 1.00E-10  | 2007-07-05 | 23.7  | 0.3         | 1006   | 0.2          | 43.0   | 3            | 9.5031E-11  | LOW     | 9.5057E-11  | 1.000280 | 3.7E-04   | 92   | 2.0 | 7.5E-04 |
| -1.00E-10 | 2007-07-05 | 23.0  | 0.3         | 1006   | 0.2          | 45.0   | 3            | -9.5027E-11 | LOW     | -9.5122E-11 | 1.001000 | 6.8E-04   | 70   | 2.0 | 1.4E-03 |
| Mean:     |            | 22.9  |             | 1007   |              | 43.9   |              |             |         |             |          |           |      |     |         |

First day 2007-06-27 Last day 2007-07-05 Median date of

measurements 2007-07-01

#### LNE

| Nominal   | Date       | Temn        | U<br>(Temn) | Pross  | U<br>(Press) | Humid  | U<br>(Humid) | Current     | Range   | Reading     | 0        | u(0) k-1  | Eff. | k   | U(Q)=<br>k*u(Q) |
|-----------|------------|-------------|-------------|--------|--------------|--------|--------------|-------------|---------|-------------|----------|-----------|------|-----|-----------------|
| current   | Date       | remp.<br>∞⊂ |             | F1033. | (F1033)      |        |              | ourient     | Nange   | A           | <u>a</u> | u(e), k=1 | DOI  | ĸ   | r u(w)          |
| <u>A</u>  |            | -0          | -0          | nPa    | nPa          | % K.H. | % K.H.       | A           | A       | A           |          |           |      |     |                 |
| K6430     |            |             |             |        |              |        |              |             |         |             |          |           |      |     |                 |
| 1.00E-13  | 2007-07-24 | 22.7        | 0.2         | 1012   | 10           | 52.0   | 5            | 9.5495E-14  | 1.0E-12 | 9.5505E-14  | 1.000100 | 1.4E-03   | 2700 | 2.0 | 2.8E-03         |
| -1.00E-13 | 2007-07-23 | 22.8        | 0.2         | 1001   | 10           | 53.0   | 5            | -9.4882E-14 | 1.0E-12 | -9.5263E-14 | 1.004020 | 9.6E-04   | 598  | 2.0 | 1.9E-03         |
| 1.00E-12  | 2007-08-09 | 23.0        | 0.2         | 1019   | 10           | 51.0   | 5            | 9.4936E-13  | 1.0E-12 | 9.5000E-13  | 1.000670 | 1.6E-04   | 128  | 2.0 | 3.2E-04         |
| -1.00E-12 | 2007-08-09 | 23.1        | 0.2         | 1020   | 10           | 51.0   | 5            | -9.4986E-13 | 1.0E-12 | -9.5007E-13 | 1.000220 | 1.9E-04   | 89   | 2.0 | 3.9E-04         |
| 1.00E-11  | 2007-08-10 | 23.1        | 0.2         | 1017   | 10           | 51.5   | 5            | 9.4984E-12  | 1.0E-11 | 9.4994E-12  | 1.000108 | 2.0E-05   | 156  | 2.0 | 4.0E-05         |
| -1.00E-11 | 2007-08-10 | 23.0        | 0.2         | 1017   | 10           | 51.5   | 5            | -9.5019E-12 | 1.0E-11 | -9.5001E-12 | 0.999806 | 1.7E-05   | 303  | 2.0 | 3.4E-05         |
| 1.00E-10  | 2007-07-31 | 23.2        | 0.2         | 1022   | 10           | 51.0   | 5            | 9.4971E-11  | 1.0E-10 | 9.4998E-11  | 1.000285 | 1.2E-05   | inf  | 2.0 | 2.4E-05         |
| -1.00E-10 | 2007-07-31 | 22.9        | 0.2         | 1020   | 10           | 52.0   | 5            | -9.4971E-11 | 1.0E-10 | -9.5000E-11 | 1.000305 | 1.2E-05   | inf  | 2.0 | 2.4E-05         |
| Unidos E  |            |             |             |        |              |        |              |             |         |             |          |           |      |     |                 |
| 1.00E-13  | 2007-08-13 | 22.6        | 0.2         | 1014   | 10           | 51.0   | 5            | 9.5046E-14  | LOW     | 9.4751E-14  | 0.996900 | 1.7E-03   | 2700 | 2.0 | 3.4E-03         |
| -1.00E-13 | 2007-08-13 | 22.6        | 0.2         | 1014   | 10           | 51.0   | 5            | -9.4595E-14 | LOW     | -9.5115E-14 | 1.005500 | 1.1E-03   | 4500 | 2.0 | 2.2E-03         |
| 1.00E-12  | 2007-08-06 | 22.6        | 0.2         | 1010   | 10           | 52.0   | 5            | 9.4948E-13  | LOW     | 9.5052E-13  | 1.001100 | 2.0E-04   | 1400 | 2.0 | 4.0E-04         |
| -1.00E-12 | 2007-08-06 | 22.6        | 0.2         | 1013   | 10           | 52.0   | 5            | -9.4840E-13 | LOW     | -9.4979E-13 | 1.001470 | 2.1E-04   | 946  | 2.0 | 4.2E-04         |
| 1.00E-11  | 2007-08-02 | 23.0        | 0.2         | 1014   | 10           | 52.0   | 5            | 9.4957E-12  | LOW     | 9.4995E-12  | 1.000400 | 1.5E-04   | inf  | 2.0 | 3.0E-04         |
| -1.00E-11 | 2007-08-02 | 22.9        | 0.2         | 1022   | 10           | 51.0   | 5            | -9.4823E-12 | LOW     | -9.5003E-12 | 1.001900 | 1.5E-04   | inf  | 2.0 | 3.0E-04         |
| 1.00E-10  | 2007-08-01 | 23.2        | 0.2         | 1015   | 10           | 51.0   | 5            | 9.4939E-11  | LOW     | 9.5000E-11  | 1.000640 | 1.4E-04   | inf  | 2.0 | 2.8E-04         |
| -1.00E-10 | 2007-08-01 | 23.2        | 0.2         | 1012   | 10           | 52.0   | 5            | -9.4939E-11 | LOW     | -9.5000E-11 | 1.000650 | 1.4E-04   | inf  | 2.0 | 2.8E-04         |
| Mean:     |            | 22.9        |             | 1015   |              | 51.6   |              |             |         |             |          |           |      |     |                 |
| First day | 2007-07-23 |             |             |        |              |        |              |             |         |             |          |           |      |     |                 |

Last day Median date of

measurements 2007-08-02

2007-08-13

#### PTB-6

| Nominal   | Date       | Temn        | U<br>(Temn) | Pross  | U<br>(Press) | Humid  | U<br>(Humid) | Current     | Range   | Reading     | 0        | u(0) k-1  | Eff. | k   | U(Q)=<br>k*u(Q) |
|-----------|------------|-------------|-------------|--------|--------------|--------|--------------|-------------|---------|-------------|----------|-----------|------|-----|-----------------|
| current   | Date       | remp.<br>₀o |             | F1033. | (F1033)      |        |              | ourient     | Nange   | A           | <u>a</u> | u(e), k=1 | DOI  | ĸ   | r u(w)          |
| <u>A</u>  |            | -0          | -0          | nPa    | nPa          | % R.H. | % K.H.       | A           | A       | A           |          |           |      |     |                 |
| K6430     |            |             |             |        |              |        |              |             |         |             |          |           |      |     |                 |
| 1.00E-13  | 2007-09-07 | 23.0        | 0.5         | 1008   | 2            | 51.5   | 1            | 9.6614E-14  | 1.0E-12 | 9.6736E-14  | 1.001260 | 3.2E-04   | 85   | 2.0 | 6.5E-04         |
| -1.00E-13 | 2007-09-07 | 23.0        | 0.5         | 1008   | 2            | 51.5   | 1            | -9.5219E-14 | 1.0E-12 | -9.5335E-14 | 1.001215 | 3.1E-04   | 85   | 2.0 | 6.2E-04         |
| 1.00E-12  | 2007-09-05 | 23.0        | 0.5         | 1011   | 2            | 39.4   | 1            | 9.6506E-13  | 1.0E-12 | 9.6585E-13  | 1.000816 | 7.1E-05   | 332  | 2.0 | 1.4E-04         |
| -1.00E-12 | 2007-09-05 | 23.0        | 0.5         | 1011   | 2            | 39.4   | 1            | -9.5116E-13 | 1.0E-12 | -9.5192E-13 | 1.000800 | 7.4E-05   | 279  | 2.0 | 1.5E-04         |
| 1.00E-11  | 2007-09-04 | 23.0        | 0.5         | 993    | 2            | 52.2   | 1            | 9.6498E-12  | 1.0E-11 | 9.6499E-12  | 1.000014 | 3.5E-05   | 4203 | 2.0 | 7.0E-05         |
| -1.00E-11 | 2007-09-04 | 23.0        | 0.5         | 993    | 2            | 52.2   | 1            | -9.5111E-12 | 1.0E-11 | -9.5097E-12 | 0.999857 | 3.7E-05   | 1258 | 2.0 | 7.5E-05         |
| 1.00E-10  | 2007-09-03 | 23.0        | 0.5         | 993    | 2            | 52.2   | 1            | 9.6808E-11  | 1.0E-10 | 9.6831E-11  | 1.000240 | 1.2E-05   | inf  | 2.0 | 2.4E-05         |
| -1.00E-10 | 2007-09-03 | 23.0        | 0.5         | 993    | 2            | 52.2   | 1            | -9.5422E-11 | 1.0E-10 | -9.5447E-11 | 1.000261 | 1.2E-05   | inf  | 2.0 | 2.4E-05         |
| Unidos E  |            |             |             |        |              |        |              |             |         |             |          |           |      |     |                 |
| 1.00E-13  | 2007-08-23 | 23.0        | 0.5         | 999    | 2            | 57.4   | 1            | 9.6605E-14  | LOW     | 9.6723E-14  | 1.001217 | 4.1E-04   | 83   | 2.0 | 8.3E-04         |
| -1.00E-13 | 2007-08-23 | 23.0        | 0.5         | 999    | 2            | 57.4   | 1            | -9.5230E-14 | LOW     | -9.5402E-14 | 1.001811 | 4.3E-04   | 82   | 2.0 | 8.7E-04         |
| 1.00E-12  | 2007-08-22 | 22.7        | 0.5         | 993    | 2            | 56.2   | 1            | 9.6492E-13  | LOW     | 9.6508E-13  | 1.000162 | 7.5E-05   | 504  | 2.0 | 1.5E-04         |
| -1.00E-12 | 2007-08-22 | 22.7        | 0.5         | 993    | 2            | 56.2   | 1            | -9.5128E-13 | LOW     | -9.5293E-13 | 1.001730 | 7.5E-05   | 505  | 2.0 | 1.5E-04         |
| 1.00E-11  | 2007-08-27 | 22.9        | 0.5         | 1001   | 2            | 53.1   | 1            | 9.6489E-12  | LOW     | 9.6505E-12  | 1.000163 | 1.7E-04   | inf  | 2.0 | 3.4E-04         |
| -1.00E-11 | 2007-08-27 | 22.9        | 0.5         | 1001   | 2            | 53.1   | 1            | -9.5101E-12 | LOW     | -9.5233E-12 | 1.001385 | 1.7E-04   | inf  | 2.0 | 3.4E-04         |
| 1.00E-10  | 2007-08-30 | 23.1        | 0.5         | 1003   | 2            | 39.1   | 1            | 9.5748E-11  | LOW     | 9.5759E-11  | 1.000115 | 1.7E-04   | inf  | 2.0 | 3.4E-04         |
| -1.00E-10 | 2007-08-30 | 23.1        | 0.5         | 1003   | 2            | 39.1   | 1            | -9.4375E-11 | LOW     | -9.4470E-11 | 1.001005 | 1.7E-04   | inf  | 2.0 | 3.4E-04         |
| Mean:     |            | 23.0        |             | 1000   |              | 50.1   |              |             |         |             |          |           |      |     |                 |
| First day | 2007-08-22 |             |             |        |              |        |              |             |         |             |          |           |      |     |                 |

Last day Median date of

measurements 2007-08-30

2007-09-07

#### CEM

| Nominal   | Data       | Tomp        | U<br>(Tomp) | Proce  | U<br>(Pross) | Humid  | U<br>(Humid) | Current     | Pango   | Peading     | 0        | u(0) k-1  | Eff. | k   | U(Q)=   |
|-----------|------------|-------------|-------------|--------|--------------|--------|--------------|-------------|---------|-------------|----------|-----------|------|-----|---------|
| current   | Date       | remp.<br>∞⊂ |             | F1033. | (F1033)      |        |              | ourient     | Nange   | A           | G G      | u(e), k=1 | DOI  | ĸ   | r u(w)  |
| <u>A</u>  |            | -U          | -U          | nPa    | nPa          | % K.H. | % K.H.       | A           | A       | A           |          |           |      |     |         |
| K6430     |            |             |             |        |              |        |              |             |         |             |          |           |      |     |         |
| 1.00E-13  | 2007-10-01 | 23.0        | 0.3         | 937    | 1            | 46.5   | 2            | 9.5032E-14  | 1.0E-12 | 9.5024E-14  | 0.999920 | 3.0E-04   | 14   | 2.2 | 6.6E-04 |
| -1.00E-13 | 2007-10-01 | 22.5        | 0.3         | 940    | 1            | 49.1   | 2            | -9.5191E-14 | 1.0E-12 | -9.5342E-14 | 1.001590 | 4.8E-04   | 12   | 2.2 | 1.1E-03 |
| 1.00E-12  | 2007-10-03 | 22.4        | 0.3         | 936    | 1            | 47.4   | 2            | 9.5087E-13  | 1.0E-12 | 9.5135E-13  | 1.000507 | 8.5E-05   | 13   | 2.2 | 1.9E-04 |
| -1.00E-12 | 2007-10-03 | 22.4        | 0.3         | 936    | 1            | 47.4   | 2            | -9.5083E-13 | 1.0E-12 | -9.5126E-13 | 1.000456 | 8.5E-05   | 13   | 2.2 | 1.9E-04 |
| 1.00E-11  | 2007-10-04 | 22.5        | 0.3         | 932    | 1            | 49.1   | 2            | 9.5036E-12  | 1.0E-11 | 9.5033E-12  | 0.999967 | 8.3E-05   | 12   | 2.2 | 1.9E-04 |
| -1.00E-11 | 2007-10-04 | 22.5        | 0.3         | 932    | 1            | 49.1   | 2            | -9.5028E-12 | 1.0E-11 | -9.5016E-12 | 0.999879 | 8.3E-05   | 12   | 2.2 | 1.9E-04 |
| 1.00E-10  | 2007-10-05 | 22.7        | 0.3         | 939    | 1            | 47.8   | 2            | 9.5063E-11  | 1.0E-10 | 9.5087E-11  | 1.000253 | 8.0E-05   | 10   | 2.3 | 1.8E-04 |
| -1.00E-10 | 2007-10-01 | 22.7        | 0.3         | 939    | 1            | 47.8   | 2            | -9.5066E-11 | 1.0E-10 | -9.5092E-11 | 1.000279 | 8.0E-05   | 10   | 2.3 | 1.8E-04 |
| Unidos E  |            |             |             |        |              |        |              |             |         |             |          |           |      |     |         |
| 1.00E-13  | 2007-10-17 | 22.8        | 0.3         | 936    | 1            | 41.7   | 2            | 9.5124E-14  | LOW     | 9.5210E-14  | 1.000900 | 3.9E-04   | 17   | 2.2 | 8.4E-04 |
| -1.00E-13 | 2007-10-17 | 22.8        | 0.3         | 936    | 1            | 41.7   | 2            | -9.5129E-14 | LOW     | -9.5220E-14 | 1.000950 | 4.7E-04   | 14   | 2.2 | 1.0E-03 |
| 1.00E-12  | 2007-10-18 | 22.4        | 0.3         | 936    | 1            | 45.6   | 2            | 9.5040E-13  | LOW     | 9.5041E-13  | 1.000010 | 1.7E-04   | 215  | 2.0 | 3.5E-04 |
| -1.00E-12 | 2007-10-17 | 22.4        | 0.3         | 936    | 1            | 47.4   | 2            | -9.5189E-13 | LOW     | -9.5339E-13 | 1.001574 | 1.7E-04   | 214  | 2.0 | 3.5E-04 |
| 1.00E-11  | 2007-10-18 | 22.9        | 0.3         | 937    | 1            | 40.7   | 2            | 9.5115E-12  | LOW     | 9.5190E-12  | 1.000790 | 1.9E-04   | 204  | 2.0 | 3.8E-04 |
| -1.00E-11 | 2007-10-19 | 22.8        | 0.3         | 938    | 1            | 41.1   | 2            | -9.5116E-12 | LOW     | -9.5192E-12 | 1.000800 | 1.7E-04   | 206  | 2.0 | 3.4E-04 |
| 1.00E-10  | 2007-10-24 | 22.3        | 0.3         | 934    | 1            | 42.9   | 2            | 9.5106E-11  | LOW     | 9.5172E-11  | 1.000700 | 1.7E-04   | 204  | 2.0 | 3.4E-04 |
| -1.00E-10 | 2007-10-24 | 22.4        | 0.3         | 936    | 1            | 39.5   | 2            | -9.5104E-11 | LOW     | -9.5170E-11 | 1.000686 | 1.7E-04   | 204  | 2.0 | 3.4E-04 |
| Mean:     |            | 22.6        |             | 936    |              | 45.3   |              |             |         |             |          |           |      |     |         |
| First day | 2007-10-01 |             |             |        |              |        |              |             |         |             |          |           |      |     |         |

Last day 2007-10-24

Median date of

measurements 2007-10-12

#### PTB-7

| Nominal   | Data       | Tomp  | U<br>(Tomn) | Proce  | U<br>(Proce) | Humid  | U<br>(Humid) | Current     | Pango   | Pooding     | 0        | u(0) k-1  | Eff. | k   | U(Q)=   |
|-----------|------------|-------|-------------|--------|--------------|--------|--------------|-------------|---------|-------------|----------|-----------|------|-----|---------|
| current   | Dale       | nemp. |             | FIC33. | (FIE33)      |        |              | Current     | лапуе   | Reauling    | 4        | u(@), k=1 | DOF  | r   | K U(W)  |
| <u>A</u>  |            | °U    | °C          | nPa    | nPa          | % R.H. | % R.H.       | A           | A       | A           |          |           |      |     |         |
| K6430     |            |       |             |        |              |        |              |             |         |             |          |           |      |     |         |
| 1.00E-13  | 2007-11-22 | 23.3  | 0.5         | 995    | 2            | 55.6   | 1            | 9.6724E-14  | 1.0E-12 | 9.6784E-14  | 1.000623 | 3.7E-04   | 105  | 2.0 | 7.4E-04 |
| -1.00E-13 | 2007-11-22 | 23.3  | 0.5         | 995    | 2            | 55.6   | 1            | -9.5317E-14 | 1.0E-12 | -9.5508E-14 | 1.002004 | 3.7E-04   | 107  | 2.0 | 7.4E-04 |
| 1.00E-12  | 2007-11-21 | 23.2  | 0.5         | 996    | 2            | 47.8   | 1            | 9.6609E-13  | 1.0E-12 | 9.6675E-13  | 1.000680 | 8.0E-05   | 219  | 2.0 | 1.6E-04 |
| -1.00E-12 | 2007-11-21 | 23.2  | 0.5         | 996    | 2            | 47.8   | 1            | -9.5206E-13 | 1.0E-12 | -9.5275E-13 | 1.000728 | 8.0E-05   | 222  | 2.0 | 1.6E-04 |
| 1.00E-11  | 2007-11-19 | 23.1  | 0.5         | 998    | 2            | 34.0   | 1            | 9.6607E-12  | 1.0E-11 | 9.6610E-12  | 1.000033 | 3.6E-05   | 2733 | 2.0 | 7.1E-05 |
| -1.00E-11 | 2007-11-19 | 23.1  | 0.5         | 998    | 2            | 34.0   | 1            | -9.5205E-12 | 1.0E-11 | -9.5196E-12 | 0.999904 | 3.7E-05   | 1594 | 2.0 | 7.3E-05 |
| 1.00E-10  | 2007-11-16 | 23.1  | 0.5         | 998    | 2            | 34.0   | 1            | 9.6920E-11  | 1.0E-10 | 9.6943E-11  | 1.000241 | 1.2E-05   | inf  | 2.0 | 2.4E-05 |
| -1.00E-10 | 2007-11-16 | 23.1  | 0.5         | 998    | 2            | 34.0   | 1            | -9.5524E-11 | 1.0E-10 | -9.5549E-11 | 1.000257 | 1.2E-05   | inf  | 2.0 | 2.4E-05 |
| Unidos E  |            |       |             |        |              |        |              |             |         |             |          |           |      |     |         |
| 1.00E-13  | 2007-11-06 | 23.4  | 0.5         | 1003   | 2            | 32.6   | 1            | 9.6688E-14  | LOW     | 9.6750E-14  | 1.000646 | 1.9E-04   | 174  | 2.0 | 3.8E-04 |
| -1.00E-13 | 2007-11-06 | 23.4  | 0.5         | 1003   | 2            | 32.6   | 1            | -9.5298E-14 | LOW     | -9.5475E-14 | 1.001858 | 2.0E-04   | 171  | 2.0 | 4.0E-04 |
| 1.00E-12  | 2007-11-12 | 23.0  | 0.5         | 995    | 2            | 26.6   | 1            | 9.6598E-13  | LOW     | 9.6647E-13  | 1.000505 | 6.5E-05   | 1822 | 2.0 | 1.3E-04 |
| -1.00E-12 | 2007-11-12 | 23.0  | 0.5         | 995    | 2            | 26.6   | 1            | -9.5204E-13 | LOW     | -9.5315E-13 | 1.001166 | 8.4E-05   | 288  | 2.0 | 1.7E-04 |
| 1.00E-11  | 2007-11-13 | 23.0  | 0.5         | 1001   | 2            | 31.0   | 1            | 9.6605E-12  | LOW     | 9.6641E-12  | 1.000370 | 1.7E-04   | inf  | 2.0 | 3.4E-04 |
| -1.00E-11 | 2007-11-13 | 23.0  | 0.5         | 1001   | 2            | 31.0   | 1            | -9.5210E-12 | LOW     | -9.5330E-12 | 1.001256 | 1.7E-04   | inf  | 2.0 | 3.4E-04 |
| 1.00E-10  | 2007-11-14 | 23.0  | 0.5         | 1001   | 2            | 31.0   | 1            | 9.6919E-11  | LOW     | 9.6933E-11  | 1.000144 | 1.7E-04   | inf  | 2.0 | 3.3E-04 |
| -1.00E-10 | 2007-11-14 | 23.0  | 0.5         | 1001   | 2            | 31.0   | 1            | -9.5522E-11 | LOW     | -9.5628E-11 | 1.001110 | 1.7E-04   | inf  | 2.0 | 3.3E-04 |
| Mean:     |            | 23.1  |             | 998    |              | 36.6   |              |             |         |             |          |           |      |     |         |
| First day | 2007-11-06 |       |             |        |              |        |              |             |         |             |          |           |      |     |         |

Last day Median date of

measurements 2007-11-14

2007-11-22

#### KRISS

| Nominal   | Date       | Tomn        | U<br>(Tomp) | Pross  | U<br>(Pross) | Humid  | U<br>(Humid) | Current     | Pango    | Peading     | 0        | u(0) k=1  | Eff. | k   | U(Q)=<br>k*u(Q) |
|-----------|------------|-------------|-------------|--------|--------------|--------|--------------|-------------|----------|-------------|----------|-----------|------|-----|-----------------|
| current   | Date       | remp.<br>∞o |             | F1033. | (F1033)      |        |              | ourient     | Nange    | A           | G G      | u(e), k=1 | DOI  | ĸ   | r u(w)          |
| <u>A</u>  |            | -U          | -U          | nPa    | nPa          | % R.H. | % R.H.       | A           | A        | A           |          |           |      |     |                 |
| K6430     |            |             |             |        |              |        |              |             |          |             |          |           |      |     |                 |
| 1.00E-13  | 2008-01-04 | 23.2        | 0.3         | 1017   | 1.7          | 35.0   | 5            | 9.7909E-14  | 1.0E-12  | 9.8280E-14  | 1.003735 | 5.0E-04   | 39   | 2.1 | 1.0E-03         |
| -1.00E-13 | 2008-01-04 | 23.2        | 0.3         | 1017   | 1.7          | 35.0   | 5            | -9.7357E-14 | 1.0E-12  | -9.7270E-14 | 0.999072 | 4.8E-04   | 39   | 2.1 | 9.9E-04         |
| 1.00E-12  | 2008-01-13 | 22.9        | 0.3         | 1021   | 1.7          | 36.0   | 5            | 9.7880E-13  | 1.0E-12  | 9.8012E-13  | 1.001349 | 4.1E-05   | 41   | 2.1 | 8.5E-05         |
| -1.00E-12 | 2008-01-13 | 22.9        | 0.3         | 1021   | 1.7          | 36.0   | 5            | -9.7328E-13 | 1.0E-12  | -9.7362E-13 | 1.000346 | 5.7E-05   | 40   | 2.1 | 1.2E-04         |
| 1.00E-11  | 2008-01-09 | 23.1        | 0.3         | 1012   | 1.7          | 36.0   | 5            | 9.7892E-12  | 1.0E-11  | 9.7899E-12  | 1.000071 | 3.0E-05   | 42   | 2.1 | 6.2E-05         |
| -1.00E-11 | 2008-01-09 | 23.1        | 0.3         | 1012   | 1.7          | 36.0   | 5            | -9.7340E-12 | 1.0E-11  | -9.7323E-12 | 0.999826 | 2.8E-05   | 43   | 2.1 | 5.8E-05         |
| 1.00E-10  | 2008-01-10 | 23.1        | 0.3         | 1013   | 1.7          | 36.0   | 5            | 9.7869E-11  | 1.0E-10  | 9.7889E-11  | 1.000200 | 6.6E-06   | inf  | 2.0 | 1.3E-05         |
| -1.00E-10 | 2008-01-10 | 23.1        | 0.3         | 1013   | 1.7          | 36.0   | 5            | -9.7372E-11 | 1.0E-10  | -9.7401E-11 | 1.000296 | 6.0E-06   | inf  | 2.0 | 1.2E-05         |
| Unidos E  |            |             |             |        |              |        |              |             |          |             |          |           |      |     |                 |
| 1.00E-13  | 2008-01-03 | 23.0        | 0.3         | 1018   | 1.7          | 35.0   | 5            | 9.7895E-14  | 1.15E-10 | 9.8000E-14  | 1.001328 | 3.4E-04   | 40   | 2.1 | 6.9E-04         |
| -1.00E-13 | 2008-01-03 | 23.0        | 0.3         | 1018   | 1.7          | 35.0   | 5            | -9.7343E-14 | 1.15E-10 | -9.7400E-14 | 1.001037 | 3.5E-04   | 40   | 2.1 | 7.2E-04         |
| 1.00E-12  | 2008-01-12 | 23.0        | 0.3         | 1016   | 1.7          | 36.0   | 5            | 9.7882E-13  | 1.15E-10 | 9.7920E-13  | 1.000410 | 5.5E-05   | 75   | 2.0 | 1.1E-04         |
| -1.00E-12 | 2008-01-12 | 23.0        | 0.3         | 1016   | 1.7          | 36.0   | 5            | -9.7330E-13 | 1.15E-10 | -9.7490E-13 | 1.001658 | 5.1E-05   | 84   | 2.0 | 1.0E-04         |
| 1.00E-11  | 2008-01-08 | 23.0        | 0.3         | 1012   | 1.7          | 36.0   | 5            | 9.7891E-12  | 1.15E-10 | 9.7900E-12  | 1.000070 | 2.9E-05   | inf  | 2.0 | 5.8E-05         |
| -1.00E-11 | 2008-01-08 | 23.0        | 0.3         | 1012   | 1.7          | 36.0   | 5            | -9.7339E-12 | 1.15E-10 | -9.7470E-12 | 1.001359 | 2.9E-05   | inf  | 2.0 | 5.8E-05         |
| 1.00E-10  | 2008-01-11 | 23.0        | 0.3         | 1013   | 1.7          | 36.0   | 5            | 9.7866E-11  | 1.15E-10 | 9.7930E-11  | 1.000640 | 2.9E-05   | inf  | 2.0 | 5.8E-05         |
| -1.00E-10 | 2008-01-11 | 23.0        | 0.3         | 1013   | 1.7          | 36.0   | 5            | -9.7369E-11 | 1.15E-10 | -9.7410E-11 | 1.000422 | 2.9E-05   | inf  | 2.0 | 5.8E-05         |
| Mean:     |            | 23.0        |             | 1015   |              | 35.8   |              |             |          |             |          |           |      |     |                 |
| First day | 2008-01-03 |             |             |        |              |        |              |             |          |             |          |           |      |     |                 |

Last day Median date of

measurements 2008-01-08

2008-01-13

#### PTB-8

| Nominal   | Date       | Tomn | U<br>(Temn)  | Pross | U<br>(Press) | Humid   | U<br>(Humid) | Current     | Range   | Reading     | 0        | u(0) k-1  | Eff. | k   | U(Q)=<br>k*u(Q) |
|-----------|------------|------|--------------|-------|--------------|---------|--------------|-------------|---------|-------------|----------|-----------|------|-----|-----------------|
| ν<br>Δ    | Date       | •∩   | (remp)<br>∘∩ | hDo   | hDo          | 0/ D Ц  |              | ^           | A       | A           | <u>u</u> | u(@), k=1 |      | ĸ   | r u(w)          |
| <u> </u>  |            | U    | U            | пга   | ПГа          | /0 K.H. | /0 N.H.      | A           | A       | A           |          |           |      |     |                 |
| N043U     |            |      |              |       |              |         |              |             |         |             |          |           |      |     |                 |
| 1.00E-13  | 2008-02-11 | 22.9 | 0.5          | 1026  | 2            | 30.9    | 1            | 9.6858E-14  | 1.0E-12 | 9.6923E-14  | 1.000666 | 2.0E-04   | 71   | 2.0 | 4.1E-04         |
| -1.00E-13 | 2008-02-11 | 22.9 | 0.5          | 1026  | 2            | 30.9    | 1            | -9.5474E-14 | 1.0E-12 | -9.5598E-14 | 1.001299 | 1.8E-04   | 75   | 2.0 | 3.6E-04         |
| 1.00E-12  | 2008-02-07 | 22.9 | 0.5          | 1026  | 2            | 30.8    | 1            | 9.6743E-13  | 1.0E-12 | 9.6810E-13  | 1.000693 | 5.6E-05   | 1633 | 2.0 | 1.1E-04         |
| -1.00E-12 | 2008-02-07 | 22.9 | 0.5          | 1026  | 2            | 30.8    | 1            | -9.5359E-13 | 1.0E-12 | -9.5421E-13 | 1.000649 | 5.5E-05   | 2625 | 2.0 | 1.1E-04         |
| 1.00E-11  | 2008-02-06 | 22.9 | 0.5          | 1001  | 2            | 32.5    | 1            | -9.5358E-12 | 1.0E-11 | -9.5357E-12 | 0.999993 | 3.8E-05   | 859  | 2.0 | 7.6E-05         |
| -1.00E-11 | 2008-02-06 | 22.9 | 0.5          | 1001  | 2            | 32.5    | 1            | 9.6739E-12  | 1.0E-11 | 9.6729E-12  | 0.999902 | 3.7E-05   | 1312 | 2.0 | 7.3E-05         |
| 1.00E-10  | 2008-02-05 | 22.9 | 0.5          | 1001  | 2            | 32.5    | 1            | 9.7061E-11  | 1.0E-10 | 9.7082E-11  | 1.000212 | 1.2E-05   | inf  | 2.0 | 2.4E-05         |
| -1.00E-10 | 2008-02-05 | 22.9 | 0.5          | 1001  | 2            | 32.5    | 1            | -9.5678E-11 | 1.0E-10 | -9.5700E-11 | 1.000232 | 1.2E-05   | inf  | 2.0 | 2.4E-05         |
| Unidos E  |            |      |              |       |              |         |              |             |         |             |          |           |      |     |                 |
| 1.00E-13  | 2008-01-30 | 22.9 | 0.5          | 1018  | 2            | 32.3    | 1            | 9.6831E-14  | LOW     | 9.6865E-14  | 1.000350 | 2.9E-04   | 65   | 2.0 | 5.9E-04         |
| -1.00E-13 | 2008-01-30 | 22.9 | 0.5          | 1018  | 2            | 32.3    | 1            | -9.5451E-14 | LOW     | -9.5662E-14 | 1.002214 | 3.3E-04   | 63   | 2.0 | 6.8E-04         |
| 1.00E-12  | 2008-01-31 | 22.9 | 0.5          | 1004  | 2            | 25.9    | 1            | 9.6719E-13  | LOW     | 9.6793E-13  | 1.000763 | 8.1E-05   | 249  | 2.0 | 1.6E-04         |
| -1.00E-12 | 2008-01-31 | 22.9 | 0.5          | 1004  | 2            | 25.9    | 1            | -9.5342E-13 | LOW     | -9.5460E-13 | 1.001239 | 7.4E-05   | 398  | 2.0 | 1.5E-04         |
| 1.00E-11  | 2008-02-01 | 22.9 | 0.5          | 1002  | 2            | 27.8    | 1            | 9.6726E-12  | LOW     | 9.6773E-12  | 1.000488 | 1.7E-04   | inf  | 2.0 | 3.4E-04         |
| -1.00E-11 | 2008-02-01 | 22.9 | 0.5          | 1002  | 2            | 27.8    | 1            | -9.5348E-12 | LOW     | -9.5454E-12 | 1.001110 | 1.7E-04   | onf  | 2.0 | 3.4E-04         |
| 1.00E-10  | 2008-02-04 | 22.9 | 0.5          | 983   | 2            | 30.5    | 1            | 9.7060E-11  | LOW     | 9.7116E-11  | 1.000573 | 1.7E-04   | inf  | 2.0 | 3.4E-04         |
| -1.00E-10 | 2008-02-04 | 22.9 | 0.5          | 983   | 2            | 30.5    | 1            | -9.5674E-11 | LOW     | -9.5748E-11 | 1.000771 | 1.7E-04   | inf  | 2.0 | 3.3E-04         |
| Mean:     |            | 22.9 |              | 1008  |              | 30.4    |              |             |         |             |          |           |      |     |                 |
| First day | 2008-01-30 |      |              |       |              |         |              |             |         |             |          |           |      |     |                 |

Last day Median date of

measurements 2008-02-05

2008-02-11

#### MIKES

| Nominal   | Data       | Tomn  | U<br>(Tomn) | Proce  | U<br>(Proce) | Humid  | U<br>(Humid) | Current     | Pango   | Pooding     | 0        | u(0) k-1  | Eff. | k   | U(Q)=   |
|-----------|------------|-------|-------------|--------|--------------|--------|--------------|-------------|---------|-------------|----------|-----------|------|-----|---------|
| current   | Dale       | iemp. |             | FIC33. | (1633)       |        |              | Current     | Range   | Reading     | Q        | u(e), k=1 | DOF  | n   | K U(W)  |
| ΑΑ        |            | Ů     | Ů           | nPa    | nPa          | % R.H. | % R.H.       | A           | A       | A           |          |           |      |     |         |
| K6430     |            |       |             |        |              |        |              |             |         |             |          |           |      |     |         |
| 1.00E-13  | 2008-03-21 | 22.9  | 0.1         | 1004   | 2            | 38.6   | 2            | 9.5218E-14  | 1.0E-12 | 9.5363E-14  | 1.001526 | 2.8E-04   | 3150 | 2.0 | 5.6E-04 |
| -1.00E-13 | 2008-03-21 | 22.9  | 0.1         | 1004   | 2            | 38.6   | 2            | -9.5218E-14 | 1.0E-12 | -9.5274E-14 | 1.000588 | 2.8E-04   | 3519 | 2.0 | 5.6E-04 |
| 1.00E-12  | 2008-03-13 | 23.0  | 0.2         | 993    | 2            | 38.3   | 2            | 9.5225E-13  | 1.0E-12 | 9.5317E-13  | 1.000964 | 2.6E-04   | inf  | 2.0 | 5.3E-04 |
| -1.00E-12 | 2008-03-13 | 23.0  | 0.2         | 993    | 2            | 38.3   | 2            | -9.5225E-13 | 1.0E-12 | -9.5312E-13 | 1.000921 | 2.6E-04   | inf  | 2.0 | 5.3E-04 |
| 1.00E-11  | 2008-03-08 | 23.0  | 0.2         | 997    | 2            | 38.2   | 2            | 9.5239E-12  | 1.0E-11 | 9.5265E-12  | 1.000281 | 2.6E-04   | inf  | 2.0 | 5.3E-04 |
| -1.00E-11 | 2008-03-08 | 23.0  | 0.1         | 997    | 2            | 38.0   | 2            | -9.5239E-12 | 1.0E-11 | -9.5238E-12 | 0.999995 | 2.6E-04   | inf  | 2.0 | 5.3E-04 |
| 1.00E-10  | 2008-03-08 | 23.0  | 0.2         | 987    | 2            | 38.2   | 2            | 9.5234E-11  | 1.0E-10 | 9.5266E-11  | 1.000341 | 1.1E-04   | inf  | 2.0 | 2.1E-04 |
| -1.00E-10 | 2008-03-08 | 23.0  | 0.2         | 987    | 2            | 38.1   | 2            | -9.5234E-11 | 1.0E-10 | -9.5267E-11 | 1.000348 | 1.1E-04   | inf  | 2.0 | 2.1E-04 |
| Unidos E  |            |       |             |        |              |        |              |             |         |             |          |           |      |     |         |
| 1.00E-13  | 2008-03-11 | 23.0  | 0.2         | 989    | 2            | 38.1   | 2            | 9.5230E-14  | Low     | 9.5552E-14  | 1.003379 | 8.6E-04   | inf  | 2.0 | 1.7E-03 |
| -1.00E-13 | 2008-03-11 | 23.0  | 0.2         | 989    | 2            | 38.1   | 2            | -9.5230E-14 | Low     | -9.5126E-14 | 0.998907 | 6.0E-04   | 9450 | 2.0 | 1.2E-03 |
| 1.00E-12  | 2008-03-13 | 23.1  | 0.1         | 991    | 2            | 38.1   | 2            | 9.5231E-13  | Low     | 9.5336E-13  | 1.001102 | 3.1E-04   | inf  | 2.0 | 6.1E-04 |
| -1.00E-12 | 2008-03-13 | 23.0  | 0.2         | 991    | 2            | 38.1   | 2            | -9.5231E-13 | Low     | -9.5315E-13 | 1.000889 | 3.1E-04   | inf  | 2.0 | 6.1E-04 |
| 1.00E-11  | 2008-03-17 | 23.1  | 0.2         | 999    | 2            | 38.0   | 2            | 9.5237E-12  | Low     | 9.5323E-12  | 1.000898 | 2.1E-04   | inf  | 2.0 | 4.2E-04 |
| -1.00E-11 | 2008-03-17 | 23.0  | 0.3         | 999    | 2            | 38.1   | 2            | -9.5237E-12 | Low     | -9.5340E-12 | 1.001081 | 2.1E-04   | inf  | 2.0 | 4.2E-04 |
| 1.00E-10  | 2008-03-30 | 22.7  | 0.1         | 1023   | 2            | 39.0   | 2            | 9.5233E-11  | Low     | 9.5289E-11  | 1.000590 | 1.5E-04   | inf  | 2.0 | 2.9E-04 |
| -1.00E-10 | 2008-03-30 | 22.7  | 0.1         | 1023   | 2            | 39.0   | 2            | -9.5233E-11 | Low     | -9.5301E-11 | 1.000709 | 1.5E-04   | inf  | 2.0 | 2.9E-04 |
| Mean:     |            | 23.0  |             | 998    |              | 38.3   |              |             |         |             |          |           |      |     |         |

First day 2008-03-08 Last day 2008-03-30 Median date of

2008-03-19 measurements

#### PTB-9

|                 |            |       | U      |        | U       |        | U       |             |         |             |          |           | Eff. |     | U(Q)=   |
|-----------------|------------|-------|--------|--------|---------|--------|---------|-------------|---------|-------------|----------|-----------|------|-----|---------|
| Nominal current | Date       | Temp. | (Temp) | Press. | (Press) | Humid. | (Humid) | Current     | Range   | Reading     | Q        | u(Q), k=1 | DOF  | k   | k*u(Q)  |
| A               |            | °C    | °C     | hPa    | hPa     | % R.H. | % R.H.  | А           | А       | А           |          |           |      |     |         |
| K6430           |            |       |        |        |         |        |         |             |         |             |          |           |      |     |         |
| 1.00E-13        | 2008-05-14 | 23.1  | 0.5    | 1007   | 2       | 34.5   | 1       | 9.6939E-14  | 1.0E-12 | 9.6991E-14  | 1.000538 | 1.5E-04   | 111  | 2.0 | 3.1E-04 |
| -1.00E-13       | 2008-05-14 | 23.1  | 0.5    | 1007   | 2       | 34.5   | 1       | -9.5555E-14 | 1.0E-12 | -9.5682E-14 | 1.001328 | 1.6E-04   | 108  | 2.0 | 3.2E-04 |
| 1.00E-12        | 2008-04-30 | 23.3  | 0.5    | 993    | 2       | 42.9   | 1       | 9.6829E-13  | 1.0E-12 | 9.6881E-13  | 1.000542 | 5.6E-05   | 1780 | 2.0 | 1.1E-04 |
| -1.00E-12       | 2008-04-30 | 23.3  | 0.5    | 993    | 2       | 42.9   | 1       | -9.5441E-13 | 1.0E-12 | -9.5491E-13 | 1.000521 | 5.5E-05   | 3003 | 2.0 | 1.1E-04 |
| 1.00E-11        | 2008-04-25 | 23.2  | 0.5    | 998    | 2       | 33.6   | 1       | 9.6826E-12  | 1.0E-11 | 9.6832E-12  | 1.000060 | 3.6E-05   | 1405 | 2.0 | 7.3E-05 |
| -1.00E-11       | 2008-04-25 | 23.2  | 0.5    | 998    | 2       | 33.6   | 1       | -9.5439E-12 | 1.0E-11 | -9.5428E-12 | 0.999881 | 3.7E-05   | 1081 | 2.0 | 7.4E-05 |
| 1.00E-10        | 2008-04-24 | 23.3  | 0.5    | 1011   | 2       | 37.7   | 1       | 9.7143E-11  | 1.0E-10 | 9.7167E-11  | 1.000252 | 1.2E-05   | inf  | 2.0 | 2.4E-05 |
| -1.00E-10       | 2008-04-24 | 23.3  | 0.5    | 1011   | 2       | 37.7   | 1       | -9.5764E-11 | 1.0E-10 | -9.5791E-11 | 1.000280 | 1.2E-05   | inf  | 2.0 | 2.4E-05 |
| Unidos E        |            |       |        |        |         |        |         |             |         |             |          |           |      |     |         |
| 1.00E-13        | 2008-04-16 | 23.1  | 0.5    | 1011   | 2       | 29.5   | 1       | 9.6948E-14  | LOW     | 9.7011E-14  | 1.000654 | 2.5E-04   | 90   | 2.0 | 5.1E-04 |
| -1.00E-13       | 2008-04-16 | 23.1  | 0.5    | 1011   | 2       | 29.5   | 1       | -9.5551E-14 | LOW     | -9.5799E-14 | 1.002596 | 2.5E-04   | 90   | 2.0 | 5.0E-04 |
| 1.00E-12        | 2008-04-17 | 23.2  | 0.5    | 1001   | 2       | 37.2   | 1       | 9.6841E-13  | LOW     | 9.6904E-13  | 1.000652 | 6.4E-05   | 1931 | 2.0 | 1.3E-04 |
| -1.00E-12       | 2008-04-17 | 23.2  | 0.5    | 1001   | 2       | 37.2   | 1       | -9.5441E-13 | LOW     | -9.5565E-13 | 1.001299 | 6.3E-05   | 2835 | 2.0 | 1.3E-04 |
| 1.00E-11        | 2008-04-22 | 23.2  | 0.5    | 998    | 2       | 38.0   | 1       | 9.6830E-12  | LOW     | 9.6866E-12  | 1.000368 | 1.7E-04   | inf  | 2.0 | 3.4E-04 |
| -1.00E-11       | 2008-04-22 | 23.2  | 0.5    | 998    | 2       | 38.0   | 1       | -9.5434E-12 | LOW     | -9.5542E-12 | 1.001131 | 1.7E-04   | inf  | 2.0 | 3.4E-04 |
| 1.00E-10        | 2008-04-23 | 23.2  | 0.5    | 998    | 2       | 38.0   | 1       | 9.7140E-11  | LOW     | 9.7164E-11  | 1.000247 | 1.7E-04   | inf  | 2.0 | 3.3E-04 |
| -1.00E-10       | 2008-04-23 | 23.2  | 0.5    | 998    | 2       | 38.0   | 1       | -9.5761E-11 | LOW     | -9.5821E-11 | 1.000626 | 1.7E-04   | inf  | 2.0 | 3.3E-04 |
| Mean:           |            | 23.2  |        | 1002   |         | 36.4   |         |             |         |             |          |           |      |     |         |
| First day       | 2008-04-16 |       |        |        |         |        |         |             |         |             |          |           |      |     |         |
| Last day        | 2008-05-14 |       |        |        |         |        |         |             |         |             |          |           |      |     |         |

Median date of

measurements 2008-04-30

#### PTB-10

| Neminal         | Data       | <b>T</b> | U<br>(Tamm) | Drees  | U<br>(Dreese) | ام : معد دا | U<br>(Usura i al) | Cumant      | Dense   | Deeding     | 0        | (0) k 4   | Eff. | Ŀ   | U(Q)=   |
|-----------------|------------|----------|-------------|--------|---------------|-------------|-------------------|-------------|---------|-------------|----------|-----------|------|-----|---------|
| Nominal current | Date       | remp.    | (Temp)      | Press. | (Press)       | Humia.      | (Humia)           | Current     | Range   | Reading     | Q        | u(Q), k=1 | DOF  | K   | K°u(Q)  |
| Α               |            | °C       | °C          | hPa    | hPa           | % R.H.      | % R.H.            | A           | A       | A           |          |           |      |     |         |
| K6430           |            |          |             |        |               |             |                   |             |         |             |          |           |      |     |         |
| 1.00E-13        | 2009-02-02 | 23.1     | 0.5         | 998    | 2             | 26.0        | 1                 | 9.6909E-14  | 1.0E-12 | 9.6970E-14  | 1.000628 | 2.5E-04   | 66   | 2.0 | 5.1E-04 |
| -1.00E-13       | 2009-02-02 | 23.1     | 0.5         | 998    | 2             | 26.0        | 1                 | -9.5542E-14 | 1.0E-12 | -9.5652E-14 | 1.001156 | 2.1E-04   | 69   | 2.0 | 4.3E-04 |
| 1.00E-12        | 2009-02-05 | 23.0     | 0.5         | 993    | 2             | 21.9        | 1                 | 9.6909E-14  | 1.0E-12 | 9.6974E-14  | 1.000675 | 5.8E-05   | 1171 | 2.0 | 1.2E-04 |
| -1.00E-12       | 2009-02-05 | 23.0     | 0.5         | 993    | 2             | 21.9        | 1                 | -9.5421E-13 | 1.0E-12 | -9.5486E-13 | 1.000682 | 5.7E-05   | 1452 | 2.0 | 1.1E-04 |
| 1.00E-11        | 2009-02-10 | 22.5     | 0.5         | 975    | 2             | 24.7        | 1                 | 9.6814E-12  | 1.0E-11 | 9.6822E-12  | 1.000081 | 3.6E-05   | 1501 | 2.0 | 7.2E-05 |
| -1.00E-11       | 2009-02-10 | 22.5     | 0.5         | 975    | 2             | 24.7        | 1                 | -9.5446E-12 | 1.0E-11 | -9.5440E-12 | 0.999939 | 3.8E-05   | 781  | 2.0 | 7.6E-05 |
| 1.00E-10        | 2009-02-11 | 22.6     | 0.5         | 995    | 2             | 23.0        | 1                 | 9.7130E-11  | 1.0E-10 | 9.7157E-11  | 1.000283 | 1.2E-05   | inf  | 2.0 | 2.4E-05 |
| -1.00E-10       | 2009-02-11 | 22.6     | 0.5         | 995    | 2             | 23.0        | 1                 | -9.5764E-11 | 1.0E-10 | -9.5792E-11 | 1.000295 | 1.2E-05   | inf  | 2.0 | 2.4E-05 |
| Unidos E        |            |          |             |        |               |             |                   |             |         |             |          |           |      |     |         |
| 1.00E-13        | 2009-02-19 | 22.9     | 0.5         | 999    | 2             | 26.4        | 1                 | 9.6979E-14  | LOW     | 9.7062E-14  | 1.000860 | 2.3E-04   | 91   | 2.0 | 4.7E-04 |
| -1.00E-13       | 2009-02-19 | 22.9     | 0.5         | 999    | 2             | 26.4        | 1                 | -9.5540E-14 | LOW     | -9.5707E-14 | 1.001744 | 2.5E-04   | 90   | 2.0 | 5.1E-04 |
| 1.00E-12        | 2009-02-18 | 23.3     | 0.5         | 1007   | 2             | 23.2        | 1                 | 9.6844E-13  | LOW     | 9.6863E-13  | 1.000201 | 9.1E-05   | 170  | 2.0 | 1.8E-04 |
| -1.00E-12       | 2009-02-18 | 23.3     | 0.5         | 1007   | 2             | 23.2        | 1                 | -9.5423E-13 | LOW     | -9.5598E-13 | 1.001834 | 9.3E-05   | 160  | 2.0 | 1.9E-04 |
| 1.00E-11        | 2009-02-16 | 23.3     | 0.5         | 1007   | 2             | 19.6        | 1                 | 9.6856E-12  | LOW     | 9.6892E-12  | 1.000369 | 1.7E-04   | inf  | 2.0 | 3.4E-04 |
| -1.00E-11       | 2009-02-16 | 23.3     | 0.5         | 1007   | 2             | 19.6        | 1                 | -9.5411E-12 | LOW     | -9.5553E-12 | 1.001489 | 1.7E-04   | inf  | 2.0 | 3.4E-04 |
| 1.00E-10        | 2009-02-12 | 22.9     | 0.5         | 1003   | 2             | 21.1        | 1                 | 9.7142E-11  | LOW     | 9.7198E-11  | 1.000572 | 1.7E-04   | inf  | 2.0 | 3.3E-04 |
| -1.00E-10       | 2009-02-12 | 22.9     | 0.5         | 1003   | 2             | 21.1        | 1                 | -9.5755E-11 | LOW     | -9.5811E-11 | 1.000584 | 1.7E-04   | inf  | 2.0 | 3.3E-04 |
| Mean:           |            | 23.0     |             | 997    |               | 23.2        |                   |             |         |             |          |           |      |     |         |
|                 |            |          |             |        |               |             |                   |             |         |             |          |           |      |     |         |

First day 2009-02-02 Last day 2009-02-19 Median date of

measurements 2009-02-10

#### VSL-2

|                 | -          | _     | U,     | _      | Ű       |        | U.,     | •           | _       |             | •        |           | Eff.  |     | U(Q)=   |
|-----------------|------------|-------|--------|--------|---------|--------|---------|-------------|---------|-------------|----------|-----------|-------|-----|---------|
| Nominal current | Date       | Temp. | (Temp) | Press. | (Press) | Humid. | (Humid) | Current     | Range   | Reading     | Q        | u(Q), k=1 | DOF   | K   | k*u(Q)  |
| Α               |            | °C    | °C     | hPa    | hPa     | % R.H. | % R.H.  | A           | A       | A           |          |           |       |     |         |
| K6430           |            |       |        |        |         |        |         |             |         |             |          |           |       |     |         |
| 1.00E-13        |            | 23.0  | 0.1    | 1016   | 5       | 42.0   | 5       | 9.4999E-14  | 1.0E-12 | -9.5233E-14 | 1.002467 | 1.1E-04   | 84.4  | 2.0 | 2.3E-04 |
| -1.00E-13       |            | 23.0  | 0.1    | 1016   | 5       | 42.0   | 5       | -9.4999E-14 | 1.0E-12 | 9.4942E-14  | 0.999400 | 1.1E-04   | 85.2  | 2.0 | 2.3E-04 |
| 1.00E-12        |            | 23.0  | 0.1    | 1016   | 5       | 42.0   | 5       | 9.4999E-13  | 1.0E-12 | -9.5099E-13 | 1.001054 | 6.2E-05   | 63.0  | 2.0 | 1.3E-04 |
| -1.00E-12       |            | 23.0  | 0.1    | 1016   | 5       | 42.0   | 5       | -9.4999E-13 | 1.0E-12 | 9.5077E-13  | 1.000820 | 6.1E-05   | 67.0  | 2.0 | 1.2E-04 |
| 1.00E-11        |            | 23.0  | 0.1    | 1016   | 5       | 42.0   | 5       | 9.5001E-12  | 1.0E-11 | -9.5010E-12 | 1.000098 | 1.3E-05   | 98.0  | 2.0 | 2.7E-05 |
| -1.00E-11       |            | 23.0  | 0.1    | 1016   | 5       | 42.0   | 5       | -9.5001E-12 | 1.0E-11 | 9.5001E-12  | 0.999998 | 1.7E-05   | 183.0 | 2.0 | 3.5E-05 |
| 1.00E-10        |            | 23.0  | 0.1    | 1016   | 5       | 42.0   | 5       | 9.4997E-11  | 1.0E-10 | -9.5029E-11 | 1.000336 | 1.0E-05   | 40.3  | 2.1 | 2.1E-05 |
| -1.00E-10       |            | 23.0  | 0.1    | 1016   | 5       | 42.0   | 5       | -9.4997E-11 | 1.0E-10 | 9.5031E-11  | 1.000357 | 1.1E-05   | 51.6  | 2.0 | 2.3E-05 |
| Unidos E        |            |       |        |        |         |        |         |             |         |             |          |           |       |     |         |
| 1.00E-13        |            | 24.0  | 1.0    | 1016   | 5       | 42.0   | 5       | 9.4999E-14  | LOW     | 9.5224E-14  | 1.002370 | 1.2E-04   | 104   | 2.0 | 2.5E-04 |
| -1.00E-13       |            | 24.0  | 1.0    | 1016   | 5       | 42.0   | 5       | -9.4999E-14 | LOW     | -9.4935E-14 | 0.999332 | 1.2E-04   | 104   | 2.0 | 2.5E-04 |
| 1.00E-12        |            | 24.0  | 1.0    | 1016   | 5       | 42.0   | 5       | 9.4998E-13  | LOW     | 9.5113E-13  | 1.001210 | 5.0E-05   | 121   | 2.0 | 1.0E-04 |
| -1.00E-12       |            | 24.0  | 1.0    | 1016   | 5       | 42.0   | 5       | -9.4999E-13 | LOW     | -9.5035E-13 | 1.000379 | 8.5E-05   | 189   | 2.0 | 1.7E-04 |
| 1.00E-11        |            | 24.0  | 1.0    | 1016   | 5       | 42.0   | 5       | 9.5001E-12  | LOW     | 9.5020E-12  | 1.000197 | 1.6E-04   | 10    | 2.3 | 3.7E-04 |
| -1.00E-11       |            | 24.0  | 1.0    | 1016   | 5       | 42.0   | 5       | -9.5001E-12 | LOW     | -9.5131E-12 | 1.001368 | 1.6E-04   | 10    | 2.3 | 3.6E-04 |
| 1.00E-10        |            | 24.0  | 1.0    | 1016   | 5       | 42.0   | 5       | 9.4997E-11  | LOW     | 9.5066E-11  | 1.000730 | 3.1E-04   | 9     | 2.3 | 7.2E-04 |
| -1.00E-10       |            | 24.0  | 1.0    | 1016   | 5       | 42.0   | 5       | -9.4997E-11 | LOW     | -9.5042E-11 | 1.000476 | 3.1E-04   | 9     | 2.3 | 7.2E-04 |
| Mean:           |            | 23.5  |        | 1016   |         | 42.0   |         |             |         |             |          |           |       |     |         |
| First day       | 2009-03-02 |       |        |        |         |        |         |             |         |             |          |           |       |     |         |

Last day 2009-04-02

Median date of

measurements 2009-03-17

#### NPL-2

|                 |            |       | U      |        | U       |        | U       |             |        |             |          |           | Eff. |     | U(Q)=   |
|-----------------|------------|-------|--------|--------|---------|--------|---------|-------------|--------|-------------|----------|-----------|------|-----|---------|
| Nominal current | Date       | Temp. | (Temp) | Press. | (Press) | Humid. | (Humid) | Current     | Range  | Reading     | Q        | u(Q), k=1 | DOF  | k   | k*u(Q)  |
| A               |            | °C    | °C     | hPa    | hPa     | % R.H. | % R.H.  | А           | А      | А           |          |           |      |     |         |
| K6430           |            |       |        |        |         |        |         |             |        |             |          |           |      |     |         |
| 1.00E-13        | 2009-07-14 | 23.1  | 0.3    | 1021   | 0.3     | 36.0   | 5       | 9.3779E-14  | 1 pA   | 9.3821E-14  | 1.000460 | 1.4E-03   | 15   | 2.2 | 3.1E-03 |
| -1.00E-13       | 2009-07-14 | 23.1  | 0.3    | 1021   | 0.3     | 36.0   | 5       | -9.3046E-14 | 1 pA   | -9.2993E-14 | 0.999430 | 1.9E-03   | 15   | 2.2 | 4.1E-03 |
| 1.00E-12        | 2009-07-14 | 23.0  | 0.3    | 1021   | 0.3     | 36.0   | 5       | 9.3932E-13  | 1 pA   | 9.4011E-13  | 1.000840 | 9.6E-05   | 15   | 2.2 | 2.1E-04 |
| -1.00E-12       | 2009-07-14 | 23.0  | 0.3    | 1021   | 0.3     | 36.0   | 5       | -9.3856E-13 | 1 pA   | -9.3946E-13 | 1.000960 | 9.1E-05   | 15   | 2.2 | 2.0E-04 |
| 1.00E-11        | 2009-07-14 | 23.1  | 0.3    | 1020   | 0.3     | 38.0   | 5       | 9.3943E-12  | 10 pA  | 9.3960E-12  | 1.000176 | 2.5E-05   | 19   | 2.1 | 5.4E-05 |
| -1.00E-11       | 2009-07-14 | 23.1  | 0.3    | 1020   | 0.3     | 38.0   | 5       | -9.3935E-12 | 10 pA  | -9.3941E-12 | 1.000064 | 2.0E-05   | 19   | 2.1 | 4.3E-05 |
| 1.00E-10        | 2009-07-14 | 23.0  | 0.3    | 1020   | 0.3     | 38.9   | 5       | 9.3954E-11  | 100 pA | 9.3993E-11  | 1.000421 | 2.0E-05   | 28   | 2.1 | 4.2E-05 |
| -1.00E-10       | 2009-07-14 | 23.0  | 0.3    | 1020   | 0.3     | 38.9   | 5       | -9.3953E-11 | 100 pA | -9.3996E-11 | 1.000451 | 1.9E-05   | 28   | 2.1 | 4.0E-05 |
| Unidos E        |            |       |        |        |         |        |         |             |        |             |          |           |      |     |         |
| 1.00E-13        | 2009-07-15 | 23.0  | 0.3    | 1030   | 0.3     | 39.0   | 5       | 9.3790E-14  | LOW    | 9.3890E-14  | 1.001070 | 7.0E-04   | 19   | 2.1 | 1.5E-03 |
| -1.00E-13       | 2009-07-15 | 23.0  | 0.3    | 1030   | 0.3     | 38.8   | 5       | -9.3044E-14 | LOW    | -9.3179E-14 | 1.001450 | 5.0E-04   | 19   | 2.1 | 1.1E-03 |
| 1.00E-12        | 2009-07-15 | 22.8  | 0.3    | 1030   | 0.3     | 37.2   | 5       | 9.3934E-13  | LOW    | 9.3993E-13  | 1.000630 | 1.4E-04   | 19   | 2.1 | 3.0E-04 |
| -1.00E-12       | 2009-07-15 | 22.8  | 0.3    | 1030   | 0.3     | 37.2   | 5       | -9.3860E-13 | LOW    | -9.3934E-13 | 1.000780 | 1.4E-04   | 20   | 2.1 | 3.0E-04 |
| 1.00E-11        | 2009-07-15 | 23.0  | 0.3    | 1031   | 0.3     | 37.9   | 5       | 9.3945E-12  | LOW    | 9.3994E-12  | 1.000520 | 1.2E-04   | 18   | 2.1 | 2.6E-04 |
| -1.00E-11       | 2009-07-15 | 23.0  | 0.3    | 1031   | 0.3     | 37.9   | 5       | -9.3937E-12 | LOW    | -9.4047E-12 | 1.001170 | 1.2E-04   | 18   | 2.1 | 2.6E-04 |
| 1.00E-10        | 2009-07-15 | 23.0  | 0.3    | 1031   | 0.3     | 38.6   | 5       | 9.3955E-11  | LOW    | 9.3961E-11  | 1.000070 | 1.2E-04   | inf. | 2.0 | 2.4E-04 |
| -1.00E-10       | 2009-07-15 | 23.0  | 0.3    | 1031   | 0.3     | 38.6   | 5       | -9.3954E-11 | LOW    | -9.4069E-11 | 1.001220 | 1.2E-04   | inf. | 2.0 | 2.4E-04 |
| Mean:           |            | 23.0  |        | 1025   |         | 37.7   |         |             |        |             |          |           |      |     |         |
| First day       | 2009-07-14 |       |        |        |         |        |         |             |        |             |          |           |      |     |         |
| Last day        | 2009-07-15 |       |        |        |         |        |         |             |        |             |          |           |      |     |         |

Median date of

measurements 2009-07-15

#### PTB-11

|                 |            |       | U      |        | U       |        | U       |             |         |             |          |           | Eff. |     | U(Q)=   |
|-----------------|------------|-------|--------|--------|---------|--------|---------|-------------|---------|-------------|----------|-----------|------|-----|---------|
| Nominal current | Date       | Temp. | (Temp) | Press. | (Press) | Humid. | (Humid) | Current     | Range   | Reading     | Q        | u(Q), k=1 | DOF  | k   | k*u(Q)  |
| Α               |            | °C    | °C     | hPa    | hPa     | % R.H. | % R.H.  | Α           | А       | А           |          |           |      |     |         |
| K6430           |            |       |        |        |         |        |         |             |         |             |          |           |      |     |         |
| 1.00E-13        | 2009-07-27 | 22.9  | 0.5    | 997    | 2       | 49.3   | 1       | 9.6817E-14  | 1.0E-12 | 9.6833E-14  | 1.000163 | 2.7E-04   | 87   | 2.0 | 5.5E-04 |
| -1.00E-13       | 2009-07-27 | 22.9  | 0.5    | 997    | 2       | 49.3   | 1       | -9.5449E-14 | 1.0E-12 | -9.5589E-14 | 1.001466 | 3.5E-04   | 84   | 2.0 | 7.0E-04 |
| 1.00E-12        | 2009-07-29 | 23.6  | 0.5    | 1006   | 2       | 44.5   | 1       | 9.6702E-13  | 1.0E-12 | 9.6757E-13  | 1.000570 | 6.2E-05   | 741  | 2.0 | 1.2E-04 |
| -1.00E-12       | 2009-07-29 | 23.6  | 0.5    | 1006   | 2       | 44.5   | 1       | -9.5344E-13 | 1.0E-12 | -9.5395E-13 | 1.000537 | 5.8E-05   | 1338 | 2.0 | 1.2E-04 |
| 1.00E-11        | 2009-07-30 | 23.6  | 0.5    | 999    | 2       | 46.5   | 1       | 9.6690E-12  | 1.0E-11 | 9.6692E-12  | 1.000020 | 3.7E-05   | 966  | 2.0 | 7.5E-05 |
| -1.00E-11       | 2009-07-30 | 23.6  | 0.5    | 999    | 2       | 46.5   | 1       | -9.5328E-12 | 1.0E-11 | -9.5320E-12 | 0.999913 | 3.8E-05   | 856  | 2.0 | 7.6E-05 |
| 1.00E-10        | 2009-08-03 | 23.6  | 0.5    | 1000   | 2       | 46.4   | 1       | 9.7004E-11  | 1.0E-10 | 9.7031E-11  | 1.000282 | 1.2E-05   | inf  | 2.0 | 2.4E-05 |
| -1.00E-10       | 2009-08-03 | 23.6  | 0.5    | 1000   | 2       | 46.4   | 1       | -9.5645E-11 | 1.0E-10 | -9.5673E-11 | 1.000290 | 1.2E-05   | inf  | 2.0 | 2.4E-05 |
| Unidos E        |            |       |        |        |         |        |         |             |         |             |          |           |      |     |         |
| 1.00E-13        | 2009-08-10 | 23.8  | 0.5    | 1001   | 2       | 46.1   | 1       | 9.6791E-14  | LOW     | 9.6892E-14  | 1.001045 | 3.2E-04   | 42   | 2.1 | 6.7E-04 |
| -1.00E-13       | 2009-08-10 | 23.8  | 0.5    | 1001   | 2       | 46.1   | 1       | -9.5406E-14 | LOW     | -9.5598E-14 | 1.002012 | 3.8E-04   | 41   | 2.1 | 7.8E-04 |
| 1.00E-12        | 2009-08-07 | 23.8  | 0.5    | 1000   | 2       | 48.1   | 1       | 9.6679E-13  | LOW     | 9.6683E-13  | 1.000041 | 6.7E-05   | 915  | 2.0 | 1.3E-04 |
| -1.00E-12       | 2009-08-07 | 23.8  | 0.5    | 1000   | 2       | 48.1   | 1       | -9.5304E-13 | LOW     | -9.5458E-13 | 1.001611 | 6.8E-05   | 856  | 2.0 | 1.4E-04 |
| 1.00E-11        | 2009-08-06 | 23.4  | 0.5    | 1006   | 2       | 39.0   | 1       | 9.6686E-12  | LOW     | 9.6729E-12  | 1.000449 | 1.7E-04   | inf  | 2.0 | 3.4E-04 |
| -1.00E-11       | 2009-08-06 | 23.4  | 0.5    | 1006   | 2       | 39.0   | 1       | -9.5305E-12 | LOW     | -9.5399E-12 | 1.000989 | 1.7E-04   | inf  | 2.0 | 3.4E-04 |
| 1.00E-10        | 2009-08-04 | 23.4  | 0.5    | 1001   | 2       | 42.1   | 1       | 9.7004E-11  | LOW     | 9.7050E-11  | 1.000471 | 1.7E-04   | inf  | 2.0 | 3.3E-04 |
| -1.00E-10       | 2009-08-04 | 23.4  | 0.5    | 1001   | 2       | 42.1   | 1       | -9.5638E-11 | LOW     | -9.5699E-11 | 1.000634 | 1.7E-04   | inf  | 2.0 | 3.3E-04 |
| Mean:           |            | 23.5  |        | 1001   |         | 45.3   |         |             |         |             |          |           |      |     |         |
| First day       | 2009-07-27 |       |        |        |         |        |         |             |         |             |          |           |      |     |         |
| Last day        | 2009-08-10 |       |        |        |         |        |         |             |         |             |          |           |      |     |         |
| Median date of  | 0000 00 00 |       |        |        |         |        |         |             |         |             |          |           |      |     |         |
| measurements    | 2009-08-03 |       |        |        |         |        |         |             |         |             |          |           |      |     |         |

96

#### PTB-12

|                            |            |       | U      |        | U       |        | U       |             |         |             |          |           | Eff. |     | U(Q)=   |
|----------------------------|------------|-------|--------|--------|---------|--------|---------|-------------|---------|-------------|----------|-----------|------|-----|---------|
| Nominal current            | Date       | Temp. | (Temp) | Press. | (Press) | Humid. | (Humid) | Current     | Range   | Reading     | Q        | u(Q), k=1 | DOF  | k   | k*u(Q)  |
| A                          |            | °C    | °C     | hPa    | hPa     | % R.H. | % R.H.  | А           | А       | А           |          |           |      |     |         |
| K6430                      |            |       |        |        |         |        |         |             |         |             |          |           |      |     |         |
| 1.00E-13                   | 2011-01-26 | 22.9  | 0.5    | 1001   | 2       | 34.9   | 1       | 9.4611E-02  | 1.0E-12 | 9.4761E-02  | 1.001579 | 4.5E-04   | 100  | 2.0 | 9.2E-04 |
| -1.00E-13                  | 2011-01-26 | 22.9  | 0.5    | 1001   | 2       | 34.9   | 1       | -9.4611E-02 | 1.0E-12 | -9.4642E-02 | 1.000334 | 4.0E-04   | 99   | 2.0 | 8.1E-04 |
| 1.00E-12                   | 2011-01-25 | 22.9  | 0.5    | 995    | 2       | 36.8   | 1       | 9.4505E-01  | 1.0E-12 | 9.4580E-01  | 1.000796 | 6.4E-05   | 599  | 2.0 | 1.3E-04 |
| -1.00E-12                  | 2011-01-25 | 22.9  | 0.5    | 995    | 2       | 36.8   | 1       | -9.4505E-01 | 1.0E-12 | -9.4579E-01 | 1.000783 | 6.2E-05   | 696  | 2.0 | 1.2E-04 |
| 1.00E-11                   | 2011-01-24 | 23.1  | 0.5    | 993    | 2       | 40.9   | 1       | 9.4580E+00  | 1.0E-11 | 9.4590E+00  | 1.000103 | 3.4E-05   | inf  | 2.0 | 6.8E-05 |
| -1.00E-11                  | 2011-01-24 | 23.1  | 0.5    | 993    | 2       | 40.9   | 1       | -9.4580E+00 | 1.0E-11 | -9.4578E+00 | 0.999976 | 3.4E-05   | inf  | 2.0 | 6.7E-05 |
| 1.00E-10                   | 2011-01-21 | 23.2  | 0.5    | 1021   | 2       | 37.0   | 1       | 9.4533E+01  | 1.0E-10 | 9.4565E+01  | 1.000347 | 1.2E-05   | inf  | 2.0 | 2.4E-05 |
| -1.00E-10                  | 2011-01-21 | 23.2  | 0.5    | 1021   | 2       | 37.0   | 1       | -9.4532E+01 | 1.0E-10 | -9.4567E+01 | 1.000366 | 1.2E-05   | inf  | 2.0 | 2.4E-05 |
| Mean:                      |            | 23.0  |        | 1003   |         | 37.4   |         |             |         |             |          |           |      |     |         |
| First day                  | 2011-01-21 |       |        |        |         |        |         |             |         |             |          |           |      |     |         |
| Last day<br>Median date of | 2011-01-26 |       |        |        |         |        |         |             |         |             |          |           |      |     |         |
| measurements               | 2011-01-23 |       |        |        |         |        |         |             |         |             |          |           |      |     |         |

# **Appendix B: Uncertainty budgets of the participants**

During this comparison, 25 sets of calibrations, each with 2 instruments, 4 current values and 2 current directions were performed giving 400 results and also 400 uncertainty budgets. It is clear, that in this report it is impossible to present such a large number of uncertainty budgets. Instead, for each participant only two error budgets will be presented, namely those for the Keithley 6430 at the current values +100 fA and +100 pA. This choice was made because these current values are at the extremes and because the Keithley 6430 was the more stable instrument causing fewer problems (see also Section 3.5).

# **Uncertainty budgets of PTB (pilot institute)**

The uncertainty budgets were calculated using the following model equation:

$$Q_{\pm} = \frac{k_{a1} + k_{a2} + k_{a3}}{k_{cacdc} + k_{c} + k_{us} + k_{ul} + k_{r}} \cdot \overline{Q_{\pm}}$$

where eight "k" parameters with values equal to one are introduced in order to describe the different sources of type B uncertainties:

| k <sub>a1</sub>    | describes the limited resolution of the transfer instrument in the zero-phase before the current phase.    |
|--------------------|------------------------------------------------------------------------------------------------------------|
| k <sub>a2</sub>    | describes the limited resolution of the transfer instrument in the current phase.                          |
| k <sub>a3</sub>    | describes the limited resolution of the transfer instrument in the zero-phase following the current phase. |
| k <sub>C</sub>     | describes the uncertainty of the capacitance.                                                              |
| $k_{\text{Cacdc}}$ | describes the uncertainty of the capacitance due to ac-dc differences.                                     |
| k <sub>us</sub>    | describes the short-term uncertainty of the DMM.                                                           |
| $k_{ m ul}$        | describes the long-term uncertainty of the DMM.                                                            |
| kt                 | describes the timing uncertainty of the slope measurement.                                                 |

Generally,  $k_{a1}$  and  $k_{a3}$  are identical.  $k_{a1}$ ,  $k_{a2}$  and  $k_{a3}$  are negligible for the Keithley 6430 while the limited resolution and the "locking effect" of the Unidos E were taken into account by using the one-sigma-uncertainties given in the following table:

| Current:                        | 100 fA              | 1 pA                | 10 pA               | 100 pA               |
|---------------------------------|---------------------|---------------------|---------------------|----------------------|
| $u(k_{\rm a1}) = u(k_{\rm a3})$ | $1.5 \cdot 10^{-5}$ | $1.5 \cdot 10^{-6}$ | $1.5 \cdot 10^{-7}$ | 1.5·10 <sup>-8</sup> |
| $u(k_{a2})$                     | 3.0.10-5            | 3.0.10-5            | 1.6.10-4            | 1.6.10-4             |

In the following, only two uncertainty budgets are presented, namely those for the last one of the eleven regular PTB runs ("PTB-11").

| Quantity                      | Estimate | Standard<br>uncertainty | Prob.<br>dist. | Туре | Sensitivity<br>coefficient | Uncertainty contribution | Degrees of<br>freedom |
|-------------------------------|----------|-------------------------|----------------|------|----------------------------|--------------------------|-----------------------|
| $\overline{\mathcal{Q}}_{+}$  | 1.000163 | $2.7 \cdot 10^{-4}$     | N              | А    | 1                          | $2.7 \cdot 10^{-4}$      | 79                    |
| k <sub>a1</sub>               | 1        | 1.5.10-5                | R              | В    | 1                          | 1.5.10-5                 | x                     |
| <i>k</i> <sub><i>a</i>2</sub> | 1        | 3.0.10-5                | R              | В    | 1                          | 3.0.10-5                 | x                     |
| k <sub>a3</sub>               | 1        | 1.5.10-5                | R              | В    | 1                          | $1.5 \cdot 10^{-5}$      | x                     |
| $k_C$                         | 1        | 2.3.10-6                | R              | В    | -1                         | -2.3·10 <sup>-6</sup>    | x                     |
| $k_{Cacdc}$                   | 1        | 4.0.10-5                | R              | В    | -1                         | -4.0·10 <sup>-5</sup>    | x                     |
| k <sub>us</sub>               | 1        | $2.4 \cdot 10^{-5}$     | R              | В    | -1                         | -2.4·10 <sup>-5</sup>    | x                     |
| $k_{ul}$                      | 1        | $2.4 \cdot 10^{-6}$     | R              | В    | -1                         | -2.4·10 <sup>-6</sup>    | x                     |
| k <sub>t</sub>                | 1        | 5.8.10-8                | R              | В    | -1                         | -5.8·10 <sup>-8</sup>    | œ                     |
| $Q_+$                         | 1.000163 |                         |                |      |                            | 2.7.10-4                 | 87                    |

# Example of an uncertainty budget of PTB for the Keithley 6430 at a current of 95 fA:

# Example of an uncertainty budget of PTB for the Keithley 6430 at a current of 95 pA:

| Quantity                      | Estimate | Standard<br>uncertainty | Prob.<br>dist. | Туре | Sensitivity<br>coefficient | Uncertainty contribution    | Degrees of freedom |
|-------------------------------|----------|-------------------------|----------------|------|----------------------------|-----------------------------|--------------------|
| $\overline{Q}_{+}$            | 1.000282 | 2.6.10-6                | Ν              | А    | 1                          | 2.6.10-6                    | 59                 |
| k <sub>a1</sub>               | 1        | $1.5 \cdot 10^{-8}$     | R              | В    | 1                          | 1.5.10-8                    | x                  |
| <i>k</i> <sub><i>a</i>2</sub> | 1        | 3.0.10-8                | R              | В    | 1                          | 3.0.10-8                    | x                  |
| <i>k</i> <sub><i>a</i>3</sub> | 1        | $1.5 \cdot 10^{-8}$     | R              | В    | 1                          | 1.5.10-8                    | x                  |
| k <sub>C</sub>                | 1        | $2.3 \cdot 10^{-6}$     | R              | В    | -1                         | -2.3·10 <sup>-6</sup>       | x                  |
| k <sub>Cacdc</sub>            | 1        | 1.0.10-5                | R              | В    | -1                         | 1.0.10-5                    | x                  |
| k <sub>us</sub>               | 1        | 5.1·10 <sup>-6</sup>    | R              | В    | -1                         | -5.1·10 <sup>-6</sup>       | x                  |
| $k_{ul}$                      | 1        | $2.4 \cdot 10^{-6}$     | R              | В    | -1                         | $-2.4 \cdot 10^{-6}$        | x                  |
| $k_t$                         | 1        | 5.8.10-8                | R              | В    | -1                         | -5.8·10 <sup>-8</sup>       | x                  |
| $Q_+$                         | 1.000282 |                         |                |      |                            | <b>1.2·10</b> <sup>-5</sup> | x                  |

# Uncertainty budgets of VSL

The uncertainty budgets were calculated using the following model equations:

$$\begin{aligned} r &= I_{meas} \cdot f_T / I_{DCCS} \\ f_T &= 1 + \alpha \cdot dT \\ I_{DCCS} &= C \cdot dV dt \cdot f_C \cdot f_V / f_t - (V_{zero} / R_{leak}) \\ f_V &= 1 + \delta_{Vcal} \\ fC &= 1 + \delta_{CACDC} + \delta_{CT} \\ ft &= 1 + \delta_{tcal} + \delta_{ttrig} \end{aligned}$$

| Quantity            | Definition                                                                |
|---------------------|---------------------------------------------------------------------------|
| r                   | ratio (result)                                                            |
| I <sub>meas</sub>   | current reading of K6430                                                  |
| $f_{ m T}$          | effect of temperature on the K6430 reading                                |
| I <sub>DCCS</sub>   | current generated by the DCCS                                             |
| α                   | temperature coefficient (determined)                                      |
| dT                  | temperature deviation from nominal                                        |
| С                   | ac value of the high quality air-dielectric output capacitor              |
| dVdt                | voltage ramp as determined by the measurement program                     |
| $f_{ m C}$          | effect of ac-dc difference and temperature on the capacitance value       |
| $f_{ m V}$          | effect of uncertainty in the voltage measurements on the value of $dV/dt$ |
| $f_{ m t}$          | effect of uncertainty in triggering on the value of dV/dt                 |
| $V_{ m zero}$       | voltage mismatch between 0 V and the voltage at the middle of the ramp    |
| $R_{\rm leak}$      | leak resistance of the output capacitor                                   |
| $\delta_{ m Vcal}$  | effect of the uncertainty of the voltmeter                                |
| $\delta_{ m CACDC}$ | effect of the capacitor ac-dc difference                                  |
| $\delta_{ m CT}$    | effect of temperature on the capacitor                                    |
| $\delta_{ m tcal}$  | effect of the uncertainty of the time base of the pulse generator         |
| $\delta_{ m ttrig}$ | Effect of jitter in the triggering response of the voltmeter              |

| Quantity            | Value                           | Standard<br>uncertainty   | Distribution | Sensitivity coefficient | Uncertainty contribution | Degrees of freedom |
|---------------------|---------------------------------|---------------------------|--------------|-------------------------|--------------------------|--------------------|
| I <sub>meas</sub>   | -95.2271·10 <sup>-15</sup> A    | 11.7·10 <sup>-18</sup> A  | normal       | $11.10^{12}$            | 120.10-6                 | 517                |
| $f_{\mathrm{T}}$    | 1.000000                        | 115.10-6                  |              |                         |                          |                    |
| α                   | $1.0 \cdot 10^{-3} / K$         |                           |              |                         |                          |                    |
| dT                  | 0.0 K                           | 0.115 K                   | rectangular  | -1.0·10 <sup>-3</sup>   | -120·10 <sup>-6</sup>    | 50                 |
| С                   | 10.000079·10 <sup>-12</sup> F   | 25.0·10 <sup>-18</sup> F  | normal       | 100·10 <sup>9</sup>     | $2.5 \cdot 10^{-6}$      | 50                 |
| dVdt                | 9.49978520·10 <sup>-3</sup> V/s | 2.46·10 <sup>-9</sup> V/s | normal       | 110                     | 260·10 <sup>-9</sup>     | 520                |
| fc                  | 1.00000000                      | 8.16·10 <sup>-6</sup>     |              |                         |                          |                    |
| $f_{\rm V}$         | 1.00000000                      | $2.31 \cdot 10^{-6}$      |              |                         |                          |                    |
| $f_{ m t}$          | 1.000000000                     | 289·10 <sup>-9</sup>      |              |                         |                          |                    |
| $V_{ m zero}$       | 0.0 V                           | 57.7·10 <sup>-6</sup> V   | rectangular  | -1.1.10-3               | -61·10 <sup>-9</sup>     | 520                |
| R <sub>leak</sub>   | $10.0 \cdot 10^{15} \Omega$     |                           |              |                         |                          |                    |
| $\delta_{ m Vcal}$  | 0.0                             | $2.31 \cdot 10^{-6}$      | rectangular  | 1.0                     | 2.3.10-6                 | 520                |
| $\delta_{ m CACDC}$ | 0.0                             | 5.77·10 <sup>-6</sup>     | rectangular  | 1.0                     | 5.8·10 <sup>-6</sup>     | 8                  |
| $\delta_{ m CT}$    | 0.0                             | 5.77·10 <sup>-6</sup>     | rectangular  | 1.0                     | 5.8·10 <sup>-6</sup>     | 8                  |
| $\delta_{ m tcal}$  | 0.0                             | 289·10 <sup>-12</sup>     | rectangular  | -1.0                    | -290·10 <sup>-12</sup>   | 1250               |
| $\delta_{ m ttrig}$ | 0.0                             | 289·10 <sup>-9</sup>      | rectangular  | -1.0                    | -290·10 <sup>-9</sup>    | 1250               |
| r                   | 1.002405                        |                           | -            | -                       | 120·10 <sup>-6</sup>     | 182                |

# Uncertainty budget of VSL for the Keithley 6430 at a current of 95 fA:

| Quantity            | Value                        | Standard<br>uncertainty   | Distribution | Sensitivity coefficient | Uncertainty contribution | Degrees of<br>freedom |
|---------------------|------------------------------|---------------------------|--------------|-------------------------|--------------------------|-----------------------|
| I <sub>meas</sub>   | 95.03127·10 <sup>-12</sup> A | 366·10 <sup>-18</sup> A   | normal       | 11·10 <sup>9</sup>      | 3.9.10-6                 | 282                   |
| $f_{\mathrm{T}}$    | 1.00000000                   | 3.46.10-6                 |              |                         |                          |                       |
| α                   | 30.0·10 <sup>-6</sup> /K     |                           |              |                         |                          |                       |
| dT                  | 0.0 K                        | 0.115 K                   | rectangular  | -30·10 <sup>-6</sup>    | -3.5·10 <sup>-6</sup>    | 50                    |
| С                   | 999.9909·10 <sup>-12</sup> F | 50.0·10 <sup>-18</sup> F  | normal       | 1.0·10 <sup>9</sup>     | 50·10 <sup>-9</sup>      | 50                    |
| dVdt                | -0.094998218 V/s             | 3.46·10 <sup>-9</sup> V/s | normal       | 11                      | 36·10 <sup>-9</sup>      | 330                   |
| fc                  | 1.00000000                   | 8.16·10 <sup>-6</sup>     |              |                         |                          |                       |
| $f_{\rm V}$         | 1.000000000                  | 219·10 <sup>-9</sup>      |              |                         |                          |                       |
| $f_{\mathrm{t}}$    | 1.000000000                  | 289·10 <sup>-9</sup>      |              |                         |                          |                       |
| $V_{ m zero}$       | 0.0 V                        | 57.7·10 <sup>-6</sup> V   | rectangular  | -1.1.10-6               | -61·10 <sup>-12</sup>    | 330                   |
| R <sub>leak</sub>   | $100.0{\cdot}10^{15}\Omega$  |                           |              |                         |                          |                       |
| $\delta_{ m Vcal}$  | 0.0                          | 219·10 <sup>-9</sup>      | rectangular  | 1.0                     | 220·10 <sup>-9</sup>     | 330                   |
| $\delta_{ m CACDC}$ | 0.0                          | 5.77·10 <sup>-6</sup>     | rectangular  | 1.0                     | 5.8·10 <sup>-6</sup>     | 8                     |
| $\delta_{ m CT}$    | 0.0                          | 5.77·10 <sup>-6</sup>     | rectangular  | 1.0                     | 5.8·10 <sup>-6</sup>     | 8                     |
| $\delta_{ m tcal}$  | 0.0                          | 289·10 <sup>-12</sup>     | rectangular  | -1.0                    | -290·10 <sup>-12</sup>   | 1250                  |
| $\delta_{ m ttrig}$ | 0.0                          | 289·10 <sup>-9</sup>      | rectangular  | -1.0                    | -290·10 <sup>-9</sup>    | 1250                  |
| r                   | 1.000357                     |                           | -            | -                       | 9.68·10 <sup>-6</sup>    | 40                    |

# Uncertainty budget of VSL for the Keithley 6430 at a current of 95 pA:

# Uncertainty budgets of NPL

The uncertainty budgets were calculated using the following model equation:

Calibration factor:

$$Q = I_{\rm m}/I_{\rm c} = I_{\rm m}/(C \cdot dV/dt)$$

with:

| Quantity       | Definition                                                                    |
|----------------|-------------------------------------------------------------------------------|
| $I_{ m m}$     | current indicated by transfer instrument                                      |
| I <sub>c</sub> | $= C \cdot dV/dt$ = calibrated value of current generated by NPL system       |
| С              | value of an air-gap capacitor                                                 |
| dV/dt          | magnitude of linear voltage ramp measured on a DVM with calibrated time-base. |

The uncertainty budget was divided into three terms due to the uncertainties in C, dV/dt and  $I_m$ , which are shown in the uncertainty budget tables using bold type. Each term contains several sub-components, which are shown in the uncertainty budget tables in standard type.

 $u(C_C)$  = capacitance calibration  $u(C_D)$  = capacitor drift

 $u(V_A) =$  type A uncertainty of measuring dV/dt $u(V_R) =$  type B uncertainty of dV/dt due to a nonlinear ramp  $u(V_S) =$  scale factor of DVM  $u(V_L) =$  linearity of DVM u(t) = timing uncertainty

 $u(I_A)$  = standard deviation of measured current  $u(I_R)$  = describes the limited resolution of the Unidos, it is equal to zero for the Keithley 6430

 $u(I_R)$  applies only for the Unidos, for the Keithley it is  $u(I) = u(I_A)$ .

# Uncertainty budget of NPL for the Keithley 6430 at a current of 95 fA: (it is $u(I) = u(I_A)$ , because of $u(I_R) = 0$ )

| Quantity                | Estimate                    | Standard<br>uncertainty              | Prob.<br>dist./<br>type | Sensitivity<br>coefficient         | Uncertainty contribution    | Degrees of<br>freedom |
|-------------------------|-----------------------------|--------------------------------------|-------------------------|------------------------------------|-----------------------------|-----------------------|
|                         |                             | $u(C_C)=3.2 \text{ ppm}$             | В                       |                                    |                             | $\infty$              |
|                         |                             | $u(C_D)=0.0 \text{ ppm}$             | В                       |                                    |                             | $\infty$              |
| С                       | 9.99791·10 <sup>-13</sup> F | 3.2·10 <sup>-18</sup> F              |                         | -10 <sup>-12</sup> F <sup>-1</sup> | -3.2.10-6                   |                       |
|                         |                             | $u(V_A) = 1.5 \text{ ppm}$           | А                       |                                    |                             | 3                     |
|                         |                             | $u(V_R) = 5.0 \text{ ppm}$           | В                       |                                    |                             | $\infty$              |
|                         |                             | $u(V_S) = 1.2 \text{ ppm}$           | В                       |                                    |                             | $\infty$              |
|                         |                             | $u(V_L) = 0.1 \text{ ppm}$           | В                       |                                    |                             | $\infty$              |
|                         |                             | u(t) = 0.1  ppm                      | В                       |                                    |                             | x                     |
| dVdt                    | 0.0948213V/s                | 5.4·10 <sup>-7</sup> V/s             |                         | -10 s/V                            | -5.4·10 <sup>-6</sup>       |                       |
| Im                      | 9.6832·10 <sup>-14</sup> A  | $u(I) = 1.2 \cdot 10^{-16} \text{A}$ | Α                       | 10 <sup>13</sup> A <sup>-1</sup>   | <b>1.2·10</b> <sup>-3</sup> | 3                     |
| Calibration<br>factor Q | 1.0214                      |                                      |                         |                                    | 0.0012                      | 3                     |

# Uncertainty budget of NPL for the Keithley 6430 at a current of 95 pA:

(it is  $u(I) = u(I_A)$ , because of  $u(I_R) = 0$ )

| Quantity                | Estimate                     | Standard<br>uncertainty              | Prob.<br>dist./<br>type | Sensitivity coefficient            | Uncertainty contribution | Degrees of<br>freedom |
|-------------------------|------------------------------|--------------------------------------|-------------------------|------------------------------------|--------------------------|-----------------------|
|                         |                              | $u(C_C)=2.9 \text{ ppm}$             | В                       |                                    |                          | x                     |
|                         |                              | $u(C_D)=1.7$ ppm                     | В                       |                                    |                          | $\infty$              |
| С                       | 1.000123·10 <sup>-10</sup> F | 3.4·10 <sup>-16</sup> F              |                         | -10 <sup>-10</sup> F <sup>-1</sup> | -3.4·10 <sup>-6</sup>    |                       |
|                         |                              | $u(V_A) = 3.8 \text{ ppm}$           | А                       |                                    |                          | 3                     |
|                         |                              | $u(V_R) = 5.0 \text{ ppm}$           | В                       |                                    |                          | x                     |
|                         |                              | $u(V_S) = 1.2 \text{ ppm}$           | В                       |                                    |                          | x                     |
|                         |                              | $u(V_L) = 0.1 \text{ ppm}$           | В                       |                                    |                          | x                     |
|                         |                              | u(t) = 0.1  ppm                      | В                       |                                    |                          | x                     |
| dVdt                    | 0.951449V/s                  | 6.4·10 <sup>-6</sup> V/s             |                         | -1 s/V                             | -6.4·10 <sup>-6</sup>    |                       |
| Im                      | 9.51843·10 <sup>-11</sup> A  | $u(I) = 1.3 \cdot 10^{-15} \text{A}$ | Α                       | 10 <sup>10</sup> A <sup>-1</sup>   | 1.3·10 <sup>-3</sup>     | 4                     |
| Calibration<br>factor Q | 1.000291                     |                                      |                         |                                    | 1.5·10 <sup>-5</sup>     | 7                     |

# Uncertainty budgets of INRIM

The uncertainty budgets were calculated using the following model equation:

$$Q = 1 + \frac{1}{I^{n}} \left( I^{r} - C \frac{G_{v} \Delta V}{T} + I^{l} \right) + \delta Q$$

| Quantity       | Definition                                                                                                                                                                                       |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Т              | sampling interval                                                                                                                                                                                |
| С              | capacitance                                                                                                                                                                                      |
| I <sup>r</sup> | current component nominally equals zero, its uncertainty reflects the resolution of<br>the picoammeter, neglected even for the Unidos, due to the sufficiently large<br>variation of the current |
| $I^n$          | nominal current, zero uncertainty                                                                                                                                                                |
| ľ              | takes into account all effects of leakage currents from the capacitors which has<br>not been compensated by the fitting or averaging process                                                     |
| $\Delta V$     | true voltage variation during time T, zero uncertainty                                                                                                                                           |
| $G_v$          | voltmeter gain                                                                                                                                                                                   |
| δQ             | noise on Q                                                                                                                                                                                       |
| Q              | picoamperemeter gain (the measurand)                                                                                                                                                             |

# Uncertainty budget of INRIM for the Keithley 6430 at a current of +95 fA:

| Quantity<br>X <sub>i</sub> | Estimate<br>x <sub>i</sub> | Standard<br>uncertainty<br>$u(x_i)$ | Probability<br>distribution<br>/ method of<br>evaluation (A,B) | Sensitivity<br>coefficient<br>c <sub>i</sub> | Uncertainty<br>contribution<br><i>u</i> i | Degree of<br>freedom<br>ਮ                            |
|----------------------------|----------------------------|-------------------------------------|----------------------------------------------------------------|----------------------------------------------|-------------------------------------------|------------------------------------------------------|
| I <sup>r</sup>             | 0 A                        | negligible                          | В                                                              |                                              | negligible                                |                                                      |
| С                          | 1 pF                       | 31 aF                               | В                                                              | $-1.00 \cdot 10^{12} / F$                    | 3.1.10-5                                  | $\infty$                                             |
| $G_v$                      | 1                          | 5 ·10 <sup>-6</sup>                 | В                                                              | -1                                           | 5.0·10 <sup>-6</sup>                      | $\infty$                                             |
| Т                          | 1.047 s                    | 1.047 µs                            | В                                                              | 0.955                                        | $1.047 \cdot 10^{-6}$                     | x                                                    |
| $I^l$                      | 0 A                        | 11 aA                               | В                                                              | $1.05 \cdot 10^{13}$ /A                      | $1.1 \cdot 10^{-4}$                       | x                                                    |
| δQ                         |                            |                                     | А                                                              | 1                                            | 4.0.10-4                                  | > 30                                                 |
| Calibration<br>factor Q    | 1.000529                   |                                     |                                                                |                                              | <b>4.2·10</b> <sup>-4</sup>               | $effective \\ degree \\ of freedom \\ v_{eff} = >30$ |

| Quantity<br>X <sub>i</sub> | Estimate<br>x <sub>i</sub> | Standard<br>uncertainty<br>$u(x_i)$ | Probability<br>distribution<br>/ method of<br>evaluation (A,B) | Sensitivity<br>coefficient<br>c <sub>i</sub> | Uncertainty<br>contribution<br>u <sub>i</sub> | Degree of<br>freedom<br>ਮ                                   |
|----------------------------|----------------------------|-------------------------------------|----------------------------------------------------------------|----------------------------------------------|-----------------------------------------------|-------------------------------------------------------------|
| $I^r$                      | 0 A                        | negligible                          | В                                                              |                                              | negligible                                    |                                                             |
| С                          | 1000 pF                    | 31.1 fF                             | В                                                              | -1.00·10 <sup>9</sup> /F                     | 3.01.10-5                                     | x                                                           |
| $G_v$                      | 1                          | 5 ·10 <sup>-6</sup>                 | В                                                              | -1                                           | 5.0·10 <sup>-6</sup>                          | x                                                           |
| Т                          | 1.047 s                    | 1.047 µs                            | В                                                              | 0.955                                        | $1.047 \cdot 10^{-6}$                         | x                                                           |
| $I^l$                      | 0 A                        | 0.96 fA                             | В                                                              | $1.05 \cdot 10^{10} / A$                     | 1.1.10-5                                      | œ                                                           |
| δQ                         |                            |                                     | А                                                              | 1                                            | $2.1 \cdot 10^{-5}$                           | > 30                                                        |
| Calibration<br>factor Q    | 1.000529                   |                                     |                                                                | <u>.</u>                                     | 3.8·10 <sup>-5</sup>                          | effective<br>degree<br>of freedom<br>v <sub>eff</sub> = >30 |

Uncertainty budget of INRIM for the Keithley 6430 at a current of +95 pA:

# **Uncertainty budgets of METAS**

The uncertainty budgets were calculated using the following model equation:

$$Q = \frac{I \cdot K4}{\sum_{s_{-} cal} \cdot K1 \cdot K2} \sqrt{K_{V} / \Delta_{t} }$$

with:

| Quantity              | Definition                                                           |
|-----------------------|----------------------------------------------------------------------|
| Ι                     | unit under test (UUT) output                                         |
| $C_{s\_cal}$          | $C_s$ value from calibration                                         |
| K1                    | uncertainty factor on $C_s$ due to temperature                       |
| K2                    | uncertainty factor on $C_s$ due to extrapolation to DC               |
| $\Delta V / \Delta t$ | voltage ramp slope                                                   |
| K3                    | uncertainty factor due to DVM resolution                             |
| <i>K4</i>             | uncertainty factor due to UUT resolution (applied only for Unidos E) |
| Q                     | result                                                               |

# Uncertainty budget of METAS for the Keithley 6430 at a current of +95 fA:

| Quantity              | Estimate                     | Standard<br>uncertainty         | Prob.<br>dist. | Туре | Sensitivity<br>coefficient | Uncertainty contribution | Degrees of freedom |
|-----------------------|------------------------------|---------------------------------|----------------|------|----------------------------|--------------------------|--------------------|
| Ι                     | 9.502248·10 <sup>-14</sup> A | 5.64·10 <sup>-17</sup> A        | Ν              | А    | $1.05 \cdot 10^{13} / A$   | 5.94·10 <sup>-4</sup>    | 15                 |
| $C_{S\_cal}$          | 9.999973·10 <sup>-12</sup> F | $5.04 \cdot 10^{-17}  \text{F}$ | R              | В    | $1.00 \cdot 10^{12}  / F$  | 5.04·10 <sup>-5</sup>    | $\infty$           |
| K1                    | 1                            | \5.00\10 <sup>-9</sup>          | R              | В    | 1                          | 5.00·10 <sup>-9</sup>    | $\infty$           |
| K2                    | 1                            | 1.00.10-5                       | R              | В    | 1                          | 1.00.10-5                | $\infty$           |
| $\Delta V / \Delta t$ | 0.09500019 V/s               | 8.86·10 <sup>-7</sup>           | Ν              | А    | 10.53 s/V                  | 9.33·10 <sup>-6</sup>    | 15                 |
| K3                    | 1                            | $1.75 \cdot 10^{-6}$            | R              | В    | 1                          | 1.75.10-6                | $\infty$           |
| Q                     | 1.000261                     |                                 |                |      |                            | 2.57·10 <sup>-4</sup>    | 15                 |

# Uncertainty budget of METAS for the Keithley 6430 at a current of +95 pA:

| Quantity              | Estimate                      | Standard<br>uncertainty         | Prob.<br>dist. | Туре | Sensitivity<br>coefficient | Uncertainty contribution | Degrees of freedom |
|-----------------------|-------------------------------|---------------------------------|----------------|------|----------------------------|--------------------------|--------------------|
| Ι                     | 9.502306·10 <sup>-11</sup> A  | $1.64 \cdot 10^{-15} A$         | Ν              | А    | $1.05 \cdot 10^{10} / A$   | $1.73 \cdot 10^{-5}$     | 14                 |
| $C_{S\_cal}$          | 1.00002954·10 <sup>-9</sup> F | $1.04 \cdot 10^{-14} \text{ F}$ | R              | В    | $1.00 \cdot 10^9  / F$     | $1.04 \cdot 10^{-5}$     | $\infty$           |
| K1                    | 1                             | $2.00 \cdot 10^{-6}$            | R              | В    | 1                          | $2.00 \cdot 10^{-6}$     | $\infty$           |
| K2                    | 1                             | $1.00 \cdot 10^{-6}$            | R              | В    | 1                          | $1.00 \cdot 10^{-6}$     | $\infty$           |
| $\Delta V / \Delta t$ | 0.09500024 V/s                | $1.75 \cdot 10^{-6}$            | N              | А    | 10.53 s/V                  | 9.53·10 <sup>-6</sup>    | 14                 |
| K3                    | 1                             |                                 | R              | В    | 1                          | $1.75 \cdot 10^{-6}$     | x                  |
| Q                     | 1.000211                      |                                 |                |      |                            | 2.25·10 <sup>-5</sup>    | 37                 |

# Uncertainty budgets of UME

The uncertainty budgets were calculated using the following model equation:

$$Q = I \cdot k \cdot \frac{R_s + \delta R_{drf} + \delta R_{Temps} + \delta R_{voltS}}{V_{appl} + \delta V_{drf}}$$

with:

| Quantity           | Definition                                                                                                                                          |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| $R_S$              | reference resistance value                                                                                                                          |
| $\delta R_{drf}$   | drift of the resistance of the reference since its last calibration. This value is added to the uncertainty calculation as rectangular distribution |
| $\delta R_{TempS}$ | temperature related resistance variation of the reference. This value is added to the uncertainty calculation as rectangular distribution           |
| $\delta R_{voltS}$ | resistance variation of the reference resistor due the to the applied voltage (power coefficient)                                                   |
| $V_{appl}$         | applied voltage value                                                                                                                               |
| $\delta V_{drf}$   | drift of the voltage of the reference since its last calibration. This value is added to the uncertainty calculation as rectangular distribution    |
| k                  | a factor with nominal value of 1, its uncertainty describes the limited resolution of the digital display                                           |
| Ι                  | the picoamperemeter's readout.                                                                                                                      |
| Q                  | Result                                                                                                                                              |

# Uncertainty budget of UME for the Keithley 6430 at a current of +98 fA:

| Quantity                | Estimate                    | Standard<br>uncertainty         | Probability<br>distribution/  | Sensitivity<br>coefficient           | Uncertainty contribution    | Degree of<br>freedom                                   |
|-------------------------|-----------------------------|---------------------------------|-------------------------------|--------------------------------------|-----------------------------|--------------------------------------------------------|
| X <sub>i</sub>          | x <sub>i</sub>              | $u(x_i)$                        | method of<br>evaluation (A,B) | c <sub>i</sub>                       | ui                          | ν <sub>i</sub>                                         |
| $R_S$                   | $9.82 \cdot 10^{11} \Omega$ | $1.5 \cdot 10^7 \Omega$         | normal k=2/ A                 | $-1.05{\cdot}10^{-12}\Omega^{-1}$    | -7.91·10 <sup>-6</sup>      | $\infty$                                               |
| $\delta R_{drf}$        | 0                           | $1 \cdot 10^7 \Omega$           | rectangular / B               | $-1.01 \cdot 10^{-11}  \Omega^{-1}$  | -5.84·10 <sup>-5</sup>      | 5                                                      |
| $\delta R_{TempS}$      | 0                           | $2 \cdot 10^7  \Omega$          | rectangular / B               | $-1.01 \cdot 10^{-11} \ \Omega^{-1}$ | -1.17·10 <sup>-4</sup>      | x                                                      |
| $\delta R_{voltS}$      | 0                           | $3 \cdot 10^5 \Omega$           | rectangular / B               | $-1.01 \cdot 10^{-11}  \Omega^{-1}$  | -1.75·10 <sup>-6</sup>      | 5                                                      |
| $V_{appl}$              | 0.0930 V                    | 1.10 <sup>-7</sup> V            | normal k=2/ A                 | $-1.11 \cdot 10^{1}  \text{V}^{-1}$  | -5.57·10 <sup>-7</sup>      | 100                                                    |
| $\delta V_{drf}$        | 0                           | $1 \cdot 10^{-5} V$             | rectangular / B               | $-1.06 \cdot 10^{-1} \text{ V}^{-1}$ | -6.15·10 <sup>-7</sup>      | 200                                                    |
| k                       | 1.0                         | $2.5 \cdot 10^{-4}$             | rectangular / B               | -1.0                                 | -1.49·10 <sup>-4</sup>      | $\infty$                                               |
| Ι                       | -9.8035 <sup>-14</sup> A    | $7.02 \cdot 10^{-16} \text{ A}$ | normal / A                    | $1.05 \cdot 10^{13}  \text{A}^{-1}$  | $7.42 \cdot 10^{-3}$        | 2                                                      |
| Calibration<br>factor Q | -1.036                      |                                 |                               |                                      | <b>1.7·10</b> <sup>-2</sup> | effective<br>degree of<br>freedom<br>$v_{\rm eff} = 2$ |
| Quantity                | Estimate                    | Standard<br>uncertainty  | Probability<br>distribution/  | Sensitivity<br>coefficient              | Uncertainty contribution | Degree of<br>freedom                                      |
|-------------------------|-----------------------------|--------------------------|-------------------------------|-----------------------------------------|--------------------------|-----------------------------------------------------------|
| X <sub>i</sub>          | x <sub>i</sub>              | $u(x_i)$                 | method of<br>evaluation (A,B) | c <sub>i</sub>                          | ui                       | ν <sub>i</sub>                                            |
| $R_S$                   | $9.87 \cdot 10^{10} \Omega$ | $1.5 \cdot 10^7 \Omega$  | normal k=2/ A                 | $-1.01 \cdot 10^{-11}  \Omega^{-1}$     | -7.57·10 <sup>-5</sup>   | $\infty$                                                  |
| $\delta R_{drf}$        | 0                           | $1 \cdot 10^7  \Omega$   | rectangular / B               | $-1.01 \cdot 10^{-11}  \Omega^{-1}$     | -5.84·10 <sup>-5</sup>   | 5                                                         |
| $\delta R_{TempS}$      | 0                           | $2 \cdot 10^7  \Omega$   | rectangular / B               | $-1.01 \cdot 10^{-11}  \Omega^{-1}$     | -1.17·10 <sup>-4</sup>   | œ                                                         |
| $\delta R_{voltS}$      | 0                           | $3 \cdot 10^5 \Omega$    | rectangular / B               | $-1.01 \cdot 10^{-11}  \Omega^{-1}$     | -1.75·10 <sup>-6</sup>   | 5                                                         |
| $V_{appl}$              | 9.383 V                     | 1.10 <sup>-5</sup> V     | normal k=2/ A                 | -1.065·10 <sup>-1</sup> V <sup>-1</sup> | -5.31·10 <sup>-7</sup>   | 100                                                       |
| $\delta V_{drf}$        | 0                           | 1.10 <sup>-5</sup> V     | rectangular / B               | $-1.065 \cdot 10^{-1}  V^{-1}$          | -6.15·10 <sup>-7</sup>   | 200                                                       |
| k                       | 1.0                         | $2.5 \cdot 10^{-5}$      | rectangular / B               | -1.0                                    | -1.44·10 <sup>-5</sup>   | x                                                         |
| Ι                       | -94.722·10 <sup>-12</sup> A | 2.56·10 <sup>-14</sup> A | normal / A                    | $1.05 \cdot 10^{10}  \text{A}^{-1}$     | $2.70 \cdot 10^{-4}$     | 5                                                         |
| Calibration<br>factor Q | -0.9962                     |                          |                               |                                         | 4·10 <sup>-4</sup>       | effective<br>degree of<br>freedom<br>$v_{\rm eff} = 8.65$ |

#### Uncertainty budget of UME for the Keithley 6430 at a current of +95 pA:

## Uncertainty budgets of VNIIM

The uncertainty budgets were calculated using the following model equation:

$$Q = I \cdot k / [C \cdot (\Delta V / \Delta t) + \Delta I_P + \Delta I_L]$$

With:

| Quantity     | Definition                                                                                        |
|--------------|---------------------------------------------------------------------------------------------------|
| Ι            | the picoamperemeter's readout                                                                     |
| k            | a factor with nominal value of 1, its uncertainty describes the limited resolution of the readout |
| $\Delta V$   | voltage of 0.95V (for range $10^{-13} - 10^{-11}$ A) or 9.5V (for range $10^{-10}$ A)             |
| $\Delta t$   | time interval (100 s)                                                                             |
| С            | Capacitance                                                                                       |
| $\Delta I_P$ | parasitic currents, due to e.g. external sources like cosmic rays or piezoelectric effects        |
| $\Delta I_L$ | leakage currents, due to possibly imperfect isolation                                             |

#### Uncertainty budget of VNIIM for the Keithley 6430 at a current of +95 fA:

| Quantity<br>X <sub>i</sub> | Estimate<br>x <sub>i</sub>        | Standard<br>uncertainty<br>$u(x_i)$ | Probability<br>distribution/<br>method of<br>evaluation (A,B) | Sensitivity<br>coefficient<br>c <sub>i</sub> | Uncertaint<br>y<br>contributio<br>n | Degree of<br>freedom<br><sub>Vi</sub>                      |
|----------------------------|-----------------------------------|-------------------------------------|---------------------------------------------------------------|----------------------------------------------|-------------------------------------|------------------------------------------------------------|
|                            |                                   |                                     |                                                               |                                              | ui                                  |                                                            |
| Ι                          | $0.95003 \cdot 10^{13} \text{ A}$ | $1.5 \cdot 10^{-17} \text{ A}$      | normal A                                                      | $-1.05 \cdot 10^{13} \text{ A}^{-1}$         | 1.6.10-6                            | 19                                                         |
| k                          | 1.0                               | $2.9 \cdot 10^{-6}$                 | rectangular / B                                               | 1                                            | $2.9 \cdot 10^{-5}$                 | x                                                          |
| $	\Delta V$                | 0.95 V                            | 5.8·10 <sup>-5</sup> V              | rectangular / B                                               | -1.05 V <sup>-1</sup>                        | -6.1·10 <sup>-5</sup>               | x                                                          |
| $\Delta t$                 | 100 s                             | 5.8·10 <sup>-6</sup> s              | rectangular / B                                               | 0.01 s <sup>-1</sup>                         | 5.8·10 <sup>-8</sup>                | x                                                          |
| С                          | 10.00339·10 <sup>-12</sup> F      | 2.9·10 <sup>-17</sup> F             | rectangular / B                                               | $-1.0 \cdot 10^{11}  \mathrm{F}^{-1}$        | -2.9·10 <sup>-6</sup>               | x                                                          |
| $\Delta I_P$               | 00                                | $5.8 \cdot 10^{-18} \text{ A}$      | rectangular / B                                               | $1.05 \cdot 10^{13} \text{ A}^{-1}$          | 6.1.10 <sup>-5</sup>                | œ                                                          |
| $\Delta I_L$               | -9.8035 <sup>-14</sup> A          | 1.2·10 <sup>-17</sup> A             | rectangular / B                                               | $1.05 \cdot 10^{13}  \text{A}^{-1}$          | $1.3 \cdot 10^{-4}$                 | x                                                          |
| Calibratio<br>n factor Q   | 1.00003                           |                                     |                                                               |                                              | <b>1.7·10</b> <sup>-2</sup>         | effective<br>degree of<br>freedom<br>v <sub>eff</sub> = 72 |

| Quantity<br>X <sub>i</sub> | Estimate<br>x <sub>i</sub>   | Standard<br>uncertainty<br>$u(x_i)$ | Probability<br>distribution/<br>method of<br>evaluation (A,B) | Sensitivity<br>coefficient<br>c <sub>i</sub> | Uncertaint<br>y<br>contributio<br>n<br>u: | Degree of<br>freedom<br>Vi                              |
|----------------------------|------------------------------|-------------------------------------|---------------------------------------------------------------|----------------------------------------------|-------------------------------------------|---------------------------------------------------------|
| Ι                          | 0.949987·10 <sup>-10</sup> A | 9.05·10 <sup>-15</sup> A            | normal A                                                      | 1.053·10 <sup>10</sup> A <sup>-1</sup>       | 9.53.10-5                                 | 39                                                      |
| k                          | 1.0                          | 2.9·10 <sup>-6</sup>                | rectangular / B                                               | 1                                            | 2.9.10-6                                  | œ                                                       |
| $\Delta V$                 | 9.5 V                        | 5.8·10 <sup>-5</sup> V              | rectangular / B                                               | -0.10 V <sup>-1</sup>                        | -6.1·10 <sup>-6</sup>                     | x                                                       |
| $\Delta t$                 | 100 s                        | 5.8·10 <sup>-5</sup> s              | rectangular / B                                               | 0.01 s <sup>-1</sup>                         | 5.8·10 <sup>-7</sup>                      | x                                                       |
| С                          | 999.864·10 <sup>-12</sup> F  | 2.9·10 <sup>-15</sup> F             | rectangular / B                                               | $-1.0 \cdot 10^9  \mathrm{F}^{-1}$           | -2.9·10 <sup>-6</sup>                     | x                                                       |
| $\Delta I_P$               | 0                            | 4.6·10 <sup>-17</sup> A             | rectangular / B                                               | $1.05 \cdot 10^{10} \text{ A}^{-1}$          | 4.8·10 <sup>-7</sup>                      | x                                                       |
| $\Delta I_L$               | 0                            | 3.5·10 <sup>-16</sup> A             | rectangular / B                                               | $1.05 \cdot 10^{10}  \text{A}^{-1}$          | 3.7.10-6                                  | x                                                       |
| Calibration<br>factor Q    | 0.999987                     |                                     |                                                               |                                              | 9.57·10 <sup>-5</sup>                     | effective<br>degree of<br>freedom<br>$v_{\rm eff} = 40$ |

## Uncertainty budget of VNIIM for the Keithley 6430 at a current of +95 pA:

# Uncertainty budgets of NIS

The uncertainty budgets were calculated using the following model equations:

$$Q = K \cdot \frac{I}{I^*}$$
 with  $I^*$  being the applied current:

$$I^* = C_1 \cdot \frac{V}{R \cdot C_2}$$

| Quantity              | Definition                                                                                            |
|-----------------------|-------------------------------------------------------------------------------------------------------|
| Q                     | calibration factor (ratio of readout and applied current)                                             |
| Ι                     | the picoamperemeter's readout                                                                         |
| K                     | a factor of nominal value 1, its uncertainty describes the limited resolution of the digital display. |
| $C_1$                 | capacitance of the "differentiating" capacitor $C_1$                                                  |
| V                     | Voltage                                                                                               |
| R                     | Resistor                                                                                              |
| $I^*$                 | the applied current                                                                                   |
| <i>C</i> <sub>2</sub> | capacitance of the "integrating" capacitor C <sub>2</sub>                                             |

#### Uncertainty budget of NIS for the Keithley 6430 at a current of +101 fA:

| Quantity<br>X <sub>i</sub> | Estimate<br>x <sub>i</sub>    | Standard<br>uncertainty<br>$u(x_i)$ | Probability<br>distribution<br>/ method of<br>evaluation (A,B) | Sensitivity<br>coefficient<br>c <sub>i</sub> | Uncertainty<br>contribution<br><i>u</i> <sub>i</sub> | Degree of<br>freedom<br>Vi                                   |
|----------------------------|-------------------------------|-------------------------------------|----------------------------------------------------------------|----------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|
| Ι                          | 101.633·10 <sup>-15</sup> A   | 1.7·10 <sup>-16</sup> A             | normal / A                                                     | $1 \cdot 10^{17} A^{-1}$                     | $1.67 \cdot 10^{-3}$                                 | 11                                                           |
| K                          | 1                             | $2.88 \cdot 10^{-4}$                | rectangular / B                                                | 1                                            | $2.88 \cdot 10^{-4}$                                 | x                                                            |
| $C_{I}$                    | 1.00012·10 <sup>-9</sup> F    | $2 \cdot 10^{-15}  F$               | normal / B                                                     | $1 \cdot 10^9  \mathrm{F}^{-1}$              | $2 \cdot 10^{-6}$                                    | x                                                            |
| V                          | 0.10000832 V                  | 1.5·10 <sup>-7</sup> V              | normal / B                                                     | 10 V <sup>-1</sup>                           | $1.5 \cdot 10^{-6}$                                  | x                                                            |
| R                          | 99.9938 $\cdot 10^{6} \Omega$ | $6.5 \cdot 10^3 \Omega$             | normal / B                                                     | $1.10^{-8} \Omega^{-1}$                      | 6.5·10 <sup>-5</sup>                                 | x                                                            |
| $C_2$                      | 10.0201 · 10 <sup>-6</sup> F  | $5.01 \cdot 10^{-10} \mathrm{F}$    | normal / B                                                     | $1 \cdot 10^5  \mathrm{F}^{-1}$              | 5.01.10-5                                            | x                                                            |
| Calibration<br>factor Q    | 1.018                         |                                     |                                                                |                                              | 0.0017                                               | effective<br>degree of<br>freedom<br>v <sub>eff</sub> = 11.7 |

| Quantity<br>X <sub>i</sub> | Estimate<br>x <sub>i</sub>    | Standard<br>uncertainty<br>$u(x_i)$ | Probability<br>distribution<br>/ method of<br>evaluation(A,B) | Sensitivity<br>coefficient<br>c <sub>i</sub> | Uncertainty<br>contribution<br><i>u</i> i | Degree<br>of<br>freedom<br>Vi                           |
|----------------------------|-------------------------------|-------------------------------------|---------------------------------------------------------------|----------------------------------------------|-------------------------------------------|---------------------------------------------------------|
| Ι                          | 100.011·10 <sup>-12</sup> A   | 1.7·10 <sup>-15</sup> A             | normal / A                                                    | $1 \cdot 10^{14} \text{ A}^{-1}$             | 1.71.10-5                                 | 11                                                      |
| K                          | 1                             | 2.9.10-5                            | rectangular / B                                               | 1                                            | 2.9.10-5                                  | x                                                       |
| $C_{I}$                    | 1.00012·10 <sup>-9</sup> F    | $2 \cdot 10^{-15}  F$               | normal / B                                                    | $1 \cdot 10^9 \text{ F}^{-1}$                | $2 \cdot 10^{-6}$                         | $\infty$                                                |
| V                          | 10.000264 V                   | $5 \cdot 10^{-6} V$                 | normal / B                                                    | 0.1 V <sup>-1</sup>                          | $5 \cdot 10^{-7}$                         | $\infty$                                                |
| R                          | 99.9938 $\cdot 10^{6} \Omega$ | $6.5 \cdot 10^3 \Omega$             | normal / B                                                    | $1.10^{-8} \Omega^{-1}$                      | 6.5·10 <sup>-5</sup>                      | $\infty$                                                |
| $C_2$                      | 1.00183·10 <sup>-6</sup> F    | $5.01 \cdot 10^{-11}  \text{F}$     | normal / B                                                    | $1 \cdot 10^6  \mathrm{F}^{-1}$              | 5.01·10 <sup>-5</sup>                     | $\infty$                                                |
| Calibration<br>factor Q    | 1.0017                        |                                     |                                                               |                                              | 8.87 · 10 <sup>-5</sup>                   | $effective \\ degree of \\ freedom \\ v_{eff} = \infty$ |

#### Uncertainty budget of NIS for the Keithley 6430 at a current of +100 pA:

#### Uncertainty budgets of IPQ

The uncertainty budgets were calculated using the following model equation:

$$Q = \frac{I \cdot k}{C \cdot \frac{dV}{dt}}$$

with:

| Quantity | Definition                                                           |
|----------|----------------------------------------------------------------------|
| Ι        | readout of the instrument                                            |
| k        | a constant value of 1 associated to the readout's limited resolution |
| С        | the capacitance used for the current source                          |
| dV       | the voltage step used to charge the capacitor                        |
| dt       | the charging time                                                    |

For each current value, a set of several (between 8 and 13) measuring runs have been performed. Their results are then combined to a final result. In the text below, the budgets for the worst case are presented.

# Uncertainty budget of IPQ for the worst case of calibrating the Keithley 6430 at a current of +96 fA:

| Quantity                | Estimate                | Standard<br>uncertainty | Probability<br>distribution /<br>method of | Sensitivity<br>coefficient            | Uncertainty contribution | Degree of<br>freedom                  |
|-------------------------|-------------------------|-------------------------|--------------------------------------------|---------------------------------------|--------------------------|---------------------------------------|
| Xi                      | xi                      | u(xi)                   | evaluation                                 | $c_{\mathrm{i}}$                      | ui                       | $v_i$                                 |
| Ι                       | 9.6·10 <sup>-14</sup> A | 5.7·10 <sup>-16</sup> A | normal/A                                   | $1.1 \cdot 10^{13}  \text{A}^{-1}$    | 6.0·10 <sup>-3</sup>     | 141                                   |
| k                       | 1                       | $2.9 \cdot 10^{-4}$     | rectangular/B                              | 1                                     | 2.9.10-4                 | 50                                    |
| С                       | 1.0·10 <sup>-11</sup> F | 5.0·10 <sup>-17</sup> F | normal/A                                   | $-1.0 \cdot 10^{11}  \mathrm{F}^{-1}$ | -5.0·10 <sup>-6</sup>    | 50                                    |
| dV                      | 1.6 V                   | 8.7·10 <sup>-6</sup> V  | rectangular/B                              | -6.2·10 <sup>-1</sup> V <sup>-1</sup> | -5.3·10 <sup>-6</sup>    | 50                                    |
| dt                      | 170 s                   | $1.0 \cdot 10^{-12}$ s  | rectangular/B                              | $5.8 \cdot 10^{-3} \text{ s}^{-1}$    | 5.8·10 <sup>-15</sup>    | 50                                    |
| Calibration<br>factor Q | 1.0038                  |                         |                                            |                                       | 6.0·10 <sup>-3</sup>     | eff. degree of freedom $v_{eff}$ =142 |

| Quantity                | Estimate                | Standard<br>uncertainty        | Probability<br>distribution /<br>method of | Sensitivity<br>coefficient          | Uncertainty contribution | Degree of<br>freedom                       |
|-------------------------|-------------------------|--------------------------------|--------------------------------------------|-------------------------------------|--------------------------|--------------------------------------------|
| Xi                      | xi                      | u(xi)                          | evaluation                                 | c <sub>i</sub>                      | ui                       | $v_i$                                      |
| Ι                       | 9.5·10 <sup>-11</sup> A | 5.5·10 <sup>-14</sup> A        | normal/A                                   | $1.1 \cdot 10^{10}  \text{A}^{-1}$  | 5.8·10 <sup>-4</sup>     | 36                                         |
| k                       | 1                       | $2.9 \cdot 10^{-4}$            | rectangular/B                              | 1                                   | 2.9.10-4                 | 50                                         |
| С                       | 1.0·10 <sup>-9</sup> F  | 5.0·10 <sup>-15</sup> F        | normal/A                                   | $-1.0 \cdot 10^9  \mathrm{F}^{-1}$  | -5.0·10 <sup>-6</sup>    | 50                                         |
| dV                      | 4.0 V                   | 9.4·10 <sup>-6</sup> V         | rectangular/B                              | $-2.5 \cdot 10^{-1} \text{ V}^{-1}$ | -5.3·10 <sup>-6</sup>    | 50                                         |
| dt                      | 42 s                    | $1.0 \cdot 10^{-12} \text{ s}$ | rectangular/B                              | $2.4 \cdot 10^{-2} \text{ s}^{-1}$  | $2.4 \cdot 10^{-14}$     | 50                                         |
| Calibration<br>factor Q | 1.00044                 |                                |                                            |                                     | 6.5·10 <sup>-4</sup>     | eff. degree<br>of freedom<br>$v_{eff}$ =54 |

# Uncertainty budget of IPQ for the worst case of calibrating the Keithley 6430 at a current of +95 pA:

## Uncertainty budgets of LNE

The uncertainty budgets were calculated using the following model equation:

$$Q = \frac{I_{R}}{I_{ES} + I_{EGR} - \left(\frac{I_{E 0 R} + I_{EFR}}{2}\right) + \left(\frac{I_{M 0} + I_{MF}}{2}\right) - C_{D} + C'_{D}}$$

with:

| Quantity        | Definition                                                                                   |
|-----------------|----------------------------------------------------------------------------------------------|
| $I_R$           | in step 1: readout of DUT in phase b) of a calibration cycle                                 |
| $I_{ES}$        | in step 2: all systematic uncertainty components                                             |
| $I_{EGR}$       | in step 2: random uncertainty component in phase b)                                          |
| $I_{EOR}$       | in step 2: random uncertainty component in phase a)                                          |
| $I_{EFR}$       | in step 2: random uncertainty component in phase c)                                          |
| $I_{M0}$        | in step 1: readout of DUT in phase a) of a calibration cycle                                 |
| $I_{MF}$        | in step 1: readout of DUT in phase c) of a calibration cycle                                 |
| $C_D$           | in step 1: describes the systematic uncertainty component due to nonlinearities of the drift |
| C' <sub>D</sub> | in step 2: describes the systematic uncertainty component due to nonlinearities of the drift |

#### Uncertainty budget of LNE for the Keithley 6430 at a current of +95 fA:

| Quantity                | Estimate                   | Standard<br>uncertainty | Probability<br>distribution | Sensitivity coefficient             | Uncertainty contribution | Degree of<br>freedom                            |
|-------------------------|----------------------------|-------------------------|-----------------------------|-------------------------------------|--------------------------|-------------------------------------------------|
| $X_{\mathrm{i}}$        | xi                         | u(xi)                   | / method of<br>evaluation   | <i>c</i> <sub>i</sub>               | <i>u</i> i               | $v_i$                                           |
| $I_R$                   | 9.5506·10 <sup>-14</sup> A | 1.6·10 <sup>-17</sup> A | normal/A                    | $1.05 \cdot 10^{13}  \text{A}^{-1}$ | $1.7 \cdot 10^{-4}$      | 721                                             |
| $I_{ES}$                | 9.5538·10 <sup>-14</sup> A | 5.3·10 <sup>-17</sup> A | normal/A                    | $1.05 \cdot 10^{13}  \text{A}^{-1}$ | 5.6.10-4                 | 8                                               |
| I <sub>EGR</sub>        | 0 A                        | 3.1·10 <sup>-17</sup> A | normal/A                    | $1.06 \cdot 10^{13}  \text{A}^{-1}$ | 3.2.10-4                 | 11                                              |
| I <sub>EOR</sub>        | 0 A                        | 3.9·10 <sup>-17</sup> A | normal/A                    | $5.24 \cdot 10^{12}  \text{A}^{-1}$ | $2.0 \cdot 10^{-4}$      | 9                                               |
| $I_{EFR}$               | 0 A                        | 3.3·10 <sup>-17</sup> A | normal/A                    | $5.24 \cdot 10^{12}  \text{A}^{-1}$ | $1.7 \cdot 10^{-5}$      | 5                                               |
| $I_{MO}$                | -1.53·10 <sup>-16</sup> A  | 1.0·10 <sup>-17</sup> A | normal/A                    | $5.24 \cdot 10^{12}  \text{A}^{-1}$ | 5.4·10 <sup>-5</sup>     | 800                                             |
| $I_{MF}$                | $6.80 \cdot 10^{-17} A$    | 1.3·10 <sup>-17</sup> A | normal/A                    | $5.24 \cdot 10^{12}  \text{A}^{-1}$ | 6.6·10 <sup>-5</sup>     | 639                                             |
| $C_D$                   | 0 A                        | 9.2·10 <sup>-17</sup> A | rectangular/B               | $1.05 \cdot 10^{13}  \text{A}^{-1}$ | 9.6·10 <sup>-4</sup>     | 8                                               |
| C' <sub>D</sub>         | 0 A                        | 6.4·10 <sup>-17</sup> A | rectangular/B               | $1.05 \cdot 10^{13}  \text{A}^{-1}$ | $6.7 \cdot 10^{-4}$      | 8                                               |
| Calibration<br>factor Q | 1.0001                     |                         |                             |                                     | 1.4·10 <sup>-3</sup>     | eff. degree<br>of freedom<br>$v_i=2.7\cdot10^3$ |

| Quantity                | Estimate                      | Standard<br>uncertainty        | Probability<br>distribution / | Sensitivity coefficient             | Uncertainty contribution | Degree of<br>freedom                             |
|-------------------------|-------------------------------|--------------------------------|-------------------------------|-------------------------------------|--------------------------|--------------------------------------------------|
| Xi                      | xi                            | u(xi)                          | evaluation                    | $c_{\mathrm{i}}$                    | <i>u</i> <sub>i</sub>    | $v_i$                                            |
| $I_R$                   | 9.4998463·10 <sup>-11</sup> A | 4.0·10 <sup>-17</sup> A        | normal/A                      | $1.05 \cdot 10^{10}  \text{A}^{-1}$ | 4.3·10 <sup>-7</sup>     | 1116                                             |
| $I_{ES}$                | 9.49706·10 <sup>-11</sup> A   | 1.1·10 <sup>-15</sup> A        | normal/A                      | $1.05 \cdot 10^{10}  \text{A}^{-1}$ | 1.2.10-5                 | 8                                                |
| I <sub>EGR</sub>        | 0 A                           | 2.9·10 <sup>-17</sup> A        | normal/A                      | $1.05 \cdot 10^{10}  \text{A}^{-1}$ | 3.0.10-7                 | 12                                               |
| I <sub>EOR</sub>        | 0 A                           | 4.0·10 <sup>-17</sup> A        | normal/A                      | $5.27 \cdot 10^9  \text{A}^{-1}$    | $2.1 \cdot 10^{-7}$      | 5                                                |
| I <sub>EFR</sub>        | 0 A                           | 2.4·10 <sup>-17</sup> A        | normal/A                      | $5.27 \cdot 10^9  \text{A}^{-1}$    | $1.2 \cdot 10^{-7}$      | 4                                                |
| $I_{M0}$                | 8.68·10 <sup>-16</sup> A      | 2.9·10 <sup>-17</sup> A        | normal/A                      | $5.27 \cdot 10^9  \text{A}^{-1}$    | $1.5 \cdot 10^{-7}$      | 930                                              |
| I <sub>MF</sub>         | $7.17 \cdot 10^{-16} A$       | 3.3·10 <sup>-17</sup> A        | normal/A                      | $5.27 \cdot 10^9  \text{A}^{-1}$    | $1.8 \cdot 10^{-7}$      | 719                                              |
| $C_D$                   | 0 A                           | 4.0·10 <sup>-17</sup> A        | rectangular/B                 | $1.05 \cdot 10^{10}  \text{A}^{-1}$ | $4.2 \cdot 10^{-7}$      | 8                                                |
| C' <sub>D</sub>         | 0 A                           | $4.3 \cdot 10^{-17} \text{ A}$ | rectangular/B                 | $1.05 \cdot 10^{10}  \text{A}^{-1}$ | 4.6.10-7                 | x                                                |
| Calibration<br>factor Q | 1.000285                      |                                |                               |                                     | 1.2·10 <sup>-5</sup>     | eff. degree<br>of freedom<br>$v_i=1.5\cdot 10^7$ |

#### Uncertainty budget of LNE for the Keithley 6430 at a current of +95 pA:

## Uncertainty budgets of CEM

The uncertainty budgets were calculated using the following model equation:

$$Q = -\bar{I}_{x}kk_{0}\frac{R}{V_{c}}$$

with:

| Quantity | Definition                                                                                                                                              |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q        | calibration factor of the picoammeter for the corresponding current, defined as ratio from measured current to standard current                         |
| $I_x$    | average of the readings of the picoammeter for the corresponding current                                                                                |
| k        | factor with nominal value of 1, whose uncertainty describes the limited resolution of the digital display                                               |
| $k_0$    | factor with nominal value of 1, whose uncertainty describes the limited resolution of the digital display for zero measurements                         |
| $V_C$    | voltage of the calibrator                                                                                                                               |
| R        | value of the resistance standard. Its uncertainty includes uncertainty components due to calibration, drift, ambient conditions and voltage coefficient |

#### Uncertainty budget of CEM for the Keithley 6430 at a current of +95 fA:

| Quantity<br>X <sub>i</sub> | Estimate<br>x <sub>i</sub> | Standard<br>uncertainty<br>$u_r(x_i)$ | Probability<br>distribution<br>/ method of<br>evaluation (A,B) | Sensitivity<br>coefficient<br>c <sub>i</sub> | Uncertainty<br>contribution<br><i>u</i> i | Degree of<br>freedom<br>Vi                               |
|----------------------------|----------------------------|---------------------------------------|----------------------------------------------------------------|----------------------------------------------|-------------------------------------------|----------------------------------------------------------|
| Ι                          | 95.191·10 <sup>-15</sup>   | 4.7.10-4                              | normal / A                                                     | 1.0                                          | 4.7.10-4                                  | 11                                                       |
| k                          | 1.0                        | 3.10-5                                | rectangular / B                                                | 1.0                                          | 3.10-5                                    | x                                                        |
| $k_0$                      | 1.0                        | 3.10-5                                | rectangular / B                                                | 1.0                                          | 3.10-5                                    | $\infty$                                                 |
| R                          | 99.9587 GΩ                 | 80·10 <sup>-6</sup>                   | normal / A+B                                                   | 1.0                                          | 80·10 <sup>-6</sup>                       | 10                                                       |
| $V_C$                      | -0.0095 V                  | $2.5 \cdot 10^{-5}$                   | rectangular / B                                                | 1.0                                          | $2.5 \cdot 10^{-5}$                       | $\infty$                                                 |
| Calibration<br>factor Q    | 1.00159                    |                                       |                                                                |                                              | <b>4.8</b> ∙e <sup>-4</sup>               | effective<br>degrees of<br>freedom<br>$v_{\rm eff} = 12$ |

| Quantity                | Estimate                  | Standard<br>uncertainty | Probability<br>distribution     | Sensitivity coefficient | Uncertainty contribution | Degree of<br>freedom                                 |
|-------------------------|---------------------------|-------------------------|---------------------------------|-------------------------|--------------------------|------------------------------------------------------|
| Xi                      | x <sub>i</sub>            | $u_r(x_i)$              | / method of<br>evaluation (A,B) | c <sub>i</sub>          | u <sub>i</sub>           | $ u_{i}$                                             |
| Ι                       | 95.0658·10 <sup>-12</sup> | 2.9.10-6                | normal / A                      | 1.0                     | 2.9·10 <sup>-6</sup>     | 23                                                   |
| k                       | 1.0                       | 3.10-6                  | rectangular / B                 | 1.0                     | 3.10-6                   | $\infty$                                             |
| $k_0$                   | 1.0                       | 3.10-6                  | rectangular / B                 | 1.0                     | 3.10-6                   | $\infty$                                             |
| R                       | 99.9587 GΩ                | 80·10 <sup>-6</sup>     | normal / A+B                    | 1.0                     | 80·10 <sup>-6</sup>      | 10                                                   |
| V <sub>C</sub>          | -9.5 V                    | 1.9.10-6                | rectangular / B                 | 1.0                     | 1.9.10-6                 | x                                                    |
| Calibration<br>factor Q | 1.000279                  |                         |                                 | -                       | 80·10 <sup>-6</sup>      | $effective \\ degrees of \\ freedom \\ v_{eff} = 10$ |

Uncertainty budget of CEM for the Keithley 6430 at a current of +95 pA:

#### **Uncertainty budgets of KRISS**

The uncertainty budgets were calculated using the following model equation:

$$Q = \frac{I_D}{C \cdot \frac{dV}{dt}}$$

The uncertainties were calculated according to:

$$u(Q) = \frac{R_{D}}{C \cdot \frac{dV}{dt}} \sqrt{u^{2}(R_{D}) + k_{D}^{2} + k_{v}^{2} + u^{2}(C)}$$

with:

| Quantity | Definition                                                         |
|----------|--------------------------------------------------------------------|
| $I_D$    | current reading of the DUT                                         |
| $k_D$    | factor describing the resolution of the DUT                        |
| С        | capacitance                                                        |
| dV/dt    | voltage slope                                                      |
| $k_V$    | factor describing the uncertainty of the voltage measurement       |
| $k_t$    | factor describing the uncertainty of the time interval measurement |

#### Uncertainty budget of KRISS for the Keithley 6430 at a current of +97 fA:

| Quantity                | Estimate                      | Standard<br>uncertainty  | Probability<br>distribution /<br>method of | Sensitivity<br>coefficient           | Uncertainty contribution | Degree of<br>freedom                       |
|-------------------------|-------------------------------|--------------------------|--------------------------------------------|--------------------------------------|--------------------------|--------------------------------------------|
| Xi                      | xi                            | u(xi)                    | evaluation                                 | c <sub>i</sub>                       | <i>u</i> <sub>i</sub>    | $v_i$                                      |
| $I_D$                   | $0.09727 \cdot 10^{-12} A$    | 4.68·10 <sup>-17</sup> A | normal/A                                   | $1.03 \cdot 10^{13}  \text{A}^{-1}$  | 4.81.10-4                | 39                                         |
| k <sub>D</sub>          | 1                             | 5.77·10 <sup>-6</sup>    | rectangular/B                              | 1                                    | 5.77·10 <sup>-6</sup>    | x                                          |
| С                       | 10.000242·10 <sup>-12</sup> F | 2.12·10 <sup>-17</sup> F | rectangular/B                              | $1.0 \cdot 10^{11}  \mathrm{F}^{-1}$ | 2.12.10-6                | œ                                          |
| $k_V$                   | 1                             | 2.31.10-7                | rectangular/B                              | 1                                    | 2.31.10-7                | œ                                          |
| k <sub>t</sub>          | 1                             | 5.77·10 <sup>-8</sup>    | rectangular/B                              | 1                                    | 5.77·10 <sup>-8</sup>    | œ                                          |
| Calibration<br>factor Q | 0.999072                      |                          |                                            |                                      | 4.81·10 <sup>-4</sup>    | eff. degree<br>of freedom<br>$v_{eff}$ =39 |

| Quantity                | Estimate                             | Standard<br>uncertainty  | Probability<br>distribution /<br>method of | Sensitivity<br>coefficient          | Uncertainty contribution | Degree of<br>freedom                   |
|-------------------------|--------------------------------------|--------------------------|--------------------------------------------|-------------------------------------|--------------------------|----------------------------------------|
| Xi                      | xi                                   | u(xi)                    | evaluation                                 | ci                                  | ui                       | $v_i$                                  |
| $I_D$                   | 97.889·10 <sup>-12</sup> A           | 2.83·10 <sup>-16</sup> A | normal/A                                   | $1.02 \cdot 10^{10}  \text{A}^{-1}$ | 2.86.10-6                | 39                                     |
| k <sub>D</sub>          | 1                                    | 5.77·10 <sup>-6</sup>    | rectangular/B                              | 1                                   | 5.77·10 <sup>-6</sup>    | x                                      |
| С                       | $1000.0072 \cdot 10^{-12} \text{ F}$ | 1.17·10 <sup>-15</sup> F | rectangular/B                              | $1.0 \cdot 10^9  \mathrm{F}^{-1}$   | 1.17.10-6                | œ                                      |
| $k_V$                   | 1                                    | 2.31.10-7                | rectangular/B                              | 1                                   | 2.31.10-7                | œ                                      |
| $k_t$                   | 1                                    | 5.77·10 <sup>-8</sup>    | rectangular/B                              | 1                                   | 5.77·10 <sup>-8</sup>    | œ                                      |
| Calibration<br>factor Q | 1.000200                             |                          |                                            |                                     | 6.57·10 <sup>-6</sup>    | eff. degree of freedom $v_{eff}$ =1000 |

Uncertainty budget of KRISS for the Keithley 6430 at a current of +98 pA:

# **Uncertainty budgets of MIKES**

The uncertainty budgets were calculated using the following model equation:

$$Q = \frac{I_{meas}}{I_{gen}} = \frac{I_{disp} - I_{sz} + I_{reso}}{\oint_{cal} + \Delta C_{drift} + \Delta C_{T}} \underbrace{\int \frac{dU_{meas} + \Delta U_{cal}}{dt_{meas}} + I_{setup}}_{dt_{meas}}$$

with:

| Quantity                 | Definition                                                                                                                                           |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q                        | result                                                                                                                                               |
| I <sub>meas</sub>        | current measured by the ammeter under test excluding the ammeter bias                                                                                |
| Igen                     | current generated                                                                                                                                    |
| <b>I</b> <sub>disp</sub> | current displayed by the ammeter under test                                                                                                          |
| I <sub>sz</sub>          | "setup zero." Current measured by the ammeter under test during the periods of zero dU/dt. Average of the values with positive and negative voltages |
| I <sub>reso</sub>        | addition to the measured current representing the limited resolution (only effective for calibrating the Unidos E)                                   |
| $C_{cal}$                | value of the differentiating capacitor                                                                                                               |
| $\Delta C_{drift}$       | addition to the capacitor value representing the expected drift after the last calibration                                                           |
| $\Delta C_T$             | the change in capacitor value because of the difference from the nominal temperature                                                                 |
| $dU_{meas}$              | the average of the voltage differences of the two sequential DMM recordings during a ramp                                                            |
| $\Delta U_{cal}$         | addition to the $dU_{meas}$ representing the difference from the displayed value according to the calibration                                        |
| <i>dt<sub>meas</sub></i> | inverse of the DMM triggering frequency                                                                                                              |
| Isetup                   | additional correction current representing capacitor dependent differences in the results                                                            |

| Quantity<br>X <sub>i</sub> | Estimate<br>x <sub>i</sub>   | Standard<br>uncertainty<br>u(x <sub>i</sub> )<br>k=1 | Probability<br>distribution<br>/ method of<br>evaluation<br>(A,B) | Sensitivity<br>coefficient<br>c <sub>i</sub> | Uncertainty<br>contribution<br><i>u</i> i | Degree of<br>freedom<br><sub>Vi</sub> |
|----------------------------|------------------------------|------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------|-------------------------------------------|---------------------------------------|
| $C_{cal}$                  | 1.000028·10 <sup>-11</sup> F | 1.00·10 <sup>-17</sup> F                             | normal, B                                                         | $-9.933 \cdot 10^{+10} \text{ F}^{-1}$       | -9.933·10 <sup>-07</sup>                  | 8                                     |
| $\Delta C_{drift}$         | 0.0 F                        | 1.00·10 <sup>-17</sup> F                             | square, B                                                         | $-9.933 \cdot 10^{+10} \text{ F}^{-1}$       | -9.933·10 <sup>-07</sup>                  | 8                                     |
| $\Delta C_T$               | 8.0831·10 <sup>-18</sup> F   | 1.05·10 <sup>-19</sup> F                             | normal, B                                                         | $-9.933 \cdot 10^{+10} \text{ F}^{-1}$       | -1.043.10-08                              | 8                                     |
| $dU_{meas}$                | 0.01998950 V                 | 9.25·10 <sup>-08</sup> V                             | normal, A                                                         | -49.56 V <sup>-1</sup>                       | -4.585·10 <sup>-06</sup>                  | 1003                                  |
| $\Delta U_{cal}$           | 0.0 V                        | 6.00·10 <sup>-08</sup> V                             | normal, B                                                         | -49.56 V <sup>-1</sup>                       | -2.972·10 <sup>-06</sup>                  | 8                                     |
| $dt_{meas}$                | 2.09900 s                    | 2.10·10 <sup>-07</sup> s                             | square, B                                                         | 4.720·10 <sup>-01</sup> s <sup>-1</sup>      | 9.907·10 <sup>-08</sup>                   | 8                                     |
| I <sub>sz</sub>            | 1.87·10 <sup>-16</sup> A     | 6.10·10 <sup>-18</sup> A                             | normal, A                                                         | -1.030·10 <sup>+13</sup> A <sup>-1</sup>     | -6.281·10 <sup>-05</sup>                  | 2349                                  |
| Isetup                     | 0.0 A                        | 2.50·10 <sup>-17</sup> A                             | square, B                                                         | $-1.030 \cdot 10^{+13}  \text{A}^{-1}$       | $-2.574 \cdot 10^{-04}$                   | 8                                     |
| I <sub>disp</sub>          | 9.55816·10 <sup>-14</sup> A  | 7.22·10 <sup>-18</sup> A                             | normal, A                                                         | $1.040 \cdot 10^{+13} \text{ A}^{-1}$        | $7.508 \cdot 10^{-05}$                    | 1003                                  |
| Total A<br>Type            |                              |                                                      | -                                                                 | ·                                            | 0.000098                                  | 2407                                  |
| Total B<br>Type            |                              |                                                      |                                                                   |                                              | 0.000257                                  | 80                                    |
| Q                          | 1.001668                     |                                                      |                                                                   |                                              | 0.000275                                  | 150223                                |

## Uncertainty budget of MIKES for the Keithley 6430 at a current of +95 fA:

| Quantity<br>X <sub>i</sub> | Estimate<br>x <sub>i</sub>   | Standard<br>uncertainty<br>u(x <sub>i</sub> )<br>k=1 | Probability<br>distribution<br>/ method of<br>evaluation<br>(A,B) | Sensitivity<br>coefficient<br>c <sub>i</sub> | Uncertainty<br>contribution<br><i>u</i> i | Degree of<br>freedom<br><sup>v</sup> i |
|----------------------------|------------------------------|------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------|-------------------------------------------|----------------------------------------|
| $C_{cal}$                  | 9.999675·10 <sup>-10</sup> F | 1.00·10 <sup>-15</sup> F                             | normal, B                                                         | $-1.000 {\cdot} 10^{+09}  F^{-1}$            | $-1.000 \cdot 10^{-06}$                   | 8                                      |
| $\Delta C_{drift}$         | 0.0 F                        | 1.00·10 <sup>-15</sup> F                             | square, B                                                         | $-1.000 \cdot 10^{+09}  \mathrm{F}^{-1}$     | $-1.000 \cdot 10^{-06}$                   | 8                                      |
| $\Delta C_T$               | 6.1498·10 <sup>-17</sup> F   | 3.75·10 <sup>-17</sup> F                             | normal, B                                                         | $-1.000 \cdot 10^{+09} \text{ F}^{-1}$       | -3.750·10 <sup>-08</sup>                  | 8                                      |
| $dU_{meas}$                | 0.19990161 V                 | 8.26·10 <sup>-07</sup> V                             | normal, A                                                         | -4.978 V <sup>-1</sup>                       | -4.113·10 <sup>-06</sup>                  | 1167                                   |
| $\Delta U_{cal}$           | 0.0 V                        | 4.00·10 <sup>-07</sup> V                             | normal, B                                                         | -4.978 V <sup>-1</sup>                       | -1.990·10 <sup>-06</sup>                  | 8                                      |
| dt <sub>meas</sub>         | 2.09900 s                    | 2.10·10 <sup>-07</sup> s                             | square, B                                                         | $4.765 \cdot 10^{-01} \text{ s}^{-1}$        | $1.000 \cdot 10^{-07}$                    | 8                                      |
| I <sub>sz</sub>            | 8.54·10 <sup>-15</sup> A     | 1.91·10 <sup>-16</sup> A                             | normal, A                                                         | $-1.050 \cdot 10^{+10} \text{ A}^{-1}$       | $2.001 \cdot 10^{-06}$                    | 2388                                   |
| Isetup                     | 0.0 A                        | 1.00·10 <sup>-14</sup> A                             | square, B                                                         | $-1.050 \cdot 10^{+10}  A^{-1}$              | $1.050 \cdot 10^{-04}$                    | 8                                      |
| I <sub>disp</sub>          | -9.52735·10 <sup>-11</sup> A | 3.71·10 <sup>-16</sup> A                             | normal, A                                                         | $1.050 \cdot 10^{+10} \text{ A}^{-1}$        | -3.894·10 <sup>-06</sup>                  | 1067                                   |
| Total A<br>Type            |                              |                                                      |                                                                   |                                              | 0.000006                                  | 2786                                   |
| Total B<br>Type            |                              |                                                      |                                                                   |                                              | 0.000105                                  | 80                                     |
| Q                          | 1.000330                     |                                                      |                                                                   |                                              | 0.000105                                  | 2.62·10 <sup>08</sup>                  |

# Uncertainty budget of MIKES for the Keithley 6430 at a current of +95 pA: