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Standard Reference Photometers (SRP) for Measurements
of Ground-Level Ozone

Latitude (N}

O, measurements are linked to NIST-made
SRPs maintained at NIST and BIPM

Global, regional and national ozone
measurement networks = thousands
of measurements of the surface
ozone concentration every day

P . Over 60 SRPs are deployed world-wide
¥V 2 Basis for quantifying compliance with
' environmental regulations

Range (1 — 1000 nmol/mol) in air

Cross section has an uncertainty of 1.9 %.



Standard Reference Photometer Measurement Principle

SRP instruments are certified by comparison to primary SRPs for which the ozone mole fraction,

Xo3, and its combined uncertainty, u(x,;), are derived from the Beer-Lambert law and measured T, and p of the
sample; the Boltzmann constant, kg; pathlength, L; and the 1961 Hearn value for the ozone absorption
cross-section at 253.65 nm (air), o.

PHYS. 50C., 1961, vor. 78

The Absorption of Ozone in the Ultra-violet and Visible
Regions of the Spectrum
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Guidelines for Data Analysis & Review

 |dentified a set of 14 independent, peer-reviewed 254-nm cross section
measurements for O,

Selection Criteria

Publication dates 1950 — 2016

Room temperature (295 K £ 2.5 K) cross section data

Cross-section explicitly indicated in publication or inferred via simple calculation
For repeated measurements by a group, only the last published value will be used

e Data were not corrected. Known bias was introduced via uncertainty;
asymmetric components considered

e Uncertainties were evaluated according to GUM (1995). In some cases, this

required introducing additional uncertainty not specified in the original
publication




Studies Considered

Table 1. List of the fourteen independent publications selected to calculate the consensus value of the ozone absorption cross-section at
253.65 nm.

[dentification

Author(s)

Traceability

Sample purity

AFCRC-359 [35]
Hearn-61 [3]
JPL-64 [33]
Griggs-68 [34]
JPL-86 [39]
UniMin-87 [37]
HSCA-88 [41]
UniReims-93 [32]
UniBremen-99 [31]
UPMC-04[44]
NIES-06 [10]
UniBremen-14 [45]
BIPM-15 [26]

BIPM-16 [11]

Inn and Tanaka
Hearn

De More and Raper
Griggs

Molina and Molina
Mauersberger et al
Yoshino ef al
Daumont ef al
Burrows et al
Dufour ef al
Tanimoto ef al
Gorshelev et al
Viallon ef al

Viallon et al

Ozone pressure
Ozone pressure
Oxygen pressure
Ozone pressure
Ozone pressure
Ozone pressure
Ozone pressure
Ozone pressure
¥ NO; cross-section via GPT
Ozone pressure
" NO/N, standards via GPT
Ozone pressure
Ozone pressure

* NO/N, standards via GPT

Assumed pure

Degradation to O, considered
Assumed full conversion of O3 to O,
Assumed pure

Assumed pure

Assessed by mass spectrometry
Assumed pure

Degradation to O, considered
NA air sample/SRP

Assumed pure

NA air sample/SRP
Degradation to O, considered
Assessed by residual pressure
measurements

NA air sample/SRP

"GPT: Gas-phase titration of the NO + O,— NO, + O, reaction



Uncertainties

Common to all measurements:
Type A: repeatability
Type B : pressure, temperature, optical pathlength, absorbance

u = (ur,l2 + ur,22 t .. )1/2

rtot
Experiment-specific:

sample purity. [(Mauersberger 1987, ... Viallon 2015) ]

GPT with gas standards: [Tanimoto (2006), Viallon (2015)]
GPT with NO, absorption cross section: [Burrows (1999)
intensity of IR rovibrational transition of O: [Dufour (2004)]
effect of multiple reflections (Inn & Tanaka, Hearn, DeMore,
Griggs, Molina Mauersberger, Yoshino, Brion, Gorshelev)




6 [/ 1077 ¢m? molecule™

1.20

1.18

1.16

1.14

1.12

1.10

Final Monte Carlo & DerSimonian Laird Statistical Analysis

<G> -

1.1329(35)x 107"
Ugs(<6>)=0.0069 x 10

17

cm? molecule
cm? molecule

— 5

1

1

o Gi.i=1.....n

U (G;)—U (G;)
o tul(o)
<o> tu(<o>)

(Lwrgs(<0>), Uprgs(<o>))

#* [ ]
(o] L]
@
[ l
I
@ I 1 *
@
= = (=] [ [ = = ® | = (] |
AFCRC-59 JPL-64 JPL-86 HSCA-88 UniBremen-89 NIES-06 BIPM-15
Hearn-61 Griggs-68 UniMin-87 UniReims-93 UPMC-04 UniBremen-14 BIPM-16

Monte Carlo method with skew-normal
distribution accounted
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Studies Contributing to 90% of the Cumulative Weight
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Proposed Change in Ozone Cross-Section at 254 nm

Ref. o (10 cm?/molecule)  w.rt.to Hearn  rel. std. unc. (%)
'Hearn-61 1.147 1.9
Hodges/CCQM 1.1329 -1.23 % 0.31

This work reduces uncertainty

in the ozone absorption cross-section
by factors of 6.1 and 2.6, respectively
compared to those of Hearn and ACSO.

1. Hearn A. G., Proc. Phys. Soc. 78, 932-940 (1961)
2. WMO/GAW No. 218, Absorption Cross Sections of Ozone (ACSO) Status Report, (2015)
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Impact of New Cross Section on SRP uncertainty

current situation with new cross-section
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Impact of Consensus Cross-Section on Air-Quality Compliance

40 T Atmos. Chem. Phys.. 15. 13627-13632, 2015 Atmospheric
www.atmos-chem-phys net/15/13627/2015/ .

EU doi:10.5194/acp-15-13627-2015 Chemls_try
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Updated ozone absorption cross section will reduce air
quality compliance

W
o
Il

E.D. Soienl, M. J. Evans!Z, and A. C. Lewis!?

Iwolfson Atmospheric Chemistry Laboratories, Department of Chemistry. University of York, York. YO10 5DD. UK
National Centre for Atmospheric Science. Department of Chemistry. University of York. York. YO10 5DD. UK

rJ
un
T
1

Correspondence to: E. D. Sofen (esofen(@gmail com)

In(A) kT 1

Lozone — — ,

[
U
1

p O <+—— cross-section

-
=)
T

change in ozone absorption cross-section
rJ
un (=]

Percent increase in noncompliance due to the

Based on BIPM-15, where

i . - = Y -
0 ot - e T x-sec = 1.8 % less than the Hearn-61 value
Year
Figure 3. The percent increase in the number of sites that are out The new consensus value for the x-sec is
of compliance with air quality regulations due to the adjusted ozone 1.23 % less than the Hearn-61 value

abundances suggested by the new Viallon et al. (2015) cross sec-
tion for the EU, the United States, and Canada between 1990 and
2012. Shaded regions indicate the uncertainty in the number of non- Additional exceedances driven by reassignment

compliant sites associated with the 2 standard deviation uncertainty of the x-sec will be ~ 2/3 that predicted
in the Viallon et al. cross section.

by Sofen et al.



Measurements of Atmospheric Ozone across the Electromagnetic Spectrum
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Unifying the Spectroscopic Properties of Ozone

microwave Stark measurements of the permanent
dipole moment of ozone; Mack and Muenter (1977)
(unc. =0.02 %)
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0.43 mm; intensities from Drouin et al. (2017)
(unc.=0.2 %)

254 nm; Hodges/GAWG (2019)
Hartley band (x-sec unc. = 0.31 %)

325 nm; Janssen et al. (2018)
Huggins band (x-sec unc. = 0.09 %)
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Consistency of Cross Sections within the UV
Hodges/CCQM value at 254 nm
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Consistency between UV, IR and MW Measurements
and with Theory

ab initio calculations of O, cross-sections were compared to UV and IR
measurements that were scaled by CCQM/Hodges value at 254 nm

Ab initio predictions and laboratory validation
for consistent ozone intensities in the MW,
10 and 5 ym ranges

Cite as: J. Chem. Phys. 150, 184303 (2019); dal: 10.1063/1 5089134 |_ @
Submitted: 16 January 2019 » Accepted: 17 April 2019 « )
Published Online: 10 May 2019
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Summary

The Hodges/CCQM ozone absorption cross section at 254 nm is 1.23 % smaller
than the current (Hearn) value, and therefore will increase field measurements of
ozone mole fraction by 1.23 %

The uncertainty of this cross section has been reduced by a factor of 6 to ~0.3 %

This cross section is a key photometric reference point that contributes to SI
traceability and a recently achieved percent-level consistency in laboratory ozone
measurements and theory spanning the UV to MW regions of the
electromagnetic spectrum.

Adoption of this cross section along with other reference values will help unify local
and global measurements of atmospheric ozone.
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