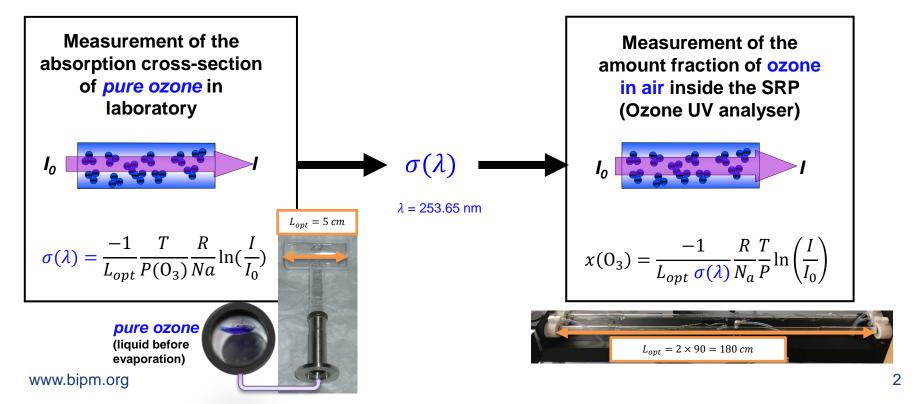
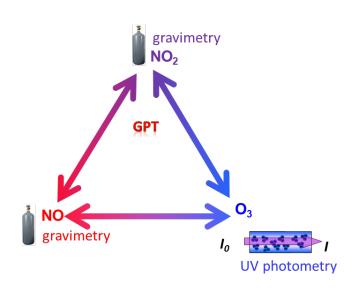
Primary Surface Ozone Standard Reference Photometers and BIPM.QM-K1

J. Viallon, BIPM

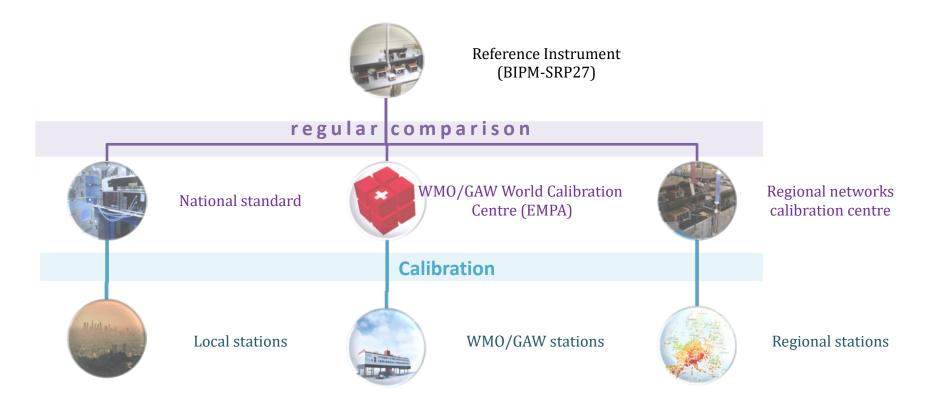

Accurate Monitoring of Surface Ozone Virtual Workshop 6 October 2020

Bureau
International des
Poids et
Mesures


www.bipm.org

The ozone absorption cross-section is what links the SRP to the SI

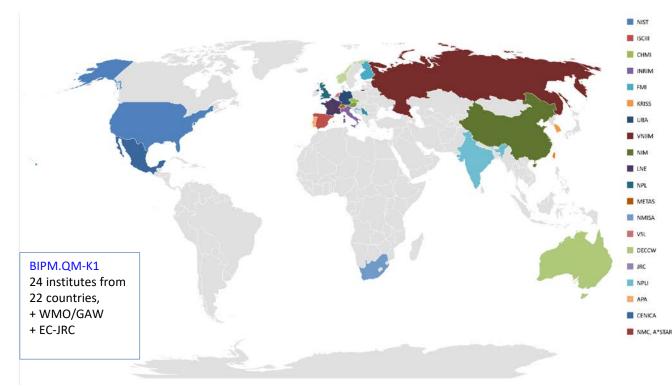
BIPM mission since 2002 : improved accuracy


Gas Phase Titration : $NO + O_3 \rightarrow NO_2$

www.bipm.org

- 2002 : the BIPM installs 3 SRPs and starts a Gas Phase Titration experiment
- 2005 : BIPM and NIES GPT measurements during CCQM-P28 : ~ 2% bias
- 2007: launch of BIPM.QM-K1
- 2012 : laser-based SRP to perform relative measurements of the absorption cross-section
- 2015 : absorption cross-section measurements in pure ozone results in lower value than Hearn
- 2016 : improved GPT with traceability to NO and NO₂ agrees better with 2015 value

3


Metrological Traceability of surface ozone measurements

www.bipm.org

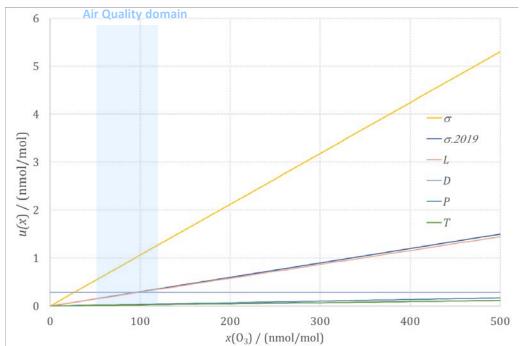
Comparisons at the BIPM since 2003

2003-2005 : Pilot Study CCQM-P28, 23 participants Since 2007 : On-going Key Comparison BIPM.QM-K1

Comparisons of SRPs at the BIPM

Comparison Protocol

One comparison : 2 SRPs measuring different O_3 concentration from the same source **Range of O_3** : 0 to 500 nmol/mol **One main instrument** : SRP27 **Number of points :** 10


Triad of SRPs maintained at the BIPM

Bureau International des Poids et Mesures

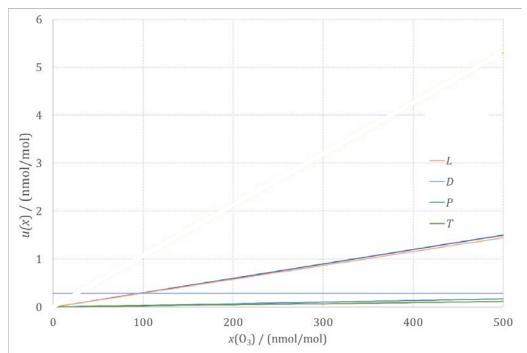
Uncertainties (of BIPM maintained SRPs)

Standard uncertainty for the range of one ozone amount fractions measured during a comparison of SRPs

$$x(0_3) = \frac{-1}{L\sigma(\lambda)} \frac{R}{N_a} \frac{T}{P} \ln(D)$$

Major uncertainty: absorption crosssection, currently 1.06 % (standard)

Light path length: 0.3 % (increased in 2006 after BIPM work on biases¹)


Pressure: 0.04 %

Temperature: 0.03 %

¹Viallon J., Moussay P., Norris J.E., Guenther F.R., Wielgosz R.I., <u>A study of systematic biases and measurement</u> uncertainties in ozone mole fraction measurements with the NIST Standard Reference Photometer, 2006 *Metrologia* **43** 441

Uncertainties (of BIPM maintained SRPs)

Standard uncertainty for the range of one ozone amount fractions measured during a comparison of SRPs

$$\kappa(O_3) = \frac{-1}{L\sigma(\lambda)} \frac{R}{N_a} \frac{T}{P} \ln(D)$$

Major uncertainty: absorption crosssection, currently 1.06 % (standard)

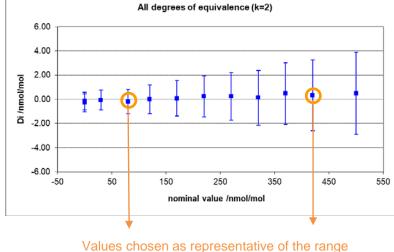
No uncertainty on the absorption crosssection when comparing instruments (fully correlated component)

Note for calibration : include $u(\sigma)$ just once!

Degrees of Equivalence

By definition:

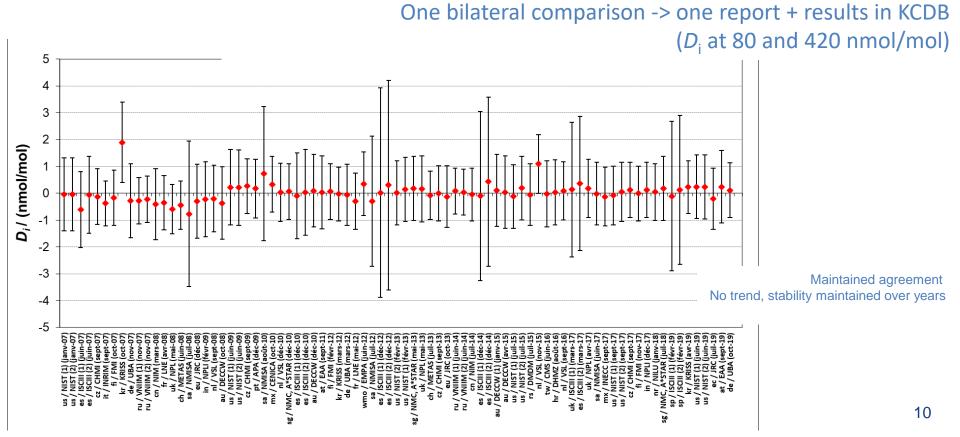
 $D = x_{\rm NS} - x_{\rm RS}$

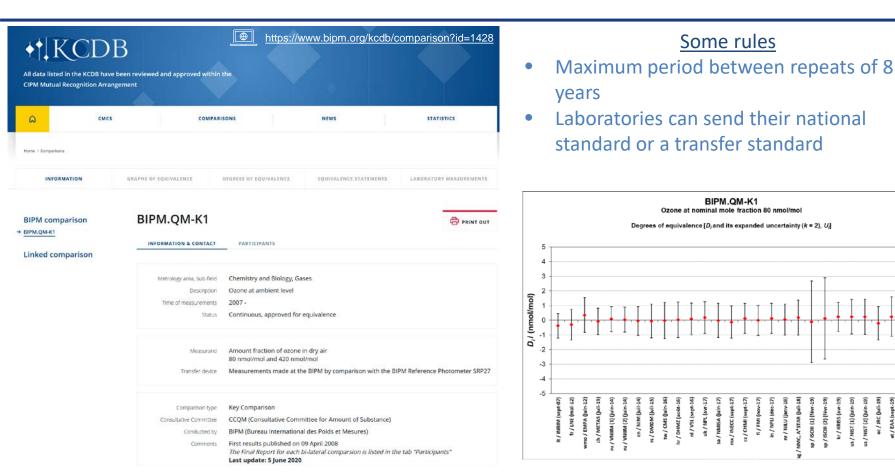

10 nominal ozone amount fractions measured during a comparison :

$$u(D) = \sqrt{u(x_{\rm NS})^2 + u(x_{\rm RS})^2}$$

RS = Reference Instrument = BIPM-SRP27 by convention

2 out of 10 chosen to calculate Degrees of Equivalence


	Reference Standard (RS)			National standard (NS)		
Nominal value	x _{rs} nmol/mol	s _{rs} nmol/mol	<i>u</i> (x _{RS}) nmol/mol	x _№ nmol/mol	s _{№s} nmol/mol	<i>u</i> (x _№) nmol/mol
0	0.01	0.22	0.28	-0.29	0.27	0.24
220	206.50	0.22	0.66	206.74	0.27	0.53
80	76.63	0.17	0.36	76.44	0.20	0.35
420	407.25	0.44	1.22	407.58	0.33	0.81
120	119.08	0.18	0.45	119.08	0.30	0.41
320	298.71	0.18	0.92	298.84	0.31	0.66
30	29.49	0.17	0.29	29.42	0.17	0.28
370	346.30	0.24	1.05	346.77	0.31	0.73
170	163.88	0.24	0.55	163.97	0.30	0.47
500	480.25	0.42	1.43	480.74	0.36	0.91
270	251.15	0.09	0.79	251.39	0.30	0.59
0	-0.08	0.23	0.28	-0.23	0.29	0.24

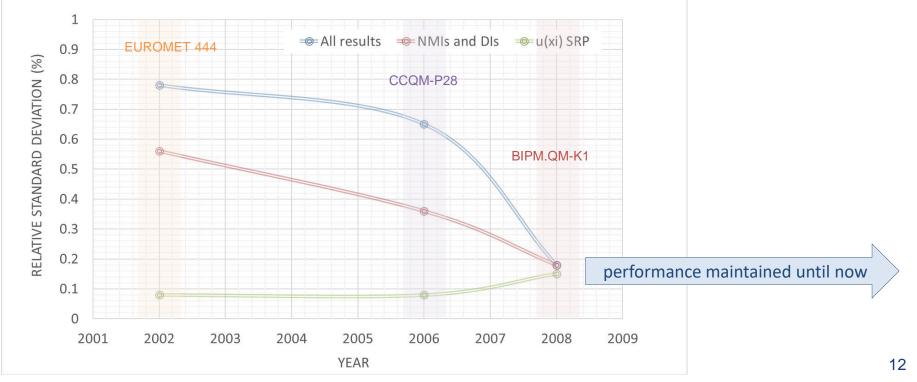

(CCQM/GAWG Workshop 2005)

www.bipm.org

On-going comparison since 2007

Results in the BIPM Key Comparison Data Base

ec / JRC (Jull-


ST (2) (Jui

/ KRISS (avr

NIST (1) (Juin

Laboratory performance in Ozone comparisons since 2002

Acknowledgements

BIPM Staff performing the comparison measurements F. Idrees, P. Moussay

All participants in BIPM.QM-K1

The CCQM / Gas Analysis Working Group http://www.bipm.org/en/committees/cc/wg/gawg.html

Bureau
International des
Poids et
Mesures

www.bipm.org

METPO