### CCQM-K141 High Polarity Analytes in Food - Enrofloxacin and Sulfadiazine in Bovine Tissue

### Track A Key Comparison

### Final Report October 22, 2018

Coordinating laboratory:

Anthony Windust, Garnet McRae, Juris Meija, Zoltán Mester, and Jeremy E. Melanson National Research Council Canada, Metrology Ottawa, Ontario, Canada, K1A 0R6

With contributions from:

Meg Croft, Lesley Johnston, John Murby, National Measurement Institute, Australia (NMIA).

Eliane C. P. do Rego, Fernando G. M. Violante, Jane L. N. Fernandes, Wagner Wollinger, Rodrigo V. P. Leal, National Institute of Metrology, Quality and Technology, Brazil (INMETRO).

Hongmei Li, Qinghe Zhang, Yan Gao, National Institute of Metrology (NIM), P.R. China

Detlef Bohm, Joachim Polzer, Federal Office of Consumer Protection and Food Safety of Germany (BVL).

Elias Kakoulidis, P. Giannikopoulou, Charalampos Alexopoulos, National Laboratory of Chemical Metrology/General Chemistry State Laboratories - Hellenic Institute of Metrology, Greece (EXHM/GCSL-EIM).

Clare HO, Simon C.M. YAU, Government Laboratory, Hong Kong, China (GLHK).

Byungjoo Kim, Seok-Won Hyung, Sunyoung Lee, Song-Yee Baek, Korea Research Institute of Standards and Science (KRISS).

A. Krylov, E. Lopushanskaya, M. Belyakov, Mendeleyev Research Institute for Metrology, Russia (VINIIM).

Qinde Liu, Juan Wang, Ting Lu, Tang Lin Teo, Health Sciences Authority, Singapore (HSA).

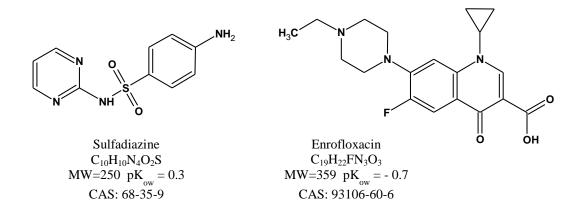
Kittiya Shearman, The National Institute of Metrology, Thailand (NIMT).

Ahmet Ceyhan Gören, Burcu Binici, TUBITAK National Metrology Institute, Turkey (UME).

Luis Ruano Miguel, Christopher Hopley, National Measurement Laboratory, UK (LGC).

| Table | e of | Contents |
|-------|------|----------|
|       |      |          |

| 1. Introduction                                                                                          |
|----------------------------------------------------------------------------------------------------------|
| 2. Measurands, Indicative Ranges and Reference Standards                                                 |
| 3. Study Material                                                                                        |
| <b>3.1 Homogeneity</b> 4                                                                                 |
| <b>3.2 Stability</b>                                                                                     |
| 3.3 Freeze thaw stability                                                                                |
| 3.4 Shipping, sample handling, moisture content and reporting results                                    |
| 3.5 Study schedule and sample distribution11                                                             |
| 4. Calibration Materials12                                                                               |
| 5. Methods Used by Participants                                                                          |
| 6. Participant Results for Enrofloxacin, Sulfadiazine and Moisture                                       |
| 7. Preliminary Assessment of Results                                                                     |
| 8. Follow-up Work Conducted by NRC                                                                       |
| 9. Measurement Equations and Uncertainty Estimation                                                      |
| <b>10. Determination of the Key Comparison Reference Values (KCRV) and Degrees of Equivalence (DoEs)</b> |
| 11. How Far Does the Light Shine?                                                                        |
| 12. Conclusions                                                                                          |
| <b>13. Acknowledgements</b>                                                                              |
| <b>14. Literature cited</b>                                                                              |
| Appendix I. Sample amounts, pre-treatments, extraction and clean up methods, all participants 32         |
| Appendix II. Participants methods: Calibration, instrumentation and MS/MS transitions                    |
| Appendix III. Measurement Equations and Uncertainty Budgets                                              |
| Appendix IV. Other Information Reported73                                                                |
| Appendix V. Core Competency Tables                                                                       |
| Appendix VI. Information Tables                                                                          |


### 1. Introduction

Analysis of veterinary drug residues in bovine muscle is a topic of great importance due to potential health risks, trade and export issues. The ability to provide assurance to both consumers and import/export countries of the absence, presence and quantification of these residues in bovine muscle relies on the implementation of precise and accurate methods of analysis. An international comparison study based on the analysis of veterinary drugs in bovine muscle would satisfy the need to address chemical measurement-related issues important for international trade, environmental, health and food safety-related decision making and provide evidence for the establishment of the equivalence of measurement results among NMI/DIs.

At the October 2014 meeting of the OAWG in Tsukuba Japan it was agreed to conduct a Track A Key comparison in mid to late 2016 to test the core competencies of laboratories that deliver measurement services for polar analytes in a food matrix. At the following meeting in Paris in 2015 the OAWG voted to study two polar veterinary drugs: enrofloxacin and sulfadiazine in a bovine muscle tissue matrix which is currently under development by the National Research Council Canada (NRCC) and the Canadian Food Inspection Agency (CFIA) as a multi-drug residue CRM (BOTS-1). As a Track A study, it was expected that all NMIs or DIs with relevant claims would participate; a parallel pilot study, CCQM-P178, was also conducted with the same material for interested parties. With only two pilot study participants, a separate pilot study report was not prepared, but their results are listed separately in this report with their explicit permission.

### 2. Measurands, Indicative Ranges and Reference Standards

The two analytes are the broad-spectrum sulfonamide and fluoroquinolone antibiotics: sulfadiazine and enrofloxacin (below) for which maximum residue limits are enforced in many countries. The measurands are the mass fractions of these analytes in beef muscle determined on a dry mass basis.



The study requires extraction, clean-up, analytical separation, and selective detection of the analytes in a food matrix. Three  $\geq 10$  g bottles of freeze dried powdered muscle tissue were supplied. NRC also provided isotopically labelled solutions of the two analytes:  ${}^{13}C_6$  sulfadiazine and enrofloxacin-d<sub>5</sub> (HI Salt) to those interested in using IDMS methodologies. Procurement and purity assignment with appropriate metrological traceability of native calibrants are the responsibility of individual participants. The indicative ranges for the mass fractions of the analytes are provided in Table 1.

 Table 1. Indicative ranges

| Measurand    | Mass Fraction Range (µg/kg) |
|--------------|-----------------------------|
| sulfadiazine | 500-5000                    |
| enrofloxacin | 20-200                      |

#### **3. Study Material**

The matrix, bovine muscle tissue, was a high fat and high protein product that falls within Sector 4 of the AOAC International food triangle. The bovine muscle was derived from a single animal (bovine heifer RFID# 124000230337331) that was administered with chemical based pharmaceutical agents prior to processing. Following processing at Drake Meat Processors Inc. (Drake, Saskatchewan) the muscle tissue was sent for further processing (wet homogenisation, freeze drying and grinding) at NSF International's Guelph Food Technology Centre, Ontario, Canada before shipment to the NRCC Ottawa where it was further homogenised and bottled in  $\geq 10$  g amounts in glass bottles under argon and further sealed in tri-laminate foil envelopes. Long term storage of the material at NRCC is at -80°C.

### **3.1 Homogeneity**

Fourteen bottles of bovine muscle tissue were selected in a random stratified design across the bottling run. 0.5 g sub-samples were analysed in duplicate for enrofloxacin and sulfadiazine using an LC-IDMS method and the absolute values were transformed relative to the mean. The results are shown in Figures 1 and 2. A one-way analysis of variance was used to evaluate homogeneity using an *F*-test (P = 0.05) and the results tabulated in Tables 2 and 3.

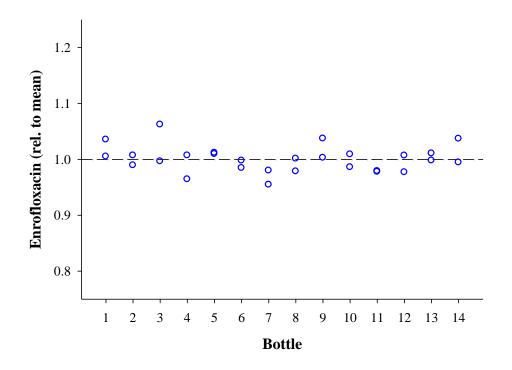



Figure 1. Homogeneity enrofloxacin

Table 2. ANOVA: Enrofloxacin homogeneity

| Source of Variation | SS       | df | MS       | F     | Р     | F <sub>crit</sub> |
|---------------------|----------|----|----------|-------|-------|-------------------|
| Between Groups      | 0.008071 | 13 | 0.000621 | 1.314 | 0.308 | 2.507             |
| Within Groups       | 0.006615 | 14 | 0.000473 |       |       |                   |
| Total               | 0.014686 | 27 |          |       | -     | -                 |

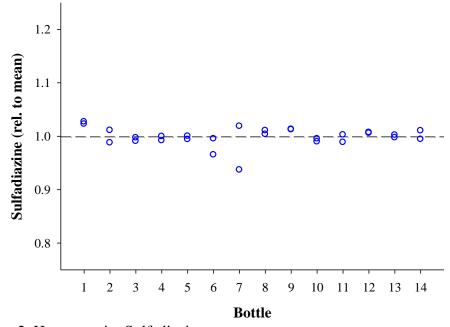



Figure 2. Homogeneity Sulfadiazine

| Table 3. ANOVA: | Sulfadiazine | homogeneity |
|-----------------|--------------|-------------|
|-----------------|--------------|-------------|

| Source of Variation | SS       | df | MS       | F     | Р     | F crit |
|---------------------|----------|----|----------|-------|-------|--------|
| Between Groups      | 0.003693 | 13 | 0.000284 | 0.916 | 0.559 | 2.507  |
| Within Groups       | 0.004341 | 14 | 0.00031  |       |       |        |
| Total               | 0.008034 | 27 |          |       |       |        |

For both enrofloxacin and sulfadiazine the found values of *F* were less than the critical values, therefore there was no statistically significant difference between bottles for either analyte (P > 0.05). For enrofloxacin,  $MS_{\text{within}}$  was less than  $MS_{\text{between}}$  therefore,  $u_{\text{bb}}$  was calculated as:

$$u_{bb} = \sqrt{\frac{MS_{between} - MS_{within}}{n}}$$

giving a relative standard deviation of 0.86%. However, for sulfadiazine the  $MS_{\text{within}}$  was greater than  $MS_{\text{between}}$  and therefore a more conservative estimate  $u*_{\text{bb}}$  was calculated as:

$$u_{bb}^* = \sqrt{\frac{MS_{within}}{n}} \cdot \sqrt[4]{\frac{2}{v_{MS_{within}}}}$$

giving a relative standard deviation of 1.25% (Linsinger et al., 2001).

### **3.2 Stability**

Five, 2 g sub-samples were taken from each of 3 randomly selected bottles from the bottling run and re-sealed under argon in bottles and placed in tri-laminate envelopes and incubated at -80°C, -20°C, 6°C, 20°C and 37°C temperatures. After 14 d, three 0.5 g samples were taken from each bottle and analysed using an LC-IDMS method and the absolute values were transformed relative to the mean. The results are shown in Figures 3 and 4. A one-way analysis of variance was used to evaluate differences between temperature treatments using an *F*-test (P = 0.05) and the results tabulated in Tables 4 and 5.

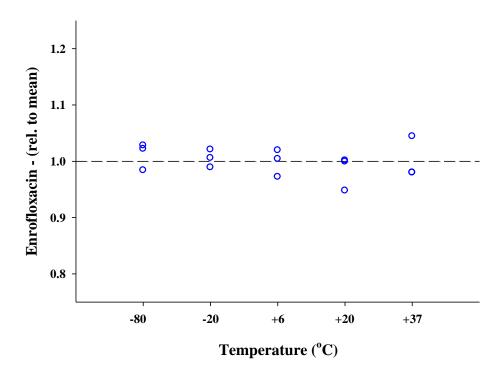



Figure 3. Enrofloxacin short-term stability

Table 4. ANOVA: Enrofloxacin, short-term stability

| Source of Variation | SS       | df | MS       | F     | Р     | F crit |
|---------------------|----------|----|----------|-------|-------|--------|
| Between Groups      | 0.00135  | 4  | 0.000337 | 0.455 | 0.767 | 3.478  |
| Within Groups       | 0.007416 | 10 | 0.000742 |       |       |        |
| Total               | 0.008766 | 14 |          |       |       |        |

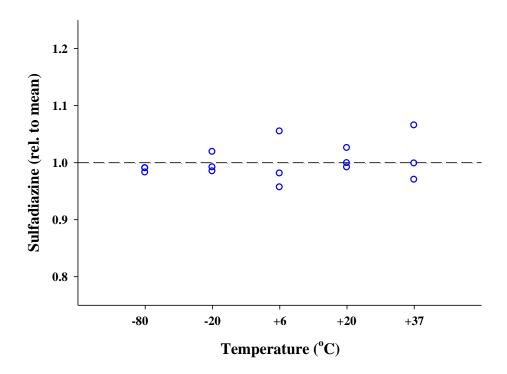



Figure 4. Sulfadiazine short-term stability

 Table 5. ANOVA: Sulfadiazine short-term stability

| Source of Variation | SS       | df | MS       | F     | Р     | F <sub>crit</sub> |
|---------------------|----------|----|----------|-------|-------|-------------------|
| Between Groups      | 0.000955 | 4  | 0.000239 | 0.211 | 0.926 | 3.478             |
| Within Groups       | 0.01132  | 10 | 0.001132 |       |       |                   |
| Total               | 0.012275 | 14 |          |       |       |                   |

For both enrofloxacin and sulfadiazine the found values of F were less than the critical values, therefore there was no statistically significant difference between bottles for either analyte (P > 0.05) due to incubation temperature.

### **3.3 Freeze thaw stability**

The stability of enrofloxacin and sulfadiazine in the bovine tissue was measured following multiple freeze thaw cycles using an isochronous study design. A single bottle of the bovine tissue stored at -80°C was removed and equilibrated to 20°C for one hour, mixed by rolling and inversion by hand and two replicate 0.5 g samples (cycle 1) removed and samples and the bottle returned to the -80°C freezer. This procedure was repeated 19 more times with duplicate samples taken at cycles 5 and 10 and five replicate samples taken at cycle 20. Sham sampling was conducted at all other times by simply mixing and opening the bottle and stirring with a spatula before returning the bottle to the freezer. After the final samples were taken all the samples were

removed from the freezer and subjected to analysis using an IDMS procedure. Note as all samples were refrozen after sampling and thawed again for the analysis actual freeze thaw cycles were all incremented by one. The results are given in Figures 5 and 6 and a one-way analysis of variance was used to evaluate differences between freeze thaw cycles using an *F*-test (P = 0.05) and the results tabulated in Tables 6 and 7. The results for both enrofloxacin and sulfadiazine clearly indicate no treatment effects due to freeze thaw cycling up to 21 times - which indicates that repetitive sampling from bottles held at -80°C will not adversely affect the amount content of the study analytes.



Figure 5. Enrofloxacin freeze-thaw stability

| Table 6: ANOV | A enrofloxacin | freeze-thaw | stability |
|---------------|----------------|-------------|-----------|
|               |                |             |           |

| Source of Variation | SS       | df | MS       | F        | P-value  | F crit   |
|---------------------|----------|----|----------|----------|----------|----------|
| Between Groups      | 0.000324 | 4  | 8.10E-05 | 0.315913 | 0.859684 | 3.837854 |
| Within Groups       | 0.002052 | 8  | 0.000256 |          |          |          |
| Total               | 0.002376 | 12 |          |          |          |          |

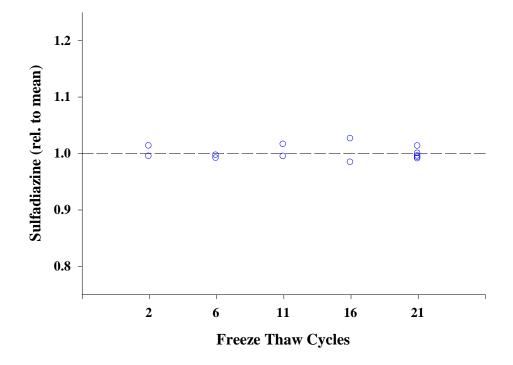



Figure 6. Sulfadiazine freeze-thaw stability

Table 7. ANOVA sulfadiazine freeze-thaw stability

| Source of Variation | SS       | df | MS       | F        | P-value  | F crit   |
|---------------------|----------|----|----------|----------|----------|----------|
| Between Groups      | 0.000217 | 4  | 5.44E-05 | 0.272551 | 0.887661 | 3.837854 |
| Within Groups       | 0.001596 | 8  | 0.000199 |          |          |          |
| Total               | 0.001813 | 12 |          |          |          |          |

### 3.4 Shipping, sample handling, moisture content and reporting results

Each participant received three bottles of the study sample each containing  $\geq 10g$  of freeze dried bovine tissue, shipped on dry ice and two flame sealed ampules of enrofloxacin-d<sub>5</sub> (HI Salt) containing 1.2 mL at a concentration of ~13.5 µg/mL in 50:50 MeOH : 5mM NaOH and two flame sealed ampules of  $^{13}C_6$  sulfadiazine containing 1.2 mL at a concentration of ~100 µg/mL

in MeOH shipped on wet ice. On receipt, the recommended sample storage temperature was -80°C and that for internal standards -20°C. Participants were instructed that stock and working solutions of the internal standards should be equilibrated to room temperature and thoroughly vortex mixed before opening and use (sulfadiazine may crystallise out from solution at -20°C). Similarly, sample bottles should be equilibrated to room temperature, mixed by rolling and inversion by hand before opening and sampling. Two sample bottles were intended for method development and one bottle was to be used for the final results. Following sampling the bottles were to be carefully resealed and returned to the -80°C storage freezer. Given that the material is freeze dried from wet muscle tissue with a moisture content of ~ 65% w/w it was recommended that method development and validation examine sample reconstitution as a pre-treatment. Participants were requested to report results for each measurand (µg/kg) from a single bottle on a dry mass basis using their method of choice. A minimum sample intake of 0.5 g was recommended. Dry mass corrections were to be determined from the same bottle as used for the reported results and initiated at the same time as the sampling for the definitive analyses. Dry mass corrections were to be done based on mass change of three replicate (1 g recommended sample size) sub-samples placed over anhydrous calcium sulphate in a desiccator, under continuous vacuum, at room temperature for a minimum of 21 days until a constant mass was reached.

### 3.5 Study schedule and sample distribution

| Sample Preparation                  | February 2015                                |
|-------------------------------------|----------------------------------------------|
| Homogeneity and Stability testing   | March 2016                                   |
| Sample Distribution                 | June 2016                                    |
| Deadline for Submission of Results  | January 31 <sup>st</sup> , 2017              |
| Extended Deadline                   | March 17 <sup>th</sup> , 2017*               |
| Preliminary Discussion of Results   | April 2017                                   |
| *The deadline was extended by two y | weeks for VNIIM who due to shipping and perm |

\*The deadline was extended by two weeks for VNIIM who, due to shipping and permit issues, only received their study samples in February.

Thirteen laboratories registered and participated in the Key Comparison for both enrofloxacin and sulfadiazine, two laboratories participated in the pilot NRC-Halifax and INTI (enrofloxacin only), one laboratory, INRAP, registered for the pilot, but was unable to submit results due to instrumentation issues.

### 4. Calibration Materials

Five of the thirteen K141 and one of the P178 participant laboratories utilised native sulfadiazine and enrofloxacin CRMs produced by NMIA (Table 8a) with the remaining opting to make their own purity assignments using qNMR and/or mass balance approaches to commercially sourced materials (Table 8b). All materials were assigned high purities. The distribution of results for either the enrofloxacin or sulfadiazine comparison shows no correlation with calibration standard source. In particular, participants using the NMIA materials reported results for both analytes that were evenly distributed across the result sets (See Figures 7 and 8 below).

| NMI/DI      | Source(s) | Purities and Uncertainties (95% CI) | In-house Methods |
|-------------|-----------|-------------------------------------|------------------|
| NMIA        | NMIA      | enrofloxacin M747b $98.5 \pm 0.6\%$ | NMIA CRM         |
|             |           | sulfadiazine M317 99.7 $\pm$ 0.4%   |                  |
| HSA         | NMIA      | as above                            | N/A              |
| GLHK        | NMIA      | as above                            |                  |
| NIMT        | NMIA      | as above                            | LC/MS and KF     |
| BVL         | NMIA      | as above                            |                  |
|             |           |                                     |                  |
| NRC-Halifax | NMIA      | as above                            | qNMR and KF      |
| (P178)      |           |                                     |                  |

Table 8a. NMI/DI use of NMIA CRMs for Native Sulfadiazine and Enrofloxacin

Table 8b. NMI/DI Sources of Standards and Reference Materials and In-house Methods of Mass Fraction Assignment and Uncertainties

| NMI/DI | Source(s)          | Purities and Uncertainties (95% CI) | In-house Methods |
|--------|--------------------|-------------------------------------|------------------|
| EXHM   | enrofloxacin –     | $998.4 \pm 1.8 \text{ mg/g}$        | qNMR via         |
|        | Fluka (17849)      |                                     | NIST350b         |
|        |                    |                                     |                  |
|        | sulfadiazine –     | $997.1 \pm 1.7 \text{ mg/g}$        |                  |
|        | Sigma (35033)      |                                     |                  |
| LGC    | enrofloxacin       | 99.60±0.25% (k=2.78)                | qNMR             |
|        | Sigma. ref. 17849, |                                     |                  |
|        | BN 115M4889V       |                                     |                  |
|        |                    |                                     |                  |
|        | sulfadiazine Sigma |                                     |                  |
|        | S8626, BN          | 99.48±0.20% (k=2)                   |                  |
|        | 056M4795V          |                                     |                  |
| VNIIM  | enrofloxacin:      | $99.8 \pm 0.5$ %                    | ID: LC/MS        |
|        | Sigma Aldrich no.  |                                     | Mass balance: KF |
|        | 33699, batch:      |                                     | oven, ICP/MS for |
|        | SZBE199XV          |                                     | inorganic        |
|        | sulfadiazine       | $99.8 \pm 0.5$ %                    | impurities       |
|        | Sigma Aldrich      |                                     | GC/MS/TD for     |
|        | No.35055, batch:   |                                     | residual solvent |

|             | BCBS4650V<br>Vetranal                                                           |                                                                                                        | determination;<br>LC/UV for related<br>impurities  |
|-------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| INMETRO     | Sigma-Aldrich                                                                   | Values not provided                                                                                    | qNMR/NMR                                           |
| KRISS       | sulfadiazine<br>Dr. Ehrenstorfer                                                | 99.90 % ± 0.24 % (95%, k=2.45)                                                                         | Mass balance<br>LC/UV, TGA,<br>Karl Fischer        |
|             | enrofloxacin<br>Dr. Ehrenstorfer                                                | 99.91 % ± 0.29 (95%, k=2.78)                                                                           | Coulometry, HS-<br>GC/MS)                          |
| UME         | sulfadiazine<br>Vetranal, Sigma<br>Aldrich<br>enrofloxacin, Dr.<br>Ehrenstorfer | 99.93%, ± 0.19% (k=2) and 95%<br>confidence level<br>99.52%, ± 0.23% (k=2) and 95%<br>confidence level | qNMR traceable                                     |
| NRC-Ottawa  | enrofloxacin:<br>Sigma Lot<br>BCBK3650V                                         | 997.7 mg/g, u <sub>c</sub> : 4.7, U <sub>c</sub> , k=2: 9.4                                            | qNMR traceable                                     |
|             | sulfadiazine:<br>Sigma Lot<br>BCBK1734V                                         | 996.9 mg/g, u <sub>c</sub> : 1.7, U <sub>c</sub> , k=2: 3.5                                            |                                                    |
| NIM         | enrofloxacin<br>Sigma-Aldrich                                                   | 99.7%±0.4% (k=2)                                                                                       | Mass balance: LC-<br>UV, LC/MS/MS,<br>Karl-Fischer |
|             | sulfadiazine:<br>GBW(E)060901                                                   | 99.6%±0.4% (k=2).                                                                                      | Titration, ICP-MS,<br>GC-FID, TGA<br>qNMR          |
| INTI (P178) | enrofloxacin –<br>Sigma Aldrich<br>(17849)<br>Lot 1369030V                      | 98.7%                                                                                                  | Not stated                                         |

Seven of the K141 and one of the P178 NMI/DI's sourced isotopically labelled internal standards from a variety of sources (Table 9) with the remaining laboratories using those supplied by NRC which were Enrofloxacin-d<sub>5</sub> (HI Salt) CDN Isotopes D-6993 stated chemical purity of 98.8% and > 99% isotopic enrichment and Sulfadiazine-<sup>13</sup>C<sub>6</sub>, Sigma Aldrich 32518 with stated chemical purity of 99.4% and > 99% isotopic enrichment. These were supplied as: two flame sealed ampules of enrofloxacin-d<sub>5</sub> (HI Salt) containing 1.2 mL at a concentration of ~13.5 µg/mL in 50:50 MeOH : 5mM NaOH and two flame sealed ampules of <sup>13</sup>C<sub>6</sub> sulfadiazine containing 1.2 mL at a concentration of ~100 µg/mL in MeOH.

| NMI/DI | Source(s)                                                                                              | Chemical (CP) and Isotopic Purities (IP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HSA    | Enrofloxacin-d <sub>5</sub> (ethyl-d <sub>5</sub> ) hydroiodic acid,<br>Medical Isotopes Inc., NH, USA | CP 98.8%, IP 99%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        | Sulfadiazine- ${}^{13}C_6$ , Toronto Research                                                          | CP 98%, IP 99.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        | Chemicals Inc., ON, CAN                                                                                | CI 90%, II 99.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| NMIA   | Enrofloxacin-D <sub>5</sub> hydrochloride (D <sub>5</sub> -ENR)                                        | CP 99.0 ± 0.2%, IP > 99.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        | Witega, Germany and NRC materials as                                                                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        | supplied                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | Sulfadiazine- ${}^{13}C_6$ ( ${}^{13}C_6$ -SDZ)                                                        | CP 99.4 $\pm$ 0.2%, IP > 99.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        | NRC material as supplied                                                                               | (Corrected for EtOH 0.2%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| GLHK   | Enrofloxacin-d5 HCl Dr.                                                                                | CP 99%, IP > 99%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        | Ehrenstorfer.                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | Sulfadiazine- ${}^{13}C_6$ ( ${}^{13}C_6$ -SDZ)                                                        | CP 99.6% ± 0.2 %, IP > 99.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        | Witega, Germany                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NMIT   | Enrofloxacin-D <sub>5</sub> hydrochloride (D <sub>5</sub> -ENR)                                        | CP 99.0 ± 0.2%, IP > 99.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        | Witega, Germany                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | Sulfadiazine- ${}^{13}C_6$ ( ${}^{13}C_6$ -SDZ)                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | Witega, Germany.                                                                                       | CP 99.6% ± 0.2 %, IP > 99.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| UME    | Sulfadiazine-phenyl- <sup>13</sup> C <sub>6</sub> Vetranal, 10 mg                                      | Not stated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        | Neat, Sigma Aldrich                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | Enrofloxacin-d <sub>5</sub> -hydrochloride Vetranal, 10                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NIM    | mg Neat, Sigma Aldrich<br>Enrofloxacin-D₅·HCl (Witega CH005)                                           | $CP_{00}(0) = 0.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.20/10.2$ |
| INIIVI | Sulfadiazine- $^{13}C_6$ (TRC S699052):                                                                | CP 99.0%±0.2%, IP >99%<br>CP 98%, IP 99.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| LGC    | Sulfadiazine-phenyl- ${}^{13}C_6$ , Sigma ref. 32518,                                                  | Not stated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| LUC    | batch number SZBE310XV                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | Enrofloxacin- $D_5$ hydrochloride, Sigma ref.                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | 32983, batch number SZBF344XV                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| INTI   | Enrofloxacin d5: Sigma – Lot SZBF126XV                                                                 | CP 99.7% IP > 99%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (P178) |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Table 9. Sources, Chemical and Isotopic Purities of Internal Standards of Participants not utilising NRC supplied materials

### 5. Methods Used by Participants

A summary of the sample intakes, pre-treatment, and IS spiking and equilibration times are given in Table 10 with full details in Appendix 1. Sample amounts varied from 0.5 g to 2.0 g. Except for INMETRO, all participants reconstituted the freeze-dried beef with ~1 to 3 mL of water or in the case of KRISS 0.1 % formic acid. Some laboratories added IS spikes prior to wetting the sample though most did so after reconstitution. Equilibration times for re-hydrating the sample varied considerably: from 10m to 16h and a similar wide range of equilibration times after IS spiking were used: from 30 min to 46 h.

| NMI/DI      | Sample | Sample     | Amount of      | Reconst.        | IS Spikes       | IS            |
|-------------|--------|------------|----------------|-----------------|-----------------|---------------|
|             | Intake | Reconst'd  | Water          | time, temp      | Before or After | Equilibration |
|             |        |            |                | · •             |                 | -             |
|             | (g)    | with Water | (g or mL)      | other           | reconstitution  | time, temp    |
| EXHM        | 0.7    | Y          | 1.3 g          | 30 m, Rt, dark  | After           | 30 m, Rt      |
| HSA         | 0.5    | Y          | 1 mL           | 16 h, 4°C       | After           | 16 h, 4°C**   |
| NMIA        | 0.5    | Y          | 1 mL           | 1 h, Rt         | After           | 12 h, 4°C     |
| LGC         | 1.0    | Y          | 2 mL           | 2 h, Rt         | After           | 46 h, Rt      |
| VNIIM       | 0.5    | Y          | 1.5 mL         | 2 x 30 m, S, Rt | Before          | 1 h, Rt       |
| GLHK        | 0.5    | Y          | 3 mL           | 12 h, 4°C       | Before          | 12 h, 4°C**   |
| INMETRO     | 0.75   | Ν          | ND             | NR              | NR              | NR            |
| KRISS       | 0.5    | Ν          | 1.5 mL 0.1% FA | 30 m, Rt        | Before          | 30 m, Rt**    |
| NIMT        | 0.5    | Y          | 2.5 mL         | 12 h, 4°C       | After           | 1 h, Rt       |
| UME         | 0.5    | Y          | 0.92 g         | 15 m, Rt        | After           | 2 h, 4°C      |
| BVL         | 0.5    | Y          | 0.93 g         | 2 h, Rt         | After           | 15 h, Rt      |
| NRC-Ottawa  | 0.5    | Y          | 1 mL           | 10 m, Rt        | After           | 12 h, 4°C     |
| NIM         | 0.5    | Y          | 1.5 g          | 30 m, Rt        | After           | 30 m, Rt      |
|             |        |            |                |                 |                 |               |
| INTI (enro) | 2.0    | Y          | 3.7 g          | 20 m, Rt        | After           | 45 m, Rt      |
| (P178)      | 2.0    |            |                |                 |                 |               |
| NRC-Halifax | 0.7    | Y          | 1.2 mL         | 30 m, Rt        | Before          | 30 m, Rt      |
| (P178)      | 0.7    |            |                | , ,             |                 | , ,           |
| (11/0)      |        |            |                | 1               | 1               | 1             |

Table 10. Summary of sample pre-treatment and internal standard spiking (add. data rqd.)

"FA" = formic acid, \*\* same as reconstitution time, "S" = sonication, "ND" = not detected, "NR" = Not reported

A summary of extraction methods, solvent systems and clean-up techniques are provided in Table 11 with full details in Appendix I. Except for VNIIM, a single extraction system was used for both analytes, though EXHM used three different methods with reportedly equivalent results. All laboratories used LC MS/MS instrumentation (triple quadrupole or quadrupole trap configurations) with isotope dilution methods. These ranged from single one way IDMS (INTI-P178) to hybrid standard addition IDMS methods (KRISS and NRC Ottawa); however, most employed double isotope dilution with single or multiple point calibrations (Appendix II). Notably, NIMT, EXHM and BVL used blank bovine tissue to prepare matrix matched calibration blends. A variety of reverse phase separations with C8/C-18/PFP or bi-phenyl columns were used and developed with either acetonitrile or methanol as the organic solvent and water. Formic acid was most commonly used as a modifier, although TES, oxalic acid and EDTA were also used. NMIA also used both 1D and 2D LC separations. All used positive ion MS detection although NMIA also used a negative ion method. Typical ion transitions used for sulfadiazine were m/z 251-156 and m/z 257-162 for the  ${}^{13}C_6$  labelled compound and for enrofloxacin m/z 360-316 and m/z 365-321 for the d5 labelled compound, specific transitions used for quantitation and qualification are given in Table 6. No participants reported difficulties in chromatographic separation or interferences therefore it is not likely these issues would have contributed to disparate results.

|                       | No.   | ext. | extraction                                  |                                                                    |     | De- | Ext.  | Final                                  |
|-----------------------|-------|------|---------------------------------------------|--------------------------------------------------------------------|-----|-----|-------|----------------------------------------|
| NMI/DI                | ext.  | vol  | time total,                                 | Extraction Solvent                                                 | SPE | Fat | dried | Solvent                                |
|                       | steps | (ml) | temperature                                 |                                                                    |     |     |       |                                        |
|                       | 1     | 20   | 8h, 55°C                                    | 1. 5 mL Tris buffer/Pronase – 15 mL<br>ACN 5% FA                   |     |     |       |                                        |
| EXHM                  | 1     | 20   | 20m, Rt                                     | 2. 5 mL TRIS + 15 mL ACN, 5% FA<br>blend sonicate                  | Y   | N   | Ν     | ACN 5% FA                              |
|                       | 2     | 20   | 20m, 70°C                                   | 3. ACN 5% FA PLE 2 x 10 mL                                         |     |     |       |                                        |
| HSA                   | 4     | 40   | 84m, precool ice<br>bath first, Rt          | 1x 10 mL 0.1 M HCl in ACN<br>3x 10 mL 0.01 M HCl in ACN            | Y   | Ν   | Y     | 0.01 mol/L HCl<br>(85:15, H2O/ACN v/v) |
| NMIA                  | 4     | 20   | 2.25 hr Rt                                  | ACN/H2O 70/30 v/v                                                  | Y   | Y   | Y     | ACN /H2O (10:90)<br>1 mM NaOH          |
| LGC                   | 1     | 28   | 48h Rt                                      | ACN/H2O/AA 20/8/0.2 v/v/v                                          | Ν   | Ν   | Y     | ACN/H2O/AA<br>20/8/0.2 v/v/v ?         |
| VNIIM                 | 3     | 9    | 45m Rt                                      | Sdz: ACN 0.1% FA<br>Enro: ACN                                      | Ν   | Y   |       | ACN 0.1% FA                            |
| GLHK                  | 2     | 30   | 3.5h Rt                                     | ACN 1% AA                                                          | Y   | Y   |       | ACN 1% AA?                             |
| INMETRO               | 2     | 10   | 40m                                         | MeOH                                                               | Ν   | Ν   | Y     | MeOH/H2O (80:20 v/v)<br>5% AA          |
| KRISS                 | 1     | 10   | 60m                                         | ACN                                                                | Y   | Y   | Y     | MeOH<br>0.2 mol/L HCl                  |
| NIMT                  | 2     | 13   | 2h                                          | 1) 0.5mL EDTA, 5mL ACN, 2) ACN                                     | Y   | Ν   | Y     | 90% ACN/H2O<br>0.1%FA                  |
| UME                   | 1     | 30   | 4m+15m<br>centrifugation                    | ACN 1% FA                                                          | Ν   | Y   | Ν     | H2O/MeOH<br>80/20                      |
| BVL                   | 3     | 20   | ?                                           | Aq. Buffer pH4, citric acid/NaH <sub>2</sub> PO <sub>4</sub> /EDTA | Y   | Ν   | Y     | ACN/H2O<br>10/90 0.1% FA               |
| NRC<br>Ottawa         | 2     | 9    | 80 min, Rt<br>2x30m + 10m<br>Centrifugation | ACN/IPA/H2O 80/10/10 v/v/v                                         | N   | Y   | N     | MeOH/H2O<br>50/50                      |
| NIM                   | 2     | 20   | 62 m                                        | 5% Trichloroacetic acid                                            | Y   | N   | Ν     | 0.1% FA H2O/MeOH 90:10 v/v             |
| INTI (enro)<br>(P178) | 2     | 30   | 20m Rt                                      | EtOH 1% AA                                                         | Y   | N   | Y     | ACN 0.1% FA                            |
| NRC<br>Halifax (P178) | 3     | 12   | 48m Rt<br>3 x 1m +15m<br>centrifugation     | ACN                                                                | N   | N   | N     | ACN                                    |

### Table 11. Summary of extraction and clean-up methods – all participants

### 6. Participant Results for Enrofloxacin, Sulfadiazine and Moisture

The results submitted by the participating laboratories for enrofloxacin, sulfadiazine and moisture are provided in Tables 12 and 13 and 14 respectively and corresponding plots in Figures 7 and 8.

| NMI/DI            | Box-<br>Bottle<br>Number | Mass<br>Fraction<br>(µg/kg) | Combined<br>Standard<br>uncertainty<br>u (µg/kg) | Coverage<br>factor (k) | Expanded<br>uncertainty<br>U (µg/kg) | No. of<br>ind.<br>replicates (n) |
|-------------------|--------------------------|-----------------------------|--------------------------------------------------|------------------------|--------------------------------------|----------------------------------|
| NRC-OTT           | 1-10-136                 | 52                          | 1.2                                              | 2                      | 2.5                                  | 20                               |
| NMIA              | 1-121002                 | 53.3                        | 0.8                                              | 3.2                    | 2.4                                  | 15                               |
| LGC               | 1-121004                 | 53.66                       | 1.66                                             | 2                      | 3.32                                 | 4                                |
| KRISS             | 1-007006                 | 53.9                        | 1.8                                              | 2.78                   | 5                                    | 4                                |
| VNIIM             | 1-007024                 | 54.98                       | 1.54                                             | 2                      | 3.08                                 | 5                                |
| GLHK              | 1-071009                 | 59.1                        | 2.4                                              | 2                      | 4.8                                  | 4                                |
| UME               | 1-007004                 | 59.3                        | 3.3                                              | 2                      | 6.6                                  | 4                                |
| INMETRO           | 1-121013                 | 59.3                        | 2.7                                              | 2                      | 5.4                                  | 3                                |
| NIMT              | 1-071023                 | 62                          | 1.89                                             | 2.04                   | 3.9                                  | 20                               |
| EXHM              | 1-071014                 | 62.56                       | 2.17                                             | 2.31                   | 6.35                                 | 6                                |
| NIM               | 1-007021                 | 65.1                        | 2.7                                              | 2                      | 5.4                                  | 6                                |
| HSA               | 1-071019                 | 65.8                        | 3.8                                              | 2                      | 7.6                                  | 8                                |
| BVL               | 1-121022                 | 96.6                        | 6.95                                             | 2                      | 13.9                                 | 3                                |
| INTI (P178)       | 1-121011                 | 58                          | 3                                                | 2                      | 7                                    | 4                                |
| NRC-HFX<br>(P178) | 1-007002                 | 52.1                        | 3.3                                              | 2                      | 6.6                                  | 3                                |

Table 12. Summary of all participants' results for enrofloxacin

| NMI/DI            | Box-<br>Bottle<br>Number | Mass<br>Fraction<br>(µg/kg) | Combined<br>Standard<br>uncertainty<br>u (µg/kg) | Coverage<br>factor (k) | Expanded<br>uncertainty<br>U (µg/kg) | No. of<br>independent<br>replicates (n) |
|-------------------|--------------------------|-----------------------------|--------------------------------------------------|------------------------|--------------------------------------|-----------------------------------------|
| NRC-OTT           | 1-10-136                 | 2085                        | 46                                               | 2                      | 92                                   | 20                                      |
| NIMT              | 1-071023                 | 2138                        | 69.51                                            | 2.06                   | 144                                  | 20                                      |
| NMIA              | 1-121002                 | 2218                        | 24                                               | 2.6                    | 63                                   | 15                                      |
| LGC               | 1-121004                 | 2246                        | 69                                               | 2                      | 138                                  | 4                                       |
| UME               | 1-007004                 | 2246.5                      | 128                                              | 2                      | 255.9                                | 4                                       |
| INMETRO           | 1-121013                 | 2280                        | 100                                              | 2                      | 200                                  | 3                                       |
| BVL               | 1-121022                 | 2304                        | 200                                              | 2                      | 400                                  | 3                                       |
| EXHM              | 1-071014                 | 2324.6                      | 57.8                                             | 2.2                    | 127.2                                | 6                                       |
| NIM               | 1-007021                 | 2349                        | 78.7                                             | 2                      | 157.4                                | 6                                       |
| VNIIM             | 1-007024                 | 2373                        | 75.9                                             | 2                      | 152                                  | 5                                       |
| KRISS             | 1-007006                 | 2376                        | 36                                               | 2.45                   | 88                                   | 4                                       |
| GLHK              | 1-071009                 | 2410                        | 96                                               | 2                      | 192                                  | 4                                       |
| HSA               | 1-071019                 | 2534                        | 119                                              | 2                      | 239                                  | 8                                       |
| NRC-HFX<br>(P178) | 1-007002                 | 2254                        | 128.5                                            | 2                      | 257                                  | 3                                       |

Table 13. Summary of all participants' results for sulfadiazine

| NMI/DI         | Box-Bottle<br>Number | Moisture<br>Content (g/g) | Standard deviation (g/g) |
|----------------|----------------------|---------------------------|--------------------------|
| INMETRO        | 1-121013             | N/D                       | N/D                      |
| BVL            | 1-121022             | 0.00129                   | 0.0009                   |
| VNIIM          | 1-007024             | 0.002                     | 0.00005                  |
| LGC            | 1-121004             | 0.00204                   | 0.00097                  |
| NIM            | 1-007021             | 0.0027                    | 0.0003                   |
| NIMT           | 1-071023             | 0.00291                   | 0.00024                  |
| EXHM           | 1-071014             | 0.0031                    | 0.000318                 |
| GLHK           | 1-071009             | 0.0043                    | 0.000054                 |
| NMIA           | 1-121002             | 0.00436                   | 0.00027                  |
| NRC-OTT        | 1-10-136             | 0.0049                    | 0.0008                   |
| KRISS          | 1-007006             | 0.00502                   | 0.000142                 |
| HSA            | 1-071019             | 0.01055                   | 0.000076                 |
| UME            | 1-007004             | 0.013                     | 0.001                    |
| INTI (P178)    | 1-121011             | ND                        | ND                       |
| NRC-HFX (P178) | 1-007002             | 0.00955                   | 0.00058                  |

Table 14. Summary of all participants' results for moisture

The median result for all participants (K141 and P178) for enrofloxacin was 59  $\mu$ g/kg with a range of 45  $\mu$ g/kg from 11% below to 64% above the median with a RSD of 18%. Without the one high value reported by BVL, the median result for all participants (K141 and P178) was 59  $\mu$ g/kg with a range of 14  $\mu$ g/kg from 11% below to 12% above the median with a RSD of 8%. The median result for K141 participants only, with the BVL result withdrawn, was 59  $\mu$ g/kg with a range of 14  $\mu$ g/kg from 12% below to 11% above the median with a RSD of 8%.

For sulfadiazine, the median result for all participants (K141 and P178) was 2292  $\mu$ g/kg with a range of 449  $\mu$ g/kg from 9% below to 11% above the median with a RSD of 5%. The median result for K141 participants only was 2304  $\mu$ g/kg with a range of 449  $\mu$ g/kg from 10% below to 10% above the median with a RSD of 5%.

These RSD values (sulfadizine 5%, enrofloxacin 8%) are not unexpected given their respective concentrations. Even so, it is useful to look at the spread of results for both analytes to determine if any methodologies are linked to the observed distribution of the results.

As noted above (Section 4) there is no indication the source of standards has had any influence on the reported results – noting the distribution of results with those using NMIA standards (Figures

7 and 8). The median moisture value reported was 0.003 g/g and although the overall distribution of values was relatively large (RSD = 23%) the actual amounts were very low and thus also the corresponding corrections for the measurements on a dry weight basis. It is difficult to draw any correlations with high or low results with the preconditioning and spiking procedures or the use of SPE clean-up or hexane de-fatting steps. However, it is noted (Figure 7) that highest reported values for sulfadiazine (HSA) were those extracted under relatively strongly acidic conditions (0.1 M HCl/ACN).

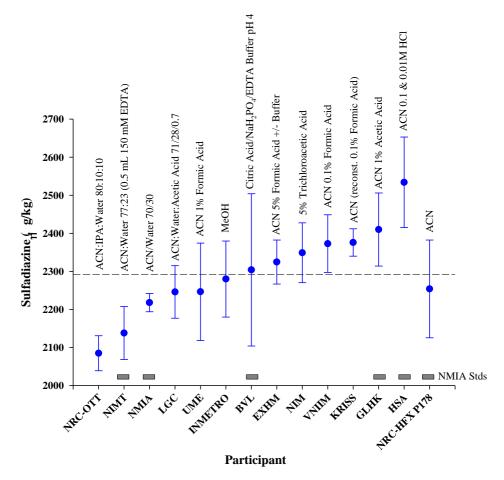



Figure 7. Sulfadiazine, extraction solvents – dotted line is the median: including pilot study participants (labelled P178)

Further, of the 7 values above the median for sulfadiazine all used acidic extraction solvents – or in the case of KRISS preconditioned with 0.1% formic acid. Similarly, of the seven values falling below the median, only two methods used acidic extraction and the three lowest values were from neutral or basic extraction solvent systems. The potential influence of acid or pH on extraction is worth investigating further, and it is noted that VNIIM chose to develop their method for sulfadiazine using ACN with 0.1% formic acid but used only ACN for enrofloxacin. Even so, a similar pattern is also seen with enrofloxacin (Figure 8) where the values falling below the median, with the exception of LGC and KRISS, did not employ acidic solvents or buffers and those at or above the median (with the exception of INMETRO) did.

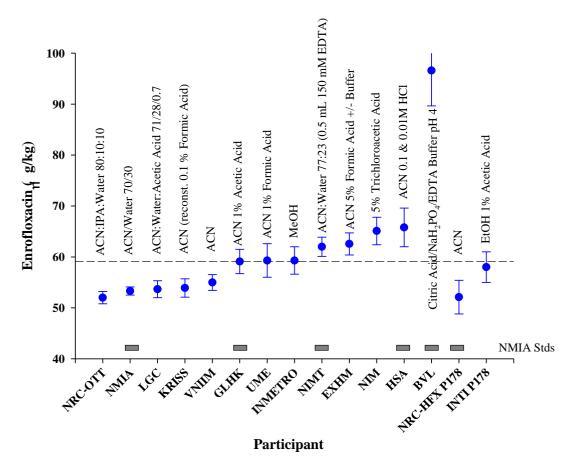


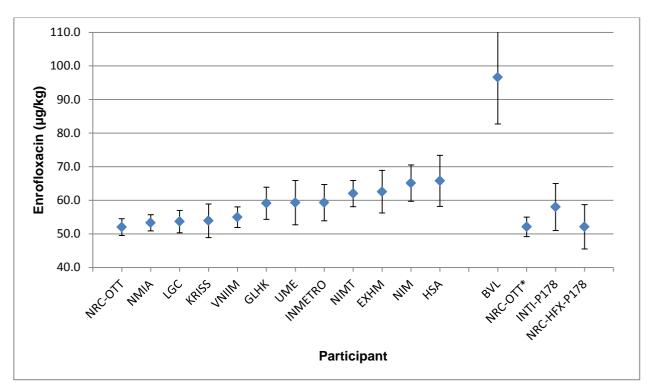

Figure 8. Enrofloxacin extraction solvents and standards – dotted line is the median: including pilot study participants (labelled P178)

### 7. Preliminary Assessment of Results

At the April 2017 meeting in Paris, presentations were made by BVL, NMIA, NIM, HSA, GLHK and UME which provided some further information and insight. BVL determined, post study, that the high value obtained for enrofloxacin was not a result of the extraction procedure, but due to an error in their preparation of the standard solution. NMIA noted some correlations in the results with IS equilibration time, potentially due to IS stability. HSA and GLHK noted the ampholytic nature of both enrofloxacin and sulfadiazine which reduces their solubility in neutral aqueous and some organic solvents. This influence of pH on the solubilities of the analytes provides a rational explanation for their choice of acidic extraction conditions and, in part, explains some of the variation in the study results with the pH of the extraction solvents. NIM presented extensive experimental data investigating different extraction solvent systems and pH which supported this hypothesis.

### 8. Follow-up Work Conducted by NRC

Prior to the OAWG meeting September 2017 in Ottawa, additional investigation into the solvents used for the preparation of primary standards and intermediate solutions as well as the extraction of enrofloxacin and sulfadiazine from matrix was performed by NRC and are described below.


The preparation of enrofloxacin solutions and extraction of enrofloxacin from bovine muscle tissue using acidified and neutral solvents was evaluated. An evaluation of the effect of solvents used in the preparation of primary standard solutions, spiking solutions and calibration solutions for the analysis of enrofloxacin by LC-MS/MS was performed. The solvents used were suspected to have an effect on the peak area ratio results for calibrations solutions, which in turn would affect the final mass fraction result in matrix.

Primary standards for enrofloxacin were prepared in methanol and 0.01N HCl:acetonitrile;85:15. Spiking solutions for enrofloxacin were prepared from the primary standards in 0.01N HCl:acetonitrile;85:15 and MeOH:water;50:50. The spiking solution for enrofloxacin-d5 was prepared in 0.01N HCl:acetonitrile;85:15 and used for all evaluations. Calibration solutions were prepared at concentrations matching post-extraction from BOTS-1 in 0.01N HCl:acetonitrile;95: 5 and water:MeOH:formic acid;90:10:0.1.

In total, eight calibration solutions were prepared to evaluate the different combinations of solvents used to prepare primary standards, spiking solutions and calibration solutions. The internal standard was prepared in a single solvent, allowing it to be used as a control. The solvents above were based on solvents used at NRC and other NMI's participating in the CCQM study. The calibration solutions were injected on the LC-MS/MS method for enrofloxacin to determine peak area results. The results indicated that: 1) the primary standard solvent did not have an effect on the results, 2) the spiking solution solvent had a significant effect on the results and 3) the calibration solution solvent did not have an effect on the results. Further analysis of the data indicated that enrofloxacin peak areas were lower by 4-11% when spiking solutions were prepared in MeOH:water;50:50 compared to preparation in 0.01N HCl:acetonitrile;85:15. This effect resulted in lower peak area ratios for the calibration solutions prepared from spiking solutions in MeOH:water;50:50. The fact that the calibration solution solvents, both of which contained acids (0.01N HCl or 0.1% formic acid), appeared to have no impact on peak areas indicates that presence of acid is more critical than solvent type and composition. Presumably an acid must be present to ensure no effects due to solubility and/or non-specific binding. It was also noted that the solubilities of enrofloxacin were dramatically different for different forms, i.e. enrofloxacin was a free base and was readily soluble in MeOH, while enrofloxacin-d5 was an HI salt and required either acidic or basic conditions for solubility to be achieved.

A stability evaluation was performed for enrofloxacin and enrofloxacin-d5 spiking solutions prepared in: 1) MeOH:water;50:50 and 2) 0.01N HCl:acetonitrile;85:15 and also for calibration solutions containing enrofloxacin and enrofloxacin-d5 in: 1) water:MeOH:formic acid;90:10:0.1 and 0.01N HCl:acetonitrile;85:15. The results indicated that no degradation of either enrofloxacin or enrofloxacin-d5 was observed for solutions stored at  $+37^{\circ}C$  (compared to  $-20^{\circ}C$ ) for 24 hours.

An exhaustive extraction  $(4 \times 10 \text{ mL})$  was performed with 0.1N HCl in acetonitrile (once) and 0.01N HCl in acetonitrile (3 times) with all supernatants combined. The result of 52.1 ng/g (NRC-OTT\*) indicated that using the new acidic spiking solutions and extraction solvent did not



produce significantly higher results than the original NRC-OTT result of 52 ng/g.

Figure 9. Reported results from all participants for enrofloxacin mass fraction in bovine tissue including pilot study participants (labelled –P178) and follow-up work result for NRC-Ottawa (NRC-OTT\*). Error bars represent expanded uncertainties.

Overall, the results indicate that great care must be taken with amphoteric analytes such as enrofloxacin. The form (free base vs salt form) must be noted and appropriate solvents used in the preparation of all solutions.

For sulfadiazine, an evaluation of the combined effect of solvents used in the preparation of spiking solutions and extraction solvent was performed. The solvents used were suspected to have an effect on the peak area ratio results for calibrations solutions and the peak area ratio results for extracted samples. The first method below is the original NRC method, while the second method is an adaptation of the HSA method.

1) Spiking solutions for sulfadiazine and sulfadiazine- ${}^{13}C_6$  were prepared in MeOH:water;50:50. Bovine muscle tissue samples spiked with this solution were extracted twice with 4 mL of acetonitrile:isopropanol:water;80:10:10, with all supernatants combined (8 mL). The supernatants were diluted 10-fold in MeOH:water;50:50 prior to injection onto the LC-MS system.

2) Spiking solutions for sulfadiazine and sulfadiazine- ${}^{13}C_6$  were prepared in 0.01N HCl in water:acetonitrile;85:15. BOTS samples spiked with this solution were extracted once with 10 mL of 0.1 N HCl in acetonitrile and 3 times with 10 mL of 0.01N HCl in acetonitrile, with all supernatants combined (40 mL). The supernatants were diluted 2-fold in 0.01N HCl in water prior to injection onto the LC-MS system.

The results indicate that method 1 provided mass fraction results of 2194 ng/g while method 2 provided mass fraction results of 2376 ng/g (NRC-OTT\*). Method 1 result is below the average CCQM result and in a similar range as the original NRC-OTT result of 2085 ng/g while method 2 result is slightly higher than the average CCQM result but still below the result obtained by HSA using a similar method.

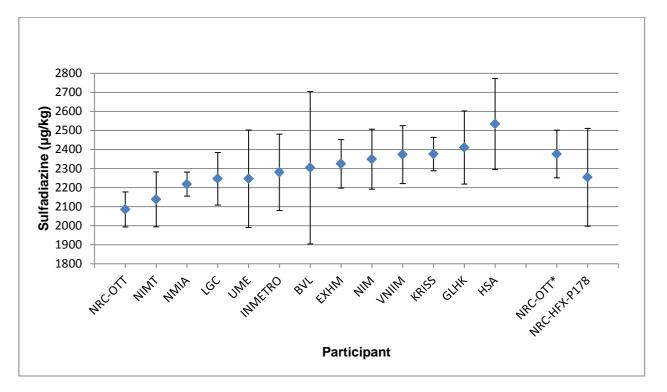



Figure 10. Reported results from all participants for sulfadiazine mass fraction in bovine tissue including pilot study participants (labelled –P178) and original and follow-up work result for NRC-Ottawa (NRC-OTT\*). Error bars represent expanded uncertainties.

Further analysis of the data indicated that a combination of lower Cal peak area ratio and slightly higher peak area ratio for extracted samples using method 2 contributed to the higher result. Method 2 Cal solution showed that using 0.01N HCl in water:acetonitrile;85:15 as the solvent for the spiking solutions resulted in a 12% increase in peak area for sulfadiazine and a 20% increase in peak area for sulfadiazine-<sup>13</sup>C<sub>6</sub>, resulting in a lower Cal peak area ratio. Method 2 extracted bovine muscle tissue samples showed a 5% increase in peak area for sulfadiazine and a 3% increase in peak area for sulfadiazine-<sup>13</sup>C<sub>6</sub> indicating that the acidified extraction solvent had a very small effect on the final result.

A stability evaluation was performed for sulfadiazine and sulfadiazine- ${}^{13}C_6$  spiking solutions prepared in: 1) MeOH:water;50:50 and 2) 0.01N HCl in water:acetonitrile;85:15 and for calibration solutions containing sulfadiazine and sulfadiazine- ${}^{13}C_6$  in: 1) water:MeOH:50:50 and 2) 0.01N HCl in water:acetonitrile;85:15. The results indicated that no degradation of either sulfadiazine or sulfadiazine- ${}^{13}C_6$  was observed for solutions stored at +37°C (compared to -20°C) for 24 hours.

Overall, the results indicated that the spiking solution and Cal solution preparation solvents have a greater effect on the final result than the extraction.

Following the September 2017 CCQM OAWG meeting in Ottawa, a request for additional information on the techniques and solvents used to prepare and handle primary standards, intermediate standards, spiking solutions and calibration solutions, was sent to study participants. Analysis of the information for trends may provide insight into the spread of the data. The Information Template for Analytes in Matrix Forms are contained in Appendix VI.

Several parameters were scrutinized for trends;

- -Reference standard: form (salt/free base etc), preparation solvent, concentration, storage temperature, time before use, treatment before use
- -Intermediate solutions: preparation solvent, concentrations
- -Working solutions: preparation solvent, concentrations
- -Internal standards: compound used, form, preparation solvent, concentrations
- -Calibration solutions: preparation solvent, native concentration, IS concentration

-Final tissue extract solvent

Enrofloxacin: The reference standard concentration showed a weak correlation to mass fraction and there was a slight correlation for basic intermediate and working solution solvents with lower mass fraction and acidic solutions with higher mass fractions. There was no correlation however for neutral solutions to mass fraction. The solvent used to dissolve the final extract prior to injection also showed a weak correlation with neutral or basic solvents showing slightly lower mass fractions compared to acidic solvents.

Sulfadiazine: The solvent used to prepare the reference standard appeared to have a slight effect on mass fraction result as the two highest mass fraction results were determined with methods using 2% NH<sub>3</sub> or 0.01M HCl in solvent for reference standard preparation while all other methods used solvents (methanol or in one case, acetone) with no additives. The preparation solvent for internal standards (IS) and IS spiking solutions showed a general trend to higher mass fractions when acidic solvents were used. The solvents used to prepare calibration samples and to dissolve the final extract prior to injection also showed a trend to lower mass fractions with neutral or basic solvents and higher mass fractions with acidic solvents.

In summary, there is a general trend for both enrofloxacin and sulfadiazine to yield higher mass fraction results when acidic solvents are used to prepare reference standard solutions and calibration solutions and to extract and dissolve or dilute the final tissue extracts prior to injection. There are several dynamics involved in these processes and higher or lower final mass fraction results may be a result of effects on the measurand and/or the internal standard in the extraction process and/or the calibration solution preparation process. Given these dynamics, there is insufficient evidence to make a conclusion on whether the true mass fraction values are at the lower or higher ends of the reported results.

### 9. Measurement Equations and Uncertainty Estimation

Full reports by all the participants on their measurement equations and uncertainty estimates are provided in Appendix III, and any additional information is provided in Appendix IV.

## 10. Determination of the Key Comparison Reference Values (KCRV) and Degrees of Equivalence (DoEs)

All pilot study participants were excluded from the KCRV calculations and BVL voluntarily withdrew their value for enrofloxacin, citing that an error was made due to improper sample preparation or handling of their reference standard. Therefore, twelve results were used for the KCRV calculations for enrofloxacin, while thirteen were used for that of sulfadiazine. Listed in Table 15 are consensus estimators based on arithmetic mean, uncertainty-weighted mean, uncertainty-weighted mean corrected for over-dispersion, median, and DerSimonian-Laird mean. These values are proposed in accordance with CCQM/13-22 *Guidance note: Estimation of a consensus KCRV and associated Degrees of Equivalence*<sup>2</sup>. As agreed upon by participants, the DerSimonian-Laird (DSL) mean was chosen as the KCRV value in both cases as it takes into account the uncertainties from participants' results and it handles excess variance given the suspected influence of random effects. The DSL means were calculated in-house according to CCQM/13-22<sup>2</sup> and confirmed with the NIST Consensus Builder<sup>3</sup>. Participant results are shown relative to the KCRVs in Figure 11.

|                            | Enrofloxacin, µg/kg |      |             | Sulfadiazine, µg/kg |      |             |
|----------------------------|---------------------|------|-------------|---------------------|------|-------------|
| <b>Consensus estimator</b> | X                   | u(X) | $U_{95}(X)$ | X                   | u(X) | $U_{95}(X)$ |
| Arithmetic mean            | 58.42               | 1.39 | 2.77        | 2299                | 33   | 65          |
| Uncertainty-weighted       |                     |      |             |                     |      |             |
| mean                       | 55.41               | 0.47 | 0.95        | 2259                | 15   | 30          |
| Uncertainty-weighted       |                     |      |             |                     |      |             |
| mean (corrected for over-  |                     |      |             |                     |      |             |
| dispersion)                | 55.41               | 1.16 | 2.32        | 2259                | 29   | 58          |
|                            |                     |      |             |                     |      |             |
| Median                     | 59.20               | 2.55 | 5.10        | 2304                | 36   | 71          |
| DerSimonian-Laird          |                     |      |             |                     |      |             |
| mean                       | 57.81               | 1.28 | 2.57        | 2285                | 34   | 68          |

 Table 15. Consensus estimators for enrofloxacin and sulfadiazine

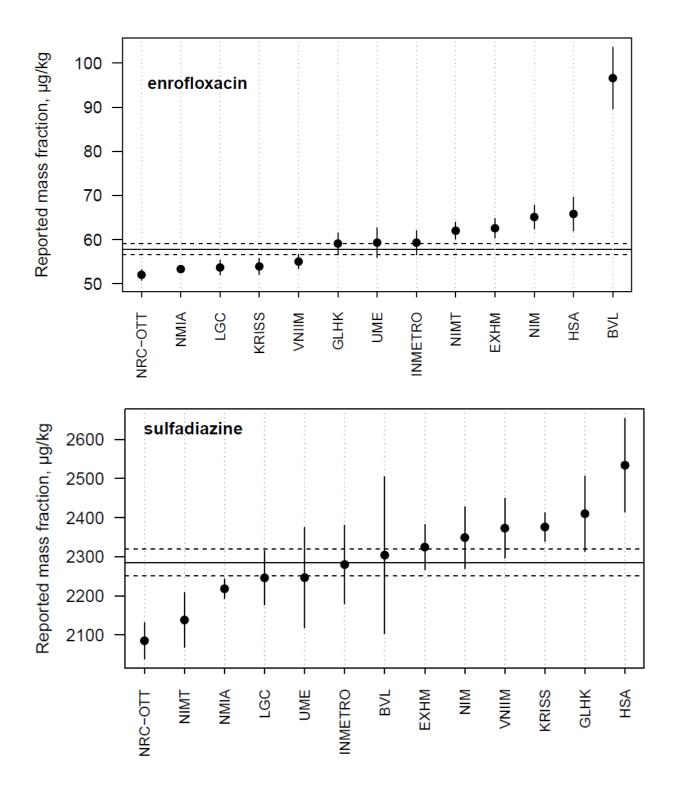



Figure 11. Plots of paricipants' results relative to the DSL-mean KCRV values for enrofloxacin (top) and sulfadiazine (bottom), uncertainties are standard uncertainties.

Degrees of equivalence for CCQM-K141 were calculated as  $d_i = x_i - \text{KCRV}$  and their expanded uncertainties are expressed using the following equation, solved according to CCQM/13-22<sup>2</sup>:

$$U_{k=2}(d_i) = 2\sqrt{u^2(x_i) + u^2(\text{KCRV}) - 2\text{cov}(x_i, \text{KCRV})}$$

Relative degrees of equivalence were then calculated as  $\% d_i = 100 \cdot d_i / \text{KCRV}$  with expanded uncertainties as  $U_{k=2}(\% d_i) = 100 \cdot U_{k=2}(d_i) / \text{KCRV}$ . These values are plotted in Figures 12 and 13, and listed in Tables 16 and 17 for enrofloxacin and sulfadiazine, respectively.

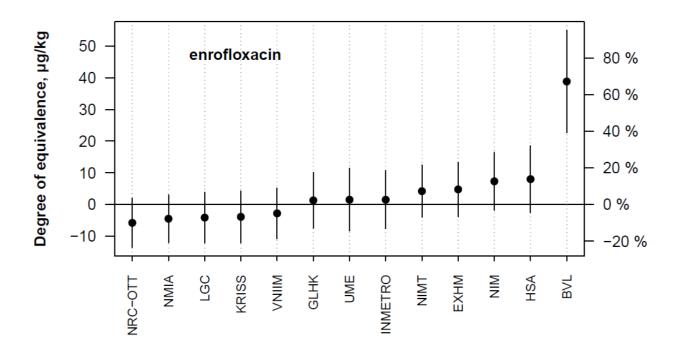



Figure 12. Degrees of equivalence estimates and 95% coverage intervals for enrofloxacin.

| Participant | d <sub>E</sub> | $U(d_{\rm E})$ | $\%d_{ m E}$ | $U(\%d_{\rm E})$ |
|-------------|----------------|----------------|--------------|------------------|
| NRC-OTT     | -5.81          | 7.71           | -10.05       | 13.34            |
| NMIA        | -4.51          | 7.50           | -7.80        | 12.97            |
| LGC         | -4.15          | 8.04           | -7.18        | 13.91            |
| KRISS       | -3.91          | 8.16           | -6.77        | 14.12            |
| VNIIM       | -2.81          | 7.95           | -4.86        | 13.75            |
| GLHK        | 1.29           | 8.76           | 2.23         | 15.15            |
| UME         | 1.49           | 9.86           | 2.57         | 17.06            |
| INMETRO     | 1.49           | 9.10           | 2.57         | 15.74            |
| NIMT        | 4.19           | 8.24           | 7.24         | 14.26            |
| EXHM        | 4.75           | 8.52           | 8.21         | 14.73            |
| NIM         | 7.29           | 9.10           | 12.61        | 15.74            |
| HSA         | 7.99           | 10.56          | 13.82        | 18.26            |
| BVL         | 38.8           | 16.13          | 67.09        | 27.90            |

Table 16. Degrees of equivalence and their uncertainties (95% CI) for enrofloxacin.

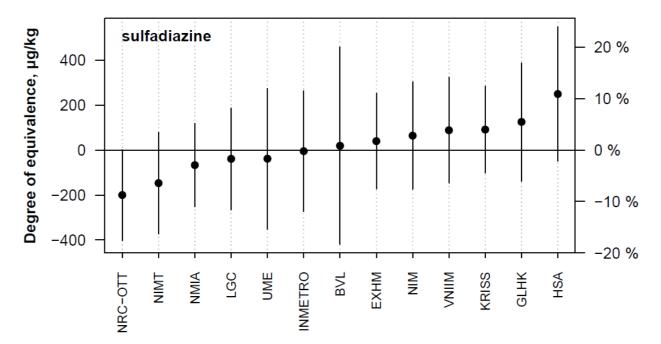



Figure 13. Degrees of equivalence estimates and 95% coverage intervals for sulfadiazine.

| Participant | $d_{ m E}$ | $U(d_{\rm E})$ | % <b>d</b> E | $U(\% d_{\rm E})$ |
|-------------|------------|----------------|--------------|-------------------|
| NRC-OTT     | -200.1     | 200.7          | -8.76        | 8.78              |
| NIMT        | -147.1     | 226.2          | -6.44        | 9.90              |
| NMIA        | -67.10     | 184.7          | -2.94        | 8.08              |
| LGC         | -39.10     | 225.5          | -1.71        | 9.87              |
| UME         | -38.60     | 312.0          | -1.69        | 13.66             |
| INMETRO     | -5.10      | 268.0          | -0.22        | 11.73             |
| BVL         | 18.90      | 438.0          | 0.83         | 19.17             |
| EXHM        | 39.50      | 212.6          | 1.73         | 9.30              |
| NIM         | 63.90      | 237.9          | 2.80         | 10.41             |
| VNIIM       | 87.90      | 234.2          | 3.85         | 10.25             |
| KRISS       | 90.90      | 192.4          | 3.98         | 8.42              |
| GLHK        | 124.9      | 262.1          | 5.47         | 11.47             |
| HSA         | 248.9      | 297.4          | 10.89        | 13.02             |

Table 17. Degrees of equivalence and their uncertainties (95% CI) for sulfadiazine.

### **11. How Far Does the Light Shine?**

The study has tested the capabilities of participants for assigning mass fractions of high-polarity analytes ( $pK_{ow} > -2$ ) with the molecular mass range from 200 to 500 g/mol at 20-5000 µg/kg levels in a high fat, high protein food matrix. Core competency tables for each participant can be found in Appendix 5.

### **12.** Conclusions

This study demonstrated capabilities for measuring high-polarity analytes in a high fat and high protein matrix, namely enrofloxacin and sulfadiazine in bovine tissue. The level of agreement was reasonable given the measurands and matrix were new for most laboratories. The KCRV values and their uncertainties at the 95% confidence level of  $57.81 \pm 2.57 \mu g/kg$  for enrofloxacin and  $2285 \pm 68 \mu g/kg$  for sulfadiazine were calculated using the DSL means. While one participant's value was voluntarily excluded from the KCRV calculations for enrofloxacin, all other participants demonstrated equivalence for both measurands.

Significant effort was undertaken post-study to identify the major sources of variability between results. In particular, the various extraction conditions used by participants were investigated thoroughly. While there appeared to be a correlation between highly acidic conditions and higher

recovery, this was not definitive and could not be confirmed. The form of standards employed (ie. free base vs salts) and potential differential solubility between forms was also a suspected source of variability. Biases could also have been introduced with the choice of solvents used for standard preparation, with some solvents better able to minimize adsorption of the analytes to glass surfaces. Ultimately, it was difficult to identify one main parameter that caused the majority of the variability, and the effects of multiple parameters in some cases were off-setting.

Finally, it should be noted that shipping bovine tissue internationally, with the added complication of dry ice shipments, proved to be a significant challenge and a strain on resources. Therefore, careful consideration should be undertaken prior to planning similar future studies.

### **13. Acknowledgements**

The study coordinators wish to thank the participating laboratories for providing results and additional information used in this study, including pilot study participants Pearse McCarron and Krista Thomas of NRC Halifax and Virginia Uchitel of the National Institute of Industrial Technology, Argentina (INTI). The contributions of NRC staff members Jennifer Bates and Patricia Grinberg are also acknowledged. Financial support from the NRC Scientific Support for the National Measurement System program is also acknowledged.

### 14. Literature cited

1. T.P.J Linsinger, J. Pauwels, A.M.H. van der Veen, H. Schimmel, A. Lamberty (2001) Accred. Qual. Assur. 6: 20-25.

2. https://www.bipm.org/cc/CCQM/Restricted/19/CCQM13-22\_Consensus\_KCRV\_v10.pdf

3. Calculated using the NIST Consensus Builder online application available at https://consensus.nist.gov

| NMI/DI | Sample   | Pre-treatment                                                                                                                                                                                                                                                                                                                                                                               | Extraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cleanup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NMI/DI | Amt. (g) | r re-treatment                                                                                                                                                                                                                                                                                                                                                                              | Extraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cleanup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| EXHM   | 0.7      | The bottle was<br>thoroughly shaken<br>and six different<br>(0.7g) samples were<br>taken. Each sample<br>was reconstituted<br>with ultrapure water<br>(1.3 g) in centrifuge<br>tubes and was left to<br>equilibrate in the<br>dark at room<br>temperature for 30<br>min.                                                                                                                    | The samples were spiked with<br>internal standard solutions and were<br>left to equilibrate for 30 min.<br>(a) 5 mL of Tris buffer (8.0 pH) and<br>5 mg of Pronase were added and the<br>mixtures were incubated for 8 h in a<br>shaking water bath maintained at 55<br>°C. Then, 15 mL of acetonitrile<br>containing 5% formic acid were<br>added to the tubes that were<br>subjected to intense blending for 3<br>min using and UltraTurrax T25.<br>(b) 5 mL of Tris buffer (8.0 pH)<br>were added and the mixtures were<br>vortexed for 30 s at room<br>temperature. Then, 15 mL of<br>acetonitrile containing 5% formic<br>acid were added to the tubes that<br>were subjected to intense blending<br>for 3 min using and UltraTurrax<br>T25.<br>In either case, the tubes were then<br>sonicated for a further 15 min.<br>(c) PLE was performed using<br>(acetonitrile+5% formic acid):water<br>80:20 as an extraction solven. The<br>procedure was carried out in a ASE<br>350 Dionex accelerated solvent<br>extraction system using two 10 min<br>static cycles at 1500 psi and 70 °C.<br>Procedures (a), (b) and (c) were<br>found to be equivalent | The dispersions were<br>centrifuged at x 5000 rpm<br>for 10 min at 4 °C and then<br>transferred to a freezer at -<br>20 °C for 1 h. The samples<br>were then cleaned by dSPE<br>using zirconium-based<br>adsorbents, filtered through<br>0,22 µm PVDF filters and<br>then injected in the LC-<br>MS/MS system                                                                                                                                                                                                           |
| HSA    | 0.5      | Sample bottle was<br>equilibrated to room<br>temperature, and<br>mixed by rolling and<br>inversing before<br>opening and<br>sampling. About 0.5<br>g of the sample was<br>weighed into a 50-<br>mL centrifuge tube,<br>and 1 mL of water<br>was added. The<br>mixture (sample<br>blend) was vortexed<br>after gravimetrically<br>spiking with<br>appropriate amounts<br>of isotope labelled | The sample blend was first cooled<br>in an ice bath, and 10 mL of 0.1<br>mol/L HCl in acetonitrile was<br>added. After removing from the ice<br>bath, the mixture was vortexed for 1<br>min, sonicated for 5 min, and<br>shakened vigorously for 10 min<br>using an orbital shaker. The mixture<br>was then centrifuged at 4,000 rpm<br>for 5 min. The supernatant was<br>transferred to a 50 mL centrifuge<br>tube. The extraction was repeated<br>for three more times using 0.01<br>mol/L HCl in acetonitrile instead of<br>0.1 mol/L HCl in acetonitrile<br>without applying ice bath. The<br>supernatants were combined.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | The combined supernatant<br>from each sample blend<br>was evaporated to dryness<br>under nitrogen flow at 35<br>°C. The residue was<br>reconstituted with 1 mL of<br>0.01 mol/L HCl in<br>water:acetonitrile (85:15,<br>$\nu/\nu$ ). The reconstituted<br>solution was transferred<br>into two Amicon Ultra-0.5<br>centrifugal filter units with<br>Ultracel-3 membrance (0.5<br>mL each filter), and was<br>centrifuged at 13,000 rpm<br>for 10 min. The clear<br>solution was combined and<br>analysed using LC-MS/MS |

# Appendix I. Sample amounts, pre-treatments, extraction and clean up methods, all participants

|       |     | internal standard<br>solutions.                                                                                                                                                                                                                                                                                     | Calibration blends prepared from<br>weighing of native and isotope-<br>labelled analytes into 50-mL<br>centrifuge tubes were extracted once<br>with 10 mL of 0.1 mol/L HCl.                                                                                         | for enrofloxacin. For<br>sulfadiazine, the combined<br>solution was diluted to<br>about 50 ng/g before<br>analysis.<br>The extract from each<br>calibration blend was<br>subjected to the same post<br>extraction procedure as that<br>of each sample blend,<br>except that filtration was<br>not required.                                                                                                                                                                                                                                                                                                                                                            |
|-------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NMIA  | 0.5 | Reagent-grade water<br>(1 mL) added and<br>samples gently<br>vortexed at room<br>temperature 1 h.<br>Added internal<br>standard solutions in<br>acetonitrile/water<br>(10:90) containing 1<br>mM sodium<br>hydroxide (~0.5 mL),<br>samples gently<br>vortexed for a few<br>minutes and stored<br>overnight at 4 °C. | Liquid/solid extraction using 4 x 5<br>mL acetonitrile /water (70:30) with<br>end-over-end rotation, combined<br>extracts evaporated to<br>approximately 3 mL.                                                                                                      | Liquid/liquid extraction<br>with 2 x 3 mL hexane to<br>remove fats.<br>Solid-phase extraction of<br>aqueous phase using Oasis<br>HLB (3 mL, 60 mg,<br>Waters), washing with<br>methanol/water (20:80, 2 x<br>3 mL) and eluting with<br>methanol/water (70:30, 2 x<br>3 mL), evaporate to<br>dryness.<br>Reconstitution solvent was<br>acetonitrile /water (10:90)<br>containing 1 mM sodium<br>hydroxide. Extracts were<br>reconstituted to 1mL.<br>Reconstituted extracts were<br>injected undiluted for<br>negative-ion LCMS<br>analysis. Portions of the<br>extracts were diluted one-<br>in-five with reconstitution<br>solvent for positive-ion<br>LCMS analysis. |
| LGC   | 1   | Sample dispersed<br>with 2 mL water and<br>left to equilibrate for<br>2 h.                                                                                                                                                                                                                                          | Sample and extracting solvent were<br>placed in 50-mL polypropylene<br>tubes with two ceramic<br>homogenisers and kept rotating in a<br>head-over-heels mixer for 48 h at<br>room temperature.<br>Solvent: 8 mL water + 20 mL<br>acetonitrile + 200 µL acetic acid. | Centrifugation at 4000 rpm<br>for 5 min.<br>Temperature-induced phase<br>separation (supernatants<br>frozen for >2 h until two<br>phases appear.<br>Evaporation of supernatant<br>and reconstitution.<br>Filtration.                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| VNIIM | 0.5 | 1,5 ml of water was<br>added per sample<br>before extraction                                                                                                                                                                                                                                                        | liquid/solid, sonication 3x15 min at<br>room temperature<br>solvent : AcN for Enrofloxacin<br>extraction (3x3 ml);<br>AcN + 0,1% HCOOH for<br>Sulfadiazine extraction (3x3 ml)                                                                                      | Extract was defatted by 3 ml of hexane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| GLHK    | 0.5  | The sample (0.5g) is<br>re-constituted with 3<br>mL of (purified)<br>water for at least 12<br>hours at<br>4 °C before<br>extraction.                                                                                                                                                                                                                                                                                                                                                   | Extracted with 2 × 15 mL 1% acetic<br>acid in ACN. Each extraction was<br>performed<br>sequentially by the following<br>methods:<br>i) Ultrasonic agitation for 30<br>minutes,<br>ii) Vertical shaking for 15 minutes,<br>iii) Vortex mixing for 1 hour.                                                                                                                                                                                                                                                                                                                                                                              | Defatting with n-hexane<br>saturated with ACN and<br>SPE Clean-up on Waters<br>Oasis MCX<br>SPE cartridge (150mg,<br>6mL).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| INMETRO | 0.75 | Not Applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Two steps of liquid/solid extraction<br>with 5 mL methanol. The samples<br>were shaken at room temperature<br>for 20 min.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | The extract was evaporated to dryness under $N_2$ steam and re-suspended in 500 $\mu$ L of acetic acid 5 % : methanol (80:20 v/v).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| KRISS   | 0.5  | <ol> <li>Liquid-liquid<br/>extraction using<br/>acetonitrile and n-<br/>hexane.</li> <li>Clean-up of<br/>sample: solid phase<br/>extraction using an<br/>Oasis MAX SPE<br/>cartridge</li> </ol>                                                                                                                                                                                                                                                                                        | Sample was weighed in about 0.5 g ( $\times$ 6) unit with 50 mL tube and 10 mL of acetonitrile was added for a mechanical shaking for 1 hour. The acetonitrile layer was recovered after centrifugation at 1,520 $\times$ g for 5 minutes and followed by mixing with n-hexane. Another mechanical shaking was performed for 20 minutes for the mixture and then it was centrifuged for 5 minutes at 3,420 $\times$ g to recover acetonitrile layer which was followed by dryness with N <sub>2</sub> .                                                                                                                               | <ul> <li>Oasis MAX SPE cartrige (3 cc):</li> <li>1. Reconstitution of LLE sample with 2 mL of 50 mmol/L NaH<sub>2</sub>PO<sub>4</sub>.</li> <li>2. SPE conditioning with 1 mL methanol, 5 mol/L NaOH, and 1 mL ultra pure water.</li> <li>3. Sample loading.</li> <li>4. Washing of sample loaded cartridge with 5% ammonia in water.</li> <li>5. Washing of cartridge with 1 mL of methanol.</li> <li>Analyte elution with 2 mL of 0.2 mol/L HCl in methanol.</li> </ul>                                                                                                                                            |
| NIMT    | 0.5  | Sample blend was<br>prepared by<br>accurately weighing<br>0.5 g of test material.<br>The amount of 2.5<br>mL of Milli-Q water<br>was added. The<br>isotopically labelled<br>internal standard was<br>then added to create<br>the sample blends.<br>Calibration blend<br>was prepared by<br>using 0.5 g of<br>matrix-matched<br>sample blank (freeze<br>dried beef). The<br>same amount of<br>Milli-Q water as in<br>the sample blend was<br>added. Standards and<br>internal standards | The amount of 0.5 mL of Na <sub>2</sub> EDTA (150mM) was added, vortex mixed and stand for 10 min. This was followed by the addition of 5 mL of acetonitrile vortex mixed and shaken by a mechanical shaker for 40 min. The sample was then centrifuged at 4000 rpm for 10 min (4 °C). The supernatant (8 mL) was filtered through a 1 $\mu$ m glass fiber filter and collected to a glass tube. The 5 mL amount of acetonitrile was added for a second extraction. The extract was collected, combined and evaporated to approx. 1.5 mL at 45 °C under N <sub>2</sub> . The 1.5 mL residue was then carried on the SPE cleanup step. | Solid phase extraction<br>(SPE) was performed by<br>using Oasis HLB SPE<br>cartridges (3 mL, 60 mg).<br>The SPE cartridges were<br>pre-conditioned with<br>methanol (3 mL) and<br>equilibrated with Milli-Q<br>water (3 mL). The sample<br>solutions obtained from the<br>liquid-solid extraction after<br>drying step (1.5 mL) were<br>loaded onto the cartridges.<br>The wash solvent of 5%<br>methanol in Milli-Q water<br>(2 mL) was applied,<br>followed by 2 mL of a<br>second wash solvent of<br>hexane. The cartridges<br>were dried by forcing air<br>through each cartridge.<br>Eluting solvent (methanol: |

|     |     | were then added.<br>Sample blend and<br>calibration blend<br>were let to soak and<br>equilibrate for 1 hour<br>prior to the<br>extraction and clean-<br>up steps.                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                      | acetonitrile, 50:50, 9 mL)<br>was added to elute the<br>analytes from the<br>cartridges. The eluates were<br>carefully evaporated to<br>dryness under a stream of<br>nitrogen at 45 °C and<br>reconstituted in 0.8 mL of<br>0.1% (v/v) formic acid in<br>Milli-Q water/0.1% formic<br>acid in acetonitrile (9:1) by<br>vigorous vortex-mixing.<br>The reconstituted samples<br>were filtered through 0.2<br>µm micro filter disk. The<br>samples were transferred to<br>sample vials for LC-<br>MS/MS analysis.                                                 |
|-----|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UME | 0.5 | Freeze dried sample<br>was reconstituted by<br>adding water at 65 %<br>w/w level.                                                                                                                                                                                                                                         | 0.5 g of sample was weighted into<br>falcon tube, 0.92 g of water and<br>then isotopically labelled standard<br>solution was added gravimetrically.<br>30 mL of Acetonitrile:Formic Acid<br>(99:1) % was added and vortex was<br>applied for 4 minutes.                                                                                                                                                                                              | Centrifugation was applied<br>at 14239g and 4 °C for 15<br>minutes and 15 mL of<br>supernatant was transferred<br>to another falcon tube and<br>was evaporated under<br>nitrogen stream until<br>approximately 1 mL yellow<br>part was remained. Then<br>2mL of <i>n</i> -hexane and 2 mL<br>Water:Methanol (80:20)%<br>mixture was added and<br>mixed by vortex for one<br>minute then centrifugation<br>was applied at 4280g and 4<br>°C for 15 minutes. Lower<br>phase was collected and<br>filtered by 0.2 µm whatman<br>filter and measured by<br>LC/MS-MS |
| BVL | 0.5 | reconstitution of 0.5<br>g of freeze-dried<br>sample with 0.93 g<br>of water<br>- treatment of<br>samples in vortexer<br>and with ultra-sonic<br>equipment<br>- fortification of the<br>reconstituted samples<br>by internal standards<br>sulfadiazine <sup>13</sup> C <sub>6</sub> and<br>enrofloxacin D5<br>hydroiodide | addition of 10 ml of buffer solution<br>to reconstituted samples<br>- buffer: mix of McIlvaine buffer<br>(citric acid/sodium dihydrogen<br>phosphate)<br>and ethylenediaminetetraacetic<br>acid disodium salt (Na <sub>2</sub> EDTA),<br>pH=4.0<br>- centrifugation and filtration of<br>supernatant<br>- repetition of extraction of<br>remaining particle phase with<br>buffer, twice with 5 ml each<br>- combination of collected<br>supernatants | clean up by SPE cartridge<br>(Oasis HLB, 6 ml, 200 mg)<br>- conditioning of SPE<br>cartridge, giving up of<br>combined extract, washing<br>of cartridge with<br>water, drying of cartridge<br>with air, elution of analytes<br>with methanol<br>- evaporation of eluate to<br>dryness with nitrogen at 40<br>°C<br>- reconstitution of residue<br>with 1 ml of mix of<br>components of mobile LC                                                                                                                                                                |

|               |     |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                           | phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NRC<br>Ottawa | 0.5 | 0.5g BOTS was<br>reconstituted with<br>1.0 mL water and<br>allowed to stand for a<br>minimum of 10<br>minutes before<br>further processing.                     | Liquid Solid Extraction:<br>-Accurately weigh 0.5 g BOTS into<br>a 15 mL tube<br>-Add 1 mL water, vortex and allow<br>to sit 10 min<br>-Spike primary standard and/or<br>internal standard<br>-add 4 mL<br>80:10:10;ACN:IPA:water and shake<br>30 min<br>-Centrifuge 10 min at 3000 RPM<br>and remove supernatant<br>-Repeat extraction one more time,<br>combining supernatants (~ 8 mL) | Further cleanup/dilution-<br>concentration:<br>-Add 2 ml hexane to<br>combined supernatant and<br>shake for 5 min<br>-Centrifuge 10 min at 3000<br>RPM and remove hexane<br>layer<br>-Sulfadiazine:<br>-dilute 50 µL of supernatant<br>with 450 µL<br>50:50;MeOH:water<br>-filter through a 0.2 µm<br>PTFE filter vial<br>-Enrofloxacin:<br>-Concentrate 4 mL<br>supernatant to ~ 450 µL<br>under vacuum (Sorvall<br>centrifuge)<br>-Add 50 µl MeOH and mix<br>-filter through a 0.2 µm<br>PTFE filter vial                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| NIM           | 0.5 | Sample bottle was<br>equilibrated to room<br>temperature, mixed<br>by rolling and<br>inversion by hand.<br>1.5 g water was used<br>for sample<br>reconstitution | liquid/solid extraction<br>10.0 mL of 5% trichloroacetic acid<br>solution was added in sample at<br>room temperature. Then,<br>homogenized for 60 s, shaked<br>vigorously for 20 min and sonicated<br>for 10 minutes. Repeated extraction<br>once and combined the extraction<br>solution                                                                                                 | OASIS HLB cartridge (6<br>mL, 150 mg, Waters) was<br>used for SPE clean-up step.<br>For enrofloxacin, 10 mL of<br>the extra999ct (without<br>dilution) was transferred to<br>the cartridge which was<br>initially loaded with<br>methanol and water. Then,<br>sequentially washed with 6<br>mL of 5% methanol<br>solution. Finally, the<br>analyte was eluted with 8<br>mL methanol.For<br>sulfadiazine, 400 $\mu$ L of the<br>extract was diluted with 6<br>mL of water. The dilution<br>was transferred to the<br>cartridge which was<br>initially loaded with<br>methanol and water. Then,<br>sequentially washed with 6<br>mL of 5% methanol<br>solution. Finally, the<br>analyte was eluted with 8<br>mL methanol. The eluate<br>was evaporated to dryness<br>under nitrogen at 40 °C and<br>reconstituted with 1 mL of<br>0.1% formic acid in<br>water/methanol (90:10 v/v).<br>The sample was centrifuged<br>at 14,000 rpm for 10 min |

|                        |               |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                          | before analysis.                                                                                  |
|------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| INTI<br>P178           | 2<br>reconst. | Reconstitution of the<br>sample with purified<br>water, taking into<br>account 65% of<br>humidity                                                                                                                                                                                                                           | Extraction with 15 ml AcH 1% in<br>EtOH.<br>Shaker 5 min – Centrifugation 5<br>min 7500 rpm<br>Re-extraction with 15 ml AcH 1%<br>in EtOH<br>Shaker 5 min– Centrifugation 5 min<br>7500 rpm                                                                                                                                              | SPE: SCX – Elution with<br>NH4OH in MeOH<br>Evaporation<br>Dilution to 2 ml with FM<br>Filtration |
| NRC<br>Halifax<br>P178 | 0.7           | BOTS-1 weighed<br>into a falcon tube<br>(minimum intake<br>0.7g).<br>ISWS spike added<br>using syringes with<br>gravimetry.<br>Sample allowed to sit<br>1/2 hour to absorb<br>spike.<br>Deionized water<br>added to reconstitute<br>moisture content to<br>65%.<br>Sample allowed to sit<br>1/2 hour to absorb<br>moisture. | Liquid/solid extraction using<br>acetonitrile:<br>4mL acetonitrile added to wet<br>sample, vortexed 1min.<br>Centrifuged 15min, 7200 rpm.<br>Solvent decanted into a volumetric<br>flask (20mL).<br>Extraction repeated twice more in<br>the same manner and extracts<br>combined.<br>Final volume made to 20mL with<br>deionized water. | Samples mixed well, 400<br>µL portion filtered through<br>0.45 µm PTFE for analyses               |

|      | Calibration                                                                                                                                                                                                                                                                                                     | Instumentation/Chromatography                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MS/MS transitions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EXHM | Matrix-matched<br>calibrators were<br>prepared using fresh<br>blank bovine meat, by<br>spiking the blank<br>material with suitable<br>amounts of the<br>analytes and the<br>internal standards, that<br>were left to equilibrate<br>for 1 h in the dark in a<br>refrigerator                                    | LC-MS/MS: Thermo Finnigan, TSQ<br>Quantum Ultra AM<br>Column: Zorbax Eclipse XDB-C8<br>(150 mm x 4.6 mm, 5 $\mu$ m), flow 400<br>$\mu$ L/min<br>gradient (A: 0.1% formic acid, B:<br>Acetonitrile + 0.1% formic acid)<br>0 min: A 95%, 2 min A 95%, 15 min<br>A 50%, 18 min A 0%, 21 min A 0%,<br>22 min A 95% 25 min: A 95%                                                                                                                                                                                                             | SFZ: 251 (parent) to 156<br>(quantification), 108 and 92<br>(identification)<br>SFZ- $^{13}C_6$ 257 (parent) to 162<br>(quantification)<br>EFX: 360 (parent) to 316<br>(quantification), 245 and 204<br>(identification)<br>EFX-d <sub>5</sub> 365 (parent) to 321<br>(quantification)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| HSA  | IDMS with four-point<br>calibration was used.<br>The isotope mass ratio<br>of the calibration<br>blends were controlled<br>to be within the range<br>of 0.75 to 1.3. The<br>isotope mass ratio of<br>the sample blends<br>were controlled to be<br>close to 1.0 with an<br>acceptable range of<br>0.85 to 1.15. | LC-MS/MS (Shimadzu 8040 mass<br>spectrometer coupled with a<br>Prominence UFLC LC20AD system)<br>was used for the measurement.<br>The LC method was as follows:<br>Column: Phenomenex Luna PFP(2)<br>column, 2.0 × 150mm, 5µm.<br>Mobile phase A: 0.1% formic acid in<br>water.<br>Mobile phase B: 0.1% formic acid in<br>acetonitrile.<br>Gradient: 15% to 90% mobile phase<br>B.                                                                                                                                                       | MRM transitions (positive mode<br>electrospray ionisation) were used<br>for quantitation.<br>The ion pairs (m/z) monitored<br>were as follows:<br>Enrofloxacin: 360.1 $\rightarrow$ 342.3<br>(quantifying ion), and<br>360.1 $\rightarrow$ 316.4 (qualifying ion)<br>Enrofloxacin-d <sub>5</sub> : 365.2 $\rightarrow$ 347.4<br>(quantifying ion), and<br>365.2 $\rightarrow$ 321.4 (qualifying ion)<br>Sulfadiazine: 251.1 $\rightarrow$ 156.2<br>(quantifying ion), and<br>251.1 $\rightarrow$ 108.2 (qualifying ion)<br>Sulfadiazine- <sup>13</sup> C <sub>6</sub> :257.1 $\rightarrow$ 162.2<br>(quantifying ion), and<br>257.1 $\rightarrow$ 114.2 (qualifying ion)<br>Only the results from the<br>quantifying ions were reported.<br>The results from the qualifying<br>ions were solely used in the<br>estimation of the measurement<br>uncertainty. |
| NMIA | Exact-matched double<br>IDMS analysis,<br>replicate bracketed<br>injections.                                                                                                                                                                                                                                    | <ul> <li>Three LC-MS/MS methods <ul> <li>Positive electrospray with single UPLC column (1D) or heart-cutting (2D) UPLC cleanups</li> <li>1D UPLC negative electrospray. 10 μL injections.</li> </ul> </li> <li>1D and 2D analyses on Thermo Fisher Scientific TSQ Vantage AM/Transcend TLX1 using Waters Acquity BEH C18 column (2.1 x 100 mm, 1.7 μm) and Restek Pinnacle DB Biphenyl (2.1 x 100 mm, 1.9 μm).</li> <li>1. 1D on BEH C18 using a gradient of acetonitrile (10 to 20% over 5 min) in aqueous 0.2% formic acid,</li> </ul> | 1D and 2D analyses use positive-<br>ion electrospray ionisation (HESI<br>interface), and three MRM<br>transitions for each analyte and<br>internal standard. Average result<br>from all relevant transitions were<br>used for reference values.<br>Parent ion > Product ion (collision<br>energy eV)<br>SDZ 250.8 > 65.11 (38)<br>$^{13}C_6$ -SDZ 257.0 > 70.14 (41)<br>250.8 > 92.09 (23)<br>257.0 > 98.15 (27)<br>250.8 > 108.09 (18)<br>257.0 > 114.14 (24)<br>ENR 359.8 > 204.11 (30)<br>D <sub>5</sub> -ENR 365.0 > 204.12 (32)<br>359.8 > 245.15 (25)                                                                                                                                                                                                                                                                                                  |

Appendix II. Participants methods: Calibration, instrumentation and MS/MS transitions

| LGC   | Bracketed double<br>exact matched IDMS | <ul> <li>with a flow rate of 0.3<br/>mL/min. Retention time<br/>(r.t.) for enrofloxacin (ENR)<br/>was 5.4 min, sulfadiazine<br/>(SDZ) r.t. 2.5 min.</li> <li>2. 2D – first dimension as for<br/>1D, ENR eluted to MS from<br/>first column with r.t. 6.0<br/>min; SDZ peak transferred<br/>to Biphenyl column and<br/>eluted with a gradient of<br/>methanol (15 – 29% over 7<br/>min) in aqueous 0.2%<br/>formic acid with a flow rate<br/>of 0.3 mL/min. SDZ r.t. 7.1<br/>min.</li> <li>Negative-ion analysis (for ENR only)<br/>on Waters Acquity UPLC system and<br/>Waters Quattro Micro triple<br/>quadrupole MS using Waters Acquity<br/>BEH C18 column (1.0 x 100 mm, 1.7<br/>µm). Gradient of acetonitrile/water<br/>(90:10) containing 25 mM<br/>triethylamine (10 – 20% over 6.7<br/>min) in water with a flow rate of 0.1<br/>mL/min. ENR r.t. 4.7 min.</li> <li>LC-MS/MS: An Agilent 1100<br/>LC system (quaternary delivery<br/>pump, online degasser,<br/>refrigerated autosampler, and<br/>thermostatic column<br/>compartment) coupled to a Qtrap<br/>4000 MS from Sciex (used as<br/>triple quadruple).<br/>Column: ACE Excel 2 C18-PFP,<br/>150 mm × 3.0 mm, 2 µm, part<br/>no. EXL-1010-1503U<br/>Mobile phases: A) water 0.1%<br/>formic acid. B) acetonitrile 0.1<br/>% formic acid.</li> <li>Gradient: 5% B for 1 min. Linear<br/>gradient until 55% B at 10 min.<br/>Flow rate: 0.4 mL/min<br/>Injection: 10 µL<br/>Temperature: 40 °C</li> </ul> | 365.0 > 245.17 (26) $359.8 > 316.24 (17)$ $365.0 > 321.3 (18)$ Negative-ion analysis uses negative-ion electrospray ionisation, and two MRM transitions for each of ENR and D <sub>5</sub> -ENR. Cone 23.0 V for all. ENR 358.1 > 202.4 (16) D <sub>5</sub> -ENR 363.1 > 202.4 (17) $358.1 > 245.15 (25)$ $363.1 > 245.17 (26)$ • Sulfadiazine: 251/156 (qualifier MRM's: 251/92, 251/108, 251/65) • Sulfadiazine <sup>13</sup> C <sub>6</sub> : 257/162 (qualifier MRM's: 257/98, 257/166, 257/114, 251/60) • Enrofloxacin: 360/316 (qualifier MRM's: 360/245) Enrofloxacin D <sub>5</sub> : 365/321 (qualifier MRM's: 365/326) |
|-------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VNIIM | IDMS, single point                     | LC-MS/MS<br>Column ZorbaxEclipcePlusC18<br>NarrowBoreRR 2.1x100mm 3.5<br>micron<br>Solvent A: H2O + 0,05% HCOOH<br>Solvent B: AcN + 0,05% HCOOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MRM for ENR $360 \rightarrow 316$<br>ENR IS $365 \rightarrow 347$<br>MRM for SDZ $251 \rightarrow 108$<br>SDZ IS $257 \rightarrow 114$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| GLHK  | IDMS, bracketing                       | Agilent 1290 UPLC system with AB<br>Sciex 6500 QTRAP mass<br>spectrometer.<br>Column: Phenomenex XB-C18<br>column (150mm × 2.1mm, 1.7µm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MRM transitions for<br>Enrofloxacin:<br>360>203 (Quantitation), 360>316<br>(Confirmation), 360>245<br>(Confirmation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

|         |                                                                                                                                                                                                                                                                                    | preceded by<br>Phenomenx SecurityGuard <sup>TM</sup><br>ULTRA Cartridge UHPLC C18 for<br>2.1mm I.D. Column.<br>Column Temperature: 45°C.<br>Mobile phase: Solvent A - 0.1%<br>formic acid in H2O and Solvent B -<br>0.1% formic acid in<br>MeOH.<br>Flow rate: 350 $\mu$ L/min.<br>Gradient elution program: 95% A for<br>2 min; decreasing to 85% A from 2 –<br>5 min;<br>decreasing to 10% A from 5 – 9 min<br>and kept constant at 10% A from 9 –<br>13 min. The<br>system was then conditioned at 95%<br>A for 4 min before the next injection                                                     | MRM transitions for<br>Enrofloxacin-d5:<br>365>203 (Quantitation), 365>321<br>(Confirmation), 365>245<br>(Confirmation)<br>MRM transitions for Sulfadiazine:<br>251>156 (Quantitation), 251>108<br>(Confirmation), 251>96<br>(Confirmation)<br>MRM transitions for Sulfadiazine-<br>13C6:<br>257>162 (Quantitation), 257>114<br>(Confirmation), 257>96<br>(Confirmation)<br>3.8                                                                                                                                                                                                                                                                                                                                   |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| INMETRO | LC-IDMS, bracketed<br>exact matching<br>calibration.                                                                                                                                                                                                                               | LC-MS/MS, column: Acquity UPLC<br>BEH C18 (1.7 $\mu$ m, 2.1 x 50mm),<br>injection 5 $\mu$ L, gradient, (A: 0.2 %<br>formic acid containing 0.1 mM oxalic<br>acid, B: 100 % acetonitrile), flow rate<br>0.3 mL/min.<br>0 min: 90%A 10%B, 1.5-5.0 m 15%<br>B, 6-7 m 75% B                                                                                                                                                                                                                                                                                                                                | Enrofloxacin: $360>316$<br>Sulfadiazine: $251>108$<br>For Internal standards:<br>enrofloxacin-d <sub>5</sub> : $365>321$<br>$^{13}C_6$ sulfadiazine: $257>114$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| KRISS   | Standard Addition<br>Isotope Dilution Mass<br>Spectrometry (SA-<br>IDMS) was used (Kim<br>et al, Anal Chim Acta<br>V787, p132-139,<br>2013) to construct a<br>calibration curve for<br>matrix-matching<br>calibration. IDMS<br>measurement was<br>calibrated against the<br>curve. | <ol> <li>LC-MS/MS: Waters Xevo TQ-<br/>S/Acquity I class UPLC system</li> <li>Column: Zorbax Eclipse XDB-<br/>Phenyl column (150 x3.0 mm i.d.,<br/>3.5-μπparticle size, Agilent)</li> <li>Chromatographic conditions<br/>Mobile phase A: 0.1% formic acid<br/>in water + 10 μmol/L EDTA<br/>Mobile phase B: 0.1% formic acid<br/>in acetonitrile</li> <li>Gradient</li> </ol>                                                                                                                                                                                                                          | $m/z \ 360 \rightarrow 316$ for enrofloxacin<br>$m/z \ 365 \rightarrow 321$ for enrofloxacin-<br>$d_5$<br>$m/z \ 251 \rightarrow 156$ for sulfadiazine<br>$m/z \ 257 \rightarrow 162$ for ${}^{13}C_{6^{-}}$<br>sulfadiazine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| NMIT    | A single point and<br>bracketing IDMS<br>calibration was used.                                                                                                                                                                                                                     | A LC-MS/MS system (Shimadzu LC<br>system equipped with API 4000<br>MS/MS from AB Sciex) was used.<br>ZORBAX SB-C <sub>18</sub> HPLC column,<br>$3.5\mu$ , (150×4.6 mm) with<br>Phenomenex C <sub>18</sub> SecurityGuard<br>column (4.0 × 2.0 mm) was utilized.<br>The column temperature was<br>maintained at 40 °C. The injection<br>volume was 10 µL. The mobile phase<br>was composed of solvent A (0.1 mM<br>oxalic acid in 0.2 % formic acid in<br>Milli-Q water) and solvent B<br>(acetonitrile). The gradient program<br>was: 0-8 min 2 % B; 8-10 min 98 %<br>B; 15-17 min 2 % B (constant flow | $\label{eq:constraint} \begin{array}{ll} & \text{Enrofloxacin} & 360.21 > 316.20 \\ (\text{primary ion for quantitation}) \\ & \text{Enrofloxacin} & 360.21 > 245.10 \\ (\text{secondary ion for confirmation}) \\ & \text{D}_5\text{-Enrofloxacin} & 365.22 > 321.19 \\ (\text{primary ion for quantitation}) \\ & \text{D}_5\text{-Enrofloxacin} & 365.22 > 245.09 \\ (\text{secondary ion for confirmation}) \\ & \text{Sulfadiazine} & 251.13 > 156.02 \\ (\text{primary ion for quantitation}) \\ & \text{Sulfadiazine} & 251.13 > 108.00 \\ (\text{secondary ion for confirmation}) \\ & ^{13}\text{C}_6\text{-Sulfadiazine} & 257.20 > \\ & 161.98 & (\text{primary ion for quantitation}) \\ \end{array}$ |

|             |                                                   | rate of 0.3 mL/min). The data were                               | $^{13}C_6$ -Sulfadiazine 257.20 >                   |
|-------------|---------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------|
|             |                                                   | acquired in the positive multiple                                | 114.05 (secondary ion for                           |
|             |                                                   | reaction monitoring (MRM) mode.                                  | confirmation)                                       |
| UME         | IDMS, single point                                | Zivak Tandem Gold LC-MS/MS,                                      | Q1, Q3,                                             |
|             | calibration was used                              | Luna PFP(2) 5µm 100 Å,150 mm x                                   | Capillary, Collision Energy                         |
|             |                                                   | 2 mm i.d.,                                                       | Sulfadiazine : 251; 156;                            |
|             |                                                   |                                                                  | 50; 15                                              |
|             |                                                   | Mobil Phase A: Water + MeOH +                                    | Sulfadiazine ${}^{13}C_6$ : 257; 162;               |
|             |                                                   | Formic acid (89.9:10.0:0.1)%,                                    | 50; 15                                              |
|             |                                                   | Mobil Phase B: MeOH + Formic acid                                | Enrofloxacin : 360; 342;                            |
|             |                                                   | (99.9:0.1)%,                                                     | 70; 21                                              |
|             |                                                   | ()))))))))))))                                                   | Enrofloxacin $d_5$ : 365; 347; 70; 21               |
|             |                                                   | Gradient:                                                        | 70; 21                                              |
|             |                                                   | Time A%, B%, Flow (mL/min)                                       |                                                     |
|             |                                                   | 0.00 100, 0, 300                                                 |                                                     |
|             |                                                   | 5.00 22, 78, 300                                                 |                                                     |
|             |                                                   | 6.00 22, 78, 300                                                 |                                                     |
|             |                                                   | 6.01 100, 0, 300                                                 |                                                     |
|             |                                                   | 12.00 100, 0, 300                                                |                                                     |
| DVI         |                                                   |                                                                  | SCIEV OTrop (500                                    |
| BVL         | calibration by external matrix calibration        | measurement by LC-MS/MS<br>(Agilent Technologies Infinity 1290 - | SCIEX QTrap 6500<br>- MRM in positive ESI mode with |
|             | with internal standards                           | SCIEX QTrap 6500)                                                | two transitions for analytes and                    |
|             | using blank freeze-                               | - LC column C18 with guard (150 x 2                              | one transition                                      |
|             | dried                                             | mm, 3 µm, Phenomenex "Aqua")                                     | for internal standard                               |
|             | bovine muscle (0.5                                | - mobile phase: $A = water (0.1 \%)$                             | -sulfadiazine: SDZ 1: 251/156;                      |
|             | g)                                                | formic acid) and $B = acetonitrile (0.1)$                        | SDZ 2: 251/108; <sup>13</sup> C <sub>6</sub> -SDZ:  |
|             | - after reconstitution                            | % formic acid);                                                  | 257/162                                             |
|             | of blank samples,                                 | gradient program: 0 min = 10 % B,                                | -enrofloxacin: Enro 1: 360/316;                     |
|             | fortification on 6                                | 1 min = 10 % B, 12 min = 60 % B,                                 | Enro 2: 360/245; Enro-D5:                           |
|             | concentration levels                              | $15 \min = 60 \% B,$                                             | 365/321                                             |
|             | for each                                          | 16 min = 10 % B, 25 min = 10 % B;                                |                                                     |
|             | analyte (multi-point                              | flow: 0.3 ml/min; oven temperature:                              |                                                     |
|             | calibration) and                                  | 30 °C;                                                           |                                                     |
|             | fortification of<br>internal standards            | injection volume: 10 µl;                                         |                                                     |
|             | sulfadiazine ${}^{13}C_6/$                        |                                                                  |                                                     |
|             | enrofloxacin D5                                   |                                                                  |                                                     |
|             | hydroiodide on the                                |                                                                  |                                                     |
|             | same constant level as                            |                                                                  |                                                     |
|             | the samples of K-141                              |                                                                  |                                                     |
|             | - concentrations of                               |                                                                  |                                                     |
|             | analytes and internal                             |                                                                  |                                                     |
|             | standards were                                    |                                                                  |                                                     |
|             | defined after                                     |                                                                  |                                                     |
|             | screening of samples                              |                                                                  |                                                     |
|             | - sample preparation                              |                                                                  |                                                     |
|             | and measurement in                                |                                                                  |                                                     |
|             | the same manner as the same last of $K_{141}$     |                                                                  |                                                     |
| NRC-Ottawa  | the samples of K-141<br>ID <sup>2</sup> MS: Exact | 1) LC-MS/MS:                                                     | Eproflovenin 1 260 2 216 2                          |
| INKC-Ottawa |                                                   |                                                                  | Enrofloxacin-1 360.2-316.2                          |
|             | matching double<br>isotope dilution mass          | HPLC: Agilent 1290 Infinity I                                    | Enrofloxacin-2 360.2/245.2                          |
|             | spectrometry                                      | 2) LC-HRAM-MS:                                                   | 2. 1010/uom 2 500.2/2+5.2                           |
|             | specificity                                       | HPLC: Agilent 1260                                               | Enrofloxacin-d <sub>5</sub> -1 365.2/321.2          |
|             | SA-ID <sup>2</sup> MS: Exact                      |                                                                  |                                                     |
|             | matching standard                                 |                                                                  |                                                     |
|             | matering standard                                 |                                                                  | 1                                                   |

|                          | addition double<br>isotope dilution mass<br>spectrometry  | Water:Formic Acid/ACN gradient<br>Ace-3 C18, 50 x 2.1, 3µ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Enrofloxacin-d <sub>5</sub> -2 365.2/245.2<br>Sulfadiazine-1 251.2/156.1<br>Sulfadiazine-2 251.2/108.1<br>Sulfadiazine- ${}^{13}C_{6}$ -1 257.2/162.1<br>Sulfadiazine- ${}^{13}C_{6}$ -2 257.2/114.1                                   |
|--------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NIM                      | Single point<br>calibration, IDMS                         | HPLC-MS/MS system consisted of a<br>Shimadzu LC30A HPLC and AB<br>API 5500 MS/MS. X-Terra column<br>( $3.5 \mu m$ , $2.1 mm \times 100 mm$ , Waters).<br>0.1% formic acid in water (A) and<br>methanol (B) were used as mobile<br>phases. Flow rate was $0.15 mL/min$ .<br>The dualistic gradient started at 10%<br>B, held constant for $0.5 min$ ; changed<br>to 30% B by 3 min linearly, held<br>constant by 7 min, changed to 90% B<br>by 7.5 min; returned to 10% B by 11<br>min linearly, and then maintained for<br>4 min.                                                           | Enrofloxacin:<br>360.2/245.1*(quantitation),<br>360.2/316.2<br>D5-Enrofloxacin: 365.2/245.1*,<br>365.2/321.2<br>Sulfadiazine: 251.1/155.9*,<br>251.1/107.8<br><sup>13</sup> C <sub>6</sub> -Sulfadiazine: 257.1/161.9*,<br>257.1/113.8 |
| INTI<br>P178             | IDMS at one point,<br>with three<br>independent standards | LC MSMS Waters TQD<br>Column: BEH C18 100mm x 2.1 mm<br>1,7 um<br>Gradient with AcN and water with<br>0,1% formic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Enrofloxacin: 360.1>316.1<br>For Enrofloxacin-D5:365.1>321.1                                                                                                                                                                           |
| NRC-<br>Halifax<br>P-178 | Single point, exact<br>matched double IDMS                | <ul> <li><i>LC-MS/MS:</i> <ul> <li>Agilent 1290 HPLC with API5500 mass spectrometer</li> <li>Column: Poroshell 120 SBC18, 2.7 μm, 2.1x150mm</li> <li>Temperature: 40°C</li> <li>Solvent: A= Deionised water with 0.2% HCOOH; B= MeCN with 0.2% HCOOH</li> <li>Flow: 300µL/ min</li> <li>Flow diversion used in all analyses (10- 14 min)</li> <li>7 min equilibration used in all analyses</li> </ul> </li> <li>Enrofloxacin: 10-20% B/8 min, to 100% B @ 9 min, hold to 14 min; 2.5µL injections Sulfadiazene: 5-10% B/8 min, to 100% B @ 9 min, hold to 14 min; 1µL injections</li> </ul> | Enrofloxacin: $360 / 342$ Enrofloxacin $d_5$ : $365 / 347$ Sulfadiazene: $251 / 155$ Sulfadiazene ${}^{13}C_6$ : $257 / 161$                                                                                                           |

# **Appendix III. Measurement Equations and Uncertainty Budgets**

# HSA

The mass fraction of the measurand (enrofloxacin or sulfadiazine) in the sample was calculated based on the IDMS calibration curve as follows:

$$C_{X} = \left(mR_{B} + b\right) \times \frac{W_{Y}}{M_{X}} = \left(mR_{B} + b\right) \times \frac{M_{Y}C_{Y}}{M_{X}}$$
(1)

where

 $C_X$  = mass fraction of the measurand in the sample  $M_X$  = mass of sample (determined by weighing)  $M_Y$  = mass of isotope labelled standard solution (determined by weighing)  $W_Y$  = mass of the isotope labelled standard spiked into sample (equals to  $M_Y \times C_Y$ )  $R_B$  = peak area ratio of sample blend (determined by LC-MS/MS measurements)  $C_Y$  = concentration of isotope labelled standard solution (determined by weighing and from purity of the isotope labelled standard) m = gradient of the slope of linear regression plot (determined by the linear fit of the isotope

m = gradient of the slope of linear regression plot (determined by the linear fit of the isotope mass ratio from weighing and the peak area ratio from LC-MS/MS measurement of the calibration blends)

b = intercept on y axis of the linear regression plot (determined by the linear fit of the isotope mass ratio from weighing and the peak area ratio from LC-MS/MS measurement of the calibration blends)

As  $C_Y$  does not contribute to the measurement uncertainty of  $C_X$ , for the estimation of uncertainty, considering  $R_M = mR_B + b$ , and let  $R_M = R_M C_Y/C_Z$ , Equation (1) is converted to:

$$C_{X} = R_{M} \times \frac{M_{Y}C_{Z}}{M_{X}}$$
<sup>(2)</sup>

where

 $R_M$  = isotope mass ratio in sample blend

 $C_Z$  = concentration of the measurand in the calibration standard solution

A standard uncertainty was estimated for all components of the measurement in Equation (2), which were then combined using respective derived sensitivity coefficients to estimate a combined standard uncertainty in the reported result of enrofloxacin or sulfadiazine in the sample. A coverage factor k with a value of 2 was used to expand the combined standard uncertainty at a 95 % confidence interval. Possible sources of biases [method precision ( $F_P$ ), choice of different ion pairs ( $F_I$ ), choice of different calibration stock solutions ( $F_S$ ), method recovery ( $F_R$ )] were accounted for in the final uncertainty budget with the use of the measurement equation:

$$C_{X} = F_{P} \times F_{I} \times F_{S} \times F_{R} \times R_{M} \times \frac{M_{Y}C_{Z}}{M_{X}}$$
(3)

The sensitivity coefficients of each component can be expressed as follows:

$$\frac{\partial C_X}{\partial R_M} = \frac{C_X}{R_M}, \qquad \frac{\partial C_X}{\partial M_Y} = \frac{C_X}{M_Y}, \qquad \frac{\partial C_X}{\partial M_X} = -\frac{C_X}{M_X}, \qquad \frac{\partial C_X}{\partial C_Z} = \frac{C_X}{C_Z},$$
$$\frac{\partial C_X}{\partial F_P} = \frac{C_X}{F_P}, \qquad \frac{\partial C_X}{\partial F_I} = \frac{C_X}{F_I}, \qquad \frac{\partial C_X}{\partial F_S} = \frac{C_X}{F_S}, \qquad \frac{\partial C_X}{\partial F_P} = \frac{C_X}{F_P},$$

The standard uncertainty of each component was calculated as follows:

(1)  $M_Y$  and  $M_X$ : The standard uncertainty was calculated based on the calibration report using the standard weights calibrated by the National Metrology Centre, A\*STAR.

(2)  $F_P$ : The standard deviation of the results was used as the standard uncertainty of method precision.

(3)  $F_I$ : The standard deviation of the difference of the results using two ion pairs divided by the square root of the number of samples (for insignificant difference using t-test) or the average of the difference of the results using two ion pairs divided by 2 (for significant difference using t-test).

(4)  $C_Z$ : The certified purity value and associated uncertainty of enrofloxacin or sulfadiazine certified reference material from NMIA in combination with the uncertainty of weighing for preparation of the calibration stock solution.

(5)  $F_S$ : The standard deviation of the difference of the results from the use of two calibration stock solutions divided by the square root of the number of samples (for insignificant difference using t-test) or the average of the difference of the results from the use of two calibration stock solutions divided by 2 (for significant difference using t-test).

(6)  $F_R$ : Calculated from the deviation of the recovery from 100% and the uncertainty of the amount of enrofloxacin or sulfadiazine spiked in the sample.

(7)  $R_M'$ : Consider  $R_M = R_M' \times C_Z/C_Y$ , the conversion of equation  $R_M = mR_B + b$  leads to:  $R_B = (C_Z \times R_M') / (C_Y \times m) - b/m$ 

Let  $m' = C_Z/(C_Y \times m)$  and b' = -b/m, we have:  $R_B = m'R_M' + b'$ 

The standard uncertainty of  $R_{M}$  was calculated using the following equation:

$$u_{R_{M}} = \frac{1}{m'} \times s_{y/x} \times \sqrt{\frac{1}{N} + \frac{1}{n} + \frac{\left(R_{B} - \overline{R_{Bc}}\right)^{2}}{m'^{2} \sum_{i=1}^{n} \left(R_{Mci} - \overline{R_{Mc}}\right)^{2}}}$$
(4)

where

 $s_{y/x}$  = standard deviation of the regression

 $R_B$  = peak area ratio of sample blend

 $\overline{R_{B_c}}$  = average peak area ratio of calibration blends

n = number of calibration blends used for the linear regression plot

N = injection time for each sample

 $R_{Mci}$  = isotope mass ratio in calibration blends

 $\overline{R_{Mc}}$  = average isotope mass ratio in calibration blends

The combined standard uncertainty was calculated using the equation below:

$$u = \sqrt{\sum_{i} c_i^2 u_{xi}^2} \tag{5}$$

where u = combined standard uncertainty  $c_i =$  sensitivity coefficient of each component  $u_{xi} =$  standard uncertainty of each component

The full uncertainty budget is given in Tables 1 and 2.

|                 | x      | <i>u<sub>xi</sub></i> | $u_{xi}/x$ | c <sub>i</sub> | $c_i^2 \cdot u_{xi}^2$ | Contribution |
|-----------------|--------|-----------------------|------------|----------------|------------------------|--------------|
| $M_X(g)$        | 0.4913 | 0.000092              | 0.02%      | 0.13           | 1.514E-10              | 0.0011%      |
| $M_Y(g)$        | 0.3345 | 0.000092              | 0.03%      | 0.20           | 3.267E-10              | 0.0023%      |
| $C_Z$ (mg/kg)   | 2892.0 | 15.993                | 0.55%      | 0.00           | 1.323E-07              | 0.92%        |
| $R_M'$          | 0.8371 | 0.005893              | 0.70%      | 0.08           | 2.143E-07              | 1.49%        |
| $F_P(mg/kg)$    | 0.0658 | 0.002348              | 3.57%      | 1.00           | 5.515E-06              | 38.26%       |
| $F_I$ (mg/kg)   | 0.0658 | 0.001176              | 1.79%      | 1.00           | 1.383E-06              | 9.59%        |
| $F_{S}$ (mg/kg) | 0.0658 | 0.001386              | 2.11%      | 1.00           | 1.922E-06              | 13.33%       |
| $F_R$ (mg/kg)   | 0.0658 | 0.002291              | 3.48%      | 1.00           | 5.247E-06              | 36.40%       |

Table 1. Uncertainty budget for enrofloxacin.

Table 2. Uncertainty budget for sulfadiazine.

|                 | x      | $u_{xi}$ | $u_{xi}/x$ | $c_i$ | $c_i^2 \cdot u_{xi}^2$ | Contribution |
|-----------------|--------|----------|------------|-------|------------------------|--------------|
| $M_X(g)$        | 0.4913 | 0.000092 | 0.02%      | 5.16  | 2.247E-07              | 0.0016%      |
| $M_Y(g)$        | 0.4036 | 0.000092 | 0.02%      | 6.28  | 3.331E-07              | 0.0023%      |
| $C_Z$ (mg/kg)   | 166.2  | 0.7392   | 0.44%      | 0.02  | 1.269E-04              | 0.89%        |
| $R_M'$          | 1.056  | 0.002577 | 0.24%      | 2.40  | 3.826E-05              | 0.27%        |
| $F_P(mg/kg)$    | 2.5338 | 0.1039   | 4.10%      | 1.00  | 0.01080                | 75.94%       |
| $F_I$ (mg/kg)   | 2.5338 | 0.02074  | 0.82%      | 1.00  | 4.303E-04              | 3.02%        |
| $F_{S}$ (mg/kg) | 2.5338 | 0.00992  | 0.39%      | 1.00  | 9.850E-05              | 0.69%        |
| $F_R$ (mg/kg)   | 2.5338 | 0.05223  | 2.06%      | 1.00  | 0.00273                | 19.18%       |

# NMIA

The measurement equation used for both analytes is

$$\omega_{X} = \left(\frac{R_{B}}{R_{Bc}} \bullet \frac{m_{Zc}}{m_{Yc}} \bullet \frac{m_{Y}}{m_{X}}\right) \bullet \omega_{Z} \bullet (p+1) \bullet F_{matching} \bullet F_{matrix} \bullet T_{weighX4}$$

where

 $\omega_x$  = mass fraction of analyte in sample

 $\omega_z$  = mass fraction of analyte in the calibration standard solution used to prepare calibration blend

 $m_y = mass$  of internal standard solution added to sample blend

 $m_{yc}$  = mass of internal standard solution added to calibration blend

 $m_x$  = mass of sample added to sample blend

 $m_{zc}$  = mass of calibration standard solution added to calibration blend

 $R_{\rm b}\,$  = observed isotope amount ratio in sample/internal standard blend

 $R_{bc}$  = observed isotope amount ratio in standard/internal standard calibration blend

(p+1) = moisture content correction factor (p = mass fraction of water in the dry mass of the sample)

 $F_{\text{matrix}}$  = term to account for uncertainty associated with discounting potential matrix effects or chromatographic interferences (value of 1)

 $F_{ISequil}$  = term to account for uncertainty associated with discounting potential bias related to equilibration of labelled internal standard with analyte in the sample prior to extraction (value of 1)

 $T_{weight4}$  = term to account for weighing accuracy of masses of sample and standard solutions (value of 1)

Terms inside the brackets are included in the average of replicate determinations and their precision is incorporated in the measurement precision. Only estimates of accuracy are required for these terms.

Terms outside the brackets require estimates of both precision and accuracy in the MU budget.

Uncertainty estimates for each term in the measurement equation were combined as described in the GUM (JCGM 100) using sensitivity coefficients and the Welch-Satterthwaite equation to give the reported expanded uncertainties.

|                             | Enrofloxa | icin    |     |                                               |
|-----------------------------|-----------|---------|-----|-----------------------------------------------|
| Factor                      | x         | u(x)    | V   | Source of uncertainty estimate                |
| Measurement                 | 0.0530    | 0.00008 | 14  | Standard deviation of the mean of 15          |
| Precision                   |           |         |     | independent analyses of the study material    |
| p+1                         | 1.00436   | 0.00012 | 11  | Standard deviation of the mean of 12          |
|                             |           |         |     | measurements of the moisture content in 3     |
|                             |           |         |     | samples over 22-31 days                       |
| $\omega_z$                  | 0.1215    | 0.0016  | 2   | Combined uncertainty in purity of reference   |
|                             |           |         |     | material and observed reproducibility of      |
|                             |           |         |     | preparation of reference standard solutions   |
| Trueness Factors            |           |         |     |                                               |
| $T_{weighx4}$               | 1         | 3.2E-06 | 200 | Maximum potential bias in weighing for        |
| -                           |           |         |     | sample and calibration blends from balance    |
|                             |           |         |     | calibration certificates.                     |
| <b>F</b> <sub>matrix</sub>  | 1         | 0.0013  | 7   | Between group uncertainty from ANOVA of       |
|                             |           |         |     | repeated measurements of the study material   |
|                             |           |         |     | grouped by MRM transition used.               |
| <i>F</i> <sub>ISequil</sub> | 1         | 0.0057  | 4   | Between-group uncertainty from ANOVA of       |
|                             |           |         |     | duplicate analyses of study material using    |
|                             |           |         |     | internal standard equilibration times ranging |
|                             |           |         |     | from $2 - 26$ hours.                          |

The values of terms in the measurement equation and their uncertainties with degrees of freedom (v) in the uncertainty budget are summarised in the following table, which also summarises their derivation.

|        | Sulfadiaz | zine |   |                                |
|--------|-----------|------|---|--------------------------------|
| Factor | x         | u(x) | v | Source of uncertainty estimate |

| 2.208   | 0.009    | 14                                                                                | Standard deviation of the mean of 15                                                                         |
|---------|----------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
|         |          |                                                                                   | independent analyses of the study material                                                                   |
| 1.00436 | 0.00012  | 11                                                                                | Standard deviation of the mean of 12                                                                         |
|         |          |                                                                                   | measurements of the moisture content in 3                                                                    |
|         |          |                                                                                   | samples over 22-31 days                                                                                      |
| 3.760   | 0.012    | 9                                                                                 | Combined uncertainty in purity of reference                                                                  |
|         |          |                                                                                   | material and observed reproducibility of                                                                     |
|         |          |                                                                                   | preparation of reference standard solutions                                                                  |
|         |          |                                                                                   |                                                                                                              |
| 1       | 3.23E-06 | 200                                                                               | As for enrofloxacin (above)                                                                                  |
| 1       | 0.0022   | 1                                                                                 | Between group uncertainty from ANOVA                                                                         |
|         |          |                                                                                   | of repeated measurements of the study                                                                        |
|         |          |                                                                                   | material grouped by determination method.                                                                    |
| 1       | 0.009    | 3                                                                                 | Between-group uncertainty from ANOVA                                                                         |
|         |          |                                                                                   | of duplicate analyses of study material using                                                                |
|         |          |                                                                                   | internal standard equilibration times ranging                                                                |
|         |          |                                                                                   | from 2 – 24 hours                                                                                            |
|         |          | 1.00436     0.00012       3.760     0.012       1     3.23E-06       1     0.0022 | 1.00436     0.00012     11       3.760     0.012     9       1     3.23E-06     200       1     0.0022     1 |

Measurement precision: the standard deviation of the mean of the results for 15 sub-samples (16 sub- samples were analysed, but one sub-sample gave an anomalous result for ENR and a different sub-sample gave an anomalous result for SDZ, and these results were excluded after being identified as outliers by Grubbs test).

p+1: the standard deviation of the mean of the results for four measurements made at 22, 24, 29 and 31 days on each of the three sub-samples for moisture analysis

 $\omega_z$ : Uncertainty related to potential bias in the mass fraction of the calibration solution ( $\omega_z$ ) was estimated by combining the uncertainty for the purity of the reference material, a component related to the scale correction value from the balance used for standard preparation and a component for the observed reproducibility of standard preparation. Calibration blends made from standard solutions prepared from three stock solutions were compared. ANOVA was used to investigate whether there was a significant difference between the results and to estimate an uncertainty contribution.

## LGC

Each individual sample blend was injected repeated times bracketed by its corresponding calibration blend. The amount of analyte was calculated for each of the last 5 injections using the reduced form of the IDMS equation:

$$W_{X_i} = \frac{1}{m_{\rm X}} \times (m_{\rm Z} \times W_{\rm Z}) \times \frac{m_{\rm Y,SB}}{m_{\rm Y,CB}} \times \frac{R_{\rm SB_i}}{R_{\rm CB_i}}$$

Where:

\_

 $W_{Xi}$  is the mass fraction of the analyte in the sample calculated for injection *i*,

- $m_X$  is the mass of the sample weighed,
  - $m_{\rm Z}$  is the mass of the solution of the natural compound added to the calibration blend,
- $W_Z$  is the mass fraction of the natural compound in the solution added to the calibration blend
- $m_{\rm Y,CB}$  is the mass of the solution of the labelled compound added to the calibration blend,
- $m_{\rm Y,SB}$  is the mass of the solution of the labelled compound added to the sample blend,
- $R_{\text{SB}i}$  is the response ratio of each of the individual injection *i*.
- $R_{CBi}$  is the average ratio of the responses of the 2 bracketing calibration blends of injection *i*.

The mass fraction of each individual sample was calculated as the average of the 5 calculated mass fractions of the individual injections multiplied by the calculated dry-mass correction factor (D) for the day of the analysis of the sample:

$$W_{\rm X} = D \times \left(\frac{\sum_{i=1}^5 W_{\rm X_i}}{5}\right)$$

The standard uncertainty of each individual measurement was estimated using the following equation:

$$u_{W_{X}} = W_{X} \times \sqrt{\left(\frac{u_{D}}{D}\right)^{2} + \left(\frac{u_{m_{X}}}{m_{X}}\right)^{2} + \left(\frac{u_{m_{Z}}}{m_{Z}}\right)^{2} + \left(\frac{u_{W_{Z}}}{W_{Z}}\right)^{2} + \left(\frac{u_{m_{Y,SB}}}{m_{Y,SB}}\right)^{2} + \left(\frac{u_{m_{Y,CB}}}{m_{Y,CB}}\right)^{2} + \left(\frac{u_{(\frac{R_{SB}}{R_{CB}})}}{\frac{R_{SB}}{R_{CB}}}\right)^{2}$$

Where:

- $\frac{u_D}{D}$  is the relative uncertainty of the dry-basis conversion factor.
- $\frac{u_{m_{\rm X}}}{m_{\rm X}}$  is the relative uncertainty associated with the mass of sample used,
- $\frac{u_{m_{Z}}}{m_{Z}}$  is the relative uncertainty of the mass of natural solution added to the calibration blend.
- $\frac{u_{W_Z}}{W_7}$  is the relative uncertainty associated with the mass fraction of the calibration solution.
- $\frac{u_{m_{\rm Y, SB}}}{m_{\rm Y, SB}}$  is the relative uncertainty of the mass of labelled solution added to the sample blend.
- $\frac{u_{m_{Y,CB}}}{u_{m_{Y,CB}}}$  is the relative uncertainty of the mass of labelled solution added to the calibration blend.
- $m_{\rm Y, CB}$   $R_{\rm SB}$  .
- $\frac{R_{\rm SB}}{R_{\rm CB}}$  is the averaged bracketed response ratio
- $u_{\left(\frac{R_{\rm SB}}{R_{\rm CB}}\right)}$  is the standard deviation of 5 bracketed response ratios.

Final mass fraction was calculated as the average of the 4 individual results. Total combined uncertainty was estimated by averaging the individual combined standard uncertainties.

### VNIIM

 $\mathbf{w}_{a\mathrm{H}} = \frac{\mathbf{S}_{a\mathrm{H}} \cdot \mathbf{m}_{IS}}{\mathbf{S}_{IS} \cdot \mathbf{F} \cdot \mathbf{m}}$ 

*w*- mass fraction of the ENR (SDZ) in the sample, mkg/kg;

 $\ensuremath{m_{is}}\xspace$  - mass of internal standard added to sample before sample preparation, mkg;

m - mass of sample (dry mass), kg;

F - response factor.

 $F = (S_{ancal} * m_{is}) / (S_{iscal} * m_{an})$ 

 $C_{an}$ - mass of ENR (SDZ) in calibration solution;

m<sub>is</sub> - mass of internal standard in calibration solution;

 $S_{ancal}$  - peak area for the ENR (SDZ);

 $S_{iscal}$  - peak area for the internal standard

 $m = m_1(100 - 0, 18)$ 

 $m_1$  –mass of sample before moisture determination; 0,18 – moisture content, %

|                                                                                | u,    | , %   |
|--------------------------------------------------------------------------------|-------|-------|
| Source of uncertainty                                                          | SDZ   | ENR   |
| mass of sample(m, dry mass)                                                    | 0,012 | 0,012 |
| purity of reference standard                                                   | 0,29  | 0,29  |
| preparation of reference standard solution                                     | 0,44  | 0,44  |
| preparation of calibration solution                                            | 0,058 | 0,058 |
| RSD of F determination                                                         | 0,39  | 1,64  |
| mass of internal standard added to sample before extraction (m <sub>IS</sub> ) | 0,48  | 0,14  |
| RSD of results, %                                                              | 3.1   | 2,2   |
| comb.std uncertainty                                                           | 3.2   | 2,8   |
| expanded uncertainty (k=2)                                                     | 6.4   | 5,6   |

# **INMETRO**

The following equation was used to calculate the mass fraction of both analytes (W<sub>x</sub>):

$$W_{x} = W_{z} \times \frac{m_{z}}{m_{yc}} \times \frac{m_{y}}{m_{x}} \times \frac{R_{B}}{R_{BC}}$$

Where,

 $W_z$ : mass fraction of the calibration standard solution  $m_z$ : mass of standard solution added to calibration blend  $m_{yc}$ : mass of internal standard solution added to calibration blend  $m_y$ : mass of internal standard solution added to sample  $m_x$ : mass of sample  $R_B$ : analyte/internal standard area ratio in the sample blend  $R_B$ : analyte/internal standard area ratio in the sample blend

 $R_{BC}$ : analyte/internal standard area ratio in the calibration blend

|                                                                            |                                                   | Sulfa                             | diazine             | Enrofloxacin                      |                  |
|----------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------|---------------------|-----------------------------------|------------------|
| Source                                                                     |                                                   | Uncertainty<br>component<br>(g/g) | Contribution<br>(%) | Uncertainty<br>component<br>(g/g) | Contribution (%) |
| mass of standard                                                           |                                                   | $2.0 \times 10^{-8}$              |                     | 5.3 × 10 <sup>-8</sup>            |                  |
|                                                                            | mass of standard stock solution                   | $2.4 \times 10^{-11}$             |                     | 7.3 × 10 <sup>-8</sup>            |                  |
| Mass fraction<br>of standard<br>solution (W <sub>z</sub> )                 | mass of stock solution aliquote                   | $7.6 \times 10^{-9}$              | 4.6                 | $7.4 \times 10^{-10}$             | 11.4             |
| solution (w <sub>z</sub> )                                                 | mass of work standard solution                    | 3.1 × 10 <sup>-11</sup>           | -                   | $8.0 \times 10^{-13}$             |                  |
|                                                                            | standards purity                                  | $2.5 \times 10^{-10}$             |                     | 6.3 × 10 <sup>-12</sup>           |                  |
| Mass of standard solution added to calibration blend (m <sub>z</sub> )     |                                                   | $9.2 \times 10^{-9}$              | 0.9                 | $2.4 \times 10^{-10}$             | 0.8              |
| Mass of internal standard solution added to calibration blend $(m_{yc})$   |                                                   | $2.8 \times 10^{-8}$              | 8.3                 | $7.3 \times 10^{-10}$             | 7.4              |
| Mass of internal                                                           | l standard solution added to sample blend $(m_y)$ | $3.1 \times 10^{-8}$              | 10.2                | $8.1 \times 10^{-10}$             | 9.0              |
| Mass of sample                                                             | (m <sub>x</sub> )                                 | $3.2 \times 10^{-10}$             | 0.0                 | $8.2 \times 10^{-12}$             | 0.0              |
| Analyte/internal standard area ratio in the sample blend (R <sub>B</sub> ) |                                                   | $5.3 \times 10^{-8}$              | 29.0                | 1.5 × 10 <sup>-9</sup>            | 30.3             |
| Analyte/internal standard area ratio in the calibration blend $(R_{BC})$   |                                                   | $4.4 \times 10^{-8}$              | 20.2                | 1.5 × 10 <sup>-9</sup>            | 30.3             |
| Repeatability                                                              |                                                   | $5.1 \times 10^{-8}$              | 26.9                | $8.9 \times 10^{-10}$             | 10.9             |
| Overall                                                                    |                                                   | $9.8 \times 10^{-8}$              | 100.0               | $2.7 \times 10^{-09}$             | 100.0            |

Uncertainty budget:

# KRISS

### <Standard addition experiment>

The concentration of each analyte was calculated using the following equation.

 $y = k(x + C_{sample})$ 

where,

*k* is the response factor of the instrument;

 $C_{\text{sample}}$  is the concentration of the target analyte in the sample;

$$y = \left(\frac{M_{is-sol,subsamplei} \times C_{is-sol}}{M_{subsamplei}}\right) A R_{subsamplei}$$
$$x = \left(\frac{M_{s-sol,subsamplei} \times C_{s-sol}}{M_{subsamplei}}\right)$$

where,

 $M_{is-sol,subsample,i}$  is the mass of the internal standard solution added into the ith subsample;

- $C_{issol}$  is the concentration of the internal standard in the internal standard solution;
- $M_{subsample,i}$  is the mass of the ith subsample;
- $AR_{subsample,i}$  is the observed area ratio of the target analyte and its isotope-labeled internal standard in the ith subsample;

 $M_{s.sol,subsample,i}$  is the mass of the standard solution added into the ith subsample;

 $C_{ssal}$  is the concentration of the target analyte in the standard solution.

The standard uncertainty of the final measurement value  $C_{sample}$ ,  $u(C_{sample})$ , was calculated by combining the standard uncertainty of  $C_{sample}$  from the least-square-fit line,  $u_{lsf}(C_{sample})$ , and the stadnard uncertainty of  $C_{s-sol}$ ,  $u(C_{s-sol})$ , as following equation.

 $u\left(C_{sample}\right) = \sqrt{u_{lsf}^{2}(C_{sample}) + u^{2}(C_{s-sol})}$ 

The  $u_{lsf}(C_{sample})$  and  $u(C_{s-sol})$  can be calucated using the following equations as the equation,  $y=k(x+C_{sample})$ , can be rewritten as y=kx+a.

$$u_{lsf}(C_{sample}) = \sqrt{\left(\frac{s_k}{k}\right)^2 + \left(\frac{s_a}{a}\right)^2}$$
$$u(C_{s-sol}) = \sqrt{u_{purity}^2 + u_{gravi}^2}$$

where,

*k* is the slope of the least-square-fit line;

*a* is *y*-intercept which is the value of y when x is zero;

 $C_{\text{sample}}$  is a/k;

 $s_k$  is the standard deviation of k calculated from the least-square fitting of experimental results;

- $s_a$  is the standard deviation of *a* calculated from the least-square fitting of experimental results;
- $u_{purity}$  is the standard uncertainty for the purity analysis of the target analyte used for the preparation of the standard solution;
- $u_{gravit}$  is the standard uncertainty for the gravimetric preparation of the target analyte used for the preparation of the standard solution.

# <Application of the result of standard addition experiment to IDMS experiment>

The plot of  $AR_{subsample,i}$  versus  $IR_{subsample,i}$  (target analyte/its isotope-labeled internal standard in the ith subsample) was made to draw a calibration curve by using the result of the standard addition experiment. The  $IR_{subsample,i}$  can be calculated as follows.

$$IR_{subsamplei} = \frac{M_{subsamplei} \times C_{sample} + M_{s-sol,subsamplei} \times C_{s-sol}}{M_{is-sol,subsamplei} \times C_{is-sol}}$$

IDMS measurement was performed with 4 subsamples. From the area ratio  $AR_{subsample}$  observed by LC/MS for each subsample,  $IR_{subsample}$  was calculated using the reconstructed calibration curve. Then, the concentration of analytes,  $C_{sample,IDMS}$ , in each subsample was calculated using the following equation.

$$C_{sample,IDMS} = f \cdot \frac{IR_{subsamplei} \times M_{is-sol,subsamplei} \times C_{is-sol}}{M_{subsamplei}}$$

Where *f* is the dry mass correction factor, f=1/(1-x), in which *x* is the moisture content of the KC sample.

The uncertainty of the mean,  $u(C_{\text{mean}})$ , for 4 subsamples was calculated by using the following equation.

$$u(C_{\text{mean}}) = \sqrt{u_{\text{char,sys}}^2 + \frac{SD_{bb}^2}{\sqrt{n}}}$$

Where  $u_{\text{char.sys}}$  is the uncertainty caused by systematic effects,  $SD_{bb}$  is standard deviation of the measurement result of four subsamples, and n is the number of replicates (n=4).

# NIMT

Measurement equation:

$$w_{x} = F_{P} \cdot F_{E} \cdot F_{I} \cdot w_{z} \cdot \frac{m_{y} \cdot m_{zc}}{F_{drymass} \cdot m_{x} \cdot m_{yc}} \cdot \frac{R'_{b}}{R'_{bc}}$$

 $w_x = mass$  fraction of enrofloxacin/sulfadiazine in bovine tissue

 $w_{z}$  = mass fraction of enrofloxacin/sulfadiazine in the calibration solution used to prepare the calibration blend

 $m_y = mass$  of spike solution added to sample blend

 $m_{yc}$  = mass of spike solution added to calibration blend

m<sub>zc</sub>= mass of standard solution added to calibration blend

 $m_x =$  mass of sample added to sample blend

 $F_E$  = extraction efficiency factor, given a value of 1

 $F_I$  = interference effect, given a value of 1

 $F_P$  = method precision factor, given a value of 1

 $F_{drymass}$  = dry mass correction factor obtained from moisture content analysis

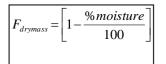
 $R'_{b}$  and  $R'_{bc}$  = observed isotope amount ratios in the sample blend and the calibration blend, respectively

Combined uncertainty equation:

$$\frac{u(x)}{x} = \sqrt{\left(\frac{u(w_{zc})}{w_{zc}}\right)^2 + \left(\frac{u(m_y)}{m_y}\right)^2 + \left(\frac{u(m_{yc})}{m_{yc}}\right)^2 + \left(\frac{u(m_{zc})}{m_{zc}}\right)^2 + \left(\frac{u(m_x)}{m_x}\right)^2 + \left(\frac{u(F_{drymass})}{F_{drymass}}\right)^2 + \left(\frac{u(F_I)}{F_I}\right)^2 + \left(\frac{u(F_E)}{F_E}\right)^2 + \left(\frac{u(F_P)}{F_P}\right)^2 + \left(\frac{u(F_P)}{F_P}\right$$

### Where;

 $u(w_{z,c})$  is the standard uncertainty of the mass fraction of analyte in the calibration solution used to prepare the calibration blend. The value was estimated from the purity of enrofloxacin/sulfadiazine standard, masses weighed for preparation of stock solutions and uncertainty using different standards (standard comparison).


 $u(m_y)$ ,  $u(m_{y,c})$ ,  $u(m_x)$  and  $u(m_{z,c})$  are standard uncertainties of the masses. These values were estimated from the bias and precision effect of the balance.

 $u(F_P)$  is the standard uncertainty of the precision factor. This value was estimated from standard deviation of the multiple IDMS results.

 $u(F_l)$  is the standard uncertainty of the interference effect. This value was estimated from potential bias between primary ion pair and secondary ion pair of the MRM program.

 $u(F_E)$  is the standard uncertainty of the extraction efficiency factor which was estimated from the liquidsolid extraction and solid-phase –extraction.

 $u(F_{drymass})$  is the standard uncertainty of the dry mass correction factor which was estimated from the moisture content analysis.



<u>Note</u>: For the uncertainty contributing to the  $R'_B$  and  $R'_{B,C}$ , the precision in measuring the isotope amount ratios of the analyte and the internal standard in the sample and calibration blends was assumed to be incorporated in the overall method precision. The effect of any biases on these ratios was assumed to be negligible as any systematic biases should cancel out since the calibration blends and sample blends were exact-matched for analyte concentration and isotope ratio. Other biases that may arise from interferences, extractions are captured in other factors.

| Combination of Uncertainties                     |          |               |                                    |  |  |
|--------------------------------------------------|----------|---------------|------------------------------------|--|--|
| Factor                                           | Values   | Uncertainties |                                    |  |  |
|                                                  | X        | u(x)          | <b>u</b> ( <b>x</b> )/( <b>x</b> ) |  |  |
| Measurement equation factors                     |          |               |                                    |  |  |
| Method Precision, F <sub>P</sub>                 | 1.0000   | 0.02009       | 2.009%                             |  |  |
| m <sub>zc</sub>                                  | 0.29237  | 0.000044      | 0.0150%                            |  |  |
| $\mathbf{m}_{\mathbf{y}}$                        | 0.29408  | 0.000044      | 0.0150%                            |  |  |
| m <sub>vc</sub>                                  | 0.29496  | 0.000044      | 0.0149%                            |  |  |
| <b>F</b> <sub>drymass</sub>                      | 0.99709  | 0.000238      | 0.0239%                            |  |  |
| m <sub>x</sub>                                   | 0.50750  | 0.000044      | 0.0087%                            |  |  |
| Wz                                               | 102.6775 | 0.869475      | 0.8468%                            |  |  |
| Additional Factors                               |          |               |                                    |  |  |
| Extraction effects, $F_E$                        | 1.000    | 0.0200        | 2.000%                             |  |  |
| Interference from two different ion pairs, $F_I$ | 1.000    | 0.0071        | 0.712%                             |  |  |

# Uncertainty budget: Enrofloxacin

| Uncertainty Analysis Results      |        |               |
|-----------------------------------|--------|---------------|
| $\mathbf{w}_{\mathbf{x}}$ =       | 62.05  | ng/g          |
| <b>u</b> ( <b>x</b> ) =           | 1.888  | ng/g          |
| <b>u</b> ( <b>x</b> )/ <b>x</b> = | 3.04%  |               |
| Veff(total) =                     | 32.259 |               |
| <i>k</i> =                        | 2.04   | (@ 95% level) |
| $U(\mathbf{x}) =$                 | 3.846  |               |
| $U(\mathbf{x}) =$                 | 6.20%  |               |

# Uncertainty budget: Sulfadiazine

| Combination of Uncertainties     |        |               |                                    |  |  |  |
|----------------------------------|--------|---------------|------------------------------------|--|--|--|
| Factor                           | Values | Uncertainties |                                    |  |  |  |
|                                  | x      | u(x)          | <b>u</b> ( <b>x</b> )/( <b>x</b> ) |  |  |  |
| Measurement equation factors     |        |               |                                    |  |  |  |
| Method Precision, F <sub>P</sub> | 1.0000 | 0.02976       | 2.976%                             |  |  |  |

| m <sub>zc</sub>                                  | 0.33206   | 0.000044  | 0.0132% |
|--------------------------------------------------|-----------|-----------|---------|
| m <sub>y</sub>                                   | 0.33448   | 0.000044  | 0.0131% |
| m <sub>vc</sub>                                  | 0.33406   | 0.000044  | 0.0132% |
| F <sub>drvmass</sub>                             | 0.99709   | 0.000238  | 0.0239% |
| m <sub>x</sub>                                   | 0.50181   | 0.000044  | 0.0088% |
| Wz                                               | 3279.8871 | 26.067115 | 0.7948% |
| Additional Factors                               |           |           |         |
| <b>Extraction effects,</b> $F_E$                 | 1.000     | 0.0100    | 1.000%  |
| Interference from two different ion pairs, $F_I$ | 1.000     | 0.0027    | 0.272%  |

| Uncertainty Analysis Results      |         |               |
|-----------------------------------|---------|---------------|
| $\mathbf{w}_{\mathbf{x}}$ =       | 2138.50 | ng/g          |
| <b>u</b> ( <b>x</b> ) =           | 69.506  | ng/g          |
| <b>u</b> ( <b>x</b> )/ <b>x</b> = | 3.25%   |               |
| Veff(total) =                     | 24.906  |               |
| <i>k</i> =                        | 2.06    | (@ 95% level) |
| $U(\mathbf{x}) =$                 | 143.453 |               |
| $U(\mathbf{x}) =$                 | 6.71%   |               |

# UME

Measurement Equation:

$$RF = \frac{A_N \cdot C_{IS}}{A_{IS} \cdot C_N}$$

 $\begin{array}{l} \text{RF: Response Factor} \\ \text{C}_{\text{N}}: \text{Concentration of native analyte (mg/kg)} \\ \text{A}_{\text{N}}: \text{Area of native analyte} \\ \text{C1s: Concentration of labelled analyte (mg/kg)} \\ \text{A1s: Area of labelled analyte} \end{array}$ 

$$C_{Analyte} = \frac{A_N \cdot n_{IS} \cdot 1000}{A_{IS} \cdot RF \cdot M_{sample}}$$

RF: Response Factor  $C_N$ : Concentration of analyte in unknown sample (µg/kg)  $A_N$ : Area of native analyte in unknown sample A1s: Area of labelled analyte  $n_{1s}$ : Total amount of added internal Standard (µg)  $M_{sample}$ : Sample intake (g)

# Uncertainty Calculations CCQM-K141/P178

Bottom up approach was used

### Sources:

1-Mass of sample intake
2-Spiking of labelled stock solution
3-Native stock solution
4-Calibration
5-Recovery
6-Repeatability
7-Water determination

# 1-Mass of sample intake

| Mass of bovine tissue<br>sample | Value                      | Standard Measurement<br>Uncertainty |
|---------------------------------|----------------------------|-------------------------------------|
| Calibration                     | m <sub>tissue</sub><br>(g) | um <sub>calibrationsample</sub> (g) |
| Mass of Tare                    |                            |                                     |
| Calibration                     | m <sub>tare</sub> (g)      | um <sub>calibrationtare</sub>       |

$$u(m_{SI}) = \sqrt{(u_{mcalibsample})^2 + (u_{mcalibtare})^2}$$

2-Spiking of Isotopic Labelled Compounds Stock Solution

|                       |                           | Standard<br>Measurement    |
|-----------------------|---------------------------|----------------------------|
| Mass                  | Value                     | Uncertainty                |
| Mass of spiking of IS | m <sub>solution</sub> (g) | u <sub>mspikel</sub> s (g) |
| Calibration           |                           |                            |

$$u(m_{IS}) = \sqrt{\left(u_{mcalib}\right)^2}$$

# **3-Native Stock Solution**

$$u(C_{1ststocksol}) = \sqrt{(u_{purity})^2 + (u_m)^2}$$
$$u(C_{2ndstocksol}) = \sqrt{(u_{purity})^2 + (u_m)^2}$$

**4-Calibration** 

$$u(RF) = SD$$

# 5-Uncertainty of Recovery

$$u(R_m) = R_m \sqrt{\left(\frac{\overline{u(C_{obs})}}{\overline{C_{obs}}}\right)^2 + \left(\frac{u(C_{cert})}{\overline{C_{cert}}}\right)^2}$$
$$R_m = \frac{\overline{C_{obs}}}{\overline{C_{cert}}}$$

standard measurement uncertainty of

- uC<sub>obs</sub> observed concentration of analyte observed
- C<sub>obs</sub> concentration of

# 5-Uncertainty of Repeatability

$$u(r) = \frac{SD}{\sqrt{n}}$$

# 6- Water Determination

Mass of Sample

$$u(m_{sample}) = \sqrt{2*(u_{Cmcalibration})^2}$$

**Repeatability of Water Determination** 

$$u(R) = \frac{SD}{\sqrt{n}}$$

$$u(Water) = \sqrt{u(R)^2 + (um_{sample})^2}$$

# COMBINED STANDARD MEASUREMENT UNCERTAINTY

$$\frac{u_c(Analyte)}{c_{Analyte}} = \sqrt{\left(\frac{u(m_{SI})}{m_{SI}}\right)^2 + \left(\frac{u(m_{SLS})}{c_{SLS}}\right)^2 + \left(\frac{u(C_{NSS})}{C_{NSS}}\right)^2 + \left(\frac{u(RF)}{RF}\right)^2 + \left(\frac{u(R_m)}{R_m}\right)^2 + \left(\frac{u(r)}{r}\right)^2 + \left(\frac{u(Water)}{Water}\right)^2}$$

# **Uncertainty Budget of Sulfadiazine**

| Parameters                              | Unit       | Value (X) | u(x)       | u(x)/X               |            |
|-----------------------------------------|------------|-----------|------------|----------------------|------------|
| Mass of sample<br>intake                | a          | 0.5       | 1.2621E-05 | 2.52E-05             |            |
| Spiking Labelled stock solution         | g<br>g     | 0.5       | 0.00000914 | 2.32E-03<br>9.14E-05 |            |
| Native stock solution                   | ь<br>µg/kg | 10        | 0.10       | 9.84E-03             |            |
| Calibration                             | P6/ 16     | 0.976     | 0.010      | 1.06E-02             |            |
| Recovery                                |            | 0.961     | 0.010      | 4.26E-02             |            |
| Repeatability                           | µg/kg      | 2246.5    | 20.84      | 9.28E-03             |            |
| Water determination                     | g/g        | 0.013     | 0.0004     | 3.37E-02             |            |
|                                         |            |           |            |                      |            |
| Relative Standard Measurement Uncertain | nty        |           |            | 0.057                |            |
| Result (µg/kg)                          |            | 2246.5    |            |                      |            |
| Combined Standard Measurement Uncert    | ainty      |           | 128.0      |                      |            |
| Expanded Uncertainty (k=2)              |            |           | 255.9      |                      |            |
| Relative Mesurement Uncertainty (%)     |            |           | 11.4       |                      |            |
| Uncertainty Budget of Enrofloxacin      |            |           |            |                      |            |
| Parameters                              |            | Unit      | Value (X   | )                    | u(x)       |
| Mass of sample intake                   |            | g         | 0.5        |                      | 1.2621E-05 |
| Spiking Labelled stock solution         |            | g         | 0.1        |                      | 0.00000914 |
| Native stock solution                   |            | µg/kg     | 0.5        |                      | 0.0049     |
| Calibration                             |            |           | 1.191      |                      | 0.007      |
| Recovery                                |            |           | 0.988      |                      | 0.025      |
| Repeatability                           |            | µg/kg     | 59.29      |                      | 2.026      |
| Water determination                     |            | g/g       | 0.013      |                      | 0.0004     |
| Relative Standard Measurement Uncertai  | ntv        |           |            |                      |            |
| Result (µg/kg)                          | -1         |           | 59.3       |                      |            |
| Combined Standard Measurement Uncert    | aintv      |           |            |                      | 3.3        |
| Expanded Uncertainty (k=2)              | -1         |           |            |                      | 6.6        |
| Relative Mesurement Uncertainty (%)     |            |           |            |                      | 11.1       |
|                                         |            |           |            |                      |            |

# **BVL**

1

$$x = (y - a)/b$$
  
$$b = (n \sum x_i y_i - \sum x_i \sum y_i) / \sqrt{\left\{ n \sum x_i^2 - (\sum x_i)^2 \right\}}$$

$$a = \left(\sum y_i - b\sum x_i\right)/n$$

- analyte concentration in the sample (µg/kg) х:
- analyte concentration of the i-th standard (µg/kg) X<sub>i</sub>:
- intercept of the calibration curve a:
- slope of the calibration curve b:
- area of the analyte peak of the sample y:
- area of the analyte peak of the i-th standard y<sub>i</sub>:
- number of analyses per concentration range n:

$$U = k * \sqrt{(u_{res})^2 + (u_{ss})^2 + (u_{sw})^2 + (u_{sp})^2 + (u_{dm})^2}$$

u<sub>res</sub>: relative uncertainty of result as relative within-laboratory reproducibility

uss: uncertainty of calibration solution

usw: uncertainty of sample weight

usp: uncertainty of sample spike

u<sub>dm</sub>: uncertainty of dry mass

Contributions to measurement uncertainty: Enrofloxacin

|             |                                                   |                                                                 |                                                                                       | u(x)/X                                                                                              |                                                                                                                                                                                                                                           |
|-------------|---------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| u           |                                                   | Target                                                          |                                                                                       | [%]                                                                                                 |                                                                                                                                                                                                                                           |
| 0.470542213 | ng/g                                              | 10000                                                           | ng/g                                                                                  | 0.005                                                                                               | 2.2141E-05                                                                                                                                                                                                                                |
| 1.39425E-05 | g                                                 | 0.5                                                             | g                                                                                     | 0.003                                                                                               | 7.7757E-06                                                                                                                                                                                                                                |
| 1.21865E-05 | g                                                 | 0.0478                                                          | g                                                                                     | 0.025                                                                                               | 0.0006498                                                                                                                                                                                                                                 |
| 6.95        | ng/g                                              | 96.6                                                            | ng/g                                                                                  | 7.20                                                                                                | 51.8                                                                                                                                                                                                                                      |
| 0.0009      | g/g                                               | 0.99871                                                         | g/g                                                                                   | 0.09                                                                                                | 0.0080595                                                                                                                                                                                                                                 |
|             | 0.470542213<br>1.39425E-05<br>1.21865E-05<br>6.95 | 0.470542213 ng/g<br>1.39425E-05 g<br>1.21865E-05 g<br>6.95 ng/g | 0.470542213 ng/g 10000<br>1.39425E-05 g 0.5<br>1.21865E-05 g 0.0478<br>6.95 ng/g 96.6 | 0.470542213 ng/g 10000 ng/g<br>1.39425E-05 g 0.5 g<br>1.21865E-05 g 0.0478 g<br>6.95 ng/g 96.6 ng/g | 0.470542213       ng/g       10000       ng/g       0.005         1.39425E-05       g       0.5       g       0.003         1.21865E-05       g       0.0478       g       0.025         6.95       ng/g       96.6       ng/g       7.20 |

| k= | 2   |  |       |
|----|-----|--|-------|
| u= | [%] |  | 7.2   |
| U= | [%] |  | 14.40 |

Contributions to measurement uncertainty: Sulfadiazin

|                         | u           |      | Target  |      | u(x)/X<br>[%] |            |
|-------------------------|-------------|------|---------|------|---------------|------------|
| Calibration solution:   | 0.33        | ng/g | 10000   | ng/g | 0.003         | 0.0000109  |
| Sample weight:          | 1.39425E-05 | g    | 0.5     | g    | 0.003         | 7.7757E-06 |
| Sample spike:           | 1.21865E-05 | g    | 0.0478  | g    | 0.025         | 0.0006498  |
| Reproducibility method: | 200         | ng/g | 2304    | ng/g | 8.70          | 75.7       |
| Dry mass:               | 0.0009      | g/g  | 0.99871 | g/g  | 0.09          | 0.0080595  |

| k= | 2   |      |
|----|-----|------|
| u= | [%] | 8.7  |
| U= | [%] | 17.4 |

# NRC Ottawa

ID<sup>2</sup>MS:

$$w_{A} = -w_{A^{*}} \frac{m_{A^{*}} m_{B^{-2}} (R_{1} - R_{A^{*}}) (R_{B} - R_{2})}{m_{A^{-2}} m_{B^{-1}} (R_{B} - R_{1}) (R_{A} - R_{2})}$$

| ID <sup>2</sup> MS       | Double isotope dilution mass spectrometry                                 |
|--------------------------|---------------------------------------------------------------------------|
| A                        | Analyte in the sample (natural isotopic composition)                      |
| A*                       | Analyte in the primary standard (natural isotopic composition)            |
| В                        | Analyte in the isotopic standard (isotopically enriched composition)      |
| AB                       | Blend of sample (A) and isotopic standard (B)                             |
| A*B                      | Blend of primary standard (A*) and isotopic standard (B)                  |
| AA*B                     | Blend of sample (A), primary standard ( $A^*$ ) and isotopic standard (B) |
| W <sub>A</sub>           | Mass fraction of A (natural) in the sample (unknown)                      |
| W <sub>A*</sub>          | Mass fraction of A (natural) in the primary standard                      |
| <i>m</i> <sub>A*-1</sub> | Mass of A (natural) in blend-1 (A*B) (Cal)                                |
| <i>m</i> <sub>B-1</sub>  | Mass of B (Isotopic IS) in blend-1 (A*B) (Cal)                            |
| <i>m</i> <sub>A-2</sub>  | Mass of matrix sample in blend-2 (AB) (Spiked matrix)                     |
| <i>m</i> <sub>B-2</sub>  | Mass of B (Isotopic IS) in blend-2 (AB) (Spiked matrix)                   |
| $R_1$                    | Measured isotope ratio in blend-1 (A*B)                                   |
| $R_2$                    | Measured isotope ratio in blend-2 (AB)                                    |
| R <sub>A</sub>           | Measured isotope ratio in blend-3 (A)                                     |

| $R_{A^{\star}}$ | Measured isotope ratio in blend-4 (A*) |
|-----------------|----------------------------------------|
| R <sub>B</sub>  | Measured isotope ratio in blend-5 (B)  |

# SA-ID<sup>2</sup>MS:

$$w_{A} = -w_{A^{*}} \frac{m_{A^{*}-1}m_{B^{-2}}(R_{1}-R_{A^{*}})(R_{B}-R_{2}) + m_{A^{*}-2}m_{B^{-1}}(R_{B}-R_{1})(R_{A^{*}}-R_{2})}{m_{A^{-1}}m_{B^{-2}}(R_{1}-R_{A})(R_{B}-R_{2}) + m_{A^{-2}}m_{B^{-1}}(R_{B}-R_{1})(R_{A}-R_{2})}$$

| SA-ID <sup>2</sup> MS    | Standard addition-double isotope dilution mass spectrometry                    |
|--------------------------|--------------------------------------------------------------------------------|
| А                        | Analyte in the sample (natural isotopic composition)                           |
| A*                       | Analyte in the primary standard (natural isotopic composition)                 |
| В                        | Analyte in the isotopic standard (isotopically enriched composition)           |
| AB                       | Blend of sample (A) and isotopic standard (B)                                  |
| A*B                      | Blend of primary standard (A*) and isotopic standard (B)                       |
| AA*B                     | Blend of sample (A), primary standard (A*) and isotopic standard (B)           |
| WA                       | Mass fraction of A (natural) in the sample (unknown)                           |
| W <sub>A*</sub>          | Mass fraction of A (natural) in the primary standard                           |
| <i>m</i> <sub>A-1</sub>  | Mass of matrix sample in blend-1 (AA*B) Note: $(A^* = 0 \text{ in blend } 1)$  |
| <i>m</i> <sub>A*-1</sub> | Mass of A (natural) in blend-1 (AA*B)                                          |
| <i>m</i> <sub>B-1</sub>  | Mass of B (Isotopic IS) in blend-1 (AA*B)                                      |
| m <sub>A-2</sub>         | Mass of matrix sample in blend-2 (AA*B)                                        |
| <i>m</i> <sub>A*-2</sub> | Mass of A (natural) in blend-2 (AA*B)                                          |
| <i>m</i> <sub>B-2</sub>  | Mass of B (Isotopic IS) in blend-2 (AA*B)                                      |
| $R_1$                    | Measured isotope ratio in blend-1 (AA*B) Note: $(A^* = 0 \text{ in blend } 1)$ |
| R <sub>2</sub>           | Measured isotope ratio in blend-2 (AA*B)                                       |
| R <sub>A</sub>           | Measured isotope ratio in blend-3 (A)                                          |
| $R_{A^{\star}}$          | Measured isotope ratio in blend-4 (A*)                                         |
| R <sub>B</sub>           | Measured isotope ratio in blend-5 (B)                                          |
|                          |                                                                                |

### Uncertainty Budget:

The combined uncertainty estimate  $(u_c)$  included uncertainties due to measurement  $(u_{char})$ , possible inconsistency between the various measurement methods  $(u_{method})$  and possible uncertainties due to reference standard purity  $(u_{purity})$ . The combined uncertainty estimate  $(u_c)$  was calculated as the square root of the sum of squares of the individual uncertainty contributions. A coverage factor of 2 was used to calculate the expanded uncertainty  $(U_C)$ .

# NIM

### The mass fraction $(\mu g/kg)$ of analytes (Cx) in the sample was calculated as follows:

The expanded measurement equation given was used to calculate the mass fraction of the measurand. The additional factors (F) in the expanded measurement equation represent aspects of the measurement procedure that may influence the measured mass fraction value. They are given a value of 1 but they add an uncertainty component to the uncertainty budget.

Expanded measurement equation

 $C_{x} = F_{I} \times F_{P} \times F_{E} \times (M_{y} \times M_{z}c \times Rb) / (M_{x} \times F_{drymass} \times M_{y}c \times Rbc)$ 

Where :

| ele.                 |                                                                               |
|----------------------|-------------------------------------------------------------------------------|
| Cx                   | is the mass fraction of analytes in the sample (ng/g);                        |
| $F_{I}$              | is the matrix effect interference factor                                      |
| $F_P$                | is the method precision factor                                                |
| $F_E$                | is the extraction efficiency factor                                           |
| $M_y$                | is mass of internal standard (isotopologue) added to the sample blend (g)     |
| Mzc                  | is mass of analyte added to the calibration blend (g)                         |
| Rb                   | is peak area ratio of analyte /isotopologue in sample blend                   |
| $M_x$                | is mass of sample (g)                                                         |
| F <sub>drymass</sub> | is the drymass correction factor obtained from moisture content analysis      |
| Myc                  | is mass of internal standard(isotopologue) added to the calibration blend (g) |
| Rbc                  | is peak area ratio of analyte /isotopologue in calibration blend              |
|                      |                                                                               |

The detailed uncertainty budgets were listed as follows:

| Uncertainty of Enrofloxacin                 |             |                  |               |
|---------------------------------------------|-------------|------------------|---------------|
| Source of uncertainty                       | Parameter x | u <sub>(x)</sub> | $u_{(x)}/(x)$ |
| $M_{y}(g)$                                  | 0.12        | 0.44E-03         | 0.37%         |
| $M_{x}(g)$                                  | 0.50        | 0.44E-03         | 0.09%         |
| M <sub>y</sub> c (g)                        | 0.45        | 0.44E-03         | 0.10%         |
| M <sub>z</sub> c(g)                         | 0.51        | 0.16E-02         | 0.32%         |
| F <sub>drymass</sub>                        | 0.9973      | 0.51E-03         | 0.05%         |
| Extraction effects, $F_E(1)$                | 1           | 2.00E-02         | 2.00%         |
| Interference from matrix effect, $F_I(1)$   | 1           | 0.70E-02         | 0.70%         |
| Method Precision, $F_P(1)$                  | 1           | 3.53E-02         | 3.53%         |
| Relative combined standard uncertainty (uc) |             |                  | 4.15 %        |
| Coverage factor, k                          |             |                  | 2             |
| Relative expanded uncertainty (Uc)          |             |                  | 8.3 %         |
|                                             |             |                  |               |
| Mass Fraction (µg/kg)                       |             | 65.1             |               |
| Expanded uncertainty, U (µg/kg)             |             | 5.4              |               |

| Uncertainty of Sulfadiazine |             |                  |                       |  |
|-----------------------------|-------------|------------------|-----------------------|--|
| Source of uncertainty       | Parameter x | u <sub>(x)</sub> | u <sub>(x)</sub> /(x) |  |
| $M_{y}(g)$                  | 0.11        | 0.44E-03         | 0.40%                 |  |
| $M_{x}(g)$                  | 0.50        | 0.44E-03         | 0.09%                 |  |
| M <sub>y</sub> c (g)        | 0.39        | 0.44E-03         | 0.12%                 |  |

| M <sub>z</sub> c(g)                          | 0.44   | 0.15E-02 | 0.34%  |
|----------------------------------------------|--------|----------|--------|
| F <sub>drymass</sub>                         | 0.9973 | 0.51E-03 | 0.05%  |
| Extraction effects, $F_E(1)$                 | 1      | 2.00E-02 | 2.00%  |
| Interference from matrix effect , $F_{I}(1)$ | 1      | 0.55E-02 | 0.55%  |
| Method Precision, $F_P(1)$                   | 1      | 2.58E-02 | 2.58%  |
| Relative combined standard uncertainty (uc)  |        |          | 3.35 % |
| Coverage factor, k                           |        |          | 2      |
| Relative expanded uncertainty (Uc)           |        |          | 6.7 %  |
|                                              |        |          |        |
| Mass Fraction (µg/kg)                        |        | 2349.0   |        |
| Expanded uncertainty, U (µg/kg)              |        | 157.4    |        |

### EXHM

The measurement equation is:

$$w_{M,S} = w_{M,C} \frac{100}{Rec^{22}} \times \frac{1}{1 - \mathbb{Z}H^{22}} \times \frac{m_{is,S}}{m_{M,S}} \times \frac{m_{M,C}}{m_{is,C}} \times \frac{R_S}{R_C}$$

where  $w_{M,S}$  = dry mass fraction of the analyte (SDZ or EFX) in the sample, ( $\mu g/kg$ )

 $w_{M,C}$  = mass fraction of the analyte (SDZ or EFX) in the calibration solution, ( $\mu g/kg$ )

H = sample moisture content (g/g)

Rec = recovery (%), assessed against other independent methods

 $m_{is,s}$  = mass of internal standard solution added to sample blend, (g)

 $m_{M,S}$  = mass of test material in sample blend, (g)

 $m_{M,C}$  = mass of the analyte (SDZ or EFX) solution added to calibration blend, (g)

 $m_{is,C}$  = mass of internal standard solution added to calibration blend, (g)

R<sub>s</sub> = measured peak area ratio of the selected ions in the sample blend

R<sub>c</sub> = measured peak area ratio of the selected ions in the calibration blend

The equation used to estimate standard uncertainty is:

$$u(w_{BS}) = \sqrt{\binom{S_R}{\sqrt{n}}^2 + \sum (C_j u(m_i))^2 + \sum (C_j u(R_i))^2 + (C_j u(w_{MC}))^2 + (C_j u(R))^2 + (C_j u(H))^2}$$

where  $s_R$  is the standard deviation under reproducibility conditions, *n* the number of determinations and  $C_j$  the sensitivity coefficients associated with each uncertainty component. The uncertainty of the peak area ratios was considered to have been included in the estimation of method precision.

Uncertainty estimation was carried out according to JCGM 100: 2008. The standard uncertainties were combined as the sum of the squares of the product of the sensitivity coefficient (obtained by partial differentiation of the measurement equation) and standard uncertainty to give the square of the combined uncertainty. The square root of this value was multiplied by a coverage factor (95% confidence interval) from the t-distribution at the total effective degrees of freedom obtained from the Welch-Satterthwaite equation to give the expanded uncertainty.

Uncertainty budgets for SDZ and EFX

#### Sulfadiazine

| uncertainty component                                                  |          | sensitivity                                   |             | relative       |             |                      |
|------------------------------------------------------------------------|----------|-----------------------------------------------|-------------|----------------|-------------|----------------------|
|                                                                        | value    | coefficient                                   | uncertainty | uncertainty    | Cixui       | $(C_i \times u_i)^2$ |
| method precision                                                       | 2324,55  | 1,0000                                        | 17,758      | 0,0076         | 17,7578     | 315                  |
| mass fraction of SDZ in the calibration solution, ( $\mu g/kg$ )       | 40043,59 | 0,0581                                        | 102,055     | 0,0025         | 5,9243      | 35,1                 |
| sample moisture content, (g/g)                                         | 0,0031   | -2331,7486                                    | 0,0002      | 0,0596         | -0,4288     | 0,184                |
| recovery (%)                                                           | 100,00   | -23,2455                                      | 2,3450      | 0,0235         | -54,51      | 2971                 |
| mass of SDZ- $^{13}C_6$ solution added to sample blend, (g )           | 0,03964  | 58641,5647                                    | 0,00007     | 0,0018         | 4,1049      | 16,85                |
| mass of test material in sample blend, (g )                            | 0,70000  | -3320,7880                                    | 0,00003     | 0,0000         | -0,1070     | 0,011                |
| mass of SDZ solution added to calibration blend, $(g)$                 | 0,03946  | 58909,0630                                    | 0,00001     | 0,0003         | 0,6795      | 0,462                |
| mass of SDZ- $^{13}C_6$ solution added to calibration blend, (g )      | 0,03980  | -58405,8197                                   | 0,00001     | 0,0003         | -0,6743     | 0,455                |
| measured peak area ratio of the selected ions in the sample blend      | 0,7240   | 40 3210,7067 considered to be included in the |             | ne             |             |                      |
| measured peak area ratio of the selected ions in the calibration blend | 0,7024   | -3309,4414                                    | estin       | nation of meth | od precisio | on                   |
| result (μg/kg)                                                         | 2324,55  |                                               |             |                |             |                      |
| combined standard uncertainty (µg/kg)                                  | 57,79    |                                               |             |                |             |                      |
| relative standard uncertainty (%)                                      | 2,49     |                                               |             |                |             |                      |
| effective degrees of freedom                                           | 11,1     |                                               |             |                |             |                      |
| coverage factor                                                        | 2,20     |                                               |             |                |             |                      |
| expanded uncertainty (μg/kg)                                           | 127,2    |                                               |             |                |             |                      |

### Enrofloxacin

| uncertainty component                                                  | value   | sensitivity<br>coefficient                    | standrard<br>uncertainty | relative<br>uncertainty | C <sub>i</sub> x u <sub>i</sub> | $(C_i \times u_i)^2$ |
|------------------------------------------------------------------------|---------|-----------------------------------------------|--------------------------|-------------------------|---------------------------------|----------------------|
| method precision                                                       | 62,56   | 1,0000                                        | 2,171                    | 0,0347                  | 2,1710                          | 4,713                |
| mass fraction of EFX in the calibration solution, ( $\mu g/kg$ )       | 1000,80 | 0,0625                                        | 2,397                    | 0,0024                  | 0,1498                          | 0,022                |
| sample moisture content, (g/g)                                         | 0,0031  | -62,7576                                      | 0,0002                   | 0,0596                  | -0,0115                         | 0,000                |
| recovery (%)                                                           | 100,00  | -0,6256                                       | 2,6870                   | 0,0269                  | -1,68                           | 2,826                |
| mass of EFX-d <sub>5</sub> solution added to sample blend, (g )        | 0,04142 | 1510,4755                                     | 0,00007                  | 0,0017                  | 0,1057                          | 0,011                |
| mass of test material in sample blend, (g )                            | 0,70000 | -89,3770                                      | 0,00003                  | 0,0000                  | -0,0029                         | 0,000                |
| mass of EFX solution added to calibration blend, $(g)$                 | 0,04550 | 1375,0306                                     | 0,00001                  | 0,0003                  | 0,0161                          | 0,000                |
| mass of EFX-d $_{5}$ solution added to calibration blend, (g )         | 0,04165 | -1502,1343                                    | 0,00001                  | 0,0003                  | -0,0174                         | 0,000                |
| measured peak area ratio of the selected ions in the sample blend      | 0,5963  | 963 104,9202 considered to be included in the |                          | ne                      |                                 |                      |
| measured peak area ratio of the selected ions in the calibration blend | 0,6185  | 5 -101,1542 estimation of method precision    |                          | on                      |                                 |                      |
| result (µg/kg)                                                         | 62,56   |                                               |                          |                         |                                 |                      |
| combined standard uncertainty (µg/kg)                                  | 2,75    |                                               |                          |                         |                                 |                      |
| relative standard uncertainty (%)                                      | 4,40    |                                               |                          |                         |                                 |                      |
| effective degrees of freedom                                           | 8,1     |                                               |                          |                         |                                 |                      |
| coverage factor                                                        | 2,31    |                                               |                          |                         |                                 |                      |
| expanded uncertainty (μg/kg)                                           | 6,35    |                                               |                          |                         |                                 |                      |

# **GLHK**

1. Calculate the peak area ratio (R) of target analyte and its isotope labeled as follows:

$$R = \frac{A_{X}}{A_{IS}}$$

Where

 $A_X$  = peak area of target analyte (quantitative MRM transition)

A<sub>IS</sub> = peak area of corresponding isotope labeled analyte (quantitative MRM transition)

2. Calculate the mass ratio of target analyte (AmtR) and its isotope labeled internal standard as follows:

AmtR =  $m_x$ 

 $m_{IS}$ 

#### Where

 $m_X$  = mass of target analyte (ng)

m<sub>IS</sub> = mass of corresponding isotope labeled analyte (ng)

3. Establish a calibration bracket by plotting the peak area ratio (R) versus the mass ratio (AmtR) of the calibration brackets. Obtain the following linear equation from the graph.

#### R = (s)(Amt R) + b

| Where |                                                                 |
|-------|-----------------------------------------------------------------|
| R     | = Area ratio of target analyte/isotope labeled analyte (y-axis) |
| S     | = slope of the linear equation                                  |
| AmtR  | = mass ratio of target analyte/isotope labeled analyte (x-axis) |
| b     | = y-intercept                                                   |
|       |                                                                 |
|       |                                                                 |

4. Calculate the mass of target analyte in sample  $(m_{Xspl})$  using the following equation:

 $\left(\frac{A_{Xspl}}{A_{ISspl}}\right)$  - b

 $\mathrm{x}\,\mathrm{m}_{\mathrm{ISspl}}$ 

$$m_{Xspl} = s$$

Where

 $\begin{array}{ll} m_{Xspl} &= mass \ of \ target \ analyte \ in \ sample \ (ng) \\ A_{Xspl} &= peak \ area \ of \ target \ analyte \ in \ sample \ solution \ (quantitative \ MRM \ transition) \\ A_{ISspl} &= peak \ area \ of \ isotope \ labeled \ analyte \ in \ sample \ solution \ (quantitative \ MRM \ transition) \\ b &= y\ intercept \ of \ the \ linear \ equation \ as \ obtained \ in \ Clause \ 3. \\ s &= slope \ of \ the \ linear \ equation \ as \ obtained \ in \ Clause \ 3. \\ m_{ISspl} &= mass \ of \ isotope \ labeled \ analyte \ added \ in \ the \ sample \ (ng) \end{array}$ 

5. The moisture content (%M) in the sample is calculated as follows:

$$W2 - W3$$
  
%M =  $W2 - W1 \times 100\%$ 

Where

W3 = weight of glass vial with sample after drying (g)
W2 = weight of glass vial sample before drying (g)
W1 = weight of glass vial (g)

6. The dry mass correction factor  $(F_{Dry})$  is calculated as follows:

$$F_{Dry} = 1 - \frac{\%M}{100}$$

7. Calculate the moisture corrected mass fraction of target analyte  $(C_{Xspl})$  in sample in ng/g as follows:

$$C_{Xspl} = m m_{Xspl} m_{xspl} x F_{spl} T_{Dry}$$

Where

 $\begin{array}{ll} m_{Xspl} & = mass \ of \ target \ analyte \ in \ sample \ (ng) \ m_{spl} \\ & = mass \ of \ sample \ used \ (g) \\ F_{Dry} & = dry \ mass \ correction \ factor \end{array}$ 

Uncertainties were estimated based on contribution from four factors: 1) purity of reference material, 2) method

precision, 3) method bias, 4) uncertainty from dried weight determination. Detailed breakdowns are given as follows:

#### Enrofloxacin (Enro)

| Description                                                                                          | Value x                                                             | Std. Unc. | Rel. Std. Unc. |  |  |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------|----------------|--|--|
| RM [u(S)]                                                                                            | 1                                                                   | 0.003915  | 0.003915       |  |  |
| Precision [u(P)]                                                                                     | 1                                                                   | 0.034276  | 0.034276       |  |  |
| Method Bias [u(B)]                                                                                   | 1                                                                   | 0.021497  | 0.021497       |  |  |
| Dried weight [u(D)]                                                                                  | 1                                                                   | 0.000132  | 0.000132       |  |  |
| Combined Std. Uncertainty, u(Enro), $\mu g/kg$                                                       | = Dried mass fraction of Enro $xJu(S)^2 + u(P)^2 + u(B)^2 + u(D)^2$ |           |                |  |  |
| = 59.13×0.040648                                                                                     |                                                                     |           |                |  |  |
|                                                                                                      | =2.4                                                                |           |                |  |  |
| <b>Expanded Uncertainty.</b> U(Enro), $\mu g/kg = u(Enro) \times k$ (where k = coverage factor of 2) |                                                                     |           |                |  |  |
|                                                                                                      | =4.                                                                 |           |                |  |  |

8. The moisture content (%M) in the sample is calculated as follows:

| Sulfadiazine (Sulf)                         |                                         |                       |                           |
|---------------------------------------------|-----------------------------------------|-----------------------|---------------------------|
| Description                                 | Value x                                 | Std. Unc.             | Rel. Std. Unc. $u(x)$     |
| RM [u(S)]                                   | 1                                       | 0.003817              | 0.003817                  |
| Precision [u(P)]                            | 1                                       | 0.024286              | 0.024286                  |
| Method Bias [u(B)]                          | 1                                       | 0.031242              | 0.031242                  |
| Dried weight [u(D)]                         | 1                                       | 0.000132              | 0.000132                  |
| Combined Std. Uncertainty, u(Sulf), µg/kg = | Dried mass fraction<br>= 2409.59×0.0397 |                       | $(P)^2 + u(B)^2 + u(D)^2$ |
|                                             | = 96                                    |                       |                           |
| Expanded Uncertainty. U(Sulf), µg/kg        | $=$ u(Sulf) $\times$ k (w               | here $k = coverage f$ | actor of 2)               |
|                                             | =192                                    |                       |                           |

# INTI (P178)

Rf: (Area enro in std \* Concentration E d5 in std)/(Area enro d5 in std\*concentration E in std)

Conc in extract (mg/g)= (Area in extract \* concentration enro d5 in extract)/(Area enro d5 in extract\*Rf)

Conc in CCQM (mg/g)= Conc in extract (mg/g)\* massof extract/((mass of reconstituited\*mass of CCQM )/(mass CCQM+mass of water added))

Conc in CCQM (ug/kg)= Conc in CCQM (mg/g)\*1000(ug/mg)\*1000(g/kg)

The components of uncertainty were mass, repetibility and recovery. The coverage factor 2.

# NRC-Halifax (P178)

The concentrations of the analytes were determined using the following:

$$W_X = W_Z \times \frac{m_z}{m_{yc}} \times \frac{m_y}{m_x} \times \frac{R'_B}{R'_{BC}} \times F$$

Where:

| W =         | mass fraction of the analyte in the sample              |
|-------------|---------------------------------------------------------|
|             | • •                                                     |
| $W_z =$     | mass fraction of the CRM in the calibration blend       |
| $m_z =$     | volume of final extract                                 |
| $m_{yc} =$  | mass of isotope solution added to the calibration blend |
| $m_y =$     | mass of isotope solution added to the sample            |
| $m_x =$     | mass of sample                                          |
| $R'_B =$    | peak area ratio of analyte/isotope in sample blend      |
| $R'_{BC} =$ | peak area ratio on isotope/analyte in calibration blend |
| -           |                                                         |

F = dry mass correction factor

The following were used to determine the overall uncertainties:

 $\mu_{std}$  = relative uncertainties of the certified values of the reference materials  $\mu_{ci}$  = relative uncertainties of the analyses of the samples  $\mu_{dm}$  = relative uncertainty from Karl Fischer

| Relative uncertainties: | IDMS  | Karl Fisher | NMIA CRM |
|-------------------------|-------|-------------|----------|
|                         |       |             |          |
| Enrofloxacin            | 0.063 | 0.00058     | 0.006    |
| Sulfadiazene            | 0.057 | 0.00058     | 0.004    |

These were combined using the following formula:

$$\mu = \sqrt{\mu_{\rm std}^2 + \mu_{\rm ci}^2 + \mu_{\rm dm}^2}$$

Final uncertainties were expanded using k=2 (95% confidence)

## **Appendix IV. Other Information Reported**

# EXHM

Also analysed sucessfully FAPAS test material 02281 (pig kidney) for SDZ.

## HSA

Enrofloxacin and sulfadiazine reference standards from Sigma-Aldrich were purity assessed inhouse by quantitative <sup>1</sup>H NMR, and were used to spike into the comparison sample for quality control purpose. The quality control sample was measured together with the comparison sample. The recovery results obtained from the quality control samples ranged from 91.7% to 98.6% with an average of 93.9% for enrofloxacin, and from 93.4% to 102.4% with an average of 96.9% for sulfadiazine. The recovery results were found to be well within the measurement uncertainty ranges of the reported results for enrofloxacin ( $\pm 11.5\%$ ) and sulfadiazine ( $\pm 9.4\%$ ).

#### NMIA

In order to comply with the protocol and initiate moisture determination at the same time as the sampling for definitive analysis, the entire bottle no. 121002 was accurately sampled into  $3 \times 1$  g sub-samples for drying and  $16 \times 0.5$  g sub-samples for analysis. The 0.5 g sub-samples were stored at -80 °C and analysed in four batches over four weeks. Sub-samples were transferred to the fridge the day before analysis to make equilibration to room temperature for weighing easier.

The drying protocol specified continuous vacuum for 21 days. The vacuum pump attached to the desiccator was accidentally turned off for several days during the first two weeks as a result of electrical maintenance work. However, constant mass was observed in the dry weighings taken between 15 and 30 days.

# LGC

Due to a low level of moisture determined with the specified protocol, moisture was checked using Karl Fischer and determined to be at  $(1.511\pm0.025)\%$  (sealed vials heated to 140 °C)

Final results reported corrected for moisture using the specified protocol.

# VNIIM

- 1) The moisture determination was made as suggested in the Protocol.
- 2) Evaluation of matrix effects (ion suppression) was carried out by method of postextraction additions. Ion suppression effect for SDZ was reached 60%. Ion suppression effect for ENR was not observed
- 3) In the process of measuring the mass fraction of **Sulfadiazine** (**SDZ**) mixed results were obtained (see below).

For sample preparation and analysis method choosing the Sample  $\mathbb{N}_{\mathbb{P}}$  BOTS -1-121015 was taken.

The results of **SDZ** mass fraction in Sample No.BOTS -1-121015 (3 measurements for each of 3 sample aliquots) are given in Table 1

Table 1.

| Nº       | Mass fraction of SDZ, µg/kg | Average value of mass<br>fraction, μg/kg |
|----------|-----------------------------|------------------------------------------|
| Sample 1 | 3666                        |                                          |
| Sample 2 | 3680                        | 3459                                     |
| Sample 3 | 3330                        |                                          |

After choosing analysis conditions Sample No.BOTS -1-121009 was taken for determination. The results (3 measurements for each of 5 sample aliquots) are given in Table 2.

Table 2.

| Nº       | Mass fraction of SDZ,<br>µg/kg | Average value of mass<br>fraction, µg/kg |
|----------|--------------------------------|------------------------------------------|
| Sample 1 | 2311                           |                                          |
| Sample 2 | 2609                           |                                          |
| Sample 3 | 2653                           | 2393                                     |
| Sample 4 | 2351                           |                                          |
| Sample 5 | 2340                           |                                          |

As you see, the results of Sample No.BOTS -1-121015 and Sample No.BOTS -1-121009 are different by 30%.

The measurements of **SDZ** mass fraction in Sample No.BOTS -1-121009 and Sample No.BOTS -1-121015 were repeated (3 measurements for each of 3 sample aliquots) using exactly the same conditions (scheme, time, hands). The results are in Table 3.

| Sample №         | Mass fraction of SDZ,<br>µg/kg | Average value of mass<br>fraction, μg/kg |
|------------------|--------------------------------|------------------------------------------|
| BOTS -1-121009_1 | 2368                           |                                          |
| BOTS -1-121009_2 | 2393                           | 2380                                     |
| BOTS -1-121009_3 | 2380                           |                                          |
| BOTS -1-121015_1 | 3362                           |                                          |
| BOTS -1-121015_2 | 3310                           | 3307                                     |
| BOTS -1-121015_3 | 3250                           |                                          |

Table 3.

After that the Sample NoBOTS -1-121021 was taken for determination. The results are in Table 4 (3 measurements for each of 5 sample aliquots).

Table 4.

| N₂       | Mass fraction of SDZ,<br>μg/kg | Average value of mass<br>fraction, µg/kg |
|----------|--------------------------------|------------------------------------------|
| Sample 1 | 2175                           |                                          |
| Sample 2 | 2194                           |                                          |
| Sample 3 | 2518                           | 2400                                     |
| Sample 4 | 2680                           |                                          |
| Sample 5 | 2504                           |                                          |

**Conclusion:** the results of **SDZ** mass fraction in Sample No.BOTS -1-121021 and Sample No.BOTS -1-121009 **are equal between each other** (within the extended uncertainty of measurements), but both of them are **significantly different** from the result of Sample No.BOTS -1-121015.

## GLHK

- (i) Suggested protocol for moisture determination was used.
- (ii) For reference, the moisture-content-uncorrected analyte contents are given as below:

Enrofloxacin : 58.9 µg/kg

Sulfadiazine : 2399 µg/kg

(iii) The mean moisture content of the sample from the bottle BOTS-1-071009 was found

to be 0.43% (w/w).

## **INMETRO**

No loss of mass was observed after 21 days in desiccator when the method established in the Key Comparison Study Protocol was used. Therefore results expressed in item 2 assumed that the sample has no moisture. However, we have determined the moisture content by coulometric Karl Fischer titration for comparison and the average result was 0.0138 g/g (n=3, standard deviation=0.0005 g/g). Considering the Karl Fischer data for moisture content, the dry mass fractions are  $(23.1 \times 10^2 \pm 2.0 \times 10^{20} \,\mu\text{g/kg}$  for sulfadiazine and  $(60.1 \pm 5.4) \,\mu\text{g/kg}$  for enrofloxacin (*k*=2).

# NIMT

We found that the stock standard solution of enrofloxacin was not stable at 4 °C in a period of 3 months. The stock standard solution of this compound was therefore freshly prepared for each experiment and stored at -20 °C if needed.

#### BVL

The determination of moisture was performed as described in the Key Comparison Protocol of May 2016 described. The test sample portion of 1 g was placed over anhydrous calcium sulphate in a desiccator at room temperature for 21 days. The mean value for moisture was 0.129 % with a SD of 0.09 %.

The method was validated according to Commission Decision 2002/657/EC. The validation parameters fulfilled the requirements of the Decision.

## **NRC Ottawa**

The moisture content of BOTS-1 was determined via loss on drying in a vacuum dessicator. Four samples (2 g each) were weighed, placed in the vacuum dessicator and re-weighed each week until a constant weight was achieved. The results indicated 0.0049 g/g moisture content in BOTS-1. All BOTS-1 measurand mass fraction results were adjusted to a dry weight basis using this correction factor.

## NIM China

Two kinds of extraction solvent were compared during our method development. Method 1 was extracted with 1% formic acid in ACN. Method 2 was extracted with 5% trichloroacetic acid. The result was listed in Table 1. Method 2 was used in the subsequent experiment and the final report.

|      | Meth         | nod 1        | Meth         | nod 2        |
|------|--------------|--------------|--------------|--------------|
|      | enrofloxacin | Sulfadiazine | enrofloxacin | Sulfadiazine |
| 1    | 61.89        | 2225.02      | 65.68        | 2303.00      |
| 2    | 61.08        | 2192.54      | 62.85        | 2301.29      |
| 3    | 61.35        | 2243.10      | 61.78        | 2371.39      |
| Mean | 61.44        | 2220.22      | 63.44        | 2325.23      |

## **INTI (P178)**

For the moisture determination we used AOAC 950.46 B a)

Results: 0,00622 (g/g) desv std 0,0022

**T** 1 1 1

# NRC Halifax (P178)

Moisture determination of BOTS-1 and enrofloxacin were both completed using Karl Fisher analyses.

Supporting data obtained through external calibration with native standards and dilutions to remove mitigate matrix effects in ESI.

# Appendix V. Core Competency Tables

| CCQM-K141                                                                                                                                                                                | EXHM                                                                   | High polarity analytes in food-Enrofloxacin<br>and Sulfadiazine in Bovine Tissue                                                                                                                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| measurement capabilities including: (a) val<br>analytes of interest from the matrix; (c) clea<br>matrix or extract components; (d) separation<br>spectrometry (LC-MS/MS). The study will | ue assignm<br>inup and se<br>n and quan-<br>test the ca-<br>e molecula | ould provide the opportunity to demonstrate<br>nent of primary reference standards; (b) extraction of<br>paration of analytes of interest from other interfering<br>tification using liquid chromatography/mass<br>pabilities of participants for assigning mass fractions of<br>r mass range from 200 to 500 from 20-5000 µg/kg in a<br>l triangle). |
|                                                                                                                                                                                          | Tick,                                                                  |                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                          | cross,                                                                 | Specific Information as Provided by                                                                                                                                                                                                                                                                                                                   |
| Competency                                                                                                                                                                               | or<br>"N/A"                                                            | NMI/DI                                                                                                                                                                                                                                                                                                                                                |
| Competencies for Value-Assignm                                                                                                                                                           |                                                                        | I                                                                                                                                                                                                                                                                                                                                                     |
| Calibrant: Did you use a "highly-pure                                                                                                                                                    |                                                                        | enrofloxacin                                                                                                                                                                                                                                                                                                                                          |
| substance" or calibration solution?                                                                                                                                                      |                                                                        | sulfadiazin                                                                                                                                                                                                                                                                                                                                           |
| Identity verification of analyte(s) in                                                                                                                                                   |                                                                        |                                                                                                                                                                                                                                                                                                                                                       |
| calibration material. <sup>#</sup>                                                                                                                                                       |                                                                        |                                                                                                                                                                                                                                                                                                                                                       |
| For calibrants which are a highly-pure                                                                                                                                                   | ~                                                                      | <i>qNMR</i>                                                                                                                                                                                                                                                                                                                                           |
| substance: Value-Assignment / Purity                                                                                                                                                     |                                                                        |                                                                                                                                                                                                                                                                                                                                                       |
| Assessment method(s). <sup>#</sup><br>For calibrants which are a calibration                                                                                                             | ×                                                                      | gravimetric                                                                                                                                                                                                                                                                                                                                           |
| solution: Value-assignment method(s). <sup>#</sup>                                                                                                                                       |                                                                        | gruvinicitic                                                                                                                                                                                                                                                                                                                                          |
| Sample Analysis Competencies                                                                                                                                                             | 1                                                                      |                                                                                                                                                                                                                                                                                                                                                       |
| Identification of analyte(s) in sample                                                                                                                                                   | <ul> <li>✓</li> </ul>                                                  | rt, ion ratios                                                                                                                                                                                                                                                                                                                                        |
| Extraction of analyte(s) of interest from                                                                                                                                                | V                                                                      | enzymatic hydrolysis,                                                                                                                                                                                                                                                                                                                                 |
| matrix                                                                                                                                                                                   |                                                                        | liquid/liquid extraction, ASE                                                                                                                                                                                                                                                                                                                         |
| Cleanup - separation of analyte(s) of interest from other interfering matrix                                                                                                             | <b>√</b>                                                               | centrifugation, dSPE                                                                                                                                                                                                                                                                                                                                  |
| components (if used)                                                                                                                                                                     |                                                                        |                                                                                                                                                                                                                                                                                                                                                       |
| Transformation - conversion of                                                                                                                                                           |                                                                        |                                                                                                                                                                                                                                                                                                                                                       |
| analyte(s) of interest to                                                                                                                                                                |                                                                        |                                                                                                                                                                                                                                                                                                                                                       |
| detectable/measurable form (if used)                                                                                                                                                     |                                                                        |                                                                                                                                                                                                                                                                                                                                                       |
| Analytical system                                                                                                                                                                        | ~                                                                      | LC-MS/MS                                                                                                                                                                                                                                                                                                                                              |
| Calibration approach for value-                                                                                                                                                          | ~                                                                      | IDMS – exact matching                                                                                                                                                                                                                                                                                                                                 |
| assignment of analyte(s) in matrix<br>Verification method(s) for value-                                                                                                                  |                                                                        |                                                                                                                                                                                                                                                                                                                                                       |
| assignment of analyte(s) in sample (if                                                                                                                                                   |                                                                        |                                                                                                                                                                                                                                                                                                                                                       |
| used)                                                                                                                                                                                    |                                                                        |                                                                                                                                                                                                                                                                                                                                                       |
| Other                                                                                                                                                                                    |                                                                        | a QC material from FAPAS was analysed in parallel for SDZ                                                                                                                                                                                                                                                                                             |

| CCQM-K141                                                                                                                                                                                | GLHK                                                                 | High polarity analytes in food-Enrofloxacin<br>and Sulfadiazine in Bovine Tissue                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| measurement capabilities including: (a) val<br>analytes of interest from the matrix; (c) clea<br>matrix or extract components; (d) separation<br>spectrometry (LC-MS/MS). The study will | ue assignn<br>inup and se<br>n and quan<br>test the ca<br>e molecula | ould provide the opportunity to demonstrate<br>nent of primary reference standards; (b) extraction of<br>eparation of analytes of interest from other interfering<br>tification using liquid chromatography/mass<br>pabilities of participants for assigning mass fractions of<br>r mass range from 200 to 500 from 20-5000 µg/kg in a<br>l triangle). |
| Competency                                                                                                                                                                               | Tick,<br>cross,<br>or<br>"N/A"                                       | Specific Information as Provided by<br>NMI/DI                                                                                                                                                                                                                                                                                                          |
| <b>Competencies for Value-Assignm</b>                                                                                                                                                    | ent of C                                                             | alibrant                                                                                                                                                                                                                                                                                                                                               |
| Calibrant: Did you use a "highly-pure substance" or calibration solution?                                                                                                                |                                                                      | NMIA CRM<br>(Sulfadiazine: M317, Enrofloxacin: M747b)                                                                                                                                                                                                                                                                                                  |
| Identity verification of analyte(s) in calibration material. <sup>#</sup>                                                                                                                | N/A                                                                  |                                                                                                                                                                                                                                                                                                                                                        |
| For calibrants which are a highly-pure<br>substance: Value-Assignment / Purity<br>Assessment method(s). <sup>#</sup>                                                                     | N/A                                                                  |                                                                                                                                                                                                                                                                                                                                                        |
| For calibrants which are a calibration solution: Value-assignment method(s). <sup>#</sup>                                                                                                | N/A                                                                  |                                                                                                                                                                                                                                                                                                                                                        |
| Sample Analysis Competencies                                                                                                                                                             |                                                                      |                                                                                                                                                                                                                                                                                                                                                        |
| Identification of analyte(s) in sample                                                                                                                                                   | ×                                                                    | Retention time, LC-MS/MS with 3 MRM transitions                                                                                                                                                                                                                                                                                                        |
| Extraction of analyte(s) of interest from matrix                                                                                                                                         | ✓                                                                    | Liquid/solid extraction with ultrasonic, vertical shaking and vortex mixing                                                                                                                                                                                                                                                                            |
| Cleanup - separation of analyte(s) of<br>interest from other interfering matrix<br>components (if used)                                                                                  | ~                                                                    | SPE                                                                                                                                                                                                                                                                                                                                                    |
| Transformation - conversion of<br>analyte(s) of interest to<br>detectable/measurable form (if used)                                                                                      | N/A                                                                  |                                                                                                                                                                                                                                                                                                                                                        |
| Analytical system                                                                                                                                                                        | ×                                                                    | LC-MS/MS                                                                                                                                                                                                                                                                                                                                               |
| Calibration approach for value-<br>assignment of analyte(s) in matrix                                                                                                                    | ~                                                                    | IDMS – bracketing                                                                                                                                                                                                                                                                                                                                      |
| Verification method(s) for value-<br>assignment of analyte(s) in sample (if<br>used)                                                                                                     | N/A                                                                  |                                                                                                                                                                                                                                                                                                                                                        |
| Other                                                                                                                                                                                    |                                                                      |                                                                                                                                                                                                                                                                                                                                                        |

| CCQM-K141                                                                                                                                                                                | HSA                                                                 | High polarity analytes in food-Enrofloxacin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                          |                                                                     | and Sulfadiazine in Bovine Tissue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| measurement capabilities including: (a) val<br>analytes of interest from the matrix; (c) clea<br>matrix or extract components; (d) separation<br>spectrometry (LC-MS/MS). The study will | ue assignn<br>nup and se<br>n and quan<br>test the ca<br>e molecula | pabilities of participants for assigning mass fractions of<br>r mass range from 200 to 500 from 20-5000 µg/kg in a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Competency                                                                                                                                                                               | Tick,<br>cross,<br>or<br>"N/A"                                      | Specific Information as Provided by<br>NMI/DI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Competencies for Value-Assignm                                                                                                                                                           |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Calibrant: Did you use a "highly-pure substance" or calibration solution?                                                                                                                |                                                                     | Pure enrofloxacin CRM (M747b) and pure<br>sulfadiazine CRM (M317) from NMIA were used as<br>calibrants. The certified purity values are traceable to<br>the SI unit for mass (kg).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Identity verification of analyte(s) in calibration material. <sup>#</sup>                                                                                                                | $\checkmark$                                                        | LC-MS/MS method was used to identify the<br>analytes in the CRMs from NMIA by comparing the<br>m/z of the parent and daughter ions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| For calibrants which are a highly-pure<br>substance: Value-Assignment / Purity<br>Assessment method(s). <sup>#</sup>                                                                     | NA                                                                  | Indicate how you established analyte mass fraction/purity<br>(i.e., mass balance (list techniques used), qNMR, other)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| For calibrants which are a calibration                                                                                                                                                   | NA                                                                  | Indicate how you established analyte mass fraction in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| solution: Value-assignment method(s). <sup>#</sup>                                                                                                                                       |                                                                     | calibration solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sample Analysis Competencies<br>Identification of analyte(s) in sample                                                                                                                   | V                                                                   | LC-MS/MS method was used to identify the analytes in the sample by comparing the retention time and the $m/z$ of the parent and daughter ions with CRMs from NMIA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Extraction of analyte(s) of interest from matrix                                                                                                                                         | V                                                                   | After adding 1 mL of water and isotope labelled<br>internal standard solutions, the sample was cooled in<br>an ice bath and 10 mL of 0.1 mol/L HCl in<br>acetonitrile was added. The mixture was removed<br>from the ice bath and was vortexed for 1 min,<br>sonicated for 5 min, then shakened vigorously for 10<br>min using an orbital shaker. The mixture was then<br>centrifuged at 4,000 rpm for 5 min. The supernatant<br>was transferred to a 50 mL centrifuge tube. The<br>extraction was repeated for three more times using<br>0.01 mol/L HCl in acetonitrile instead of 0.1 mol/L<br>HCl in acetonitrile without applying ice bath. The<br>supernatants were combined. |
| Cleanup - separation of analyte(s) of<br>interest from other interfering matrix<br>components (if used)                                                                                  | V                                                                   | The combined supernatant was evaporated to<br>dryness under nitrogen flow at 35 °C. The residue<br>was reconstituted with 1 mL of 0.01 mol/L HCl in<br>water:acetonitrile (85:15, v/v). The reconstituted<br>solution was transferred into two Amicon Ultra-0.5<br>centrifugal filter units with Ultracel-3 membrance<br>(0.5 mL each filter), and was centrifuged at 13,000<br>rpm for 10 min. The clear solution was combined                                                                                                                                                                                                                                                    |

|                                                                                                     |              | andanalysed using LC-MS/MS for enrofloxacin. For sulfadiazine, the combined solution was diluted to about 50 ng/g before analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Transformation - conversion of<br>analyte(s) of interest to<br>detectable/measurable form (if used) | NA           | Indicate chemical transformation method(s), if any, (i.e., hydrolysis, derivatization, other)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Analytical system                                                                                   | $\checkmark$ | LC-MS/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Calibration approach for value-<br>assignment of analyte(s) in matrix                               | $\checkmark$ | <ul><li>(a) IDMS method was used.</li><li>(b) Four-point calibration curve was used.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Verification method(s) for value-<br>assignment of analyte(s) in sample (if<br>used)                | V            | Enrofloxacin and sulfadiazine reference standards<br>from Sigma-Aldrich were purity assessed in-house by<br>quantitative <sup>1</sup> H NMR, and were used to spike into<br>the comparison sample for quality control purpose.<br>The quality control sample was measured together<br>with the comparison sample. The recovery results<br>obtained from the quality control samples ranged<br>from 91.7% to 98.6% with an average of 93.9% for<br>enrofloxacin, and from 93.4% to 102.4% with an<br>average of 96.9% for sulfadiazine. The recovery<br>results were found to be well within the measurement<br>uncertainty ranges of the reported results for<br>enrofloxacin ( $\pm 11.6\%$ ) and sulfadiazine ( $\pm 10.9\%$ ). |
| Other                                                                                               | NA           | Indicate any other competencies demonstrated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| CCQM-K141                                                                                                                                                                                | NIMT                                                                 | High polarity analytes in food-Enrofloxacin<br>and Sulfadiazine in Bovine Tissue                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| measurement capabilities including: (a) val<br>analytes of interest from the matrix; (c) clea<br>matrix or extract components; (d) separation<br>spectrometry (LC-MS/MS). The study will | ue assignn<br>inup and se<br>n and quan<br>test the ca<br>e molecula | ould provide the opportunity to demonstrate<br>ment of primary reference standards; (b) extraction of<br>eparation of analytes of interest from other interfering<br>tification using liquid chromatography/mass<br>pabilities of participants for assigning mass fractions of<br>r mass range from 200 to 500 from 20-5000 μg/kg in a<br>d triangle). |
| Competency                                                                                                                                                                               | Tick,<br>cross,<br>or<br>"N/A"                                       | Specific Information as Provided by<br>NMI/DI                                                                                                                                                                                                                                                                                                          |
| Competencies for Value-Assignm                                                                                                                                                           |                                                                      |                                                                                                                                                                                                                                                                                                                                                        |
| Calibrant: Did you use a "highly-pure<br>substance" or calibration solution?<br>Identity verification of analyte(s) in                                                                   | ✓                                                                    | pure materials, certified reference materials (CRMs) from<br>NMIA, M747b for enrofloxacin and M317 for sulfadiazine<br>LC-MS/MS                                                                                                                                                                                                                        |
| calibration material. <sup>#</sup><br>For calibrants which are a highly-pure<br>substance: Value-Assignment / Purity<br>Assessment method(s). <sup>#</sup>                               | -                                                                    |                                                                                                                                                                                                                                                                                                                                                        |
| For calibrants which are a calibration solution: Value-assignment method(s).#                                                                                                            | -                                                                    |                                                                                                                                                                                                                                                                                                                                                        |
| Sample Analysis Competencies                                                                                                                                                             |                                                                      |                                                                                                                                                                                                                                                                                                                                                        |
| Identification of analyte(s) in sample                                                                                                                                                   | ~                                                                    | Chromatographic retention time (LC-MS/MS), MRM mode with two ion pairs for identification                                                                                                                                                                                                                                                              |
| Extraction of analyte(s) of interest from matrix                                                                                                                                         | ~                                                                    | Liquid-solid extraction                                                                                                                                                                                                                                                                                                                                |
| Cleanup - separation of analyte(s) of<br>interest from other interfering matrix<br>components (if used)                                                                                  | ✓                                                                    | SPE cleanup                                                                                                                                                                                                                                                                                                                                            |
| Transformation - conversion of<br>analyte(s) of interest to<br>detectable/measurable form (if used)                                                                                      | N/A                                                                  | Indicate chemical transformation method(s), if any, (i.e., hydrolysis, derivatization, other)                                                                                                                                                                                                                                                          |
| Analytical system                                                                                                                                                                        | ✓                                                                    | LC-MS/MS                                                                                                                                                                                                                                                                                                                                               |
| Calibration approach for value-<br>assignment of analyte(s) in matrix                                                                                                                    | ✓                                                                    | a) Exact-matching double IDMS (matrix-matched<br>calibration blends)<br>b) single-point, bracketing calibration                                                                                                                                                                                                                                        |
| Verification method(s) for value-<br>assignment of analyte(s) in sample (if<br>used)                                                                                                     | -                                                                    | Indicate any confirmative method(s) used, if any.                                                                                                                                                                                                                                                                                                      |
| Other                                                                                                                                                                                    | -                                                                    | Indicate any other competencies demonstrated.                                                                                                                                                                                                                                                                                                          |

| CCQM-K141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BVL         | High polarity analytes in food-Enrofloxacin<br>and Sulfadiazine in Bovine Tissue |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------------------|--|--|
| <b>Scope of Measurement:</b> Participation in this study would provide the opportunity to demonstrate measurement capabilities including: (a) value assignment of primary reference standards; (b) extraction of analytes of interest from the matrix; (c) cleanup and separation of analytes of interest from other interfering matrix or extract components; (d) separation and quantification using liquid chromatography/mass spectrometry (LC-MS/MS). The study will test the capabilities of participants for assigning mass fractions of high-polarity analytes ( $pK_{ow} > -2$ ) with the molecular mass range from 200 to 500 from 20-5000 µg/kg in a high fat, high protein matrix (Sector 4 AOAC Int. food triangle). |             |                                                                                  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Tick,       |                                                                                  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | cross,      | Specific Information as Provided by                                              |  |  |
| Competency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | or<br>"N/A" | NMI/DI                                                                           |  |  |
| Competencies for Value-Assignm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                                                                  |  |  |
| Calibrant: Did you use a "highly-pure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | Pure material from NMI Australia                                                 |  |  |
| substance" or calibration solution?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | Pule material nom nivit Australia                                                |  |  |
| Identity verification of analyte(s) in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ✓           | Verification by LC-QToF                                                          |  |  |
| calibration material. <sup>#</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                  |  |  |
| For calibrants which are a highly-pure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Х           | Mass balance approach, In-house verification,                                    |  |  |
| substance: Value-Assignment / Purity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | organic impurities by LC-QToF                                                    |  |  |
| Assessment method(s). <sup>#</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                  |  |  |
| For calibrants which are a calibration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A         |                                                                                  |  |  |
| solution: Value-assignment method(s).#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                                                                  |  |  |
| Sample Analysis Competencies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                                                                  |  |  |
| Identification of analyte(s) in sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ~           | LC-MS/MS + LC-QToF (i.e., retention time, mass                                   |  |  |
| Extraction of analyte(s) of interest from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ✓           | spec ion ratios by 2 transitions, exact mass)                                    |  |  |
| matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •           | Vortexing, sonication, shaking                                                   |  |  |
| Cleanup - separation of analyte(s) of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ✓           | SPE                                                                              |  |  |
| interest from other interfering matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                                                                  |  |  |
| components (if used)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                                                                  |  |  |
| Transformation - conversion of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N/A         |                                                                                  |  |  |
| analyte(s) of interest to<br>detectable/measurable form (if used)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |                                                                                  |  |  |
| Analytical system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ✓           | LC-MS/MS                                                                         |  |  |
| Calibration approach for value-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ✓           | a) internal standard (isotopically labelled)                                     |  |  |
| assignment of analyte(s) in matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | b) multi-point matrix calibration curve                                          |  |  |
| Verification method(s) for value-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ✓           | Standard addition                                                                |  |  |
| assignment of analyte(s) in sample (if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                                                                  |  |  |
| used)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                                                                                  |  |  |
| Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A         |                                                                                  |  |  |

BVL's result for enroflaxacin was withdrawn form the KCRV calculation and its DoE value did not cross zero. The cause for this was believed to be improper sample preparation or handling of the reference standard.

| CCQM-K141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        | UME                            | High polarity analytes in food-Enrofloxacin<br>and Sulfadiazine in Bovine Tissue                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <b>Scope of Measurement:</b> Participation in this study would provide the opportunity to demonstrate measurement capabilities including: (a) value assignment of primary reference standards; (b) extraction of analytes of interest from the matrix; (c) cleanup and separation of analytes of interest from other interfering matrix or extract components; (d) separation and quantification using liquid chromatography/mass spectrometry (LC-MS/MS). The study will test the capabilities of participants for assigning mass fractions of high-polarity analytes ( $pK_{ow} > -2$ ) with the molecular mass range from 200 to 500 from 20-5000 µg/kg in a high fat, high protein matrix (Sector 4 AOAC Int. food triangle). |                                        |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Competency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        | Tick,<br>cross,<br>or<br>"N/A" | Specific Information as Provided by<br>NMI/DI                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Competencies for Value-As                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | signm                                  |                                | alibrant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Calibrant: Did you use a "highly-<br>substance" or calibration solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pure                                   |                                | Highly pure substances were used<br>Sulfadiazine Vetranal, Sigma Aldrich(USA), 100 mg<br>neat<br>Enrofloxacin, Dr. Ehrenstorfer (Germany), 0.1 g neat                                                                                                                                                                                                                                                                                                                                               |  |
| Identity verification of analyte(s) i calibration material. <sup>#</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n                                      |                                | LC-MS/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| For calibrants which are a highly-<br>substance: Value-Assignment / P<br>Assessment method(s). <sup>#</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        | V                              | The purity determination of Sulfadiazine (G3OK-K141-<br>RM-1) was performed by qNMR with using 1,3,5-<br>Trimethoxybenzene IS in traceability chain of UME-<br>CRM-1301. The purity is 99.93%, uncertainty is 0.19%<br>at k=2 and 95% confidence level.<br>The purity determination of Enrofloxacin (G3OK-K141-<br>RM-2) was performed by qNMR with using maleic acid<br>IS in traceability chain of UME-CRM-1301. The purity<br>is 99.52%, uncertainty is 0.23% at k=2 and 95%<br>confidence level |  |
| For calibrants which are a calibration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| solution: Value-assignment metho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | solution: Value-assignment method(s).# |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Sample Analysis Competen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | cies                                   |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Identification of analyte(s) in sam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ple                                    |                                | Retention time<br>Parent/product ion                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Extraction of analyte(s) of interest matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        | $\checkmark$                   | Solid/liquid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Cleanup - separation of analyte(s)<br>interest from other interfering mat<br>components (if used)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        | $\checkmark$                   | <i>Liquid/liquid clean-up with n-hexane, centrifugation, filter</i> 0.2 µm                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Transformation - conversion of<br>analyte(s) of interest to<br>detectable/measurable form (if us                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ed)                                    | N/A                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Analytical system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |                                | LC-MS/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Calibration approach for value-<br>assignment of analyte(s) in matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        | v<br>V                         | a) IDMS<br>b) single-point calibration                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| CCQM-K141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | INM                                    | ETRO                           | High polarity analytes in food-Enrofloxacin                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |

|                                                                                                                                                      |                                                                                                                       | and Sulfadiazine in Bovine Tissue                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| measurement capabilities including<br>analytes of interest from the matrix<br>matrix or extract components; (d) s<br>spectrometry (LC-MS/MS). The st | g: (a) value assignm<br>; (c) cleanup and sep<br>reparation and quant<br>tudy will test the cap<br>with the molecular | build provide the opportunity to demonstrate<br>ent of primary reference standards; (b) extraction of<br>paration of analytes of interest from other interfering<br>ification using liquid chromatography/mass<br>babilities of participants for assigning mass fractions of<br>mass range from 200 to 500 from 20-5000 μg/kg in a<br>triangle). |
| Competency                                                                                                                                           | Tick, cross, or<br>"N/A"                                                                                              | Specific Information as Provided by NMI/DI                                                                                                                                                                                                                                                                                                       |
| <b>Competencies for Value-A</b>                                                                                                                      | ssignment of C                                                                                                        | alibrant                                                                                                                                                                                                                                                                                                                                         |
| Calibrant: Did you use a<br>"highly-pure substance" or<br>calibration solution?                                                                      |                                                                                                                       | Highly-pure substances (sulfadiazine Sigma-Aldrich<br>batch 1448399V, enrofloxacin Fluka batch 1140438) with<br>purity determined in-house                                                                                                                                                                                                       |
| Identity verification of analyte(s) in calibration material. <sup>#</sup>                                                                            | $\checkmark$                                                                                                          | NMR                                                                                                                                                                                                                                                                                                                                              |
| For calibrants which are a highly-pure substance: Value-Assignment / Purity Assessment method(s). <sup>#</sup>                                       | V                                                                                                                     | Enrofloxaxin: qNMR using cholesterol Nist SRM 911c as<br>internal standard. Sulfadiazine: combination of qNMR<br>using dimethylsulfone Sigma TraceCERT as internal<br>standard and mass balance using HPLC-DAD, Karl<br>Fischer titration and TGA                                                                                                |
| For calibrants which are a calibration solution: Value-assignment method(s). <sup>#</sup>                                                            | N/A                                                                                                                   | Indicate how you established analyte mass fraction in calibration solution                                                                                                                                                                                                                                                                       |
| Sample Analysis Competer                                                                                                                             | ncies                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                  |
| Identification of analyte(s) in sample                                                                                                               | $\checkmark$                                                                                                          | <i>Comparison of HPLC retention time with calibrant, mass spectrum ion ratios</i>                                                                                                                                                                                                                                                                |
| Extraction of analyte(s) of interest from matrix                                                                                                     | $\checkmark$                                                                                                          | <i>Two steps of liquid/solid extraction with methanol (room temperature shaking for 20 min)</i>                                                                                                                                                                                                                                                  |
| Cleanup - separation of<br>analyte(s) of interest from other<br>interfering matrix components<br>(if used)                                           | V                                                                                                                     | After drying under $N_2$ steam, samples were re-suspended<br>with acetic acid 5% and methanol and centrifuged in<br>order to separate some of the interfering matrix<br>components                                                                                                                                                               |
| Transformation - conversion of<br>analyte(s) of interest to<br>detectable/measurable form (if<br>used)                                               | X                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                  |
| Analytical system                                                                                                                                    | $\checkmark$                                                                                                          | LC-MS/MS                                                                                                                                                                                                                                                                                                                                         |
| Calibration approach for value-<br>assignment of analyte(s) in<br>matrix                                                                             | $\checkmark$                                                                                                          | <i>a) IDMS</i><br><i>b) bracketed exact matching calibration</i>                                                                                                                                                                                                                                                                                 |
| Verification method(s) for<br>value-assignment of analyte(s)<br>in sample (if used)                                                                  | $\checkmark$                                                                                                          | Results were checked by an independent sample<br>preparation quantified by IDMS with calibration curve<br>rather than exact matching; at the same time, method<br>recovery was assessed with a freeze-dried blank bovine<br>tissue spiked with both sulfadiazine and enrofloxacin                                                                |
| Other                                                                                                                                                | X                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                  |

| CCQM-K141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | KRISS                    | High polarity analytes in food-Enrofloxacin<br>and Sulfadiazine in Bovine Tissue                                                                                                                                                                                                                                                                                   |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <b>Scope of Measurement:</b> Participation in this study would provide the opportunity to demonstrate measurement capabilities including: (a) value assignment of primary reference standards; (b) extraction of analytes of interest from the matrix; (c) cleanup and separation of analytes of interest from other interfering matrix or extract components; (d) separation and quantification using liquid chromatography/mass spectrometry (LC-MS/MS). The study will test the capabilities of participants for assigning mass fractions of high-polarity analytes ( $pK_{ow} > -2$ ) with the molecular mass range from 200 to 500 from 20-5000 µg/kg in a high fat, high protein matrix (Sector 4 AOAC Int. food triangle). |                          |                                                                                                                                                                                                                                                                                                                                                                    |  |
| Competency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Tick, cross,<br>or "N/A" | Specific Information as Provided by<br>NMI/DI                                                                                                                                                                                                                                                                                                                      |  |
| <b>Competencies for Value-Assig</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | gnment of C              | alibrant                                                                                                                                                                                                                                                                                                                                                           |  |
| Calibrant: Did you use a "highly-<br>pure substance" or calibration<br>solution?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          | Pure substances for sulfadiazine and enrofloxacin were<br>purchased from Dr. Ehrenstorfer. The purities for the two<br>calibrants were assayed by KRISS.                                                                                                                                                                                                           |  |
| Identity verification of analyte(s) in calibration material. <sup>#</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\vee$                   | LC-MS and LC/UV                                                                                                                                                                                                                                                                                                                                                    |  |
| For calibrants which are a highly-<br>pure substance: Value-Assignment<br>/ Purity Assessment method(s). <sup>#</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\vee$                   | Mass balance: LC/UV analysis for structurally related<br>impurities, thermo-gravimetric analysis for non-volatile<br>impurities, Karl-Fischer Coulometry for water contents,<br>headspace GC/MS for residual solvents                                                                                                                                              |  |
| For calibrants which are a calibration solution: Value-assignment method(s). <sup>#</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\vee$                   | Gravimetrically prepared 4 mixtures of standard solution<br>and isotope labeled internal standard solution were<br>analyzed and cross checked by LC-MS/MS.                                                                                                                                                                                                         |  |
| Sample Analysis Competencie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | es                       |                                                                                                                                                                                                                                                                                                                                                                    |  |
| Identification of analyte(s) in sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\vee$                   | LC-MS /MS                                                                                                                                                                                                                                                                                                                                                          |  |
| Extraction of analyte(s) of interest from matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\vee$                   | Liquid/liquid extraction with acetonitrile and n-hexane                                                                                                                                                                                                                                                                                                            |  |
| Cleanup - separation of analyte(s) of<br>interest from other interfering<br>matrix components (if used)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\vee$                   | Oasis MAX SPE cartridge                                                                                                                                                                                                                                                                                                                                            |  |
| Transformation - conversion of<br>analyte(s) of interest to<br>detectable/measurable form (if<br>used)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V                        | No transformation                                                                                                                                                                                                                                                                                                                                                  |  |
| Analytical system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\vee$                   | LC-MS/MS (Waters Acquity I class UPLC/Xevo-TQ-S)                                                                                                                                                                                                                                                                                                                   |  |
| Calibration approach for value-<br>assignment of analyte(s) in matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\vee$                   | a) Quantification mode: IDMS<br>b) Calibration mode: Standard addition-ID MS method                                                                                                                                                                                                                                                                                |  |
| Verification method(s) for value-<br>assignment of analyte(s) in sample<br>(if used)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V                        | No other method was used for the verification of the results.<br>Instead the method used was validated with fortified blank<br>beef. Beef was purchased from Korea local market and<br>processed to make dried powder form followed by spiking<br>with known amounts of sulfadiazine and enrofloxacin. This<br>sample was used for the verification of the method. |  |
| Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A                      |                                                                                                                                                                                                                                                                                                                                                                    |  |

| CCQM-K141                                                                                                                                                                                       | NMIA                                                               | High polarity analytes in food-Enrofloxacin                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                           |                                                                    | and Sulfadiazine in Bovine Tissue                                                                                                                                                                                                                                                                       |
| capabilities including: (a) value assignment<br>from the matrix; (c) cleanup and separation<br>components; (d) separation and quantification<br>The study will test the capabilities of partici | t of primary n<br>of analytes of<br>on using liqu<br>pants for ass | reference standards; (b) extraction of analytes of interest<br>of interest from other interfering matrix or extract<br>tid chromatography/mass spectrometry (LC-MS/MS).<br>signing mass fractions of high-polarity analytes ( $pK_{ow} >$<br>n 20-5000 µg/kg in a high fat, high protein matrix (Sector |
| Competency                                                                                                                                                                                      | Tick,<br>cross, or<br>"N/A"                                        | Specific Information as Provided by NMI/DI                                                                                                                                                                                                                                                              |
| <b>Competencies for Value-Assignm</b>                                                                                                                                                           | ent of Ca                                                          | librant                                                                                                                                                                                                                                                                                                 |
| Calibrant: Did you use a "highly-pure                                                                                                                                                           |                                                                    | Pure substance certified reference materials used.                                                                                                                                                                                                                                                      |
| substance" or calibration solution?                                                                                                                                                             |                                                                    | <ul> <li>Enrofloxacin certified reference material,<br/>NMIA, report ID M747b.2016.01</li> </ul>                                                                                                                                                                                                        |
|                                                                                                                                                                                                 |                                                                    | <ul> <li>Sulfadiazine certified reference material,<br/>NMIA, report ID M317.2016.01</li> </ul>                                                                                                                                                                                                         |
| Identity verification of analyte(s) in                                                                                                                                                          |                                                                    | Electrospray LC-MS, <sup>1</sup> H-NMR, <sup>13</sup> C-NMR, <sup>19</sup> F-                                                                                                                                                                                                                           |
| calibration material. <sup>#</sup><br>For calibrants which are a highly-pure                                                                                                                    |                                                                    | NMR, IR spectrometry and elemental composition<br>Mass balance (HPLC/UV, Thermogravimetric                                                                                                                                                                                                              |
| substance: Value-Assignment / Purity<br>Assessment method(s). <sup>#</sup>                                                                                                                      | Ň                                                                  | analysis, Karl Fischer analysis, headspace GC-MS)<br>and proton qNMR.                                                                                                                                                                                                                                   |
| For calibrants which are a calibration                                                                                                                                                          | N/A                                                                |                                                                                                                                                                                                                                                                                                         |
| solution: Value-assignment method(s).#                                                                                                                                                          |                                                                    |                                                                                                                                                                                                                                                                                                         |
| Sample Analysis Competencies                                                                                                                                                                    |                                                                    |                                                                                                                                                                                                                                                                                                         |
| Identification of analyte(s) in sample                                                                                                                                                          | V                                                                  | <ul> <li>Sulfadiazine (SDZ):</li> <li>Chromatographic retention time (1D and 2D modes). LCMSMS – three SRM transitions monitored in positive ion mode.<br/>Ion ratios agree with those in calibrant</li> <li>Enrofloxacin (ENR):</li> </ul>                                                             |
|                                                                                                                                                                                                 |                                                                    | <ul> <li>Chromatographic retention time (1D mode).</li> <li>LCMSMS – three SRM transitions monitored in positive ion mode and two transitions monitored negative ion.</li> <li>Ion ratios agree with those in calibrant</li> </ul>                                                                      |
| Extraction of analyte(s) of interest from matrix                                                                                                                                                | V                                                                  | Sample (0.5 g) reconstituted with 1mL water.<br>Liquid/solid extraction using 4 x 5 mL acetonitrile /<br>water (70:30) with end-over-end rotation.                                                                                                                                                      |
| Cleanup - separation of analyte(s) of<br>interest from other interfering matrix<br>components (if used)                                                                                         | V                                                                  | Liquid/liquid extraction with hexane (2 x 3 mL) to<br>remove fats.<br>Solid-phase extraction clean-up of aqueous phase<br>using Oasis HLB.                                                                                                                                                              |
| Transformation - conversion of<br>analyte(s) of interest to<br>detectable/measurable form (if used)                                                                                             | N/A                                                                |                                                                                                                                                                                                                                                                                                         |
| Analytical system                                                                                                                                                                               |                                                                    | Sulfadiazine                                                                                                                                                                                                                                                                                            |

|                                                                                      |   | <ul> <li>LC-MS/MS (reverse phase UPLC, positive ion electrospray, triple quadrupole with selected reaction monitoring)</li> <li>LC-MS/MS (heart-cutting dual column reversed phase UPLC, positive ion electrospray, triple quadrupole MS with selected reaction monitoring)</li> <li>ENR</li> <li>LC-MS/MS (reverse phase UPLC with positive ion electrospray, triple quadrupole MS with selected reaction monitoring)</li> <li>LC-MS/MS (reverse phase UPLC with positive ion electrospray, triple quadrupole MS with selected reaction monitoring)</li> <li>LC-MS/MS (reverse phase UPLC with negative ion electrospray, triple quadrupole MS with selected reaction monitoring)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Calibration approach for value-<br>assignment of analyte(s) in matrix                |   | Exact-matching (single-point calibration) double<br>isotope dilution mass spectrometry with replicate<br>bracketed injections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Verification method(s) for value-<br>assignment of analyte(s) in sample (if<br>used) | V | Concordance within measurement uncertainty for<br>values obtained using multiple different collisionally<br>induced molecular transitions on two different<br>chromatographic systems<br><i>Sulfadiazine:</i><br>LCMSMS: three SRM transitions monitored in<br>positive ion mode for two different UPLC separation<br>systems:<br>System 1: Waters Acquity BEH C18 100x2 mm<br>column with acetonitrile/aqueous formic acid<br>mobile phase<br>System 2: SDZ peak from System 1 transferred to<br>Restek Pinnacle DB Biphenyl UPLC column and<br>eluted with a methanol gradient.<br><i>Enrofloxacin:</i><br>LCMSMS three SRM transitions monitored in<br>positive electrospray (ESI) mode and 2 SRM<br>transitions monitored in negative ESI mode.<br>System 1: Waters Acquity 1.7 um BEH C18 column<br>(100 x 2.1 mm ID) column, with<br>acetonitrile/aqueous formic acid mobile phase.<br>Positive ESI.<br>System 2: Waters Acquity 1.7 um BEHC18 column<br>(100 x 1.0 mm ID) with gradient of<br>acetonitrile/water containing 25 mM<br>trimethylamine. Negative ESI. |

| ССОМ-К141 | NRC-   | High polarity analytes in food-Enrofloxacin |
|-----------|--------|---------------------------------------------|
| CCQM-KI4I | Ottawa | and Sulfadiazine in Bovine Tissue           |

**Scope of Measurement:** Participation in this study would provide the opportunity to demonstrate measurement capabilities including: (a) value assignment of primary reference standards; (b) extraction of analytes of interest from the matrix; (c) cleanup and separation of analytes of interest from other interfering matrix or extract components; (d) separation and quantification using liquid chromatography/mass spectrometry (LC-MS/MS). The study will test the capabilities of participants for assigning mass fractions of high-polarity analytes ( $pK_{ow} > -2$ ) with the molecular mass range from 200 to 500 from 20-5000 µg/kg in a high fat, high protein matrix (Sector 4 AOAC Int. food triangle).

| Competency                                                                                                               | Tick, cross, or<br>"N/A" | Specific Information as Provided by NMI/DI                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Competencies for Value-A</b>                                                                                          | ssignment of <b>C</b>    | Calibrant                                                                                                                                                                                                     |
| Calibrant: Did you use a<br>"highly-pure substance" or<br>calibration solution?<br>Identity verification of              | ✓                        | Pure materials were used to prepare calibration solutions for<br>both enrofloxacin and sulfadiazine.<br>Enrofloxacin:Sigma Lot BCBK3650V<br>Sulfadiazine:Sigma Lot BCBK1734V<br>LC-MS/MS and LC-HRAM-MS       |
| analyte(s) in calibration material. <sup>#</sup>                                                                         |                          | NMR                                                                                                                                                                                                           |
| For calibrants which are a<br>highly-pure substance: Value-<br>Assignment / Purity<br>Assessment method(s). <sup>#</sup> | ~                        | <i>qNMR was used as the primary technique to assign mass fraction of the pure substances. Related impurities by HPLC-UV as well as volatiles and ash content by TGA were used as verification techniques.</i> |
| For calibrants which are a calibration solution: Value-<br>assignment method(s).#                                        | ✓                        | Analyte mass fraction in calibration solution was assigned<br>via traceable gravimetric preparation of the solutions.                                                                                         |
| Sample Analysis Competer                                                                                                 |                          |                                                                                                                                                                                                               |
| Identification of analyte(s) in sample                                                                                   | ~                        | Identification of the analytes in the sample was carried out<br>via HPLC retention time, MS/MS monitoring of 2 ion<br>transitions and HRAM to select and monitor the exact<br>mass of the analytes.           |
| Extraction of analyte(s) of interest from matrix                                                                         | $\checkmark$             | The analytes were extracted via a double liquid-solid extraction of the matrix.ACN:IPA:water:80:10:10                                                                                                         |
| Cleanup - separation of<br>analyte(s) of interest from other<br>interfering matrix components<br>(if used)               | $\checkmark$             | An additional liquid-liquid cleanup was performed using a<br>liquid-liquid extraction with hexane to remove non-polar<br>compounds from the first extraction supernatant                                      |
| Transformation - conversion of<br>analyte(s) of interest to<br>detectable/measurable form (if<br>used)                   | N/A                      | No derivatization or any other chemical transformations were employed.                                                                                                                                        |
| Analytical system                                                                                                        | $\checkmark$             | 1) LC-MS/MS<br>2) LC-HRAM-MS                                                                                                                                                                                  |
| Calibration approach for value-<br>assignment of analyte(s) in<br>matrix                                                 | √                        | a) Isotope dilution MS<br>b) ID <sup>2</sup> MS and SA-ID <sup>2</sup> MS (2 point)                                                                                                                           |
| Verification method(s) for<br>value-assignment of analyte(s)<br>in sample (if used)                                      | $\checkmark$             | <i>LC-HRAM-MS</i> was used as a confirmation technique and<br>the data was combined with the LC-MS/MS data which<br>was the primary technique.                                                                |
| Other                                                                                                                    | N/A                      | N/AP                                                                                                                                                                                                          |

| CCQM-K141 LG | High polarity analytes in food-Enrofloxacin<br>and Sulfadiazine in Bovine Tissue |
|--------------|----------------------------------------------------------------------------------|
|--------------|----------------------------------------------------------------------------------|

**Scope of Measurement:** Participation in this study would provide the opportunity to demonstrate measurement capabilities including: (a) value assignment of primary reference standards; (b) extraction of analytes of interest from the matrix; (c) cleanup and separation of analytes of interest from other interfering matrix or extract components; (d) separation and quantification using liquid chromatography/mass spectrometry (LC-MS/MS). The study will test the capabilities of participants for assigning mass fractions of high-polarity analytes ( $pK_{ow} > -2$ ) with the molecular mass range from 200 to 500 from 20-5000 µg/kg in a high fat, high protein matrix (Sector 4 AOAC Int. food triangle).

| Competency                                                                                                           | Tick,<br>cross,<br>or<br>"N/A" | Specific Information as Provided by<br>NMI/DI                                             |
|----------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------|
| Competencies for Value-Assignm                                                                                       | ent of C                       |                                                                                           |
| Calibrant: Did you use a "highly-pure substance" or calibration solution?                                            |                                | <i>Pure material obtained in bulk from Sigma. In-house characterized by NMR and qNMR.</i> |
| Identity verification of analyte(s) in calibration material. <sup>#</sup>                                            | ~                              | NMR                                                                                       |
| For calibrants which are a highly-pure<br>substance: Value-Assignment / Purity<br>Assessment method(s). <sup>#</sup> | ~                              | qNMR                                                                                      |
| For calibrants which are a calibration solution: Value-assignment method(s). <sup>#</sup>                            | ~                              | Gravimetric preparation from highly-pure substance                                        |
| Sample Analysis Competencies                                                                                         |                                |                                                                                           |
| Identification of analyte(s) in sample                                                                               | ~                              | Retention time + ion ratio of at least 2 product ions                                     |
| Extraction of analyte(s) of interest from matrix                                                                     | ~                              | Liquid/solid extraction                                                                   |
| Cleanup - separation of analyte(s) of<br>interest from other interfering matrix<br>components (if used)              | ~                              | Temperature-induced phase separation / Centrifugation                                     |
| Transformation - conversion of<br>analyte(s) of interest to<br>detectable/measurable form (if used)                  | N/A                            |                                                                                           |
| Analytical system                                                                                                    | ~                              | LC-MS/MS                                                                                  |
| Calibration approach for value-<br>assignment of analyte(s) in matrix                                                | ~                              | a) EM-IDMS<br>b) Bracketed double exact matching                                          |
| Verification method(s) for value-<br>assignment of analyte(s) in sample (if<br>used)                                 | N/A                            |                                                                                           |
| Other                                                                                                                | N/A                            |                                                                                           |

| CCQM-K141                                                                                                                                                                                | NIM                                                                  | High polarity analytes in food-Enrofloxacin<br>and Sulfadiazine in Bovine Tissue                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| measurement capabilities including: (a) val<br>analytes of interest from the matrix; (c) clea<br>matrix or extract components; (d) separation<br>spectrometry (LC-MS/MS). The study will | ue assignn<br>inup and se<br>n and quan<br>test the ca<br>e molecula | ould provide the opportunity to demonstrate<br>nent of primary reference standards; (b) extraction of<br>eparation of analytes of interest from other interfering<br>tification using liquid chromatography/mass<br>pabilities of participants for assigning mass fractions of<br>r mass range from 200 to 500 from 20-5000 μg/kg in a |
| Competency                                                                                                                                                                               | Tick,<br>cross,<br>or<br>"N/A"                                       | Specific Information as Provided by<br>NMI/DI                                                                                                                                                                                                                                                                                          |
| <b>Competencies for Value-Assignm</b>                                                                                                                                                    | ent of C                                                             | alibrant                                                                                                                                                                                                                                                                                                                               |
| Calibrant: Did you use a "highly-pure substance" or calibration solution?                                                                                                                |                                                                      | Enrofloxacin: Pure material, Sigma-Aldrich, 17849,<br>99.7 $\% \pm 0.4\%$ (k=2)<br>Sulfadiazine: Pure material, NIM, GBW(E)060901,<br>99.6 $\% \pm 0.4\%$ (k=2)                                                                                                                                                                        |
| Identity verification of analyte(s) in calibration material. <sup>#</sup>                                                                                                                | ~                                                                    | LC-MS/MS, comparison to independent reference material retention time and mass spectrum.                                                                                                                                                                                                                                               |
| For calibrants which are a highly-pure<br>substance: Value-Assignment / Purity<br>Assessment method(s). <sup>#</sup>                                                                     | ~                                                                    | Mass balance approach and qNMR:<br>LC-UV, LC/MS/MS, GC-FID, Karl-Fischer<br>Titration, ICP-MS, and qNMR method was used for<br>verification.                                                                                                                                                                                           |
| For calibrants which are a calibration solution: Value-assignment method(s). <sup>#</sup>                                                                                                | N/A                                                                  |                                                                                                                                                                                                                                                                                                                                        |
| Sample Analysis Competencies                                                                                                                                                             |                                                                      |                                                                                                                                                                                                                                                                                                                                        |
| Identification of analyte(s) in sample                                                                                                                                                   | ~                                                                    | Analytes identified through comparison against high<br>purity calibrant retention time and mass spectrum<br>ion ratios of 2 independent selected reaction<br>monitoring (SRM) transitions by tandem ESI-<br>MS/MS                                                                                                                      |
| Extraction of analyte(s) of interest from matrix                                                                                                                                         | ~                                                                    | liquid/solid extraction                                                                                                                                                                                                                                                                                                                |
| Cleanup - separation of analyte(s) of<br>interest from other interfering matrix<br>components (if used)                                                                                  | ~                                                                    | SPE                                                                                                                                                                                                                                                                                                                                    |
| Transformation - conversion of<br>analyte(s) of interest to<br>detectable/measurable form (if used)                                                                                      | N/A                                                                  |                                                                                                                                                                                                                                                                                                                                        |
| Analytical system                                                                                                                                                                        | ✓                                                                    | LC-MS/MS                                                                                                                                                                                                                                                                                                                               |
| Calibration approach for value-<br>assignment of analyte(s) in matrix                                                                                                                    | ~                                                                    | a) IDMS<br>b) Single-point calibration                                                                                                                                                                                                                                                                                                 |
| Verification method(s) for value-<br>assignment of analyte(s) in sample (if<br>used)                                                                                                     | N/A                                                                  |                                                                                                                                                                                                                                                                                                                                        |
| Other                                                                                                                                                                                    | N/A                                                                  |                                                                                                                                                                                                                                                                                                                                        |

| CCQM-K141                                                                                                                                                              | VNIIM                                                                                  | <ul> <li>High polarity analytes in food-<br/>Enrofloxacin and Sulfadiazine in Bovine<br/>Tissue</li> </ul>                                                                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| measurement capabilities including: (a)<br>analytes of interest from the matrix; (c)<br>matrix or extract components; (d) separa<br>spectrometry (LC-MS/MS). The study | value assignm<br>cleanup and set<br>ation and quan<br>will test the ca<br>the molecula | vould provide the opportunity to demonstrate<br>nent of primary reference standards; (b) extraction of<br>eparation of analytes of interest from other interfering<br>tification using liquid chromatography/mass<br>pabilities of participants for assigning mass fractions of<br>ar mass range from 200 to 500 from 20-5000 μg/kg in a<br>d triangle). |
| Competency                                                                                                                                                             | Tick,<br>cross, or<br>"N/A"                                                            | Specific Information as Provided by NMI/DI                                                                                                                                                                                                                                                                                                               |
| Competencies for Value-Assign                                                                                                                                          | nment of C                                                                             | Calibrant                                                                                                                                                                                                                                                                                                                                                |
| Calibrant: Did you use a "highly-<br>pure substance" or calibration<br>solution?                                                                                       |                                                                                        | Pure materials from Sigma:<br>Sulfadiazine cat. # 35055<br>Enrofloxacin cat. # 33699                                                                                                                                                                                                                                                                     |
| Identity verification of analyte(s) in calibration material. <sup>#</sup>                                                                                              | $\checkmark$                                                                           | LC/MS                                                                                                                                                                                                                                                                                                                                                    |
| For calibrants which are a highly-<br>pure substance: Value-Assignment /<br>Purity Assessment method(s). <sup>#</sup>                                                  | $\checkmark$                                                                           | <i>The purity of materials is determined in house by mass balance (KF titration with oven; ICP/MS; GC/MS/TD; LC/UV)</i>                                                                                                                                                                                                                                  |
| For calibrants which are a calibration solution: Value-assignment method(s). <sup>#</sup>                                                                              | N/A                                                                                    |                                                                                                                                                                                                                                                                                                                                                          |
| Sample Analysis Competencies                                                                                                                                           | 2                                                                                      |                                                                                                                                                                                                                                                                                                                                                          |
| Identification of analyte(s) in sample                                                                                                                                 | ,<br>√                                                                                 | Retention time, mass spec ion ratios                                                                                                                                                                                                                                                                                                                     |
| Extraction of analyte(s) of interest from matrix                                                                                                                       | √                                                                                      | Sonication - Liquid/solid sonication 3x15 min at room<br>temperature<br>- AcN for Enrofloxacin extraction (3x3 ml);<br>- AcN + 0,1% HCOOH for Sulfadiazine extraction (3x3<br>ml)                                                                                                                                                                        |
| Cleanup - separation of analyte(s) of<br>interest from other interfering matrix<br>components (if used)                                                                | ~                                                                                      | Defatted by 3 ml of Hexane                                                                                                                                                                                                                                                                                                                               |
| Transformation - conversion of<br>analyte(s) of interest to<br>detectable/measurable form (if used)                                                                    | N/A                                                                                    | Indicate chemical transformation method(s), if any, (i.e., hydrolysis, derivatization, other)                                                                                                                                                                                                                                                            |
| Analytical system                                                                                                                                                      | ✓                                                                                      | LC-MS/MS                                                                                                                                                                                                                                                                                                                                                 |
| Calibration approach for value-<br>assignment of analyte(s) in matrix                                                                                                  | ✓<br>                                                                                  | a) IDMS<br>b) Single-point calibration                                                                                                                                                                                                                                                                                                                   |
| Verification method(s) for value-<br>assignment of analyte(s) in sample (if<br>used)                                                                                   | N/A                                                                                    | Indicate any confirmative method(s) used, if any.                                                                                                                                                                                                                                                                                                        |
| Other                                                                                                                                                                  | N/A                                                                                    | Indicate any other competencies demonstrated.                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                          |

# **Appendix VI. Information Tables**

| CCQM-K141/P178 | BVL | High polarity analytes in food-Enrofloxacin<br>and Sulfadiazine in Bovine Tissue |
|----------------|-----|----------------------------------------------------------------------------------|
|----------------|-----|----------------------------------------------------------------------------------|

Additional Information: We would like to collect additional information for enrofloxacin and sulfadiazine native and labelled solutions used for value assignment, including concentrations, dilutions and solvents used in their preparation. Please provide information in the fields below:

#### **Native Calibration Standard Information**

| Reference standard forms                   | Enrofloxacin: Free base                                         |
|--------------------------------------------|-----------------------------------------------------------------|
|                                            | Sulfadiazine: Free base                                         |
| Solvent used to prepare stock solution     | Enrofloxacin: <i>MeOH/5 mM NaOH = 50%/50%</i>                   |
|                                            | Sulfadiazine: MeOH                                              |
| Concentration of stock solution            | Enrofloxacin: 1080 $\mu g/g$                                    |
|                                            | Sulfadiazine: 1270 $\mu g/g$                                    |
| Handling of stock solution                 | Storage conditions: <i>freezer</i>                              |
|                                            | Time period between preparation and use: 1 week                 |
|                                            | Treatment before use: equilibrate to room temperature           |
|                                            | and vortex                                                      |
| Intermediate dilutions of stock solutions  | Enrofloxacin: <i>Water/MeOH</i> = 90%/10%, 103.6 µg/g           |
| (solvent, concentration)                   | Sulfadiazine: <i>Water/MeOH</i> = $90\%/10\%$ , $105.9 \mu g/g$ |
| Working solutions (solvent, concentration) | Enrofloxacin: Water/MeOH = 90%/10%, 1.047 $\mu g/g$             |
| -                                          | Sulfadiazine: <i>Water/MeOH</i> = $90\%/10\%$ , $10.66 \mu g/g$ |

# Isotopically-labelled Internal Standard Information (modify first three rows if alternative internal standards used)

| Internal standard forms                     | Enrofloxacin-d5: HI salt                                       |
|---------------------------------------------|----------------------------------------------------------------|
|                                             | Sulfadiazine-13C6: Free base                                   |
| Solvent used to prepare Internal Standard   | Enrofloxacin-d5: MeOH/5 mM NaOH 50%/50%                        |
| solution                                    | Sulfadiazine-13C6: MeOH,                                       |
| Concentration of Internal Standard solution | Enrofloxacin-d5: 14.6 µg/g (13.5 µg/ml) HI salt                |
|                                             | Sulfadiazine-13C6: <i>126 µg/g (100 µg/ml) free base</i>       |
| Intermediate dilutions of Internal standard | Enrofloxacin-d5: <i>Water/MeOH</i> = 90%/10%, 0.97 µg/g        |
| solution (solvent, concentration)           | free base                                                      |
|                                             | Sulfadiazine-13C6: <i>Water/MeOH</i> = 90%/10%, 9.62 µg/g      |
|                                             | free base                                                      |
| Internal Standard Spiking solutions         | Enrofloxacin-d5: <i>Water/MeOH</i> = 90%/10%, 0.97 $\mu g/g$   |
| (solvent, concentration)                    | free base                                                      |
|                                             | Sulfadiazine-13C6: <i>Water/MeOH</i> = $90\%/10\%$ , 9.62 µg/g |
|                                             | free base                                                      |

| Details of calibration solutions, i.e. native | Enrofloxacin: 9.86 - 155 ng/0.5g lyoph. Sample (6 point |
|-----------------------------------------------|---------------------------------------------------------|
| and internal standard blends, as injected     | matrix calibration curve)                               |
|                                               |                                                         |
| into MS (concentrations, solvent)             | Enrofloxacin-d5: 48.5 ng/0.5g lyoph. sample             |
|                                               | Solvent: e.g. <i>Water/ACN</i> = 90%/10% (0.1 % formic  |
|                                               | acid)                                                   |
|                                               | Sulfadiazine: 101 – 1584 ng/0.5g lyoph. Sample (6 point |

|                                                               | <i>matrix calibration curve)</i><br>Sulfadiazine-13C6: 481 ng/0.5g lyoph. sample<br>Solvent: Water/ACN = 90%/10% (0.1 % formic acid) |
|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Solvent for bovine tissue sample extracts as injected into MS | Enrofloxacin: Water/ACN = 90%/10% (0.1 % formic<br>acid)<br>Sulfadiazine: Water/ACN = 90%/10% (0.1 % formic<br>acid)                 |

| CCQM-K141/P178                           | EXHM          | High polarity analytes in food-Enrofloxacin and<br>Sulfadiazine in Bovine Tissue     |
|------------------------------------------|---------------|--------------------------------------------------------------------------------------|
| Additional Information: We would 1       | ike to collec | t additional information for enrofloxacin and sulfadiazinenative                     |
| and labelled solutions used for value as | signment, ir  | ncluding concentrations, dilutions and solvents used in their                        |
| preparation. Please provide information  |               |                                                                                      |
|                                          |               |                                                                                      |
|                                          |               |                                                                                      |
| Na                                       | tiveCalibra   | tion Standard Information                                                            |
| Reference standard forms                 |               | Enrofloxacin: Free base                                                              |
|                                          |               | Sulfadiazine: Free base                                                              |
| Solvent used to prepare stock            |               | Enrofloxacin: in MeOH                                                                |
| solution                                 |               | Sulfadiazine: in MeOH                                                                |
| Concentration of stocksolution           |               | Enrofloxacin: $3248 \mu g/g$                                                         |
|                                          |               | Sulfadiazine: 2424 µg/g                                                              |
| Handling of stock solution               |               | Storage conditions: freezer                                                          |
| 6                                        |               | Time period between preparation and use: two (2) days                                |
|                                          |               | Treatment before use: equilibrate to room temperature and                            |
|                                          |               | vortex                                                                               |
| Intermediate dilutions of stock          |               | <b>Enrofloxacin</b> : <i>MeCN</i> , 188.6 $\mu g/g$ , then dilution to 7.3 $\mu g/g$ |
| solutions (solvent, concentration)       |               | Sulfadiazine: <i>MeCN</i> , 151.7 µg/g                                               |
| Working solutions (solvent,              |               | Enrofloxacin: <i>MeCN</i> , 1.0 µg/g                                                 |
| concentration)                           |               | Sulfadiazine: <i>MeCN</i> , 40.0 µg/g                                                |
|                                          |               |                                                                                      |
| Isotopically-labelled Internal St        |               | ormation (modify first three rows if alternative internal                            |
|                                          | st            | andards used)                                                                        |
| Internal standard forms                  |               | Enrofloxacin-d5: provided by NRC                                                     |
|                                          |               | Sulfadiazine-13C6: provided by NRC                                                   |
| Solvent used to prepare Internal         |               | Enrofloxacin-d5: provided by NRC                                                     |
| Standard solution                        |               | Sulfadiazine-13C6: provided by NRC                                                   |
| Concentration of Internal Standard       |               | Enrofloxacin-d5: $\sim 13.5 \mu g/mL$ (as provided by NRC)                           |
| solution                                 |               | Sulfadiazine-13C6: ~ $100 \mu g/mL$ (as provided by NRC)                             |
| Intermediate dilutions of Internal       |               | Enrofloxacin-d5:                                                                     |
| standard solution (solvent,              |               | Sulfadiazine-13C6:                                                                   |
| concentration)                           |               |                                                                                      |
| Internal Standard Spiking solutions      |               | Enrofloxacin-d5: $\sim 1 \mu g/mL MeOH/5 mM NaOH 90\%/10\%$                          |
| (solvent, concentration)                 |               | Sulfadiazine-13C6: $\sim 40 \mu g/mL$ MeOH,                                          |
|                                          | -             | · · · · · · · · · · · · · · · · · · ·                                                |
|                                          |               |                                                                                      |
| Final calibr                             | ation soluti  | ion and sample extract information                                                   |

| Details of calibration solutions, i.e. | Enrofloxacin: $\sim 2 ng/mL$    |
|----------------------------------------|---------------------------------|
| native and internal standard blends,   | Enrofloxacin-d5: $\sim 2 ng/mL$ |
| as injected into MS (concentrations,   |                                 |

| solvent)                                                                            | Solvent: extract from blank bovine meat [75% (MeCN with 5%                                                                                                                                                      |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Calibration was done in matrix<br>matched solutions from extracted blank<br>samples | formic acid, 25%(0,1 M tris buffer pH8)]<br>Sulfadiazine: 73.7 ng/mL<br>Sulfadiazine-13C6: ~ 80 ng/mL<br>Solvent: extract from blank bovine meat [75% (MeCN with 5%<br>formic acid, 25%(0,1 M tris buffer pH8)] |
| Solvent for bovine tissue sample<br>extracts as injected into MS                    | Enrofloxacin: [75% (MeCN with 5% formic acid, 25%(0,1 M<br>tris buffer pH8)]<br>Sulfadiazine: [75% (MeCN with 5% formic acid, 25%(0,1 M tris<br>buffer pH8)]                                                    |

| CCQM-K141/P178 | GLHK | High polarity analytes in food-Enrofloxacin<br>and Sulfadiazine in Bovine Tissue |
|----------------|------|----------------------------------------------------------------------------------|
|----------------|------|----------------------------------------------------------------------------------|

Additional Information: We would like to collect additional information for enrofloxacin and sulfadiazine native and labelled solutions used for value assignment, including concentrations, dilutions and solvents used in their preparation. Please provide information in the fields below:

#### Native Calibration Standard Information

| Reference standard forms                  | Enrofloxacin: Enrofloxacin (free base)                |
|-------------------------------------------|-------------------------------------------------------|
|                                           | Sulfadiazine: Sulfadiazine (free base)                |
| Solvent used to prepare stock solution    | Enrofloxacin: 2% NH3 in MeOH                          |
|                                           | Sulfadiazine: 2% NH3 in MeOH                          |
| Concentration of stock solution           | Enrofloxacin: ~ 1.5 mg/g                              |
|                                           | Sulfadiazine: ~ 1.2 mg/g                              |
| Handling of stock solution                | Storage conditions: Refrigerator, 4 °C                |
|                                           | Time period between preparation and use: $\sim 2 - 3$ |
|                                           | days                                                  |
|                                           | Treatment before use: Equilibrate to room             |
|                                           | temperature for at least $3 - 4$ hours. Vortex the    |
|                                           | solution thoroughly before use.                       |
| Intermediate dilutions of stock solutions | Enrofloxacin: ~ 17, 54 and 275 $\mu$ g/g in 50% MeOH  |
| (solvent, concentration)                  | in H2O                                                |
|                                           | Sulfadiazine: $\sim 40$ and 200 µg/g in 50% MeOH in   |
|                                           | H2O                                                   |
| Working solutions (solvent,               | Enrofloxacin: 1600 ng/g in 10mM ammonium              |
| concentration)                            | formate in 0.1% FA in MeOH : 0.1% FA in H2O           |
| ,                                         | (1:9)                                                 |
|                                           | Sulfadiazine: 12500 ng/g in 10mM ammonium             |
|                                           | formate in 0.1% FA in MeOH : 0.1% FA in H2O           |
|                                           | (1:9)                                                 |

# Isotopically-labelled Internal Standard Information (modify first three rows if alternative internal standards used)

| Internal standard forms          | Enrofloxacin-d5: Enrofloxacin-d5 HCl salt<br>Sulfadiazine-13C6: Sulfadiazine-13C6 (free base) |
|----------------------------------|-----------------------------------------------------------------------------------------------|
| Solvent used to prepare Internal | Enrofloxacin-d5: 2% NH3 in MeOH                                                               |
| Standard solution                | Sulfadiazine-13C6: 2% NH3 in MeOH                                                             |

| Concentration of Internal Standard solution                                         | Enrofloxacin-d5: $\sim 0.7 \text{ mg/g}$<br>Sulfadiazine-13C6: $\sim 1.2 \text{ mg/g}$                                                                                                                          |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Intermediate dilutions of Internal<br>standard solution (solvent,<br>concentration) | Enrofloxacin-d5: ~ 2.3, 12 and 60 $\mu$ g/g in 50%<br>MeOH in H2O<br>Sulfadiazine-13C6: ~ 30 and 210 $\mu$ g/g in 50%<br>MeOH in H2O                                                                            |
| Internal Standard Spiking solutions<br>(solvent, concentration)                     | Enrofloxacin-d5: ~ 220 ng/g in 10mM ammonium<br>formate in 0.1% FA in MeOH : 0.1% FA in H2O<br>(1:9)<br>Sulfadiazine-13C6: ~ 7330 ng/g in 10mM<br>ammonium formate in 0.1% FA in MeOH : 0.1% FA<br>in H2O (1:9) |

| Details of calibration solutions, i.e.    | Enrofloxacin: 41, 51,57,62,72 and 82 ng/g           |
|-------------------------------------------|-----------------------------------------------------|
| native and internal standard blends, as   | Enrofloxacin-d5: 60 ng/g                            |
| injected into MS (concentrations,         | Solvent: 5mM EDTA and 10mM Ammonium                 |
| solvent)                                  | formate in 0.1% FA in MeOH/0.1% FA in H2O           |
| ,                                         | (1:9)                                               |
|                                           | Sulfadiazine: 1650, 1962, 2273, 2582, 2999 and 3316 |
|                                           | ng/g                                                |
|                                           | Sulfadiazine-13C6: 2572 ng/g                        |
|                                           | Solvent: 5mM EDTA and 10mM Ammonium                 |
|                                           | formate in 0.1% FA in MeOH/0.1% FA in H2O           |
|                                           | (1:9)                                               |
| Solvent for bovine tissue sample extracts | Enrofloxacin: 5mM EDTA and 10mM Ammonium            |
| as injected into MS                       | formate in 0.1% FA in MeOH/0.1% FA in H2O           |
|                                           | (1:9)                                               |
|                                           | Sulfadiazine: 5mM EDTA and 10mM Ammonium            |
|                                           | formate in 0.1% FA in MeOH/0.1% FA in H2O           |
|                                           | (1:9)                                               |

| CCQM-K141/P178                                                                                                                                                                                                                                                                                 | HSA | High polarity analytes in food-Enrofloxacin<br>and Sulfadiazine in Bovine Tissue                                                                                    |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Additional Information: We would like to collect additional information for enrofloxacin and sulfadiazine native and labelled solutions used for value assignment, including concentrations, dilutions and solvents used in their preparation. Please provide information in the fields below: |     |                                                                                                                                                                     |  |
| Native Calibration Standard Information                                                                                                                                                                                                                                                        |     |                                                                                                                                                                     |  |
| Reference standard forms                                                                                                                                                                                                                                                                       |     | Enrofloxacin: <i>Free base</i><br>Sulfadiazine: <i>Free base</i>                                                                                                    |  |
| Solvent used to prepare stock solution                                                                                                                                                                                                                                                         |     | Enrofloxacin: 0.01 M HCl in water<br>Sulfadiazine: 0.01 M HCl in water: ACN=85:15                                                                                   |  |
| Concentration of stock solution                                                                                                                                                                                                                                                                |     | Enrofloxacin: $\sim 2500  \mu g/g$<br>Sulfadiazine: $\sim 160  \mu g/g$                                                                                             |  |
| Handling of stock solution                                                                                                                                                                                                                                                                     |     | Storage conditions: <i>freezer</i> , -20 °C<br>Time period between preparation and use: one day<br>Treatment before use: <i>equilibrate to room temperature and</i> |  |

|                                           | vortex                                               |
|-------------------------------------------|------------------------------------------------------|
| Intermediate dilutions of stock solutions | Enrofloxacin: 0.01 M HCl in water, $\sim 24 \mu g/g$ |
| (solvent, concentration)                  | Sulfadiazine: NA                                     |
| Working solutions (solvent,               | Enrofloxacin: 0.01 M HCl in water, 0.1 µg/g          |
| concentration)                            | Sulfadiazine: 0.01 M HCl in water: ACN=85:15, 3 µg/g |

| Internal standard forms             | Enrofloxacin-d5: HI salt                                   |
|-------------------------------------|------------------------------------------------------------|
|                                     | Sulfadiazine-13C6: Free base                               |
| Solvent used to prepare Internal    | Enrofloxacin-d5: 0.01 M HCl in water                       |
| Standard solution                   | Sulfadiazine-13C6: 0.01 M HCl in water:ACN=85:15           |
| Concentration of Internal Standard  | Enrofloxacin-d5: $\sim 120  \mu g/g$                       |
| solution                            | Sulfadiazine-13C6: ~160 µg/g                               |
| Intermediate dilutions of Internal  | Enrofloxacin-d5: 0.01 M HCl in water, $\sim 5\mu g/g$      |
| standard solution (solvent,         | Sulfadiazine-13C6: NA                                      |
| concentration)                      |                                                            |
| Internal Standard Spiking solutions | Enrofloxacin-d5: 0.01 M HCl in water, 0.092 $\mu g/g \sim$ |
| (solvent, concentration)            | 0.1µg/g                                                    |
|                                     | Sulfadiazine-13C6: 0.01 M HCl in water:ACN=85:15,          |
|                                     | $\sim 3\mu g/g$                                            |

| Details of calibration solutions, i.e.    | Enrofloxacin: ~ $0.05  \mu g/g$             |
|-------------------------------------------|---------------------------------------------|
|                                           |                                             |
| native and internal standard blends, as   | Enrofloxacin-d5: ~ $0.05 \mu g/g$           |
| injected into MS (concentrations,         | Solvent: 0.01 M HCl in water: ACN=85:15     |
| solvent)                                  |                                             |
|                                           | Sulfadiazine: ~ $0.07 \mu g/g$              |
|                                           | Sulfadiazine-13C6: ~ $0.07 \mu g/g$         |
|                                           | Solvent: 0.01 M HCl in water: ACN=85:15     |
| Solvent for bovine tissue sample extracts | Enrofloxacin: 0.01 M HCl in water:ACN=85:15 |
| as injected into MS                       | Sulfadiazine: 0.01 M HCl in water:ACN=85:15 |

| CCQM-K141/P178                                                                                                                                                                                                                                                                                        | Inmetro | High polarity analytes in food-Enrofloxacin<br>and Sulfadiazine in Bovine Tissue |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------|--|
| <b>Additional Information:</b> We would like to collect additional information for enrofloxacin and sulfadiazine native and labelled solutions used for value assignment, including concentrations, dilutions and solvents used in their preparation. Please provide information in the fields below: |         |                                                                                  |  |
| Native Calibration Standard Information                                                                                                                                                                                                                                                               |         |                                                                                  |  |
| Reference standard forms                                                                                                                                                                                                                                                                              |         | Enrofloxacin: Free base                                                          |  |
|                                                                                                                                                                                                                                                                                                       |         | Sulfadiazine: Free base                                                          |  |
| Solvent used to prepare stock solution                                                                                                                                                                                                                                                                |         | Enrofloxacin: 1 mM NaOH in Methanol                                              |  |
| Sulfadiazine: Acetone                                                                                                                                                                                                                                                                                 |         |                                                                                  |  |
| Concentration of stock solution Enrofloxacin: 0.136 mg/g                                                                                                                                                                                                                                              |         |                                                                                  |  |
|                                                                                                                                                                                                                                                                                                       |         | Sulfadiazine: 1.24 mg/g                                                          |  |

| Handling of stock solution         | Storage conditions: <i>freezer (-20 °C)</i><br>Time period between preparation and use: 2 weeks<br>Treatment before use: <i>equilibrate to room temperature</i><br><i>and vortex</i> |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Intermediate dilutions of stock    | Enrofloxacin: N/A                                                                                                                                                                    |
| solutions (solvent, concentration) | Sulfadiazine: N/A                                                                                                                                                                    |
| Working solutions (solvent,        | Enrofloxacin: $H_2O$ , 0.147 $\mu g/g$                                                                                                                                               |
| concentration)                     | Sulfadiazine: $H_2O$ , 5.05 $\mu g/g$                                                                                                                                                |

| Internal standard forms             | Enrofloxacin-d5: HI salt                        |
|-------------------------------------|-------------------------------------------------|
|                                     | Sulfadiazine-13C6: Free base                    |
| Solvent used to prepare Internal    | Enrofloxacin-d5: <i>MeOH/50 mM NaOH 50%/50%</i> |
| Standard solution                   | Sulfadiazine-13C6: MeOH,                        |
| Concentration of Internal Standard  | Enrofloxacin-d5: 10.8 µg/g                      |
| solution                            | Sulfadiazine-13C6: 126 µg/g                     |
| Intermediate dilutions of Internal  | Enrofloxacin-d5: N/A                            |
| standard solution (solvent,         | Sulfadiazine-13C6: N/A                          |
| concentration)                      |                                                 |
| Internal Standard Spiking solutions | Enrofloxacin-d5: $H_2O$ , 0.459 $\mu g/g$       |
| (solvent, concentration)            | Sulfadiazine-13C6: $H_2O$ , 17.1 $\mu g/g$      |

| Details of calibration solutions, i.e.  | Enrofloxacin: 0.0668 $\mu g/g$ in freeze-dried bovine tissue   |
|-----------------------------------------|----------------------------------------------------------------|
| native and internal standard blends, as | Enrofloxacin-d5: $0.0672 \mu g/g$ in freeze-dried bovine       |
| injected into MS (concentrations,       | tissue                                                         |
| solvent)                                | Solvent: acetic acid 5 % in water: methanol (80:20 $v/v$ )     |
|                                         | Sulfadiazine: 2.29 $\mu g/g$ in freeze-dried bovine tissue     |
|                                         | Sulfadiazine-13C6: 2.50 $\mu g/g$ in freeze-dried bovine       |
|                                         | tissue                                                         |
|                                         | Solvent: <i>acetic acid 5 % in water: methanol (80:20 v/v)</i> |
| Solvent for bovine tissue sample        | Enrofloxacin: acetic acid 5 % in water: methanol (80:20        |
| extracts as injected into MS            | v/v                                                            |
|                                         | Sulfadiazine: acetic acid 5 % in water: methanol (80:20        |
|                                         | $\nu/\nu)$                                                     |

| CCQM-K141/P178                                                                                                                                                                                                                                                                                 | LGC | High polarity analytes in food-Enrofloxacin<br>and Sulfadiazine in Bovine Tissue |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------|--|
| Additional Information: We would like to collect additional information for enrofloxacin and sulfadiazine native and labelled solutions used for value assignment, including concentrations, dilutions and solvents used in their preparation. Please provide information in the fields below: |     |                                                                                  |  |
| Native Calibration Standard Information                                                                                                                                                                                                                                                        |     |                                                                                  |  |
| Reference standard forms                                                                                                                                                                                                                                                                       |     | Enrofloxacin: free base<br>ulfadiazine: free base                                |  |
| Solvent used to prepare stock solution                                                                                                                                                                                                                                                         | E   | Enrofloxacin: methanol with 0.1 % (v/v) NaOH 1 M                                 |  |

|                                           | Sulfadiazine: methanol                                |
|-------------------------------------------|-------------------------------------------------------|
| Concentration of stock solution           | Enrofloxacin: 1195 mg/kg                              |
|                                           | Sulfadiazine: 405 mg/kg                               |
| Handling of stock solution                | Storage conditions: 4 °C, darkness.                   |
|                                           | Time period between preparation and use: 6 days       |
|                                           | maximum for reported samples                          |
|                                           | Treatment before use: equilibrate to room temperature |
| Intermediate dilutions of stock solutions | Enrofloxacin: 0.14 mg/kg in acetonitrile              |
| (solvent, concentration)                  | Sulfadiazine: NA                                      |
| Working solutions (solvent,               | Enrofloxacin: 0.135 mg/kg in acetonitrile             |
| concentration)                            | Sulfadiazine: 5.7 mg/kg in acetonitrile               |

| Internal standard forms             | Enrofloxacin-d5: hydrochloride                       |
|-------------------------------------|------------------------------------------------------|
|                                     | Sulfadiazine-13C6: free base                         |
| Solvent used to prepare Internal    | Enrofloxacin-d5: methanol with $0.1 \%$ (v/v) NaOH 1 |
| Standard solution                   | М                                                    |
|                                     | Sulfadiazine-13C6: methanol                          |
| Concentration of Internal Standard  | Enrofloxacin-d5: 206 mg/kg                           |
| solution                            | Sulfadiazine-13C6: 270 mg/kg                         |
| Intermediate dilutions of Internal  | Enrofloxacin-d5: 5.5 mg/kg in acetonitrile           |
| standard solution (solvent,         | Sulfadiazine-13C6: NA                                |
| concentration)                      |                                                      |
| Internal Standard Spiking solutions | Enrofloxacin-d5: 0.135 mg/kg in acetonitrile         |
| (solvent, concentration)            | Sulfadiazine-13C6: 5.7 mg/kg in acetonitrile         |

## Final calibration solution and sample extract information

|                                           | -                                                 |
|-------------------------------------------|---------------------------------------------------|
| Details of calibration solutions, i.e.    | Enrofloxacin: about 11 µg/L                       |
| native and internal standard blends, as   | Enrofloxacin-d5: e.g. about 11 µg/L               |
| injected into MS (concentrations,         | Solvent: methanol/water (2/8, v/v, matrix matched |
| solvent)                                  | using blank beef muscle extracts)                 |
|                                           | Sulfadiazine: about 450 $\mu$ g/L                 |
|                                           | Sulfadiazine-13C6: about 450 µg/L                 |
|                                           | Solvent: methanol/water (2/8, v/v, matrix matched |
|                                           | using blank beef muscle extracts)                 |
| Solvent for bovine tissue sample extracts | Enrofloxacin: methanol/water (2/8, v/v)           |
| as injected into MS                       | Sulfadiazine: methanol/water (2/8, v/v)           |

| CCQM-K141/P178 | NIM      | High polarity analytes in food-Enrofloxacin<br>and Sulfadiazine in Bovine Tissue                                                     |
|----------------|----------|--------------------------------------------------------------------------------------------------------------------------------------|
|                | ssignmen | ditional information for enrofloxacin and sulfadiazine<br>it, including concentrations, dilutions and solvents used<br>fields below: |

# Native Calibration Standard Information

| Reference standard forms                  | Enrofloxacin: Free base                               |
|-------------------------------------------|-------------------------------------------------------|
|                                           | Sulfadiazine: Free base                               |
| Solvent used to prepare stock solution    | Enrofloxacin: <i>MeOH</i> ,                           |
|                                           | Sulfadiazine: MeOH                                    |
| Concentration of stock solution           | Enrofloxacin: $633 \mu g/g$                           |
|                                           | Sulfadiazine: $626  \mu g/g$                          |
| Handling of stock solution                | Storage conditions: freezer -20°C                     |
|                                           | Time period between preparation and use: <1 month     |
|                                           | Treatment before use: equilibrate to room temperature |
|                                           | and vortex                                            |
| Intermediate dilutions of stock solutions | Enrofloxacin: <i>MeOH</i> , 9.92 µg/g                 |
| (solvent, concentration)                  | Sulfadiazine: <i>MeOH</i> , 9.90 µg/g                 |
| Working solutions (solvent,               | Enrofloxacin: <i>MeOH 0.279 <math>\mu g/g</math></i>  |
| concentration)                            | Sulfadiazine: <i>MeOH</i> 0.500 $\mu g/g$             |

| Internal standard forms                    | Enrofloxacin-d5: HCl salt                |
|--------------------------------------------|------------------------------------------|
|                                            | Sulfadiazine-13C6: Free base             |
| Solvent used to prepare Internal Standard  | Enrofloxacin-d5: MeOH                    |
| solution                                   | Sulfadiazine-13C6: MeOH,                 |
| Concentration of Internal Standard         | Enrofloxacin-d5: $654 \mu g/g$           |
| solution                                   | Sulfadiazine-13C6: $593 \mu g/g$         |
| Intermediate dilutions of Internal         | Enrofloxacin-d5: <i>MeOH</i> , 10.1 µg/g |
| standard solution (solvent, concentration) | Sulfadiazine-13C6: MeOH, 10.1 µg/g       |
| Internal Standard Spiking solutions        | Enrofloxacin-d5: <i>MeOH</i> , 0.292µg/g |
| (solvent, concentration)                   | Sulfadiazine-13C6: MeOH, 10.1µg/g        |
|                                            |                                          |

| Details of calibration solutions, i.e.     | Enrofloxacin: $0.0154 \mu g/g$                  |
|--------------------------------------------|-------------------------------------------------|
| native and internal standard blends, as    | Enrofloxacin-d5: $0.0162 \mu g/g$               |
| injected into MS (concentrations, solvent) | Solvent: 0.1% formic acid in Water/MeOH 90%/10% |
|                                            | Sulfadiazine: $0.0219 \mu g/g$                  |
|                                            | Sulfadiazine-13C6: 0.0200µg/g                   |
|                                            | Solvent: 0.1% formic acid in Water/MeOH 90%/10% |
| Solvent for bovine tissue sample extracts  | Enrofloxacin: 0.1% formic acid in Water/MeOH    |
| as injected into MS                        | 90%/10%                                         |
|                                            | Sulfadiazine: 0.1% formic acid in Water/MeOH    |
|                                            | 90%/10%                                         |

| CCQM-K141/P178                                                                                                                           | NIMT       | High polarity analytes in food-Enrofloxacin<br>and Sulfadiazine in Bovine Tissue |
|------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------------|
| Additional Information: We would like t<br>sulfadiazinenative and labelled solutions us<br>solvents used in their preparation. Please pr | ed for val | ue assignment, including concentrations, dilutions and                           |
| NativeCalibration Standard Information                                                                                                   |            |                                                                                  |

| Reference standard forms                                              | Enrofloxacin: <i>HCl salt</i><br>Sulfadiazine:                                                                                                                                      |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Solvent used to prepare stock solution                                | Methanol                                                                                                                                                                            |
| Concentration of stocksolution                                        | Enrofloxacin: $520\mu g/g$<br>Sulfadiazine: $518 \ \mu g/g$                                                                                                                         |
| Handling of stock solution                                            | Storage conditions: <i>at -20</i> °C<br>Time period between preparation and use: <i>1 week</i><br>Treatment before use: <i>equilibrate to room temperature</i><br><i>and vortex</i> |
| Intermediate dilutions of stock<br>solutions (solvent, concentration) | Enrofloxacin: <i>MeOH</i> , 4.0µg/g<br>Sulfadiazine: <i>MeOH</i> , 3.4µg/g                                                                                                          |
| Working solutions (solvent, concentration)                            | Enrofloxacin: <i>MeOH</i> , 0.150µg/g<br>Sulfadiazine: <i>MeOH</i> , 3.4µg/g                                                                                                        |

| Internal standard forms             | Enrofloxacin-d5: HCl salt                      |  |
|-------------------------------------|------------------------------------------------|--|
|                                     | Sulfadiazine-13C6:                             |  |
| Solvent used to prepare Internal    | Enrofloxacin-d5: <i>MeOH</i>                   |  |
| Standard solution                   | Sulfadiazine-13C6: MeOH,                       |  |
| Concentration of Internal Standard  | Enrofloxacin-d5: 140 µg/g                      |  |
| solution                            | Sulfadiazine-13C6: 170 µg/g                    |  |
| Intermediate dilutions of Internal  | Enrofloxacin-d5: <i>MeOH</i> , 4.3 µg/g        |  |
| standard solution (solvent,         | Sulfadiazine-13C6: 3.2 µg/g                    |  |
| concentration)                      |                                                |  |
| Internal Standard Spiking solutions | Enrofloxacin-d5: <i>MeOH</i> , $0.152 \mu g/g$ |  |
| (solvent, concentration)            | Sulfadiazine-13C6: 3.2 µg/g                    |  |

| Details of calibration solutions, i.e.                           | Enrofloxacin: $0.150 \mu g/g$                |
|------------------------------------------------------------------|----------------------------------------------|
| native and internal standard blends, as                          | Enrofloxacin-d5: $0.152 \mu g/g$             |
| injected into MS (concentrations,                                | Solvent: 0.1% formic acid in water/0.1%      |
| solvent)                                                         | formic acid in acetonitrile (9:1) 0.8 mL     |
|                                                                  | Sulfadiazine: $3.4  \mu g/g$                 |
|                                                                  | Sulfadiazine-13C6: $3.2 \mu g/g$             |
|                                                                  | Solvent: 0.1% formic acid in water/0.1%      |
|                                                                  | formic acid in acetonitrile (9:1) 0.8 mL     |
| Solvent for bovine tissue sample<br>extracts as injected into MS | Enrofloxacin: 0.1% formic acid in water/0.1% |
|                                                                  | formic acid in acetonitrile (9:1) 0.8 mL     |
|                                                                  | Sulfadiazine: 0.1% formic acid in water/0.1% |
|                                                                  | formic acid in acetonitrile (9:1) 0.8 mL     |

| CCQM-K141/P178                                                                 | NMIA      | High polarity analytes in food-Enrofloxacin<br>and Sulfadiazine in Bovine Tissue                                                                                                                                                                                              |
|--------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                | e assignn | t additional information for enrofloxacin and sulfadiazine<br>nent, including concentrations, dilutions and solvents used                                                                                                                                                     |
| Native C                                                                       | Calibrati | ion Standard Information                                                                                                                                                                                                                                                      |
| Reference standard forms                                                       |           | Enrofloxacin: Free base (NMIA, M747b.2016.01)<br>Sulfadiazine: Free base (NMIA, M317.2016.01)                                                                                                                                                                                 |
| Solvent used to prepare stock solution                                         |           | Enrofloxacin: 1mM NaOH in MeOH<br>(prep: add 0.5 mL of 0.8 M NaOH (aq) to 400 mL<br>MeOH)<br>Sulfadiazine: MeOH                                                                                                                                                               |
| Concentration of stock solution                                                |           | Enrofloxacin: 505.2 ug/g<br>Sulfadiazine: 690.7 ug/g                                                                                                                                                                                                                          |
| Handling of stock solution                                                     |           | Storage conditions: Fridge 4 °C<br>Time period between preparation and use:<br>SDZ: 9 days (prepared 29/11/2016, diluted 7/12/2016)<br>ENR: 8 days (prepared 30/11/2016, diluted 7/12/2016)<br>Treatment before use: equilibrate to room temperature<br>and vortex for 1 hour |
| Intermediate dilutions of stock solutions (solvent, concentration)             |           | Enrofloxacin: 11.94 ug/g (diluent: 1mM NaOH in MeOH)<br>Sulfadiazine: 57.22 ug/g (diluent: MeOH)                                                                                                                                                                              |
| Working solutions (solvent, concentration                                      | )n)       | Enrofloxacin: 0.122 ug/g (diluent: 10% MeOH in 1 mM<br>aq NaOH)<br>Sulfadiazine: 3.76 ug/g (diluent: 10% MeOH in 1 mM<br>aq NaOH)<br>Intermediate solutions equilibrated to room temperature<br>and vortexed for 1 hour before dilution.                                      |
| Isotopically-labelled Internal Standa                                          |           | mation (modify first three rows if alternative internal ndards used)                                                                                                                                                                                                          |
| Internal standard forms                                                        |           | Enrofloxacin-d5: hydrochloride (Witega, CH005-25)<br>Sulfadiazine-13C6: 100 ug/mL in MeOH, solution<br>supplied by NRC                                                                                                                                                        |
| Solvent used to prepare Internal Standar solution                              |           | Enrofloxacin-d5: MeOH<br>Sulfadiazine-13C6:100 ug/mL in MeOH (as received)                                                                                                                                                                                                    |
| Concentration of Internal Standard solu                                        |           | Enrofloxacin-d5: 117.5 ug/g<br>Sulfadiazine-13C6: 100 ug/mL in MeOH (stored at -<br>20°C as per study instructions until use, then<br>equilibrated to Rt and vortexed before dilution)                                                                                        |
| Intermediate dilutions of Internal standa<br>solution (solvent, concentration) | rd        | Enrofloxacin-d5: 4.99 ug/g<br>(diluent: 1mM NaOH, 10% MeOH in H <sub>2</sub> O)<br>Sulfadiazine-13C6: No intermediate dilution                                                                                                                                                |
| Internal Standard Spiking solutions (solv<br>concentration)                    | vent,     | Enrofloxacin-d5: 0.113 ug/g<br>(diluent: 1mM NaOH, 10% ACN in H <sub>2</sub> O)<br>Sulfadiazine-13C6: 3.76 ug/g<br>(diluent: 1mM NaOH, 10% ACN in H <sub>2</sub> O)                                                                                                           |

| Final calibration solution and sample extract information                                                                        |                                                                                                                                                       |  |
|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Details of calibration solutions , i.e. native<br>and internal standard blends, as injected into<br>MS (concentrations, solvent) | Enrofloxacin: 0.005 ug/g<br>Enrofloxacin-d5: 0.005 ug/g<br>Solvent: 1 mM NaOH, 0.9% MeOH, 9.1 % ACN in<br>H <sub>2</sub> O<br>Sulfadiazine: 0.17 ug/g |  |
|                                                                                                                                  | Sulfadiazine-13C6: 0.17 ug/g<br>Solvent: 1 mM NaOH, 0.9% MeOH, 9.1 % ACN in<br>H <sub>2</sub> O                                                       |  |
| Solvent for bovine tissue sample extracts as injected into MS                                                                    | Enrofloxacin: 10% ACN in 1 mM aqueous NaOH,<br>Sulfadiazine: 10% ACN in 1 mM aqueous NaOH,                                                            |  |

| CCQM-K141/P178                                                                                                                                                                                                                                                                                | VNIIM     | High polarity analytes in food-Enrofloxacin<br>and Sulfadiazine in Bovine Tissue                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Additional Information: We would like to collect additional information for enrofloxacin and sulfadiazinenative and labelled solutions used for value assignment, including concentrations, dilutions and solvents used in their preparation. Please provide information in the fields below: |           |                                                                                                                                             |
| NativeC                                                                                                                                                                                                                                                                                       | Calibrati | on Standard Information                                                                                                                     |
| Reference standard forms                                                                                                                                                                                                                                                                      |           | Enrofloxacin: e.g. Free base<br>Sulfadiazine: Free base                                                                                     |
| Solvent used to prepare stock solution                                                                                                                                                                                                                                                        |           | Enrofloxacin:<br>$MeOH:H_2O:NaOH(0,1N)=50:50:0,25(v/v/v)$<br>Sulfadiazine: $MeOH$                                                           |
| Concentration of stocksolution                                                                                                                                                                                                                                                                |           | Enrofloxacin: 146μg/g<br>Sulfadiazine: 126μg/g                                                                                              |
| Handling of stock solution                                                                                                                                                                                                                                                                    |           | Storage conditions: +4°C<br>Time period between preparation and use: 24 h<br>Treatment before use: <i>equilibrating to room temperature</i> |
| Intermediate dilutions of stock solutions (solvent, concentration)                                                                                                                                                                                                                            | 5         | · · · · ·                                                                                                                                   |
| Working solutions (solvent, concentration                                                                                                                                                                                                                                                     | on)       | Enrofloxacin:<br>$MeOH:H_2O:NaOH(0,1N)=50:50:0,25(v/v/v)$<br>$14,6 \ \mu g/g$<br>Sulfadiazine: $MeOH$ , $12,6 \ \mu g/g$                    |
| Isotopically-labelled Internal Standard Information (modify first three rows if alternative internal standards used)                                                                                                                                                                          |           |                                                                                                                                             |
| Internal standard forms                                                                                                                                                                                                                                                                       |           | Enrofloxacin-d5: <i>HI salt</i><br>Sulfadiazine-13C6: <i>Free base</i>                                                                      |

| Solvent used to prepare Internal Standard solution | Enrofloxacin-d5: e.g. <i>MeOH/50 mM NaOH 50%/50%</i><br>Sulfadiazine-13C6:e.g. <i>MeOH</i> |
|----------------------------------------------------|--------------------------------------------------------------------------------------------|
| Concentration of Internal Standard solution        | Enrofloxacin-d5: e.g. 14,6 µg/g                                                            |
|                                                    | Sulfadiazine-13C6: 126 μg/g                                                                |
| Intermediate dilutions of Internal standard        |                                                                                            |
| solution (solvent, concentration)                  |                                                                                            |
| Internal Standard Spiking solutions (solvent,      | Enrofloxacin-d5: e.g. 14,6 μg/g                                                            |
| concentration)                                     | Sulfadiazine-13C6: 126 µg/g                                                                |
|                                                    |                                                                                            |

| Details of calibration solutions , i.e. native<br>and internal standard blends, as injected into<br>MS (concentrations, solvent) | Enrofloxacin: $0.03 \mu g/g$<br>Enrofloxacin-d5: $0.035 \mu g/g$<br>Solvent: $MeOH:H_2O:NaOH(0,1N)=50:50:0,25(\nu/\nu/\nu)$<br>Sulfadiazine: $5 \mu g/g$<br>Sulfadiazine-13C6: $5 \mu g/g$<br>Solvent: $MeOH$ |
|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Solvent for bovine tissue sample extracts as injected into MS                                                                    | Enrofloxacin: <i>ACN</i> *<br>Sulfadiazine: <i>ACN:HCOOH</i> = 1000:1 (v/v)*                                                                                                                                  |

| CCQM-K141/P178                            | NRC-<br>Ottawa | High polarity analytes in food-Enrofloxacin<br>and Sulfadiazine in Bovine Tissue                                                                              |
|-------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                           | assignme       | dditional information for enrofloxacin and sulfadiazine<br>nt, including concentrations, dilutions and solvents used<br>e fields below:                       |
| Native C                                  | alibration     | 1 Standard Information                                                                                                                                        |
| Reference standard forms                  |                | Enrofloxacin: <i>Free base</i><br>Sulfadiazine: <i>Free base</i>                                                                                              |
| Solvent used to prepare stock solution    |                | Enrofloxacin: <i>MeOH</i><br>Sulfadiazine: <i>MeOH</i>                                                                                                        |
| Concentration of stock solution           |                | Enrofloxacin: $126 \mu g/g$<br>Sulfadiazine: $630 \mu g/g$                                                                                                    |
| Handling of stock solution                |                | Storage conditions: -20°C freezer<br>Time period between preparation and use: 350 days<br>Treatment before use: equilibrate to room temperature<br>and vortex |
| Intermediate dilutions of stock solutions |                | Enrofloxacin: N/AP                                                                                                                                            |
| (solvent, concentration)                  |                | Sulfadiazine: N/AP                                                                                                                                            |
| Working solutions (solvent,               |                | Enrofloxacin: <i>MeOH:water</i> ; 50:50, 0.332 µg/g                                                                                                           |
| concentration)                            |                | Sulfadiazine: <i>MeOH:water</i> ; 50:50, 11.9 μg/g                                                                                                            |

# Isotopically-labelled Internal Standard Information (modify first three rows if alternative internal standards used)

| Internal standard forms | Enrofloxacin-d5: HI salt     |
|-------------------------|------------------------------|
|                         | Sulfadiazine-13C6: Free base |

| Solvent used to prepare Internal Standard solution | Enrofloxacin-d5: <i>MeOH:50 mM NaOH ; 50:50</i><br>Sulfadiazine-13C6: <i>MeOH</i> , |
|----------------------------------------------------|-------------------------------------------------------------------------------------|
| Concentration of Internal Standard                 | Enrofloxacin-d5: <i>108 µg/g</i>                                                    |
| solution                                           | Sulfadiazine-13C6: $632 \mu g/g$                                                    |
| Intermediate dilutions of Internal                 | Enrofloxacin-d5: N/AP                                                               |
| standard solution (solvent, concentration)         | Sulfadiazine-13C6: N/AP                                                             |
| Internal Standard Spiking solutions                | Enrofloxacin-d5: <i>MeOH:water</i> ; 50:50, 0.363 μg/g                              |
| (solvent, concentration)                           | Sulfadiazine-13C6: <i>MeOH:water</i> ; 50:50, 11.4 μg/g                             |

| Details of calibration solutions, i.e.     | Enrofloxacin: 0.032 µg/g                                                                     |
|--------------------------------------------|----------------------------------------------------------------------------------------------|
| native and internal standard blends, as    | Enrofloxacin-d5: 0.035 µg/g                                                                  |
| injected into MS (concentrations, solvent) | Solvent: Water:MeOH:formic acid ; 90:10:0.1                                                  |
|                                            | Sulfadiazine: $0.011  \mu g/g$                                                               |
|                                            | Sulfadiazine-13C6: $0.011 \mu g/g$                                                           |
|                                            | Solvent: MeOH:water ; 50:50                                                                  |
| Solvent for bovine tissue sample extracts  | Enrofloxacin: Water:MeOH ; 90:10                                                             |
| as injected into MS                        | Sulfadiazine: MeOH:water ; 50:50                                                             |
| 1                                          | Sulfadiazine-13C6: 0.011 μg/g<br>Solvent: MeOH:water ; 50:50Enrofloxacin: Water:MeOH ; 90:10 |

# NRC-<br/>CCQM-K141/P178NRC-<br/>Hfx-<br/>P178High polarity analytes in food-<br/>Enrofloxacin and Sulfadiazine in Bovine<br/>Tissue

Additional Information: We would like to collect additional information for enrofloxacin and sulfadiazine native and labelled solutions used for value assignment, including concentrations, dilutions and solvents used in their preparation. Please provide information in the fields below:

# Native Calibration Standard Information

| Reference standard forms                  | Enrofloxacin: HI salt                            |
|-------------------------------------------|--------------------------------------------------|
|                                           | Sulfadiazine: free base                          |
| Solvent used to prepare stock solution    | Enrofloxacin: 50% MeOH/ 5mM NaOH                 |
|                                           | Sulfadiazine: 100% MeOH                          |
| Concentration of stock solution           | Enrofloxacin: 27 µg/mL                           |
|                                           | Sulfadiazine: 104 µg/mL                          |
| Handling of stock solution                | Enrofloxacin                                     |
|                                           | Storage conditions: Stock solutions stored under |
|                                           | argon in ampoules @ -80°C                        |
|                                           | Time period between preparation and use: 1       |
|                                           | month                                            |
|                                           | Treatment before use: equilibrate to room        |
|                                           | temperature and vortex                           |
|                                           |                                                  |
|                                           | Sulfadiazine                                     |
|                                           | Storage conditions: Stock solutions stored under |
|                                           | argon in ampoules @ -12°C                        |
|                                           | Time period between preparation and use: 2       |
|                                           | months                                           |
|                                           | Treatment before use: equilibrate to room        |
|                                           | temperature and vortex                           |
| Intermediate dilutions of stock solutions | Enrofloxacin: 275 ng/mL in 50% MeOH/ 5mM         |
| (solvent, concentration)                  | NaOH                                             |
|                                           | Sulfadiazine: 10.4 µg/mL in100% MeOH             |
| Working solutions (solvent,               | Enrofloxacin: 1.4 ng/mL in 50% MeOH/ 5mM         |
| concentration)                            | NaOH                                             |
|                                           | Sulfadiazine: 65 ng/mL in100% MeOH               |

# Isotopically-labelled Internal Standard Information (modify first three rows if alternative internal standards used)

| Internal standard forms                            | Enrofloxacin-d5: HI salt<br>Sulfadiazine-13C6: Free base                                                              |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Solvent used to prepare Internal Standard solution | Enrofloxacin: 50% MeOH/ 5mM NaOH<br>Sulfadiazine: 100% MeOH                                                           |
| Concentration of Internal Standard solution        | Enrofloxacin: ~13.5 μg/mL in 50% MeOH/ 5mM<br>NaOH (as supplied by NRC-OTT)<br>Sulfadiazine: ~ 100 μg/mL in 100% MeOH |
|                                                    | (as supplied by NRC-OTT)                                                                                              |

| Intermediate dilutions of Internal         | Used IS materials as supplied             |
|--------------------------------------------|-------------------------------------------|
| standard solution (solvent, concentration) |                                           |
| Internal Standard Spiking solutions        | Enrofloxacin: ~290 ng/mL in 50% MeOH/ 5mM |
| (solvent, concentration)                   | NaOH                                      |
|                                            | Sulfadiazine: ~ 12 µg/mL in 100% MeOH     |

| Details of calibration solutions, i.e.     | Enrofloxacin: 1.4 ng/mL                           |
|--------------------------------------------|---------------------------------------------------|
| native and internal standard blends, as    | Enrofloxacin-d5: 1.2 ng/mL                        |
| injected into MS (concentrations, solvent) | Solvent: 50% MeOH/ 5mM NaOH                       |
|                                            |                                                   |
|                                            | Sulfadiazine: 64 ng/mL                            |
|                                            | Sulfadiazine-13C6: 64 ng/mL                       |
|                                            | Solvent: 100% MeOH                                |
| Solvent for bovine tissue sample extracts  | Enrofloxacin: ~ $40\%$ H <sub>2</sub> O in % MeCN |
| as injected into MS                        | Sulfadiazine: ~ 40% $H_2O$ in % MeCN              |