# CCQM-K6.2 Determination of Total Cholesterol in Human Serum

# Final Report April 2018

Stephen A. Wise, Karen W. Phinney, and David L. Duewer National Institute of Standards and Technology (NIST) Gaithersburg, MD, USA

With contributions from:

Lorna T. Sniegoski and Michael J. Welch National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA

Guiomar Pabello and Marco A. Avila Caldero Centro Nacional de Metrologia (CENAM), Querétaro, México

Liu Qinde and Lee Tong Kooi Health Sciences Authority (HSA), Singapore

Eliane Rego, Bruno Garrido, Gabriella Allegri, Marcia de La Cruz, and Juliana Barrabin Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Xerém, Rio de Janeiro, Brazil

Celia Puglisi and Eduardo Lopez Instituto Nacional de Tecnologia Industrial (INTI), Buenos Aires, Argentina

Hwashim Lee and Byungjoo Kim Korea Research Institute of Standards and Science (KRISS), Daejeon, Republic of Korea

Vincent Delatour and Maud Heuillet Laboratoire National de Métrologie et d'Essais (LNE), Paris, France

Jintana Nammoonnoy National Institute of Metrology (Thailand) (NIMT), Pathumthani, Thailand

Ahmet Ceyhan Gören and Gokhan Bilsel National Metrology Institute of Turkey (TÜBİTAK UME), Gebze-Kocaeli, Turkey

L. Konopelko, A. Krylov, and E. Lopushanskaya D.I. Mendeleyev Institute for Metrology (VNIIM), St. Petersburg, Russian Federation

#### **SUMMARY**

Cholesterol is one of the most frequently measured substances in human blood/serum to assist in assessing the health status of individuals. Because of its clinical significance, CCQM-K6 Determination of Cholesterol in Serum was completed in 2000 as one of the first Key Comparison (KC) studies performed within the Organic Analysis Working Group (OAWG). The first Subsequent KC for cholesterol, CCQM-K6.1, was completed in 2001. Measurements for this second Subsequent, CCQM-K6.2, were completed in 2012. These Subsequent comparisons were conducted to enable CCQM members that had not participated in earlier studies to demonstrate their capabilities to measure a nonpolar ( $pK_{ow} < -2$ ), low molecular mass (100 g/mol to 500 g/mol) metabolite in human serum at relatively high concentrations (1 mg/g to 3 mg/g) found in normal populations. Successful participation in CCQM-K6.2 demonstrated capabilities in analysis of complex biological matrices including sample preparation (extraction, derivatization), LC or GC separation, and quantification using an isotope dilution mass spectrometry approach.

Normally in a subsequent KC, no Key Comparison Reference Value (KCRV) would be established and assessment of performance would be via the deviation of participants' results to the anchor institute's results, adjusted to account for the anchor's performance in the original comparison versus its KCRV. Due to the very long-time period since the original key comparison, the OAWG decided that this did not represent the best approach to assess performance in what is a relatively complex measurement. Given the excellent agreement between the anchor institute's results and robust consensus summary of the participants' values, the Reference Value for this study was taken as the anchor institute's result and treated as a "KCRV". Seven of the nine participants demonstrated agreement with the reference value.

| TABLE ( | <b>DF CO</b> | NTENTS |
|---------|--------------|--------|
|---------|--------------|--------|

| INTRODUCTION                             | . 1 |
|------------------------------------------|-----|
| MEASURAND                                | . 2 |
| STUDY MATERIAL                           | . 3 |
| Homogeneity Assessment of Study Material | . 3 |
| PARTICIPANTS AND INSTRUCTIONS            | .4  |
| Methods Used by Participants             | .4  |
| Methods Used by Anchor Laboratory        | . 4 |
| RESULTS                                  | . 5 |
| Participant Results: Reported            | . 5 |
| Participant Results: Combined            | . 5 |
| Anchor Laboratory Results                | . 7 |
| KEY COMPARISON REFERENCE VALUE (KCRV)    | . 7 |
| DEGREES OF EQUIVALENCE                   | 10  |
| USE OF CCQM-K6.2 IN SUPPORT OF CMCs      | 13  |
| CONCLUSIONS                              | 13  |
| ACKNOWLEDGEMENTS                         | 13  |
| REFERENCES                               | 13  |

## LIST OF TABLES

| Table 1: | Previous CCQM Comparisons for Cholesterol, Glucose, and Creatinine       | 1  |
|----------|--------------------------------------------------------------------------|----|
| Table 2: | CCQM-K6.2 Timeline                                                       | 2  |
| Table 3: | Determination of Cholesterol in SRM 1951c Level 2                        | 3  |
| Table 4: | Participants and Anchor in CCQM-K6.2 Cholesterol in Human Serum          | 4  |
| Table 5: | Results for CCQM-K6.2 Cholesterol in Human Serum as Received             | 5  |
| Table 6: | Participant Results for CCQM-K6.2 Cholesterol in Human Serum as Combined | 6  |
| Table 7: | Key Comparison Reference Value for CCQM-K6.2                             | 7  |
| Table 8: | Degrees of Equivalence for CCQM-K6.2 Cholesterol in Human Serum          | 10 |
| Table A- | 1: CCQM-K6.2 Sample Size, Extraction, and Cleanup                        | A2 |
| Table A- | 2: CCQM-K6.2 Analytical Techniques                                       | A4 |
| Table A- | 3: CCQM-K6.2 Calibrants and Standards                                    | A6 |

# LIST OF FIGURES

| Figure 1: | Combined results and robust consensus estimates of location and dispersion | . 6 |
|-----------|----------------------------------------------------------------------------|-----|
| Figure 2: | Participant results for CCQM-K6.2 relative to the KCRV.                    | . 8 |
| Figure 3: | Combined Participant results for CCQM-K6.2 relative to the KCRV            | . 9 |
| Figure 4: | Absolute degrees of equivalence for CCQM-K6.2                              | 11  |
| Figure 5: | Relative degrees of equivalence for CCQM-K6, -K6.1 and -K6.2               | 12  |

# LIST OF APPENDICES

| Appendix A: | CCQM-K6.2 Summary | y of Analytical | Information        | A1 |
|-------------|-------------------|-----------------|--------------------|----|
| Appendix B: | CCQM-K6.2 Summary | of Uncertainty  | Estimation Methods | B1 |

# ACRONYMS

| CCQM             | Consultative Committee for Amount of Substance: Metrology in Chemistry and Riology |
|------------------|------------------------------------------------------------------------------------|
| CDC              | Centers for Disease Control and Prevention USA                                     |
| CENAM            | Centro Nacional de Metrologia, México                                              |
| CMC              | calibration and measurement canabilities                                           |
| CRM              | certified reference material                                                       |
| DI               | designated institute                                                               |
| GC               | ass chromatography                                                                 |
| GC-MS            | gas chromatography separation with mass spectrometry detection                     |
|                  | Health Sciences Authority Singenore                                                |
| ID               | isotone dilution                                                                   |
|                  | Instituto Nacional de Metrologie, Quelidade e Tecnologie, Brazil                   |
|                  | Instituto Nacional de Metrologia, Qualidade e Techologia, Diazin                   |
|                  | Loint Committee for Treeschility in Laboratory Medicine                            |
|                  | Joint Commutee for Traceability in Laboratory Medicine                             |
| KC<br>KCDV       | Key Comparison                                                                     |
| KUKV             | Key Comparison Reference value                                                     |
| KRISS            | Korea Research Institute of Standards and Science, Republic of Korea               |
| LC               | liquid chromatography                                                              |
| LC-MS            | liquid chromatography with mass spectrometry detection                             |
| LC-MS/MS         | liquid chromatography with tandem mass spectrometry detection                      |
| LNE              | Laboratoire National de Métrologie et d'Essais, France                             |
| MADe             | median absolute deviation from the median (MAD)-based estimate of s:               |
|                  | MADe = $1.4826 \cdot MAD$ , where MAD = median( $ x_i$ -median( $x_i$ ))           |
| NIMT             | National Institute of Metrology (Thailand), Thailand                               |
| NIST             | National Institute of Standards and Technology, USA                                |
| NMI              | national metrology institute                                                       |
| OAWG             | Organic Analysis Working Group                                                     |
| pK <sub>ow</sub> | logarithm of the octanol-water partition coefficient                               |
| PTB              | Physikalisch-Technische Bundesanstalt, Germany                                     |
| SRM              | Standard Reference Material, a NIST CRM                                            |
| UME              | National Metrology Institute of Turkey, Turkey                                     |
| VNIIM            | D.I. Mendeleyev Institute for Metrology, Russian Federation                        |

## SYMBOLS

| degree of equivalence: $x_i$ - KCRV                                                                      |
|----------------------------------------------------------------------------------------------------------|
| percent relative degree of equivalence: $100 \cdot d_i / \text{KCRV}$                                    |
| coverage factor: $U(x) = k \cdot u(x)$                                                                   |
| standard deviation of a series of quantity values: $s = \sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 / (n-1)}$ |
| Student's <i>t</i> -distribution expansion factor                                                        |
| standard uncertainty of quantity value $x_i$                                                             |
| pooled uncertainty: $\bar{u}(x) = \sqrt{\sum_{i=1}^{n} u^2(x_i)/n}$                                      |
| a quantity value                                                                                         |
| the <i>i</i> <sup>th</sup> member of a series of quantity values                                         |
| mean of a series of quantity values: $\bar{x} = \sum_{i=1}^{n} x_i/n$                                    |
| expanded uncertainty defined such that $x \pm U_{95}(x)$ is asserted to include the true                 |
| value of the quantity with an approximate 95 % level of confidence                                       |
| expanded uncertainty defined as $U_{k=2}(x) = 2 \cdot u(x)$                                              |
|                                                                                                          |

# **INTRODUCTION**

Cholesterol, glucose, and creatinine are three of the most frequently measured substances in human blood/serum to assist in assessing the health status of individuals. Because of their clinical significance, measurements of cholesterol, glucose, and creatinine were three of the first Key Comparison (KC) studies performed within the Consultative Committee for Amount of Substance: Metrology in Chemistry and Biology (CCQM) Organic Analysis Working Group (OAWG). These studies were performed in 2000 and 2001 with the National Institute of Standards and Technology (NIST) as the coordinating laboratory (see Table 1) and were published in Metrologia [1,2,3]. Subsequent Key Comparisons were conducted for each analyte in 2005 with the Korea Research Institute of Standards and Science (KRISS) as the coordinating laboratory for CCQM-K11.1 Glucose and CCQM-12.1 Creatinine and NIST as the coordinating laboratory for CCQM-K6.1 Cholesterol.

|            |                            |      | Coordinating | Number of    |
|------------|----------------------------|------|--------------|--------------|
| Comparison | Name of Comparison Study   | Date | Laboratory   | Participants |
| CCQM-P6    | Cholesterol in Human Serum | 1999 | NIST         | 7            |
| CCQM-K6    | Cholesterol in Human Serum | 2000 | NIST         | 7            |
| CCQM-K6.1  | Cholesterol in Human Serum | 2001 | NIST         | 2            |
| CCQM-P8    | Glucose in Human Serum     | 2000 | NIST         | 4            |
| CCQM-K11   | Glucose in Human Serum     | 2001 | NIST         | 3            |
| CCQM-K11.1 | Glucose in Human Serum     | 2005 | KRISS        | 3            |
| CCQM-P9    | Creatinine in Human Serum  | 2000 | NIST         | 4            |
| CCQM-K12   | Creatinine in Human Serum  | 2001 | NIST         | 5            |
| CCQM-K12.1 | Creatinine in Human Serum  | 2005 | KRISS        | 3            |

 Table 1: Previous CCQM Comparisons for Cholesterol, Glucose, and Creatinine

Since these earlier studies were conducted, additional national metrology institutes (NMIs) or their designated institutes (DIs) are now providing measurement services for one or more of these clinical analytes. At the April 2012 OAWG meeting a proposal was accepted to conduct Subsequent Key Comparison studies for the three analytes with NIST as the coordinating laboratory. These three studies were conducted in parallel as CCQM-K6.2, -K11.2, and K-12.2.

The three studies were designed as Subsequent Key Comparisons, with NIST designated as both the coordinating and anchor laboratory. Therefore, participant results were to be compared with NIST measurements. Due to discordant results in CCQM-K11.2 and CCQM-K12.2 between NIST and the participating laboratories, KRISS and the Physikalisch-Technische Bundesanstalt (PTB) – laboratories that had successfully participated in the original studies – were requested by the OAWG to provide measurements for both glucose and creatinine. At the April 2015 OAWG meeting, the decision was made to treat CCQM-K11.2 and CCQM-K12.2 as modified Track C Key Comparisons rather than as Subsequent Key Comparisons. This report describes only CCQM-K6.2. CCQM-K11.2 and CCQM-K12.2 are described in a separate report.

The timeline for CCQM-K6.2 study "Determination of Total Cholesterol in Human Serum" is summarized in Table 2.

| Date       | Action                                                                                                                                                                                                                                                                                        |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| April 2012 | OAWG authorized CCQM-K6.2, -K11.2, and -K12.2 subsequent studies and                                                                                                                                                                                                                          |
|            | approved protocols                                                                                                                                                                                                                                                                            |
| Nov. 2012  | Call for Participation to OAWG members                                                                                                                                                                                                                                                        |
| Dec. 2012  | Samples shipped to participants                                                                                                                                                                                                                                                               |
| April 2013 | Preliminary results presented to OAWG at Paris meeting. Results for CCQM-                                                                                                                                                                                                                     |
|            | K6.2 in good agreement; KRISS and PTB asked to provide reference measurements for CCQM-K11.2 and CCQM-K12.2                                                                                                                                                                                   |
| Nov. 2013  | Reference results for CCQM-K11.2 and CCQM-K12.2 from PTB and KRISS received and discussed at CCQM meeting in South Africa                                                                                                                                                                     |
| April 2014 | Further discussion of how to assign KCRV for CCQM-K6.2, CCQM-K11.2 and CCQM-K12.2; decision to treat CCQM-K6.2 results as true Subsequent Key Comparison with NIST results as anchor; decision to assign KCRV for CCQM-K11.2 and CCQM-K12.2 from participant and reference laboratory results |
| April 2015 | Draft A Report discussed; decision to prepare two Draft A Reports, one for CCQM-K6.2 and a second for CCQM-K11.2 and CCQM-K12.2, which are to be treated as Track C Key comparisons rather than Subsequent Key Comparisons                                                                    |
| Oct. 2015  | Draft A Report distributed to OAWG                                                                                                                                                                                                                                                            |
| Nov. 2015  | Draft B report distributed to OAWG                                                                                                                                                                                                                                                            |
| June 2016  | Draft Final report delivered to OAWG Chair                                                                                                                                                                                                                                                    |
| Sep. 2016  | Review by CCQM WG chairs                                                                                                                                                                                                                                                                      |
| June 2017  | Revised Draft Final report delivered to OAWG Chair                                                                                                                                                                                                                                            |
| April 2018 | Final report delivered to OAWG Chair                                                                                                                                                                                                                                                          |

#### Table 2: CCQM-K6.2 Timeline

## MEASURAND

The measurands for the three clinical analyte studies were cholesterol, glucose, and creatinine as previously defined in the original studies (CCQM-K6, CCQM-K11, and CCQM-K12). These three clinical health status markers were selected in the original Key Comparison studies to be representative of measurement challenges associated with well-defined and low molar mass organic substances in blood. For CCQM-K6.2 the measurand was the mass fraction of total cholesterol in human serum.

Cholesterol (molar mass 365 g/mol) is a low polarity (nonpolar) analyte that is present in human serum at relatively high concentrations (1 mg/g to 3 mg/g). Cholesterol is predominantly esterified with fatty acids in the blood.

# **STUDY MATERIAL**

The study material for CCQM-K6.2 was NIST candidate Standard Reference Material (SRM) 1951c Lipids in Frozen Human Serum (Level 2) [4], prepared as a replacement for SRM 1951b Lipids in Frozen Human Serum and issued in June 2013 after the CCQM-K6.2 results were reported to the OAWG. Participants were provided with three vials of serum for the determination of cholesterol. Each vial contained 1 mL of human serum. Samples were shipped frozen (on dry ice), and participants were instructed that a -20 °C freezer was adequate for storage up to one week; however, if longer storage time was anticipated, the material should be stored at temperatures of -60 °C or below.

#### Homogeneity Assessment of Study Material

Based on nearly two decades of experience with frozen serum samples prepared as SRMs for the determination of cholesterol, there were limited concerns regarding the homogeneity or the stability of the study material. No formal stability study was conducted for the study material. However, studies to assess homogeneity were conducted. For the material used in CCQM-K6.2, cholesterol homogeneity was assessed as part of the certification measurements. A total of 15 vials were selected for analysis based on a stratified sampling plan designed to test for homogeneity across the lot of vials. The 15 vials were analyzed in three sets of five vials per set with duplicate GC-MS injections. The results of the homogeneity assessment are shown in Table 3, where  $\bar{x}$  designates a mean value, *s* a standard deviation, and  $100 \cdot s/\bar{x}$ , the percent relative standard deviation. There was no trend apparent in the data when plotted against the sequence in which the vials were prepared [4].

|     |      |        |                       | Set Statistics |      |                            |
|-----|------|--------|-----------------------|----------------|------|----------------------------|
| Set | Tray | Sample | Sample $\overline{x}$ | $\overline{x}$ | S    | $100 \cdot s/\overline{x}$ |
| 1   | 83   | 7      | 241.31                | 241.19         | 0.71 | 0.29 %                     |
| 1   | 32   | 8      | 241.50                |                |      |                            |
| 1   | 14   | 9      | 240.10                |                |      |                            |
| 1   | 112  | 10     | 242.00                |                |      |                            |
| 1   | 40   | 11     | 241.02                |                |      |                            |
| 2   | 2    | 19     | 240.24                | 240.70         | 0.54 | 0.23 %                     |
| 2   | 31   | 20     | 240.57                |                |      |                            |
| 2   | 65   | 21     | 240.72                |                |      |                            |
| 2   | 102  | 22     | 240.37                |                |      |                            |
| 2   | 81   | 23     | 241.62                |                |      |                            |
| 3   | 114  | 31     | 238.54                | 240.84         | 1.89 | 0.79 %                     |
| 3   | 24   | 32     | 239.57                |                |      |                            |
| 3   | 73   | 33     | 243.38                |                |      |                            |
| 3   | 119  | 34     | 240.89                |                |      |                            |
| 3   | 27   | 35     | 241.82                |                |      |                            |

Table 3: Determination of Cholesterol in SRM 1951c Level 2

# PARTICIPANTS AND INSTRUCTIONS

Participants were requested to analyze two vials of material for cholesterol; the number of subsamples from each vial was left up to the laboratories. Participants were encouraged to use an appropriate serum-matrix CRM as a control material. Participants were to report the mass of cholesterol per mass of serum (mg/g) in the reporting form provided. The reporting form also included descriptions of methods used, number and order of measurements, reference compounds used as calibrants with purity corrections, control materials used, and method of calculating results. A complete description of their uncertainty calculations was also requested in the reporting form.

The National Metrology Institutes or Designated Institutes that participated in CCQM-K6.2 are listed in Table 4. NIST was designated as the anchor laboratory.

|         | CCQM-K6.2   |
|---------|-------------|
| NMI/DI  | Cholesterol |
| CENAM   | Participant |
| HSA     | Participant |
| INMETRO | Participant |
| INTI    | Participant |
| KRISS   | Participant |
| LNE     | Participant |
| NIMT    | Participant |
| UME     | Participant |
| VNIIM   | Participant |
| NIST    | Anchor      |

Table 4: Participants and Anchor in CCQM-K6.2 Cholesterol in Human Serum

# **METHODS**

# Methods Used by Participants

For CCQM-K6.2 Cholesterol in Human Serum, results were received from nine participants. The participants used either isotope dilution gas chromatography-mass spectrometry (ID GC-MS) (six labs) or isotope dilution liquid chromatography-tandem mass spectrometry (ID LC-MS/MS) (three labs). The analytical methods used by the participants, including sample preparation, analytical technique, and quantification approach, are summarized in Tables A1 to A3 of Appendix A.

## Methods Used by Anchor Laboratory

The anchor laboratory used the ID GC-MS procedure published as a definitive method in 1989 [5] and now recognized by the Joint Committee for Traceability in Laboratory Medicine (JCTLM) as a reference measurement procedure. The method as used by the anchor laboratory is summarized in Tables A1 to A3.

# RESULTS

#### **Participant Results: Reported**

The results for K6.2 as received from the participants for measurements on each of two vials (as requested) are summarized in Table 5.

|          |      | Mas   | Coverage |             |            |
|----------|------|-------|----------|-------------|------------|
| NMI/DI   | Vial | x     | u(x)     | $U_{95}(x)$ | Factor (k) |
| CENAM    | 1    | 2.443 | 0.042    | 0.091       | 2.16       |
| CENAM    | 2    | 2.486 | 0.021    | 0.044       | 2.16       |
|          | 1    | 2.357 | 0.0136   | 0.027       | 2          |
| пза      | 2    | 2.353 | 0.0135   | 0.027       | 2          |
| INIMETRO | 1    | 2.35  | 0.016    | 0.04        | 2.262      |
| INVIETKO | 2    | 2.35  | 0.020    | 0.05        | 2.306      |
| INITI    | 1    | 1.72  | 0.12     | 0.25        | 2          |
|          | 2    | 1.71  | 0.12     | 0.25        | 2          |
| VDIGG    | 1    | 2.333 | 0.017    | 0.037       | 2.2        |
| KKI55    | 2    | 2.340 | 0.017    | 0.037       | 2.2        |
| LNE      | 1    | 2.350 | 0.026    | 0.053       | 2          |
| LINE     | 2    | 2.353 | 0.028    | 0.056       | 2          |
| NINAT    | 1    | 2.39  | 0.039    | 0.079       | 2.05       |
| IN HVI I | 2    | 2.38  | 0.045    | 0.093       | 2.06       |
| UME      | 1    | 2.265 | 0.031    | 0.062       | 2          |
|          | 2    | 2.310 | 0.033    | 0.066       | 2          |
| VNIIM    | 1    | 2.316 | 0.029    | 0.058       | 2          |
| VINIIVI  | 2    | 2.309 | 0.029    | 0.058       | 2          |

Table 5: Results for CCQM-K6.2 Cholesterol in Human Serum as Received

## Participant Results: Combined

Due to an oversight in the study's design, the report form did *not* request participants to combine their results for the two vials into a single overall result for the study material. Rather than retrospectively requesting that the participants supply this additional information, the coordinating laboratory calculated the combined results for all participants from their reported results. These combined results are summarized in Table 6 and displayed in Figure 1.

The combined value,  $\bar{x}$ , was estimated as the mean of the two reported results,  $x_1$  and  $x_2$ . The standard uncertainty on this mean,  $u(\bar{x})$ , combined the standard deviation, s, of  $x_1$  and  $x_2$  and the pooled value of their associated uncertainties,  $\bar{u}(x) = \sqrt{[(U_{95}(x_1)/2)^2 + (U_{95}(x_2)/2)^2]/2}$ , yeilding the combined standard uncertainty:  $u(\bar{x}) = (\sqrt{s^2 + \bar{u}^2(x)})/\sqrt{2}$ . The expanded uncertainty on the combined value,  $U_{k=2}(\bar{x})$ , was estimated using the usual k=2 coverage factor:  $U_{k=2}(\bar{x}) = 2 \cdot u(\bar{x})$ . Note that  $\bar{u}(x)$  is estimated from the reported expanded uncertainties divided by 2,  $U_{95}(x)/2$ , to ensure that  $U_{k=2}(\bar{x})$  reflects the participant's uncertainty expansion policy.

|         | Mass Fraction, mg/g |        |                   |                   |                         |  |  |  |
|---------|---------------------|--------|-------------------|-------------------|-------------------------|--|--|--|
| NMI/DI  | $\overline{x}$      | S      | $\overline{u}(x)$ | $u(\overline{x})$ | $U_{k=2}(\overline{x})$ |  |  |  |
| CENAM   | 2.465               | 0.030  | 0.071             | 0.033             | 0.066                   |  |  |  |
| HSA     | 2.355               | 0.004  | 0.027             | 0.010             | 0.020                   |  |  |  |
| INMETRO | 2.350               | 0.000  | 0.045             | 0.016             | 0.032                   |  |  |  |
| INTI    | 1.72                | 0.01   | 0.25              | 0.09              | 0.18                    |  |  |  |
| KRISS   | 2.337               | 0.005  | 0.037             | 0.014             | 0.027                   |  |  |  |
| LNE     | 2.352               | 0.002  | 0.055             | 0.019             | 0.039                   |  |  |  |
| NIMT    | 2.383               | 0.0045 | 0.086             | 0.031             | 0.061                   |  |  |  |
| UME     | 2.288               | 0.032  | 0.064             | 0.032             | 0.064                   |  |  |  |
| VNIIM   | 2.313               | 0.005  | 0.058             | 0.021             | 0.042                   |  |  |  |

Table 6: Participant Results for CCQM-K6.2 Cholesterol in Human Serum as Combined



Figure 1: Combined results and robust consensus estimates of location and dispersion

Dots represent the combined values; the vertical bars on the dots span the k = 2 expanded uncertainties. The black horizontal line represents the median. The red horizontal lines bracket a robust estimate of the 95 % coverage interval about the median,  $U_{95}$ . This interval is estimated as the product of the: standard uncertainty, u, estimated as the median absolute deviation from the median scaled to have the same coverage of a normal distribution as provided by the standard deviation (MADe) [6]; a factor of 1.25 reflecting the efficiency of the median as an estimator of the location for normally distributed data; and the 2.31 expansion factor of the Student's  $t_s$  distribution for 8 degrees of freedom. The black curve to the right edge is the empirical probability density for the reported results; the blue curve to the right is the Gaussian distribution parameterized with the robust consensus estimates.

#### **Anchor Laboratory Results**

The serum sample used for CCQM-K6.2 was NIST candidate SRM 1951c Level 2. The anchor laboratory's certification measurements for this material,  $(240.91 \pm 2.8)$  mg cholesterol/dL and a density of  $(102.521 \pm 0.016)$  g/dL serum, were completed in June 2011 [5]. The certified value for this material,  $(241.41 \pm 2.8)$  mg/dL, combines measurements made at NIST and at the U.S. Centers for Disease Control and Prevention (CDC). The date of issue for SRM 1951c was 27-June-2013, shortly after the CCQM-K6.2 results were revealed to participants. All uncertainties are here stated at an approximate 95 % level of confidence.

# **KEY COMPARISON REFERENCE VALUE (KCRV)**

The certified value for SRM 1951c-2 and the anchor laboratory's result, both transformed to mass fraction, are shown in Table 7 along with the robust consensus summary of the CCQM-K6.2 participant's results.

Normally in a subsequent KC no KCRV would be established and assessment of performance would be via the deviation of participants' results to the anchor lab's results, adjusted to account for the anchor lab's performance in the original comparison versus its KCRV. Due to the very long-time period since the original key comparison it was decided that this did not represent the best approach to assess performance in what is a relatively complex measurement.

Considering the excellent agreement between the anchor laboratory's result and the consensus value, the OAWG at the April 2014 meeting agreed to use the anchor value and its  $U_{95}$  expanded uncertainty a "KCRV" for this comparison.

The participant results, both as reported and as combined, are displayed as  $x\pm U_{95}(x)$  in Figure 2 with KCRV $\pm U_{95}($ KCRV) reference lines. The combined results are displayed as  $x\pm u(x)$  in Figure 3 with KCRV $\pm u($ KCRV) reference lines.

| Source                      | Value | <i>u</i> (Value) | U <sub>95</sub> (Value) | Units |
|-----------------------------|-------|------------------|-------------------------|-------|
| SRM 1951c-2 Certified Value | 2.355 | 0.014            | 0.027                   | mg/g  |
| Anchor Laboratory Result    | 2.350 | 0.019            | 0.038                   | mg/g  |
| Robust Consensus            | 2.350 | 0.024            | 0.047                   | mg/g  |
| KCRV                        | 2.350 | 0.019            | 0.038                   | mg/g  |

Table 7: Key Comparison Reference Value for CCQM-K6.2



Figure 2: Participant results for CCQM-K6.2 relative to the KCRV.

The blue symbols and vertical bars represent the results as reported; the black symbols and bars represent the results as combined by the coordinating laboratory. The bars are approximate 95 % expanded uncertainties. The horizontal lines represent the KCRV and the KCRV  $\pm U_{95}$ (KCRV) interval. The lower panel is identical to the upper, but displayed at higher vertical resolution.



Figure 3: Combined Participant results for CCQM-K6.2 relative to the KCRV.

The black symbols and bars represent the results as combined by the coordinating laboratory. The bars are standard uncertainties. The horizontal lines represent the KCRV and the KCRV  $\pm u(\text{KCRV})$  interval. The lower panel is identical to the upper, but displayed at higher vertical resolution.

# **DEGREES OF EQUIVALENCE**

The absolute degrees of equivalence for the participants in CCQM-K6.2 are estimated as the signed difference between the combined value and the KCRV:  $d_i = x_i - \text{KCRV}$ . Since the KCRV is not estimated from the participant values, the 95 % expanded uncertainty on the  $d_i$ ,  $U_{95}(d_i)$ , is estimated as the square root of the sum of the squares of the expanded uncertainties of the two components:  $U_{95}(d_i) = \sqrt{U_{k=2}^2(x_i) + U_{95}^2(\text{KCRV})}$ .

To enable comparison with the degrees of equivalence estimates from CCQM-K6 and -K6.1, it is convenient to express the  $d_i$  and  $U_{95}(d_i)$  as percentages relative to the KCRV:  $\% d_i = 100 \cdot d_i / \text{KCRV}$ and  $U_{95}(\% d_i) = 100 \cdot U_{95}(d_i) / \text{KCRV}$ . Table 7 lists the numeric values of  $d_i$ ,  $U_{95}(d_i)$ ,  $d_i$ , and  $U_{95}(d_i)$ for all participants in CCQM-K6.2. Figure 4 displays the absolute  $d_i \pm U_{95}(d_i)$  for CCQM-K6.2; Figure 5 displays the relative  $\% d_i \pm U_{95}(\% d_i)$  for CCQM-K6, CCQM-K6.1, and CCQM-K6.2.

|         | mg/g   |                |              | %                 |
|---------|--------|----------------|--------------|-------------------|
| NMI/DI  | $d_i$  | $U_{k=2}(d_i)$ | % <b>d</b> i | $U_{k=2}(\% d_i)$ |
| CENAM   | 0.115  | 0.076          | 4.9          | 3.3               |
| HSA     | 0.004  | 0.043          | 0.2          | 1.8               |
| INMETRO | 0.000  | 0.050          | 0.0          | 2.1               |
| INTI    | -0.635 | 0.181          | -27.0        | 7.7               |
| KRISS   | -0.014 | 0.047          | -0.6         | 2.0               |
| LNE     | 0.002  | 0.054          | 0.1          | 2.3               |
| NIMT    | 0.033  | 0.072          | 1.4          | 3.1               |
| UME     | -0.063 | 0.074          | -2.7         | 3.2               |
| VNIIM   | -0.038 | 0.056          | -1.6         | 2.4               |

Table 8: Degrees of Equivalence for CCQM-K6.2 Cholesterol in Human Serum



Figure 4: Absolute degrees of equivalence for CCQM-K6.2

The black symbols and vertical bars represent the  $d_i \pm U_{95}(d_i)$ . The horizontal line marks the ideal zero deviation from the KCRV. The lower panel is identical to the upper, but displayed at higher vertical resolution.



Figure 5: Relative degrees of equivalence for CCQM-K6, -K6.1 and -K6.2

The blue symbols and bars represent  $\% d_i \pm U_{95}(\% d_i)$  for individual vials distributed in CCQM-K6 and - K6.1; the black symbols and vertical bars represent their combined  $\% d_i \pm U_{95}(\% d_i)$ . The red horizontal line marks the ideal zero deviation from the KCRV; the light grey lines are for visual guidance. The lower panel is identical to the upper, but displayed at higher vertical resolution.

# **USE OF CCQM-K6.2 IN SUPPORT OF CMCs**

CCQM-K6.2 Cholesterol in Human Serum was designed as a Subsequent Key Comparison for NMIs and DIs that had not participated in earlier studies for determination of cholesterol. The study demonstrates a laboratory's capabilities to measure a nonpolar ( $pK_{ow} < -2$ ), low molecular mass (100 g/mol to 500 g/mol) metabolite in human serum at relatively high concentrations (1 mg/g to 3 mg/g) found in normal populations. At the time of this study, the OAWG had not formalized the reporting of "core competencies". However, participation in this study demonstrates calibration and measurement capabilities (CMCs) in analysis of complex biological matrices including sample preparation (extraction, derivatization), LC or GC separation, and quantification using an isotope dilution mass spectrometry approach.

# CONCLUSIONS

Intended as a Subsequent Key Comparison, CCQM-K6.2 met the expectations for such a study in that seven of the nine participants demonstrated agreement with the KCRV.

# ACKNOWLEDGEMENTS

The study coordinators thank all the participating laboratories for providing the requested information during the course of these studies.

## REFERENCES

- 1 Welch, M.J., Parris, R.M., Sniegoski, L.T., and May, W.E., CCQM-K6: Key Comparison on the Determination of Cholesterol in Serum, Metrologia, 39, Tech. Suppl. 08001 (2002)
- 2 Welch, M.J., Sniegoski, L.T., Parris, R.M., May, W.E., Heo, G.S., and Henrion, A., CCQM-K11: The Determination of Glucose in Serum, Metrologia, 40, Tech. Suppl. 08003 (**2003**)
- 3 Welch, M.J., Phinney, C.P., Parris, R.M., May, W.E., Heo, G.S., Henrion, A., O'Conner, G., and Schimmel, H., CCQM-K12: The Determination of Creatinine in Serum, Metrologia, 40, Tech. Suppl. 08005 (2003)
- 4 Certificate of Analysis, SRM 1951c Lipids in Frozen Human Serum, National Institute of Standards and Technology (2013) (www.nist.gov/srm/index.cfm)
- 5 Ellerbe P., Meiselman S., Sniegoski L.T., Welch M.J., White E.V. Determination of Serum Cholesterol by a Modification of the Isotope Dilution Mass Spectrometric Definitive Method, Anal. Chem. 61(15), 1718-1723 (**1989**); *Erratum*: Anal. Chem. 62(9), 976 (**1990**)
- 6 Rousseeuw P.J. and Croux, C., Alternatives to the Median Absolute Deviation, J. Am. Stat. Assoc. 88(424), 1273-1283 (**1993**)

#### **APPENDIX A: CCQM-K6.2 Summary of Analytical Information**

The following Tables summarize the analytical information provided by the participants in the "Analytical Information" worksheet of the "CCQM-K6.2 Reporting Form" Excel workbook.

The summary is provided as three Tables:

Table A-1: CCQM-K6.2 Sample Size, Extraction, and Cleanup,

Table A-2: CCQM-K6.2 Analytical Techniques, and

 Table A-3: CCQM-K6.2 Calibrants and Standards.

#### DISCLAIMER

Certain commercial equipment, instruments, or materials are identified in these Tables to specify adequately experimental conditions or reported results. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology or other participant in this Key Comparison, nor does it imply that the equipment, instruments, or materials identified are necessarily the best available for the purpose.

|                                | Sample   |                                                                                                                                                                               |                                                                                                                                                                                                                             |
|--------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NMI/DI                         | Size (g) | Extraction Method                                                                                                                                                             | Post Extraction Cleanup                                                                                                                                                                                                     |
| Anchor<br>Laboratory<br>(NIST) | 0.1      | Basic hydrolysis (KOH) at 37 °C for 3<br>h; liquid/liquid extraction with<br>hexane.                                                                                          | Hexane extract evaporated to<br>dryness and derivatized with N,O-<br>bis(trimethyl)acetamide (BSA) at<br>65 °C for 30 min.                                                                                                  |
| CENAM                          | 0.5      | Basic hydrolysis and liquid/liquid<br>extraction using cyclohexane for 30<br>min.                                                                                             | Free cholesterol in alcoholic<br>medium was derivatized with<br>N-methyl-N-(trimethylsilyl)<br>trifluoroacetamide in<br>cyclohexane; heat at 60 °C for 1 h;<br>after cooling to room temperature<br>adding 0.5 mL pyridine. |
| HSA                            | 0.1      | Basic hydrolysis at 50 °C for 3 h<br>followed by liquid/liquid extraction<br>using cyclohexane; extract evaporated<br>to dryness and reconstituted in<br>ethanol.             | GC-MS: Ethanolic solution<br>derivatized using<br>N,O-bis(trimethylsilyl)acetamide<br>(BSA).<br>LC-MS: Ethanolic solution<br>diluted with MeOH/water for<br>injection to LC-MS.                                             |
| INTI                           | 0.2      | Basic hydrolysis for 3 h followed by liquid/liquid extraction using hexane for 1 min                                                                                          | Hexane extract derivatized using N,O-bis(trimethylsilyl)acetamide                                                                                                                                                           |
| INMETRO                        | 0.035    | Basic (KOH) hydrolysis for 1 h<br>followed by liquid/liquid extraction<br>using hexane; extract evaporated to<br>dryness                                                      | Extract residue derivatized using<br>MSTFA at 60 °C for 15 min                                                                                                                                                              |
| KRISS                          | 0.075    | Basic (KOH) hydrolysis for 3 h<br>followed by liquid/liquid extraction<br>using hexane; extract evaporated to<br>dryness and reconstituted with ethanol                       | No further cleanup                                                                                                                                                                                                          |
| LNE                            | 0.08     | Basic (aqueous KOH and ethanol)<br>hydrolysis for 2 h followed by<br>liquid/liquid extraction using hexane                                                                    | Hexane extract derivatized using MSTFA/pyridine.                                                                                                                                                                            |
| NIMT                           | 0.1      | Basic (KOH) hydrolysis at 50 °C for 3<br>h followed by liquid/liquid extraction<br>using hexane for 3 h. Hexane extract<br>evaporated to dryness and<br>reconstituted in MeOH |                                                                                                                                                                                                                             |

| - $        -$ | Table A-1: | CCQM-K6.2 Sam | ple Size, | Extraction, | and Cleanup |
|---------------|------------|---------------|-----------|-------------|-------------|
|---------------|------------|---------------|-----------|-------------|-------------|

| NMI/DI | Sample<br>Size (g) | Extraction Method                                                                                                               | Post Extraction Cleanup                                        |
|--------|--------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| UME    | 0.2                | Basic (aqueous KOH/ethanol)<br>hydrolysis at 50 °C for 4 h followed<br>by liquid/liquid extraction using<br>cyclohexane (5 min) | Cyclohexane extract filtered<br>through 0.2 µm membrane filter |
| VNIIM  | 0.1                | Alkaline (NaOH) hydrolysis followed<br>by liquid/liquid extraction using<br>hexane                                              | Derivatization with BSTFA + 10 % TMCS                          |

# Table A-1: CCQM-K6.2 Sample Size, Extraction, and Cleanup (Continued)

|            | Analytical | Chromatographic                          | Chromatographic and                                 |
|------------|------------|------------------------------------------|-----------------------------------------------------|
| NMI/DI     | Method     | Column                                   | Mass Spectrometry Conditions                        |
| Anchor     | GC-MS      | DB5-MS 30 m                              | Split mode injection (8:1); 200 °C 0.5 min hold, 20 |
| Laboratory |            | capillary column                         | °C/min to 300 °C 5 min hold. MSD quadrupole at      |
| (NIST)     |            |                                          | 200 °C, source at 230 °C                            |
|            |            |                                          | Ions monitored: $m/z$ 458 cholesterol               |
|            |            |                                          | trimethylsilyl ether and $m/z$ 461 labeled          |
|            |            |                                          | cholesterol trimethylsilyl ether                    |
| CENAM      | GC-MS      | HP-1MS capillary                         | Split mode injection: 190 °C 1 min, 30 °C/min to    |
|            |            | column, $30 \text{ m} \times 0.32$       | 280 °C hold 10 min; He carrier gas at 0.9 mL/min    |
|            |            | id, 0.25 µm film                         | constant flow. MSD: transfer line at 270 °C,        |
|            |            | thickness                                | quadrupole at 150 °C, source at 250 °C              |
|            |            |                                          | Ions monitored: $m/z$ 458 cholesterol               |
|            |            |                                          | trimethylsilyl ether and $m/z$ 464 deuterated       |
|            |            |                                          | cholesterol trimethylsilyl ether                    |
| HSA        | GC-MS;     | GC-MS: DB5-MS,                           | GC-MS: Inlet at 280 °C, 70 °C to 300 °C at 50       |
|            | LC-MS      | $15 \text{ m} \times 0.25 \text{ mm id}$ | °C/min then hold 6 min; Flow at 1.0 mL/min;         |
|            |            | $\times 0.25 \ \mu m \ film$             | transfer line at 270 °C                             |
|            |            | thickness                                | Ions monitored: $m/z$ 458 and $m/z$ 460 (IS)        |
|            |            | LC-MS: Hypersil                          | (quantifying ions) and $m/z$ 368 and $m/z$ 370 (IS) |
|            |            | GOLD Phenyl, 100                         | (confirmatory ions) LC-MS: 93 % methanol/7 %        |
|            |            | mm $\times$ 2.1 mm, 3 $\mu$ m            | 10 nmol/L ammonium formate at 0.5 mL/min            |
|            |            | particles                                | Ions Monitored: $m/z$ 369 and $m/z$ 371 (IS)        |
|            |            |                                          | (quantifying ions)                                  |
| INMETRO    | GC-MS      | VF1ms, $10 \text{ m} \times 110$         | 170 °C for 1 min, 30 °C/min to 280 °C and hold      |
|            |            | mm id $\times$ 0.1 $\mu$ m               | 10 min. Split mode injection; helium carrier gas    |
|            |            | film thickness                           | Mass Selective Detector: Ions monitored: $m/z$      |
|            |            |                                          | 458.4 cholesterol trimethylsilyl ether and $m/z$    |
|            |            |                                          | 464.4 deuterated cholesterol trimethylsilyl ether   |
| INTI       | GC-MS      | HP5-MS capillary                         | Inlet at 280 °C, 180 °C to 250 °C at 40 °C/min      |
|            |            | column, $30 \text{ m} \times 0.25$       | then to 320 °C (hold 2 min) at 20 °C/min. Flow at   |
|            |            | id, 0.25 $\mu$ m film                    | 0.5 mL/min; split injection (1:100). Ions           |
|            |            | thickness                                | monitored: m/z 129, 329, 368, and 458               |
|            |            |                                          | (quantifying ions) and $m/z$ 131, 333, 374, and     |
|            |            |                                          | 464 (IS) (quantifying ions)                         |
| KRISS      | LC-MS/MS   | Hypersil ODS 100                         | Mobile phase: (A) 1 % acetic acid in water, (B)     |
|            |            | $mm \times 2.1 mm, 3 \mu m$              | 0.05 % acetic acid in MeOH; 1 % A and 99 % B        |
|            |            | particles                                | isocratic                                           |
| LNE        | GC-MS      | DB5-MS capillary                         | Initial 100 °C, then 20 °C/min to 280 °C and hold   |
|            |            | column, $30 \text{ m} \times 250$        | 8 min; split injection (20:1) at 270 °C; Mass       |
|            |            | $\mu$ m id, 0.25 $\mu$ m film            | Selective Detector at 230 °C                        |
|            |            | thickness                                | Ions monitored: $m/z$ 458 and $m/z$ 460             |

Table A-2: CCQM-K6.2 Analytical Techniques

|        | Analytical | Chromatographic                           | Chromatographic and                                 |
|--------|------------|-------------------------------------------|-----------------------------------------------------|
| NMI/DI | Method     | Column                                    | Mass Spectrometry Conditions                        |
| NIMT   | LC-MS/MS   | Haisil C18, 100 mm                        | Isocratic mobile phase 20 % isopropanol with        |
|        |            | × 0.3 mm id, 5 µm                         | 0.1 % formic acid and 80 % methanol with 0.1 %      |
|        |            | particles                                 | formic acid at 0.8 mL/min                           |
| UME    | LC-MS/MS   | Kintex C18 100 mm                         | Mobile phase: isocratic at 80% acetonitrile and     |
|        |            | × 2.1 mm, 2.6 µm                          | 20 % methanol at 0.25 mL/min                        |
|        |            | particles                                 | Ions Monitored: $m/z$ 369.0 and 161.0 and $m/z$     |
|        |            | -                                         | 372.3 and 161.0 (IS)                                |
| VNIIM  | GC-MS      | Rtx-5MS 20 m $\times$                     | Initial 70 °C, then 15 °C/min to 270 °C and hold 10 |
|        |            | $0.18 \text{ mm} \times 0.18 \mu\text{m}$ | min                                                 |
|        |            | film thickness                            | Ions monitored: $m/z$ 368 and $m/z$ 370             |

Table A-2: CCQM-K6.2 Analytical Techniques (Continued)

|            | Quantification | Type of      |                                                          | Source of          |
|------------|----------------|--------------|----------------------------------------------------------|--------------------|
| NMI/DI     | Method         | Calibration  | Internal Standard                                        | Traceability       |
| Anchor     | IDMS           | bracketing   | Cholesterol-25,26,27- <sup>13</sup> C <sub>3</sub> (99   | NIST SRM 911c      |
| Laboratory |                |              | atom % <sup>13</sup> C, 99 % CP) (Isotec,                |                    |
| (NIST)     |                |              | Miamisburg, OH)                                          |                    |
| CENAM      | IDMS           | bracketing   | Labeled cholesterol of 99 %                              | Purity assessed at |
|            |                | _            | purity added before hydrolysis                           | CENAM using        |
|            |                |              |                                                          | HPLC, DSC, and     |
|            |                |              |                                                          | Karl Fischer       |
| HSA        | IDMS           | 6-point      | <sup>13</sup> C <sub>2</sub> -cholesterol (Cambridge     | NIST SRM 911c      |
|            |                | calibration  | Isotopes) of 99.6 % purity                               |                    |
|            |                |              | added during gravimetric                                 |                    |
|            |                |              | preparation of sample and                                |                    |
|            |                |              | calibrants                                               |                    |
| INMETRO    | IDMS           | One standard | Deuterium-labeled (6)                                    | NIST SRM 911c      |
|            |                | point-to-    | cholesterol (Cambridge                                   |                    |
|            |                | point        | Isotopes) of 99.8 % purity,                              |                    |
|            |                |              | isotopic enrichment 98.3 %                               |                    |
| INTI       | IDMS           | bracketing   | Deuterium-labeled (6)                                    | NIST SRM 911c      |
|            |                |              | cholesterol (Cambridge                                   |                    |
|            |                |              | Isotopes)                                                |                    |
| KRISS      | IDMS/MS        | bracketing   | Deuterium-labeled (4)                                    | SRM 911c           |
|            |                |              | cholesterol (CDN Isotopes)                               | (NIST)             |
| LNE        | IDMS           | 5-point      | <sup>13</sup> C <sub>2</sub> -cholesterol (Cambridge     | NIST SRM 911c      |
|            |                | calibration  | Isotopes) of 99 % purity added                           |                    |
|            |                |              | prior to hydrolysis                                      |                    |
| NIMT       | IDMS/MS        | Exact        | <sup>13</sup> C <sub>2</sub> -cholesterol (Cambridge     | Calibration blend  |
|            |                | matching     | Isotopes)                                                | prepared from      |
|            |                | IDMS with    | _                                                        | matrix matched     |
|            |                | single-point |                                                          | NIST SRM 1951b     |
|            |                | calibration  |                                                          |                    |
| UME        | IDMS/MS        | 2-point      | <sup>13</sup> C <sub>3</sub> -cholesterol added prior to | NIST SRM 1951b     |
|            |                | calibration  | hydrolysis                                               | NIST SRM 968e      |
| VNIIM      | IDMS           | Single-point | <sup>13</sup> C <sub>2</sub> -cholesterol (Cambridge     | NIST SRM 911c      |
|            |                |              | Isotopes)                                                |                    |

Table A-3: CCQM-K6.2 Calibrants and Standards

## **APPENDIX B: CCQM-K6.2 Summary of Uncertainty Estimation Methods**

The following are pictures of the uncertainty-related information provided by the participants in the "Analytical Information" worksheet of the "Reporting Form" Excel workbook. Information is grouped by participant and presented in alphabetized acronym order.

#### Uncertainty Information from CENAM



|                                |         |       |                    | Type of          | Standard    |       | Relative uncertainty |
|--------------------------------|---------|-------|--------------------|------------------|-------------|-------|----------------------|
| Symbol                         | Value   | Units | Uncertainty source | distribution     | uncertainty | Units | ui(y)                |
|                                |         |       |                    | normal type      |             |       |                      |
| <i>w</i> <sub>1</sub>          | 2.3512  | mg/g  | experimental       | A                | 0.0036      | mg/g  | 0.1515%              |
|                                |         |       |                    | normal type      |             |       |                      |
| WNA (w2)                       | 2.7385  | mg/g  | experimental       | A                | 0.0034      | mg/g  | 0.1255%              |
|                                |         |       |                    | normal type      | 0.000570    |       | 0.000.000            |
| RI                             | 1.6887  |       | experimental       | A                | 0.006570    |       | 0.3891%              |
| P7                             | 2 0100  |       | experimental       |                  | 0.004705    |       | 0.2385%              |
| <u>N2</u>                      | 2.0103  |       | experimental       | normal type      | 0.004735    |       | 0.230376             |
| mi (1)                         | 0.49931 | g     | experimental       | В                | 0.00003     | g     | 0.0061%              |
|                                |         |       |                    | normal type      |             | ľ.    |                      |
| <i>m</i> <sub>1</sub>          | 0.5004  | g     | experimental       | В                | 0.00003     | g     | 0.0054%              |
|                                |         |       |                    | normal type      |             |       |                      |
| mi (2)                         | 0.5009  | g     | experimental       | В                | 0.00002     | g     | 0.0050%              |
|                                |         |       |                    | normal type      |             |       |                      |
| <i>m</i> 2                     | 0.5024  | g     | experimental       | B                | 0.00003     | g     | 0.0051%              |
|                                | 0 4950  | a     | experimental       | normai type<br>R | 0.000051    | a     | 0.0103%              |
| <i>m</i> <sub><i>x</i></sub>   | 0.4550  | 9     | experimental       | pormal type      | 0.000001    | 9     | 0.010070             |
| ***                            | 0.4946  | a     | experimental       | B                | 0.000053    | a     | 0.0107%              |
|                                |         | 9     | onponnon da        | -<br>normal type | 0.000000    | 9     |                      |
| R                              | 1.7792  |       | experimental       | A                | 0.0089      |       | 0.4995%              |
| ~ x                            |         |       |                    |                  |             |       |                      |
| mathematical model uncertainty | 0.0172  |       | 0.7%               |                  |             |       |                      |
| Repeatibility between          |         |       |                    |                  |             |       |                      |
| subsamples                     | 0.0383  |       |                    |                  |             |       |                      |
| Combined Uncertainty           | 0.0420  |       |                    |                  |             |       |                      |
| Expanded Uncertainty           | 0.0908  |       | 5.1%               |                  |             |       |                      |
|                                |         |       |                    |                  |             |       |                      |
| k(95%)                         | 2.16    |       |                    |                  |             |       |                      |

The mass fraction of total cholesterol in serum was calculated based on the IDMS calibration curve as follows:

$$C_{X} = (mR_{B} + b) \times \frac{W_{Y}}{M_{X}} = (mR_{B} + b) \times \frac{M_{Y}C_{Y}}{M_{X}} \quad (1)$$

where

 $C_X$  = mass fraction of total cholesterol in the serum sample

 $M_X$  = mass of serum sample (determined by weighing)

 $M_{Y}$  = mass of isotope standard solution (determined by weighing)

 $W_Y$  = mass of the isotope labeled standard spiked into the serum sample (equals to  $M_Y \times C_Y$ )

 $R_B$  = peak area ratio of sample blend (determined by GC-MS or LC-MS measurements)

 $C_{Y}$  = concentration of isotope labeled standard solution (determined by weighing and from purity of the isotope labeled standard)

m = gradient of the slope of linear regression plot (determined by the linear fit of the isotope mass ratio and the peak area ratio of the calibration blends) b = intercept on y axis of the linear regression plot (determined by the linear fit of the isotope mass ratio and the peak area ratio of the calibration blends)

For the estimation of uncertainty, considering  $R_M = mR_B + b$ , and let  $R_M = R_M C_Y/C_Z$ , Equation (1) is converted to:

$$C_{X} = R_{M} \times \frac{M_{Y}C_{Z}}{M_{X}} \quad (2)$$

where

 $R_M$  = isotope mass ratio in sample blend

 $C_{Z}$  = concentration of cholesterol in the calibration standard solution

A standard uncertainty was estimated for all components of the measurement in Equation (2), which were then combined using respective derived sensitivity coefficients to estimate a combined standard uncertainty in the reported result of total cholesterol in the serum samples. A coverage factor k with a value of 2 was used to expand the combined standard uncertainty at a 95 % confidence interval. Possible sources of biases [method precision ( $F_P$ ), choice of different ion pair ( $F_I$ ), and other factors during sample extraction ( $F_{CI}$ ) and derivatisation ( $F_{C2}$ )] are accounted for in the final uncertainty budget with the use of the measurement equation:

$$C_{X} = F_{P} \times F_{I} \times F_{C1} \times F_{C2} \times R_{M} \times \frac{M_{Y}C_{Z}}{M_{Y}}$$

The sensitivity coefficients of each component can be expressed as follows:

$$\frac{\partial C_x}{\partial R_M} = \frac{C_x}{R_M}, \quad \frac{\partial C_x}{\partial M_Y} = \frac{C_x}{M_Y}, \quad \frac{\partial C_x}{\partial M_X} = -\frac{C_x}{M_X}, \quad \frac{\partial C_x}{\partial C_Z} = \frac{C_x}{C_Z}$$
$$\frac{\partial C_x}{\partial F_P} = \frac{C_x}{F_P}, \quad \frac{\partial C_x}{\partial F_I} = \frac{C_x}{F_I}, \quad \frac{\partial C_x}{\partial F_{C1}} = \frac{C_x}{F_{C1}}, \quad \frac{\partial C_x}{\partial F_{C2}} = \frac{C_x}{F_{C2}}$$

(3)

The standard uncertainty of each component was calculated as follows:

(1)  $M_Y$  and  $M_X$ : The standard uncertainty was calculated based on the calibration report using the standard weights calibrated by the National Metrology Centre, A\*STAR.

(2) F<sub>P</sub>: The pooled standard deviation of the mean of the GC-MS and LC-MS results for each sample was used as the standard uncertainty of method precision.

(3)  $F_I$ : The standard deviation of the difference of the results using two ion pairs divided by the square root of the number of samples (for insignificant difference using t-test) or the average of the difference of the results using two ion pairs divided by 2 (for significant difference using t-test). (4)  $F_{CI}$  and  $F_{C2}$ : A relatively standard uncertainty of 0.2 % was employed for each of these two factors.

(5) C<sub>Z</sub>: The certified purity and uncertainty of NIST SRM 911c in combination with the uncertainty of weighing for the preparation of the calibration standard solution.

(6)  $R_M'$ : Consider  $R_M = R_M' \times C_Z/C_Y$ , the conversion of equation  $R_M = mR_B + b$  leads to:

 $R_B = (C_Z \times R_M') / (C_Y \times m) - b/m$ 

Let  $m' = C_Z/(C_Y \times m)$  and b' = -b/m, we have:

 $R_B = m'R_M' + b'$ 

The standard uncertainty of  $R_M$  ' was calculated using the following equation:

#### Uncertainty Information from HSA (continued)

$$\mu_{R_{M}} = \frac{1}{m} \times s_{y/x} \times \sqrt{\frac{1}{N} + \frac{1}{n} + \frac{\left(R_{B} - \overline{R_{Bc}}\right)^{2}}{m^{\prime 2} \sum_{i=1}^{n} \left(R_{Mc} - \overline{R_{Mc}}\right)^{2}}}$$
(4)

where

 $s_{y/x}$  = standard deviation of the regression

 $R_B$  = peak area ratio of sample blend

= average peak area ratio of calibration blends

 $\overline{R_{i\overline{r}}}$  number of calibration blends used for the linear regression plot

N = injection time for each sample

 $R_{Mc}$  = isotope mass ratio in calibration blends

= average isotope mass ratio in calibration blends The Report of the equation below:

$$u = \sqrt{\sum_{i} c_i^2 u_{xi}^2}$$
(5)

where

u = combined standard uncertainty
c<sub>i</sub> = sensitivity coefficient of each component

 $u_{xi}$  = standard uncertainty of each component

The expanded uncertainty (U) was calculated by mutiplying the combined standand uncertainty (u) with a coveragy factor (k = 2) for a confidence level of 95 %.

|                 |        |             | Relative    | Sensitivity       |                                    |              |
|-----------------|--------|-------------|-------------|-------------------|------------------------------------|--------------|
|                 | Value  | Uncertainty | Uncertainty | Coefficient ( c ) |                                    | Contribution |
| Factor          | х      | u(x)        | u(x)/(x)    | δCx/δx            | c <sup>2</sup> . u(x) <sup>2</sup> | %            |
| $M_X(g)$        | 0.0960 | 0.000099    | 0.103%      | 24545.16          | 5.9042                             | 3.2%         |
| $M_{Y}(g)$      | 0.6538 | 0.000099    | 0.015%      | 3605.11           | 0.1274                             | 0.1%         |
| $C_Z$ (µg/g)    | 1519.3 | 5.1353      | 0.338%      | 1.55              | 63.4705                            | 34.5%        |
| $R_M'$          | 1.1505 | 0.0034      | 0.299%      | 2048.71           | 49.6015                            | 27.0%        |
| $F_P$ (µg/g)    | 2357   | 2.2651      | 0.096%      | 1.00              | 5.1308                             | 2.8%         |
| $F_I$ (µg/g)    | 2357   | 3.9038      | 0.166%      | 1.00              | 15.2398                            | 8.3%         |
| $F_{Cl}$ (µg/g) | 2357   | 4.7140      | 0.200%      | 1.00              | 22.2220                            | 12.1%        |
| $F_{C2}$ (µg/g) | 2357   | 4.7140      | 0.200%      | 1.00              | 22.2220                            | 12.1%        |

|                 |        |             | Relative    | Sensitivity       |                                   |              |
|-----------------|--------|-------------|-------------|-------------------|-----------------------------------|--------------|
|                 | Value  | Uncertainty | Uncertainty | Coefficient ( c ) |                                   | Contribution |
| Factor          | х      | u(x)        | u(x)/(x)    | δСх/δх            | c <sup>2</sup> .u(x) <sup>2</sup> | %            |
| $M_X(g)$        | 0.0992 | 0.000099    | 0.100%      | 23708.42          | 5.5085                            | 3.0%         |
| $M_{Y}(g)$      | 0.6565 | 0.000099    | 0.015%      | 3582.97           | 0.1258                            | 0.1%         |
| $C_Z$ (µg/g)    | 1519.3 | 5.1353      | 0.338%      | 1.55              | 63.2069                           | 34.6%        |
| $R_M'$          | 1.1505 | 0.0034      | 0.299%      | 2044.45           | 49.3955                           | 27.0%        |
| $F_P$ (µg/g)    | 2352   | 2.2604      | 0.096%      | 1.00              | 5.1095                            | 2.8%         |
| $F_I$ (µg/g)    | 2352   | 3.8957      | 0.166%      | 1.00              | 15.1765                           | 8.3%         |
| $F_{Cl}$ (µg/g) | 2352   | 4.7042      | 0.200%      | 1.00              | 22.1297                           | 12.1%        |
| $F_{C2}$ (µg/g) | 2352   | 4.7042      | 0.200%      | 1.00              | 22.1297                           | 12.1%        |

% contribution 💌

0,00001

Factor 💌

m<sub>final</sub>

GUM methodology and then combined using the square root of the squared sum of the components.

| The full uncertainty budget is presented below as for sample 1: | m <sub>solute</sub>                              | 2,14496  |
|-----------------------------------------------------------------|--------------------------------------------------|----------|
| JII uncertainty budget is presented below as for sample 1:      | Р                                                | 8,70135  |
|                                                                 | m <sub>z</sub>                                   | 0,13319  |
|                                                                 | m <sub>yc</sub>                                  | 0,03935  |
|                                                                 | m <sub>y</sub>                                   | 0,04002  |
|                                                                 | m <sub>y</sub> 0,04002<br>m <sub>x</sub> 0,15553 | 0,15553  |
|                                                                 | R'B                                              | 37,89210 |
|                                                                 | R'Bc                                             | 50,89350 |
|                                                                 | Total                                            | 100      |
|                                                                 |                                                  |          |
|                                                                 |                                                  |          |

Method was validated by the preparation by two different analysts of the CRM from NIST 909c. These results showed that both analysts were capable of generating results equivalent to the certified property values for the CRM by comparison of the  $\Delta m$  (absolute difference between the mean measured value and the certified value) and the U $\Delta$  (expanded uncertainty of the difference between the measurement result and the certified value), obtaining  $\Delta m < U\Delta$ which means the measured value and the certified value have no significant differences according to ERM Application Note 1.

These experiments demonstrated repeatability, intermediate precision and trueness (bias) evaluations of the method.

All factors from the measurement equation were considered in the uncertainty estimation. All of the evaluated uncertainties were of type B except for the R'B and R'Bc repeatabilities. Hence their standard uncertainties were obtained by dividing the expanded uncertainties

Effective degrees of freedom were calculated and the coverage factors for 95 % probability

The standard uncertainties were multiplied by their sensitivity coefficients using the

For the repeatabilities, standard uncertainties were obtained by the standard errors of the means

by the coverage factors encountered in the certificates.

were taken for the expanded uncertainties.

## Uncertainty Information from INTI

$$\overline{w_x} = \frac{m_{Ix} \cdot R_x \cdot m_0}{m_x \cdot R_0 \cdot m_{I0}} \cdot w_0$$

w0 Fracción de masa de la disolución estándar de calibración. (concentracion STD)

RO Relación de respuesta del instrumento (CG o CL) entre el analito en el patrón de calibración y el isótopo adicionado (adimensional).

mlo Masa de disolución de isótopo adicionado a las disoluciones patrón de calibración (g). (masa STDi al STD) mO Masa de disolución de analito patrón de calibración (g) (masa STD agregada a los viales)

mx Masa de muestra problema a medir (g). mlx Masa de la disolución de isótopo adicionado a la muestra (g).

Rx Relación de respuesta del instrumento (CG o CL) entre el analito en la muestra y su isótopo adicionado (adimensional).

| Parámetro<br>(simbolo)       | Descripción                                                                                                                                | Valor  | Unidades | origen de<br>la<br>incertidumb<br>re | Tipo de<br>distribution | Incetidumbr<br>e estandar | Units | Incertidumbr<br>e relativa<br>ui(y) |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|--------------------------------------|-------------------------|---------------------------|-------|-------------------------------------|
| wo                           | Fracción de masa de la disolución estándar de<br>calibración. (concentracion STD)                                                          | 1.602  | mg/g     | certificado/e<br>xperimental         | normal tipo A           | 0.016825                  | mg/g  | 1.05%                               |
| R <sub>o</sub>               | Relación de respuesta del instrumento (CG o<br>CL) entre el analito en el patrón de calibración<br>y el isótopo adicionado (adimensional). | 1.576  | 1        | experimental                         | normal tipo A           | 0.001795                  |       | 0.11%                               |
| mI0                          | Masa de disolución de isótopo adicionado a las<br>disoluciones patrón de calibración (g). (masa<br>STDi al STD)                            | 0.156  | g        | certificado/e<br>xperimental         | normal tipo B           | 0.000035                  | g     | 0.02%                               |
| m <sub>o</sub>               | Masa de disolución de analito patrón de<br>calibración (g) (masa STD agregada a los<br>viales)                                             | 0.315  | g        | certificado/e<br>xperimental         | normal tipo A           | 0.000038                  | g     | 0.01%                               |
| <i>m</i> <sub><i>x</i></sub> | Masa de muestra problema a medir (g).                                                                                                      | 0.1487 | g        | experimental                         | normal tipo A           | 0.000122                  | g     | 0.08%                               |
| m <sub>1x</sub>              | Masa de la disolución de isótopo adicionado a<br>la muestra (g).                                                                           | 0.1453 | g        | experimental                         | normal tipo A           | 0.000088                  | g     | 0.06%                               |
| R <sub>x</sub>               | Relación de respuesta del instrumento (CG o<br>CL) entre el analito en la muestra y su isótopo<br>adicionado (adimensional).               | 1.631  |          | experimental                         | normal tipo A           | 0.0039                    |       | 0.24%                               |
|                              | Bias measuring SRM 909c                                                                                                                    | 1.398  |          | experimental                         | normal tipo A           | 0.1                       |       | 7.15%                               |

| u(Cmtra) | Inc. combinada | 0.1241 | 0.072 |
|----------|----------------|--------|-------|
| U exp    | Inc expandida  | 0.2482 |       |
| k(95%)   | 2              |        |       |

#### Uncertainty Information from KRISS

 $C = (M_{(is-sol, spiked)} \cdot C_{(s-sol)}) / W_s \cdot [(([AR]_{sample} - [AR]_1) / ([AR]_2 - [AR]_1)) \cdot ([[MR]_{(mix, 2)} - [[MR]_{(mix, 1)}) + [[MR]_{(mix, 1)}]$ 

Here, M<sub>Is-sol,spiked</sub> is the weight of the cholesterol-d<sub>4</sub> solution spiked in the sample, C<sub>s-sol</sub> is the concentration of the cholesterol standard solution (mg/kg), and W<sub>s</sub> is the weight of the sample, . AR<sub>sample</sub> is the observed area ratio of cholesterol/cholesterol-d<sub>4</sub> of the sample from the LC/MS/MS measurement, AR<sub>i</sub> is the observed area ratio of cholesterol/cholesterol-d<sub>4</sub> of the calibration standard mixture i (i=1,2) from the LC/MS/MS measurement, and MR<sub>mixe</sub> is the weight ratio of the cholesterol solution/cholesterol-d<sub>4</sub> solution in the calibration standard mixture i (i=1,2) from the LC/MS/MS measurement.

#### Measurement protocol: each subsample was separately measured by LC/MS/MS in comparison with Isotope ratio standard

| Uncertainty                       | CCQM sample2            | CCQM sample3 |
|-----------------------------------|-------------------------|--------------|
| 1                                 |                         | 2.328        |
| 2                                 | 2.352                   | 2.370        |
| 3                                 | 2.320                   | 2.329        |
| 4                                 | 2.328                   | 2.331        |
| Avg                               | 2.333                   | 2.340        |
| Stdev                             | 0.017                   | 0.020        |
| Rel. stdev (%)                    | 0.7                     | 0.9          |
| Standard unc. (%)                 | 0.41                    | 0.44         |
| STD solution unc. (prep, %)       | 0.4                     | 0.4          |
| Purity unc. (%)                   | 0.4                     | 0.4          |
| STD Mix (prep)                    | included in std sol unc |              |
| unc of LC/MS/MS meas. For sample  | included in rel stde∨   |              |
| unc of LC/MS/MS meas. For STD Mix | included in rel stde∨   |              |
| Combined standard unc. (%)        | 0.72                    | 0.73         |
| DOE                               | 10                      | 12           |
| k                                 | 2.2                     | 2.2          |
| Urel%                             | 1.6                     | 1.6          |
| Uexp (mg/kg)                      | 0.037                   | 0.037        |

## Uncertainty Information from LNE

# $C = (aR_{458/460} + b) \times ((m_{Lab}C_{Lab})/m_{ser}))$

C = mass fraction of cholesterol in the serum sample (mg/g)

m<sub>Lab</sub> = mass of labeled cholesterol solution (g)

 $C_{Lab}$  = concentration of labeled cholesterol solution (mg/g)

a = gradient of the slope for linear regression plot

b = intercept on y axis for the linear regression plot

R <sub>458/460</sub> = unlabeled/labeled ion peak area ratio of serum sample

m<sub>ser =</sub> mass of serum sample (g)

#### sample1

| Component                                    | Type (A or B) | relative Uncertainty (%) |
|----------------------------------------------|---------------|--------------------------|
| Purity of primary standard                   | В             | 2.45%                    |
| preparation of sample blends (weighings)     | В             | 6.66%                    |
| Calibration model                            | В             | 5.63%                    |
| Preparation of calibration blend (weighings) | В             | 1.79%                    |
| Precision                                    | В             | 83.47%                   |

#### sample2

| Component                                    | Type (A or B) | relative Uncertainty (%) |
|----------------------------------------------|---------------|--------------------------|
| Purity of primary standard                   | В             | 2.06%                    |
| preparationof sample blends (weighings)      | В             | 5.88%                    |
| Calibration model                            | В             | 5.63%                    |
| Preparation of calibration blend (weighings) | В             | 1.51%                    |
| Precision                                    | В             | 84.92%                   |

#### Uncertainty Information from NIMT

Expanded measurement equation:

$$w_x = F_P \cdot F_E \cdot F_I \cdot w_{z,c} \cdot \frac{m_y \cdot m_{zc}}{m_x \cdot m_{yc}} \cdot \frac{R'_b}{R'_{bc}}$$

 $w_{z,c}$  is the mass fraction of analyte in the calibration solution used to prepare the calibration blend

m<sub>y</sub> is the mass of spike solution added to sample blend

m<sub>y,c</sub> is the mass of spike solution added to calibration blend

m<sub>x</sub> is the mass of sample added to sample blend

m<sub>z,c</sub> is the mass of standard solution added to calibration blend

R'<sub>B</sub> and R'<sub>B,C</sub> are the observed isotope amount ratios in the sample blend and the calibration blend, respectively

- F<sub>E</sub> is the extraction efficiency factor
- F<sub>P</sub> is the method precision factor
- F<sub>1</sub> is the interference effect factor

$$\frac{u(w_x)}{w_x} = \sqrt{\left(\frac{u(w_{Z,C})}{w_{Z,C}}\right)^2 + \left(\frac{u(m_Y)}{m_Y}\right)^2 + \left(\frac{u(m_{Y,C})}{m_{Y,C}}\right)^2 + \left(\frac{u(m_X)}{m_X}\right)^2 + \left(\frac{u(m_{Z,C})}{m_{Z,C}}\right)^2 + \left(\frac{u(F_P)}{F_P}\right)^2 +$$

 $u(w_{z,c})$  is the standard uncertainty of the mass fraction of analyte in the calibration solution used to prepare the calibration blend. The value was estimated from the certified mass fraction value of matrix-matched calibration standard, masses weighed for preparation of calibration standard and uncertainty using different standards (standard comparison).

 $u(m_y)$ ,  $u(m_{y,c})$ ,  $u(m_x)$  and  $u(m_{z,c})$  are standard uncertainties of the masses. These values were estimated from the bias and precision effect of the balance.

u (F<sub>P</sub>) is the standard uncertainty of the precision factor. This value was estimated from standard deviation of the multiple IDMS results.

 $u(F_{E})$  is the standard uncertainty of the extraction efficiency factor which was estimated from the extraction and protein precipitaion

u(F<sub>i</sub>) is the standard uncertainty of the interference effect. This value was estimated from potential bias between primary ion pair and secondary ion pair of the MRM program.

<u>Note</u>: For the uncertainty contributing to the  $R'_{B}$  and  $R'_{B,C}$ , the precision in measuring the isotope amount ratios of the analyte and the internal standard in the sample and calibration blends was assumed to be incorporated in the overall method precision. The effect of any biases on these ratios was assumed to be negligible as any systematic biases should cancel out since the calibration blends and sample blends were exact-matched for analyte concentration and isotope ratio. Other biases that may arise from extractions are captured in other factors.

| Uncertainty budget of Cholesterol (sample I)                  |               |                        |               |  |
|---------------------------------------------------------------|---------------|------------------------|---------------|--|
| Factor                                                        | Values        | Uncer                  | tainties      |  |
|                                                               | x             | u(x)                   | u(x)/(x)      |  |
| Parameter (unit)                                              |               |                        |               |  |
| Method Precision, F <sub>P</sub> (1)                          | 1.0000        | 0.01004                | 1.004%        |  |
| m <sub>z,c</sub> (g)                                          | 0.08372       | 0.000049               | 0.0591%       |  |
| m <sub>y</sub> (g)                                            | 0.07478       | 0.000049               | 0.0662%       |  |
| т <sub>у,с</sub> (g)                                          | 0.07489       | 0.000049               | 0.0661%       |  |
| m <sub>x</sub> (g)                                            | 0.10035       | 0.000049               | 0.0493%       |  |
| w <sub>z,c</sub> (ug/g)                                       | 0.2295        | 0.0016                 | 0.6944%       |  |
| Additional Factors                                            |               |                        |               |  |
| Extraction effects, F <sub>E</sub> (1)                        | 1.000         | 0.0100                 | 1.000%        |  |
| Interference from two different ion pairs, F <sub>I</sub> (1) | 1.000         | 0.0028                 | 0.283%        |  |
|                                                               |               |                        |               |  |
|                                                               | Uncerta       | ainty Analysis Results |               |  |
|                                                               | wx=           | 2.386                  | ug/g          |  |
|                                                               | u(x) =        | 0.038                  | ug/g          |  |
|                                                               | u(x)/x =      | 1.61%                  |               |  |
|                                                               | Veff(total) = | 27.151                 |               |  |
|                                                               | k=            | 2.05                   | (@ 95% level) |  |
|                                                               | U(x) =        | 0.079                  | ug/g          |  |
|                                                               | %U(x) =       | 3.30%                  |               |  |

# Uncertainty Information from NIMT (Continued)

| Uncertainty budget of Cholesterol (sample II)                 |               |                        |               |  |
|---------------------------------------------------------------|---------------|------------------------|---------------|--|
| Factor                                                        | Values        | Uncer                  | tainties      |  |
|                                                               | x             | u(x)                   | u(x)/(x)      |  |
| Parameter (unit)                                              |               |                        |               |  |
| Method Precision, F <sub>P</sub> (1)                          | 1.0000        | 0.01407                | 1.407%        |  |
| m <sub>z,c</sub> (g)                                          | 0.08372       | 0.000049               | 0.0591%       |  |
| m <sub>y</sub> (g)                                            | 0.07478       | 0.000049               | 0.0662%       |  |
| т <sub>у,с</sub> (g)                                          | 0.07489       | 0.000049               | 0.0661%       |  |
| m <sub>x</sub> (g)                                            | 0.10035       | 0.000049               | 0.0493%       |  |
| w <sub>z,c</sub> (ug/g)                                       | 0.2295        | 0.0015                 | 0.6617%       |  |
| Additional Factors                                            |               |                        |               |  |
| Extraction effects, F <sub>E</sub> (1)                        | 1.000         | 0.0100                 | 1.000%        |  |
| Interference from two different ion pairs, F <sub>I</sub> (1) | 1.000         | 0.0036                 | 0.357%        |  |
|                                                               |               |                        |               |  |
|                                                               | Uncerta       | ainty Analysis Results |               |  |
|                                                               | wx=           | 2.380                  | ug/g          |  |
|                                                               | u(x) =        | 0.045                  | ug/g          |  |
|                                                               | u(x)/x =      | 1.89%                  |               |  |
|                                                               | Veff(total) = | 25.181                 |               |  |
|                                                               | k=            | 2.06                   | (@ 95% level) |  |
|                                                               | U(x) =        | 0.092                  | ug/g          |  |
|                                                               | %U(x) =       | 3.89%                  |               |  |

Uncertainty Information from UME



CISx : Concentration of labelled compound (mg/g)

| 1-Mass of sample                                               |                       |                         |  |  |  |
|----------------------------------------------------------------|-----------------------|-------------------------|--|--|--|
|                                                                | Value                 | Standard Uncertainty    |  |  |  |
| Mass of compound                                               | m <sub>Compound</sub> |                         |  |  |  |
| Calibration                                                    |                       | uCm <sub>Compound</sub> |  |  |  |
| Mass of Tare                                                   | m <sub>tare</sub>     |                         |  |  |  |
| Calibration                                                    |                       | uCm <sub>tare</sub>     |  |  |  |
| $u(m_{Grapsond}) = \sqrt{u_{Grapsond}^{2} + u_{Grapsond}^{2}}$ |                       |                         |  |  |  |

| 2-Mass of Labelled STD                                                          |                       |                         |  |
|---------------------------------------------------------------------------------|-----------------------|-------------------------|--|
|                                                                                 | Value                 | Standard Uncertainty    |  |
| Mass of labelled compound                                                       | m <sub>Compound</sub> |                         |  |
| Calibration                                                                     |                       | uCm <sub>Compound</sub> |  |
| Mass of Tare                                                                    | m <sub>tare</sub>     |                         |  |
| Calibration                                                                     |                       | uCm <sub>tare</sub>     |  |
| $u(m_{Gapand}  {}_{13 C3}) = \sqrt{u_{GaCapand}  {}_{13 C3}^2 + u_{GaCap}^2}^2$ |                       |                         |  |

| 3-Labelled Compounds Stock Solution                                                    |                      |                        |
|----------------------------------------------------------------------------------------|----------------------|------------------------|
|                                                                                        | Value                | Standard Uncertainty   |
| Mass of Compound <sup>13</sup> C3                                                      | m <sub>13C3</sub>    |                        |
| Calibration                                                                            |                      | uCm <sub>C13C3</sub>   |
| Mass of Tare                                                                           | m <sub>tare</sub>    |                        |
| Calibration                                                                            |                      | uCm <sub>tare</sub>    |
| Mass of Solvent                                                                        | m <sub>solvent</sub> |                        |
| Calibration                                                                            |                      | uCm <sub>solvent</sub> |
| $u(m_{stock\ 13C3}) = \sqrt{u_{stock\ 13C3}^{2} + u_{CnSolvent}^{2} + u_{CnTare}^{2}}$ |                      |                        |

| 4- Uncertainty of calibration standard                  |                       |                         |
|---------------------------------------------------------|-----------------------|-------------------------|
|                                                         | Value                 | Standard Uncertainty    |
| Mass of calib                                           | m <sub>Compound</sub> |                         |
| Calibration                                             |                       | uCm <sub>Compound</sub> |
| Mass of Tare                                            | m <sub>tare</sub>     |                         |
| Calibration                                             |                       | uCm <sub>tare</sub>     |
| $u(m_{Glib}) = \sqrt{u_{GnClib}^{2} + u_{Gnflare}^{2}}$ |                       |                         |

5-Method Precision where, u(rep): Uncertainty of repeatability  $u(rep) = \frac{SD}{\sqrt{n}}$ SD: Standard deviation n: Number of sample

| 6-Instrument Repeatability            |                          |  |
|---------------------------------------|--------------------------|--|
| where,                                |                          |  |
| u (rep): Uncertainty of repeatability | $u(mp) = \frac{SD}{m}$   |  |
| SD: Standard deviation                | $u(n\varphi) = \sqrt{n}$ |  |
| <i>n</i> : Number of sample           |                          |  |

#### 7-Calibration Graph

$$u(c_0) = \frac{S}{B_1} \sqrt{\frac{1}{p} + \frac{1}{n} + \frac{(c_0 - \overline{c})^2}{S_{xx}}} \quad Sxx = \sum_{i=1}^n (c_i - \overline{c})^2$$

S: Residual standard deviation

B<sub>1</sub>: Slope

p: number of measurement to determine c<sub>o</sub>

n: number of measurement for the calibration

c<sub>0</sub>: determined concentration

 $\overline{c}$  : mean value of the different calibration standards

*i*: index for the number of calibration standards

| CCQM SAMPLE 1                                    |           |           |           |
|--------------------------------------------------|-----------|-----------|-----------|
| Parameter                                        | Value(X)  | u(x)      | u(x)/X    |
| Mass of sample (mg)                              | 2.046E+02 | 2.860E-05 | 1.398E-07 |
| Mass of labelled std(mg)                         | 7.566E+01 | 3.910E-06 | 5.168E-08 |
| Labelled stock solution (mg/kg)                  | 4.000E+03 | 8.303E-03 | 2.076E-06 |
| Uncertainty of calibration standard level 2 (mg) | 2.070E+02 | 2.927E-05 | 1.414E-07 |
| Uncertainty of calibration standard level 3 (mg) | 2.063E+02 | 2.907E-05 | 1.409E-07 |
| Method Precision                                 | 1.000E+02 | 1.887E-01 | 1.887E-03 |
| Instrument repeatability                         | 1.000E+02 | 1.770E-01 | 1.770E-03 |
| Calibration curve                                | 2.265E+00 | 3.036E-02 | 1.340E-02 |
| Relative Combined Uncertainty                    |           |           | 1.365E-02 |
| Result (mg/g)                                    | 2.265E+00 |           |           |
| Combined Standard Measurement Uncertainty        |           | 3.092E-02 |           |
| Expanded Uncertainty (k=2)                       |           | 6.185E-02 |           |
| Relative Uncertainty                             |           | 2.730E+00 |           |

# Uncertainty Information from UME (Continued)

| CCQM SAMPLE 3                                    |           |           |           |
|--------------------------------------------------|-----------|-----------|-----------|
| Parameter                                        | Value(X)  | u(x)      | u(x)/X    |
| Mass of sample (mg)                              | 2.053E+02 | 2.878E-05 | 1.402E-07 |
| Mass of isotopic standard (mg)                   | 7.651E+01 | 3.999E-06 | 5.227E-08 |
| Labelled stock solution (mg/kg)                  | 4.000E+03 | 8.303E-03 | 2.076E-06 |
| Uncertainty of calibration standard level 2 (mg) | 2.070E+02 | 2.927E-05 | 1.414E-07 |
| Uncertainty of calibration standard level 3 (mg) | 2.063E+02 | 2.907E-05 | 1.409E-07 |
| Method Precision                                 | 1.000E+02 | 1.887E-01 | 1.887E-03 |
| Instrument repeatability                         | 1.000E+02 | 1.556E-01 | 1.556E-03 |
| Calibration curve (mg/g)                         | 2.310E+00 | 3.248E-02 | 1.406E-02 |
| Relative Combined Uncertainty                    |           |           | 1.428E-02 |
| Result (mg/g)                                    | 2.310E+00 |           |           |
| Combined Standard Measurement Uncertainty        |           | 3.297E-02 |           |
| Expanded Uncertainty (k=2)                       |           | 6.594E-02 |           |
| Relative Uncertainty                             |           | 2.855E+00 |           |

#### Uncertainty Information from VNIIM

W=(San\*mis)/(Sis\*m\*F)

W - mass fraction of the creatinine in the sample, mg/g;

mis - mass of internal standard added to sample before sample preparation, mg;

m - mass of sample, g;

F - response factor; F=(Sancal\*Cis)/(Siscal\*Can)

Cancal- concentration of creatinine in calibration solution;

Cis - concentration of internal standard in calibration solution

Sancal - peak area for the creatinine; Sis - peak area for the internal standard

| Source of uncertainty                                             | u, % |
|-------------------------------------------------------------------|------|
| mass of sample (m)                                                | 0.29 |
| mass of internal standard added to sample before extraction (mIS) | 0.58 |
| response factor (F)                                               | 0.85 |
| purity of referense standard                                      | 0.12 |
| preparation of calibration solution                               | 0.82 |
| RSD of F determination                                            | 0.19 |
| RSD of results, %                                                 | 0.47 |

| comb.std uncertainty       | 1.16 |
|----------------------------|------|
| expanded uncertainty (k=2) | 2.32 |