Final Report of CCAUV.V-K4: Key comparison in the field of acceleration on low intensity shock sensitivity

Authors:

Sun Qiao and Hu Hongbo, NIM China Akihiro Ota and Hideaki Nozato, NMIJ Japan

Co-Authors:

Gustavo P. Ripper, INMETRO Brazil Lorenzo Marcos Muñiz Mendoza, CENAM Mexico Anton Kozlyakovskiy, VNIIM Russia Federation Ian Veldman, NMISA South Africa Thomas Bruns, PTB Germany Laurence Dickinson, NMIA Australia Yong Bong Lee, KRISS Republic of Korea

Table of contents

1.	Introduction	3
2.	Participants	3
3.	Task and purpose of the comparison	4
4.	Transfer standard as artefacts	5
5.	Circulation of the artefacts	5
6.	Results of the monitoring measurements	5
7.	Results of the participants	. 10
8.	Degrees of equivalence with respect to the weighted mean	. 13
9.	Conclusion	. 20
10.	Acknowledgment	. 20
Bibli	ography	. 22
Anne	ex A - Technical protocol	. 23
Anne	ex B : Measurement conditions and results	. 30
Anne	ex C : Measurement uncertainty Budget (MUB)	. 39
Anne	ex D : Frequency response of comparison artefacts	. 59

1. Introduction

This report presents the results of the first CCAUV comparison in the area of low intensity shock, which in this case means low intensity linear shock acceleration.

The participants have reached consensus and considered the weighted mean as the most appropriate method for this particular comparison to compute the key comparison reference values (KCRVs) and the degrees of equivalence (DoEs). Detailed analysis and application of the method for use of the weighted mean in comparisons in the field of vibration, is documented in the CCAUV.V-K1 report [1]. The calculation of the KCRVs is also in accordance with the Guidelines for CIPM key comparisons [2].

The Technical Protocol, published in 2016 [3], specifies in detail the aim, the task of the comparison, the conditions for the measurements, the transfer standard used, measurement instructions, time schedule and other items. A brief survey of the Technical Protocol is given in the following sections. Refer to Annex A for details of the TP.

2. Participants

Nine metrology institutes (NMIs) from five Regional Metrology Organizations (RMOs) participated in the comparison. They are listed in chronological order of measurement in Table 2.1.

Table 2.1: List of participants and schedule of CCAUV.V-K4

No.	Participant Laboratory	Acronym	Country	RMO	Calibration period (week/year)
1	National Institute of Metrology, China	NIM	China	APMP	12/2017 to 14/2017
2	Instituto Nacional de Metrologia, Qualidade e Tecnologia	INMETRO	Brazil	SIM	17/2017 to 19/2017
3	Centro Nacional de Metrologia	CENAM	Mexico	SIM	22/2017 to 24/2017
4	National Metrology Institute of Japan	NMIJ	Japan	APMP	27/2017 to 29/2017
5	D.I. Mendeleyev Institute for Metrology	VNIIM	Russia Federation	COOMET	12/2017 to 14/2017
6	National Metrology Institute of South Africa	NMISA	South Africa	AFRIMETS	07/2018 to 09/2018

7	Physikalisch-Technische Bundesanstalt	РТВ	Germany	EURAMET	12/2018 to 14/2018
8	National Measurement Institute of Australia	NMIA	Australia	APMP	17/2018 to 19/2018
9	Korea Research Institute of Standards and Science	KRISS	Republic of Korea	APMP	22/2018 to 24/2018

3. Task and purpose of the comparison

According to the rules set up by the CIPM MRA [4], the consultative committees of the CIPM have the responsibility to establish Degrees of Equivalence (DoEs) between the different measurement standards operated by the NMIs. This is done by conducting key comparisons (KCs) on different levels of the international metrological infrastructure.

However, in the sub-field of shock, there has been no formal key or supplementary comparison either at Consultative Committee (CC) level or Regional Metrology Organization Technical Committee (RMO TC) level at the time of this proposed comparison. Therefore during the 10th meeting of CCAUV in November 2015, the decision was taken to make preparations for a further key comparison targeted at low shock acceleration.

In the field of accelerometer shock calibration, this key comparison is organized in order to compare primary measurements of Gaussian, half-sine or half-sine squared linear shock accelerations in the range from 500 m/s² to 5 000 m/s². It is the task of the comparison to measure the voltage shock sensitivity of an accelerometer measuring chain including a standard accelerometer (of back-to-back type) with a charge amplifier and the charge shock sensitivity of an accelerometer (of single-ended type) at different peak acceleration values with associated pulse durations as specified in section 3. The results of this key comparison will, after approval of equivalence, serve as the foundation at low intensity shock for the registration of 'calibration and measurement capabilities' (CMCs) in the framework of the CIPM MRA [4].

The results of this comparison are expected to provide direct support to CMCs related to the primary calibration of voltage shock sensitivity of acceleration measuring chains and charge shock sensitivity of accelerometers at low intensity acceleration.

For the calibration of the accelerometer chain and the accelerometer, laser interferometry in compliance with a method described in the international standard ISO 16063-13:2001 has to be applied. Specifically, the voltage shock sensitivity shall be given in milli-volt per meter per second squared (mV/(m/s²)) and the charge shock sensitivity shall be given in pico-coulomb per meter per second squared (pC/(m/s²)) for the different measurement conditions specified in section 4.

The reported shock sensitivities and associated uncertainties are then supposed to be used for the calculation of the weighted mean as the key comparison reference value (KCRV) and the DoE between the participating NMI and the KCRV.

4. Transfer standard as artefacts

For the purpose of the comparison the pilot laboratory selected one accelerometer measuring chain and one accelerometer of which monitoring data for six months were available and not included in any published international cooperation work.

- One transfer standard Accelerometer Chain of a standard accelerometer of back-toback type, ENDEVCO 2270, S/N 14155 and a charge amplifier, Brüel & Kjær 2692, S/N 2752215.
- One transfer standard accelerometer (single-ended), PCB 357B03, S/N LW50432.

The investigation of the long-term stability was continued throughout the circulation period. The results of the NIM stability measurements and other individual data of the transfer standards are given in Section 6.

5. Circulation of the artefacts

The artefacts were circulated in two loops with a measurement period of three weeks provided for each participating laboratory. At the beginning and the end of the circulation as well as between certain subsequent measurements of participating laboratories, the artefacts were measured by the pilot laboratory in order to monitor the stability of the transfer standard.

6. Results of the monitoring measurements

Starting with calibration data in November 2016, the artefacts were monitored during the preparation period and the intervals of the comparison when they were back at the pilot laboratory. The measurements at all peak acceleration values are presented in Figure 6.1 and Figure 6.2. These figures depict the stability of the artefacts over time for the duration of the comparison.

Figure 6.1 Monitoring of the voltage shock sensitivity over the comparison period

Figure 6.2 Monitoring of the charge shock sensitivity over the comparison period

A visual inspection of the above results indicates that the artefacts were sufficiently stable during the whole period of the comparison.

7. Results of the participants

The following sections report the results submitted by the participants for the comparison to the pilot laboratory using the mandatory report spreadsheet. The results presented are in $mV/(m/s^2)$ for the voltage shock sensitivity and and in $pC/(m/s^2)$ for the charge shock sensitivity.

Note that PTB did not submit its results for charge shock sensitivity.

7.1 Results for the voltage shock sensitivity

Table 7.1.a: Reported participants' results for the voltage shock sensitivity of the accelerometer chain with relative expanded uncertainties (k = 2)

	NIM		INME	INMETRO CENAM NMIJ		CENAM NA		VN	VNIIM	
peak acceleration	voltage shock sensitivity	rel. exp. Unc.	voltage shock sensitivity	rel. exp. Unc.	voltage shock sensitivity	rel. exp. Unc.	voltage shock sensitivity	rel. exp. Unc.	voltage shock sensitivity	rel. exp. Unc.
in m/s²	mV/(m/s²)	%	mV/(m/s²)	%	mV/(m/s²)	%	mV/(m/s²)	%	mV/(m/s²)	%
500	2.140	0.4	2.1399	0.40	2.1388	0.8	2.138	0.2	0.2154	1.5
1000	2.139	0.4	2.1390	0.40	2.1387	0.6	2.137	0.2	0.2130	1.5
2000	2.138	0.4	2.1381	0.40	2.1387	0.6	2.136	0.2	0.2122	1.5
3000	0.6756	0.4	0.67582	0.40	2.1391	0.6	0.6753	0.2	0.2158	1.5
4000	0.6759	0.4	0.67556	0.40	2.1383	0.6	0.6746	0.2	0.2158	1.5
5000	0.6759	0.4	0.67531	0.40	0.21384	0.8	0.6738	0.2	0.2120	1.5

	NMISA		P1	PTB NN		IIA	KRISS	
peak acceleration	voltage shock sensitivity	rel. exp. Unc.						
in m/s²	mV/(m/s²)	%	mV/(m/s²)	%	mV/(m/s²)	%	mV/(m/s²)	%
500	2.1377	1.0	2.1362	0.25	2.1363	0.5	2.150	1.1
1000	2.1383	1.0	2.1362	0.25	2.1352	0.5	2.145	1.1
2000	2.1323	1.0	2.1359	0.25	2.1348	0.5	2.141	1.1
3000	0.6755	1.1	0.6750	0.25	0.6744	0.5	0.6780	1.1
4000	0.6754	1.1	0.6749	0.25	0.6743	0.5	0.6768	1.1
5000	0.6754	1.1	0.6750	0.25	0.6737	0.5	0.6783	1.1

In table 7.1.a, it should be noted that the results marked using a yellow background are reported measurement values of VNIIM and CENAM using different gain settings from specifications of the mandatory report spreadsheet. Refer to Annex B for detailed information.

Table 7.1.b: Corrected participants' results for the voltage shock sensitivity of the accelerometer chain with relative expanded uncertainties (k = 2)

	NIM		INME	TRO	CENAM		NMIJ		VNIIM	
peak acceleration	voltage shock sensitivity	rel. exp. Unc.								
in m/s²	mV/(m/s²)	%								
500	2.140	0.4	2.1399	0.40	2.1388	0.8	2.138	0.2	2.154	1.5
1000	2.139	0.4	2.1390	0.40	2.1387	0.6	2.137	0.2	2.130	1.5
2000	2.138	0.4	2.1381	0.40	2.1387	0.6	2.136	0.2	2.122	1.5
3000	0.6756	0.4	0.67582	0.40	0.67596	0.6	0.6753	0.2	0.6819	1.5
4000	0.6759	0.4	0.67556	0.40	0.67570	0.6	0.6746	0.2	0.6819	1.5
5000	0.6759	0.4	0.67531	0.40	0.67573	0.8	0.6738	0.2	0.6699	1.5

	NMISA		P1	PTB		NMIA		KRISS	
peak acceleration	voltage shock sensitivity	rel. exp. Unc.							
in m/s²	mV/(m/s²)	%	mV/(m/s²)	%	mV/(m/s²)	%	mV/(m/s²)	%	
500	2.1377	1.0	2.1362	0.25	2.1363	0.5	2.150	1.1	
1000	2.1383	1.0	2.1362	0.25	2.1352	0.5	2.145	1.1	
2000	2.1323	1.0	2.1359	0.25	2.1348	0.5	2.141	1.1	
3000	0.6755	1.1	0.6750	0.25	0.6744	0.5	0.6780	1.1	
4000	0.6754	1.1	0.6749	0.25	0.6743	0.5	0.6768	1.1	
5000	0.6754	1.1	0.6750	0.25	0.6737	0.5	0.6783	1.1	

Table 7.1.b presents the corrected results for the subsequent calculation of DoE and KCRVs. In this table, the corrections for different gain settings were applied as follows:

- Corrected measurement values of CENAM at 3 000 and 4 000 m/s² were multiplied by the factor of 0.316.
- Corrected measurement values of CENAM at 5 000 m/s² was multiplied by the factor of 3.16.
- Corrected measurement values of VNIIM at 500, 1 000 and 2 000 m/s² were multiplied by the factor of 10.
- Corrected measurement values of VNIIM at 3 000, 4 000 and 5 000 m/s² were multiplied by the factor of 3.16.

7.2 Results for the charge shock sensitivity

Table 7.2: Reported participants' results for the charge shock sensitivity of the accelerometer with relative expanded uncertainties (k = 2)

	NIM		INME	TRO	CENAM		NMIJ		VNIIM	
peak acceleration	charge shock sensitivity	rel. exp. Unc.								
in m/s²	pC/(m/s²)	%	pC/(m/s²)	%	pC/(m/s²)	%	pC/(m/s ²)	%	pC/(m/s²)	%
500	0.9860	0.5	0.98734	0.45	0.99101	0.8	0.9885	0.4	1.0022	1.5
1000	0.9845	0.5	0.98460	0.45	0.98844	0.6	0.9868	0.4	1.0032	1.5
2000	0.9835	0.5	0.98270	0.45	0.98742	0.6	0.9843	0.4	1.0031	1.5
3000	0.9804	0.5	0.98193	0.45	0.98360	0.6	0.9808	0.4	1.0017	1.5
4000	0.9828	0.5	0.98160	0.45	0.98323	0.6	0.9813	0.4	0.9974	1.5
5000	0.9862	0.5	0.97994	0.45	0.97998	8.0	0.9852	0.4	0.9894	1.5

	NMISA		P1	ГВ	NMIA		KRISS	
peak acceleration	charge shock sensitivity	rel. exp. Unc.						
in m/s²	pC/(m/s²)	%	pC/(m/s²)	%	pC/(m/s²)	%	pC/(m/s²)	%
500	0.9897	1.1			0.9858	0.6	0.9886	1.1
1000	0.9888	1.1			0.9823	0.6	0.9884	1.1
2000	0.9878	1.1			0.9810	0.6	0.9853	1.1
3000	0.9759	1.2			0.9785	0.6	0.9838	1.1
4000	0.9768	1.2			0.9773	0.6	0.9838	1.1
5000	0.9761	1.2			0.9746 (*)	0.6 (*)	0.9840	1.1

Degrees of equivalence with respect to the weighted mean 8.

The evaluation of the results was performed using a weighted mean computed with the following equations:

$$x_{WM}(a) = \sum \frac{x_i(a)}{u_i^2(a)} \cdot \left(\sum \frac{1}{u_i^2(a)}\right)^{-1}$$

$$u_{WM}(a) = \left(\sum \frac{1}{u_i^2(a)}\right)^{-1/2}$$
(2)

$$u_{WM}(a) = \left(\sum \frac{1}{u_i^2(a)}\right)^{-1/2} \tag{2}$$

where the WM was calculated using the results of the participants according to [1]. In the equations above the following symbols were used:

- result of participant i at peak acceleration a $x_i(a)$
- absolute standard uncertainty of participant i at peak acceleration a $u_i(a)$
- $x_{WM}(a)$ best estimate of the weighted mean (WM) sensitivity at peak acceleration a
- estimated absolute standard uncertainty for the weighted mean (WM) $u_{\rm WM}(a)$ at peak acceleration a

Consistency checks were performed for the voltage and charge shock sensitivities. The test defined by Cox in [5, 6] was applied in order to determine the participants that are members of the largest consistent subset (LCS).

The key comparison reference values (KCRVs) were finally determined by the WM using the participants that are members of the largest consistent subset (MoCS):

- best estimate of the KCRV at peak acceleration a $x_{KCRV}(a)$
- $u_{KCRV}(a)$ estimated absolute standard uncertainty of the KCRV at peak acceleration a

Table 8.1, 8.2, 8.3 and 8.4 present the results of the consistency test for the voltage and charge shock sensitivity results. Cell is highlighted in yellow when $X^2obs > X^2(nu)$.

Table 8.1: Results of the consistency test applied to all the results reported by the participants for shock voltage sensitivities

Acceleration in m/s²	number of participants	number of degrees of freedom	X²obs	X²(nu) with P < 0.05
500	9	8	2.99	15.51
1000	9	8	1.35	15.51
2000	9	8	1.70	15.51
3000	9	8	4.53	15.51
4000	9	8	5.65	15.51
5000	9	8	7.37	15.51

<u>Table 8.2: Results of the consistency test applied to all the results</u> reported by the participants for shock charge sensitivities

Acceleration in m/s ²	number of participants	number of degrees of freedom	X²obs	X²(nu) with P < 0.05
500	8	7	5.61	14.07
1000	8	7	8.61	14.07
2000	8	7	9.27	14.07
3000	8	7	9.35	14.07
4000	8	7	7.34	14.07
5000	8	7	14.15	14.07

<u>Table 8.3: Results of the consistency test applied to all the results</u> reported by the largest consistent subset for shock voltage sensitivities

Acceleration in m/s ²	number of participants	number of degrees of freedom	X²obs	X²(nu) with P < 0.05
500	9	8	2.99	15.51
1000	9	8	1.35	15.51
2000	9	8	1.70	15.51
3000	9	8	4.53	15.51
4000	9	8	5.65	15.51
5000	9	8	7.37	15.51

<u>Table 8.4: Results of the consistency test applied to all the results</u> reported by the largest consistent subset for shock charge sensitivities

Acceleration in m/s²	number of participants	participants degrees of X*obs freedom		X²(nu) with P < 0.05
500	8	7	5.61	14.07
1000	8	7	8.61	14.07
2000	8	7	9.27	14.07
3000	8	7	9.35	14.07
4000	8	7	7.34	14.07
5000	7	6	6.05	12.59

The results presented in tables 7.2 marked with an asterisk (*) were considered as not within the LCS and were excluded from the calculation of the KCRV.

For the further evaluation of the comparison, the unilateral degrees of equivalence with respect to the KCRVs were calculated according to:

$$d_{i,KCRV}(a) = x_i(a) - x_{KCRV}(a)$$
(3)

$$u^{2}{}_{i,KCRV}(a) = \begin{cases} u^{2}{}_{i}(a) - u^{2}{}_{KCRV}(a) & \text{for results within the LCS} \\ u^{2}{}_{i}(a) + u^{2}{}_{KCRV}(a) & \text{for results not within the LCS} \end{cases}$$
(4)

These formulas were applied for both voltage and charge shock sensitivity results. In the subsequent tables 8.5 and 8.6, $U_i = 2u_i$ and the results are marked using a light brown background where $|d_{i,KCRV}(a)| > 2 \cdot u_{i,KCRV}(a)$.

Unilateral DoEs obtained from results which were excluded from the largest consistent subset and which therefore did not contribute to the calculation of the KCRV are marked with an asterisk (*) in table 8.6.

Note that:

• PTB presented differences higher than 10 % of the recommended pulse durations for all peak accelerations.

- NMISA presented differences higher than 10 % of the recommended pulse durations for all peak accelerations except 500 m/s^2 .
- NMIA presented differences higher than 10 % of the recommended pulse durations for the peak accelerations of 4 000 m/s² and 5 000 m/s².
- VNIIM presented a 10% difference of the recommended pulse duration at peak acceleration of 500 m/s².

Refer to Annex B for detailed information.

8.1 Results for the voltage shock sensitivity

Table 8.5: Unilateral degrees of equivalence for the voltage shock sensitivity with absolute expanded uncertainties (k = 2)

	KCRV		KCRV NIM INMETRO		CEN	MAN	NMIJ		VNIIM				
peak acceleration	X _{KCR/}	U _{KCRV}	d _{I,KCRV}	U _{I,KCRV}	d _{i,KCRV}	U _{I,KCRV}	d _{I,KCRV}	U _{I, KCRV}	d _{I,KCRV}	U _{I,KCRV}	d _{I,KCRV}	U _{I,KCRV}	
in m/s²	mV/(m/s²)		mV/(m/s²)	mV/(mV/(m/s²)		mV/(m/s²)		mV/(m/s²)		mV/(m/s²)	
500	2.13810	0.00273	0.00190	0.00811	0.00180	0.00811	0.00070	0.01689	-0.00010	0.00329	0.01590	0.03219	
1000	2.13723	0.00270	0.00177	0.00812	0.00177	0.00812	0.00147	0.01254	-0.00023	0.00331	-0.00723	0.03184	
2000	2.13633	0.00270	0.00167	0.00811	0.00177	0.00811	0.00237	0.01254	-0.00033	0.00331	-0.01433	0.03172	
3000	0.67536	0.00086	0.00024	0.00256	0.00048	0.00258	0.00059	0.00396	-0.00006	0.00105	0.00857	0.01019	
4000	0.67502	0.00085	0.00088	0.00258	0.00054	0.00258	0.00088	0.00396	-0.00042	0.00104	0.00890	0.01019	
5000	0.67458	0.00086	0.00132	0.00258	0.00073	0.00258	0.00116	0.00534	-0.00078	0.00104	-0.00466	0.01001	

	KCRV		CCRV NMISA		P.	ГВ	NN	ΠA	KRISS	
peak acceleration	X _{KCR/}	U _{KCRV}	d _{I,KCRV}	U _{I,KCRV}	d _{I,KCRV}	U _{I,KCRV}	d _{I,KCRV}	U _{I, KCRV}	d _{I,KCRV}	U _{I,KCRV}
in m/s²	mV/(m/s²)		mV/(m/s²)	mV/(m/s²)		mV/(m/s²)		mV/(m/s²)	
500	2.13810	0.00273	-0.00040	0.02120	-0.00190	0.00459	-0.00180	0.01033	0.01190	0.02349
1000	2.13723	0.00270	0.00107	0.02121	-0.00103	0.00461	-0.00203	0.01033	0.00777	0.02344
2000	2.13633	0.00270	-0.00403	0.02115	-0.00043	0.00461	-0.00153	0.01033	0.00487	0.02340
3000	0.67536	0.00086	0.00014	0.00738	-0.00036	0.00145	-0.00096	0.00326	0.00264	0.00741
4000	0.67502	0.00085	0.00038	0.00738	-0.00012	0.00145	-0.00072	0.00326	0.00178	0.00740
5000	0.67458	0.00086	0.00082	0.00738	0.00042	0.00145	-0.00088	0.00326	0.00372	0.00741

Figure 8.1 : Deviation of the voltage shock sensitivity from the KCRV for all peak accelerations of the comparison with expanded uncertainties $U_{i,KCRV}$ (k = 2)

8.2 Results for the charge shock sensitivity

<u>Table 8.6: Unilateral degrees of equivalence for the charge shock sensitivity with absolute expanded uncertainties (k = 2)</u>

	KCRV		N	IM	INME	TRO	CEI	MAM	NN	N IJ	VN	IIM
peak acceleration	X _{KCR/}	U _{KCRV}	d _{l,KCRV}	U _{I,KCRV}	d _{I,KCRV}	U _{I,KCRV}	d _{I,KCRV}	U _{I,KCR/}	d _{I,KCRV}	U _{I, KCRV}	d _{I,KCRV}	U _{I,KCR/}
in m/s²	pC/(m/s²)		pC/(r	n/s²)	pC/(ı	(m/s²) pC/(m/s²)		m/s²)	n/s²) pC/(m/s²)		pC/(m/s²)	
500	0.98793	0.00212	-0.00193	0.00445	-0.00059	0.00390	0.00308	0.00764	0.00057	0.00333	0.01427	0.01488
1000	0.98600	0.00206	-0.00150	0.00447	-0.00140	0.00392	0.00244	0.00556	0.00080	0.00337	0.01720	0.01491
2000	0.98430	0.00206	-0.00080	0.00447	-0.00160	0.00391	0.00312	0.00556	0.00000	0.00336	0.01880	0.01490
3000	0.98138	0.00206	-0.00098	0.00445	0.00055	0.00391	0.00222	0.00553	-0.00058	0.00334	0.02032	0.01488
4000	0.98163	0.00206	0.00117	0.00448	-0.00003	0.00391	0.00160	0.00553	-0.00033	0.00334	0.01577	0.01482
5000	0.98328	0.00227	0.00292	0.00438	-0.00334	0.00378	-0.00330	0.00750	0.00192	0.00322	0.00812	0.01487

	KCRV		NMISA		P	ГВ	NN	1IA	KRISS	
peak acceleration	X _{KCRV}	U _{KCRV}	d _{I,KCRV}	U _{I,KCRV}	d _{I,KCRV}	U _{I,KCRV}	d _{I,KCRV}	U _{I, KCRV}	d _{I,KCRV}	U _{I, KCRV}
in m/s²	pC/(m/s²)		pC/(r	C/(m/s²) pC/(n		m/s²)	pC/(i	n/s²)	/s²) pC/(m/	
500	0.98793	0.00212	0.00177	0.01068			-0.00213	0.00552	0.00087	0.01067
1000	0.98600	0.00206	0.00280	0.01068			-0.00370	0.00552	0.00240	0.01067
2000	0.98430	0.00206	0.00350	0.01067			-0.00330	0.00551	0.00100	0.01064
3000	0.98138	0.00206	-0.00548	0.01153			-0.00288	0.00550	0.00242	0.01062
4000	0.98163	0.00206	-0.00483	0.01154			-0.00433	0.00549	0.00217	0.01062
5000	0.98328	0.00227	-0.00718	0.01149			-0.00868 (*)	0.00627 (*)	0.00072	0.01058

Figure 8.2: Deviation of the charge shock sensitivity from the KCRV for all peak accelerations

9. Conclusion

The first low intensity shock CIPM key comparison CCAUV.V-K4 revealed the current calibration capabilities of the 9 participants of five RMOs.

All the participating laboratories provided their calibration results, which were all consistent within their declared expanded uncertainties for the voltage shock sensitivity results. All participants contributed to the KCRVs calculated for six peak acceleration comparison values.

For charge shock sensitivity, the situation was notably worse. One participant failed to contribute to the calculation of the KCRV at 5 000 m/s². Two participating laboratories were not consistent within their declared expanded uncertainties at a total of five peak acceleration comparison values. Further improvements of their calibration devices and uncertainty evaluations will provide more accurate and reliable measurement results in the future.

10. Acknowledgment

The authors gratefully acknowledge all the participating institutes for their cooperation and supports.

Bibliography

[1] von Martens, H.-J. et al., Final report on key comparison CCAUV.V-K1, 2003, Metrologia, 40, Tech. Suppl. 09001.

- [2] Guidelines for CIPM key comparisons (Appendix F to the "Mutual recognition of national measurements standards and of measurement certificates issued by national metrology institutes" (MRA)). March 1, 1999.
- [3] Technical Protocol of the CCAUV Key comparison CCAUV.V-K4. NIM, Qiao Sun, 2016.
- [4] Guide to the implementation of the CIPM MRA CIPM-MRA-G-01 VERSION 1.2. June, 2013.
- [5] M.G. Cox, The evaluation of key comparison data, Metrologia, 2002, volume 39, p 589-595.
- [6] M.G. Cox, The evaluation of key comparison data: determining a largest consistent subset, Metrologia, 2007, 44, 187-200.

Annex A - Technical protocol

Technical Protocol of CIPM Key Comparison CCAUV.V-K4

1 Task and Purpose of the Comparison

According to the rules set up by the CIPM MRA the consultative committees of the CIPM have the responsibility to establish 'degrees of equivalence' (DoE) between the different measurement standards operated by the national NMIs. This is done by conducting key comparisons (KC) at different levels of the international metrological infrastructure.

However, in the sub-field of shock, there has been no formal key or supplementary comparison either at Consultative Committee (CC) level or Regional Metrology Organization Technical Committee (RMO TC) level at the time of this proposed comparison. Therefore during the 10th meeting of CCAUV in November 2015, the decision was taken to make preparations for a further key comparison targeted at low shock acceleration.

In the field of accelerometer shock calibration, this key comparison is organized in order to compare primary measurements of Gaussian, half-sine or half-sine squared linear shock accelerations in the range from 500 m/s² to 5 000 m/s². It is the task of the comparison to measure the shock sensitivity of an accelerometer measuring chain (a standard accelerometer (of back-to-back type) with a charge amplifier) (Accelerometer Chain) and an accelerometer (of single-ended type) at different peak acceleration values with associated pulse durations as specified in section 3. The results of this key comparison will, after approval of equivalence, serve as the foundation at low intensity shock for the registration of 'calibration and measurement capabilities' (CMC) in the framework of the CIPM MRA.

The voltage sensitivity shall be calculated as the ratio of the peak value of the Accelerometer Chain output voltage to the peak value of the input acceleration at its reference surface. The shock voltage sensitivity shall be given in milli-volt per meter per second squared $(mV/(m/s^2))$ for the different measurement conditions specified in section 4. In addition, the charge sensitivity shall be calculated as the ratio of the peak value of the accelerometer output charge to the peak value of the input acceleration at its reference surface. The shock charge sensitivity shall be given in pico-coulomb per meter per second squared $(pC/(m/s^2))$ for the different measurement conditions specified in section 4.

For the calibration of the accelerometer chain and the accelerometer, laser interferometry in compliance with method of the international standard ISO 16063-13:2001 has to be applied.

The reported shock sensitivities and associated uncertainties are then supposed to be used for the calculation of the weighted mean as the key comparison reference value (KCRV) and the DoE between the participating NMI and the KCRV.

2 Pilot Laboratory

Pilot laboratory for this key comparison is

Vibration and Gravity Section Mechanics and Acoustics Metrology Division National Institute of Metrology, P.R. China BeiSanHuanDongLu 18, ChaoYang District, 100029 Beijing, P.R. China

This is the delivery address for the artefacts.

Contact Persons are

SUN Qiao	HU Hongbo						
Tel.: +86 10 64524623	Tel.: +86 10 64524607						
e-mail: sunq@nim.ac.cn	e-mail: huhb@nim.ac.cn						
Fax: +86 10 64218628							

Co-Pilot laboratory for this key comparison is

Vibration and Hardness Standards Group Research Institute for Engineering Measurement National Metrology Institute of Japan Tukuba Central 3, 1-1 Umezono, Tsukuba, Ibaraki 305-8563 Japan

Contact Persons are

Akihiro Ota	Hideaki Nozato						
Tel.: +81 29 8614366	Tel.: +81 29 8614329						
e-mail: a-oota@aist.go.jp	e-mail: hideaki.nozato@aist.go.jp						
Fax: +81 29 8614047							

3 Devices under Test and Measurement Conditions

For the calibration task of this comparison, one Accelerometer Chain and one accelerometer will be circulated between the participating laboratories. The Accelerometer Chain is a 'back-to-back' (BB) type, namely an ENDEVCO 2270 (SN: to be confirmed in the 'spreadsheet BB'), with a charge amplifier, namely Brüel & Kjær 2692 (SN: to be confirmed in the 'spreadsheet BB'). The accelerometer is a 'single-ended' (SE) type, namely a PCB 357B03 (SN: to be confirmed in the 'spreadsheet SE').

The voltage sensitivity of the accelerometer chain as compulsory of the measurement and the charge sensitivity of the accelerometer as optional of the measurement are to be calibrated according to those procedures and conditions implemented by the laboratory in conformance with ISO 16063-13 which provides sensitivity information of the accelerometer. The voltage sensitivities reported shall be for the accelerometer chain, including all effects from the signal conditioner. The charge sensitivities reported shall be for the accelerometer, without any effect from the signal conditioner.

The peak acceleration range of the measurements was agreed to be from 500 m/s² to 5 000 m/s². Specifically, the laboratories are supposed to measure at the following acceleration levels (all values in m/s²) and pulse duration (time width between rising edge point and falling edge point at 10 % level of peak acceleration). These are nominal values and should be met by participants' best calibration capability.

500 @ 3 ms, 1 000 @ 2 ms, 2 000 @ 1.5 ms, 3 000 @ 1 ms, 4 000 @ 0.8 ms, 5 000 @ 0.5 ms.

The frequency contents of the calibration signals should be limited to below 10 kHz by low pass filtering or peak fitting in conformance with ISO 16063-13. The applied filter cut-off frequency shall be noted in the calibration report.

The measurement conditions should be kept according to the laboratory's standard conditions for calibration of customers' accelerometers for claiming their CMC where applicable. This presumes that these conditions comply with those defined by the applicable ISO documentary standards [1,2,3], simultaneously.

Specific conditions for the measurements of this comparison are:

- ambient temperature and accelerometer temperature during the calibration: (23 ± 3) °C (actual values to be stated within tolerances of ± 0.3 °C).
- relative humidity: max. 75 % RH
- mounting torque of the accelerometer: $(2.0 \pm 0.1) \text{ N} \cdot \text{m}$

4 Circulation Type, Schedule and Transportation

The artifacts are circulated in a two-loop fashion with a measurement period of three weeks provided for each participating laboratory. At the beginning and the end of the circulation as well as between certain subsequent measurements of participating laboratories, the accelerometer chain and the accelerometer are measured at the pilot laboratory in order to monitor their stability.

The schedule is planned as follows:

Participant	Measurement	Transportation
_	(calendar week)	(calendar week)
NIM	12-14/2017	15-16/2017
INMETRO	17-19/2017	20-21/2017
CENAM	22-24/2017	25-26/2017
NMIJ	27-29/2017	30-31/2017
VNIIM	32-34/2017	35-36/2017
NIM	37-39/2017	05-06/2018
NMISA	07-09/2018	10-11/2018
PTB	12-14/2018	15-16/2018
NMIA	17-19/2018	20-21/2018
KRISS	22-24/2018	25-26/2018
NIM	27-29/2018	

^{*} 12/2017 refers to the period from March 20^{th} to 26^{th} , 2017.

* 05/2018 refers to the period from January 29th to February 4th, 2018.

The cost of transportation to the next laboratory shall be covered by the participating laboratory. The artifacts are recommended to be sent hand-carried with great caution. In case the artifacts get damaged or lost during transportation, the participating laboratory for delivery should pay USD 5 000 to pilot laboratory.

5 Measurement and Analysis Instructions

The participating laboratories have to observe the following instructions:

- The motion of the BB accelerometer should be measured at the center of the top surface of the dummy mass applied for BB type. The motion of the SE accelerometer should be measured close to the accelerometer's mounting surface, since the mounting (reference) surface is usually not directly accessible.
- The mounting surface of the accelerometer and the end surface of the airborne anvil must be slightly lubricated before mounting.
- The cable between accelerometer and signal conditioner should be taken from the delivery to the laboratory.
- The dummy mass should be taken from the delivery to the laboratory. It is 20 g and the mounting torque applied is (2.0 ± 0.1) N·m. The mounting surface of the dummy mass and the end surface of the accelerometer must be slightly lubricated before mounting.
- It is advised that the measurement results should be compiled from complete
 measurement series carried out at different days under nominally the same
 conditions, except that the accelerometer is remounted and the cable re-attached.
 The standard deviation of the subsequent measurements should be included in the
 report.

6 Communication of the Results to Pilot Laboratory

Each participating laboratory will submit a scanned version of the printed and signed calibration report(s) to the pilot laboratory including the following:

- a description of the calibration system used for the comparison with photo(s) of the system, preferably when the accelerometer is installed,
- a description of the calibration method used and the mounting techniques for the accelerometer.
- documented records of the ambient conditions during measurements,
- calibration results, including the relative expanded measurement uncertainty, and the applied coverage factor for each value,
- a detailed uncertainty budget for the system covering all components of measurement uncertainty (calculated according to GUM [4,5]). Including, among others, information on the type of uncertainty (A or B), assumed distribution function and repeatability component [6].

In addition, the use of the electronic spreadsheets named as 'spreadsheet SE' and 'spreadsheet BB' for reporting is mandatory. The spreadsheets include serial numbers of the comparison artefacts and setting information of the charge amplifier. The

spreadsheets should be circulated to all the participants before week 17 of 2017. The consistency between the results in electronic form and a scanned version of the printed and signed calibration report(s) is the responsibility of the participating laboratories. The data submitted in the electronic spreadsheet shall be deemed as official results submitted for the comparison.

The results have to be submitted to the pilot laboratory within four weeks after the measurements have been completed.

References

- [1] ISO 16063-1:1998 'Methods for the calibration of vibration and shock transducers -- Part 1: Basic concepts
- [2] ISO 16063-13:2001 'Methods for the calibration of vibration and shock transducers-- Part 13: Primary shock calibration using laser interferometry'
- [3] ISO/IEC 17025:2005 'General requirements for the competence of testing and calibration laboratories'
- [4] ISO/IEC Guide 98-3:2008 'Uncertainty of measurement -- Part 3: Guide to the expression of uncertainty in measurement (GUM:1995)
- [5] ISO/IEC Guide 98-3:2008/Suppl 1:2008 'Propagation of distributions using a Monte Carlo method'
- [6] Qiao Sun, HongBo Hu. "Final Report on Pilot Comparison of Low Intensity Shock APMP.AUV.V-P1". Metrologia Tech. Suppl., 2015, 52: 09002.

Results sheet for CCAUV.V-K4

'Spreadsheet BB' for BB 2270(14155)+2692(2752215)

Results sheet for CCAUV.V-K4

NM	1 confirm that the data reported here has been.
Contact Person	checked against the data regorded in the NMI
emal	certificate issued for the acceleration measuring chain

Please return the completed form to sunogonim.a c.on

	Reco	mmended cond	ditions for compa	arison	Actual	conditions for ca	alibration	Calibratio	n results	Comments	
No.	Peak Acceleration	Pulse Duration	Transducer set-up	Gain Setting	Peak Acceleration	Pulse Duration	Gain Setting	Voltage Sensitivity	Rel. Expanded Uncertainty	(Filter setting, etc)	
	in m/s²	in ms	in pC/(m/s ²)	in mV/(m/s²)	in m/s²	in ms	in mV/(m/s2)	in mV/(m/s²)	in %(k=2)		
1	500	3.0	1.0	10							
2	1000	2.0	1.0	10							
3	2000	1.5	1.0	10							
4	3000	1.0	1.0	3.16							
5	4000	0.8	1.0	3.16							
6	5000	0.5	1.0	3.16							

Note1: Peak Acceleration and Pulse Duration with deviation less than ±10% are recommended.

Note2: Lower Freq, Limit of 0.1 Hz and Upper Freq, Limit of 100 kHz are recommended for charge amplifier 2692.

Note3: Voltage sensitivity with 4 digits shall be provided.

Note4: The estimated peak voltage at peak acceleration of 2 000 m/s2 is about 4 V under the measurement condition as the above-specified transducer set-up and gain setting.

$`Spreadsheet\ SE'\ for\ SE\ 357B03(LW50432)$

Results sheet for CCAUV.V-K4

NMI		I confirm that the data reported here has been
Contact Person		checked against the data reported in the NMI
email		certificate issued for the accelerometer

Please return the completed form to sung@nim.ac.cn

	Recommended conditions for comparison		Actual condition	s for calibration	Calibratio	n results	Comments
No.	Peak Acceleration	Pulse Duration	Peak Acceleration	Pulse Duration	Charge Sensitivity	Rel. Expanded Uncertainty	(Filter setting,etc)
	in m/s ²	in ms	in m/s²	in ms	in pC/(m/s²)	in % (k=2)	
1	500	3.0					
2	1000	2.0					
3	2000	1.5					
4	3000	1.0					
5	4000	0.8					
6	5000	0.5					

Note1: Peak Acceleration and Pulse Duration with deviation less than ±10% are recommended.

Note2: Lower Freq. Limit of 0.1 Hz and Upper Freq. Limit of 100 kHz are recommended for charge amplifier.

Note3: Charge sensitivitywith 4 digits shall be provided.

Annex B: Measurement conditions and results

1 - NIM

Voltage shock sensitivity

Actual conditions for calibration			Calibratio	n results
Peak Acceleration	Pulse Duration	Gain Setting	Voltage Sensitivity	Rel. Expanded Uncertainty
in m/s ²	in ms	in $m V/(m/s^2)$	in $m V/(m/s^2)$	in $\%(k=2)$
525	3.11	10	2.140	0.4
1071	2.08	10	2.139	0.4
2008	1.43	10	2.138	0.4
3206	1.07	3.16	0.6756	0.4
4085	0.81	3.16	0.6759	0.4
5151	0.53	3.16	0.6759	0.4

Actual conditions for calibration		Calibration results	
Peak Acceleration	Pulse Duration	Charge Sensitivity	Rel. Expanded Uncertainty
in m/s ²	in ms	in pC/(m/s ²)	in $\%(k=2)$
490	2.86	0.9860	0.5
1017	1.97	0.9845	0.5
2082	1.52	0.9835	0.5
3150	1.04	0.9804	0.5
4140	0.81	0.9828	0.5
5247	0.52	0.9862	0.5

2 -INMETRO

Voltage shock sensitivity

Actual conditions for calibration			Calibratio	n results
Peak Acceleration	Pulse Duration	Gain Setting	Voltage Sensitivity	Rel. Expanded Uncertainty
in m/s ²	in ms	in $m V/(m/s^2)$	in $m V/(m/s^2)$	in % (k=2)
509	3.1	10	2.1399	0.40
1037	2.1	10	2.1390	0.40
2002	1.5	10	2.1381	0.40
2975	1.0	3.16	0.67582	0.40
4037	0.8	3.16	0.67556	0.40
5069	0.5	3.16	0.67531	0.40

Actual conditions for calibration		Calibration results	
Peak Acceleration	Pulse Duration	Charge Sensitivity	Rel. Expanded Uncertainty
in m/s ²	in ms	in pC/(m/s ²)	in % (k=2)
508	3.1	0.98734	0.45
1008	2.1	0.98460	0.45
1996	1.5	0.98270	0.45
3019	1.0	0.98193	0.45
4056	0.8	0.98160	0.45
5045	0.5	0.97994	0.45

3-CENAM

Voltage shock sensitivity

Actual conditions for calibration			Calibratio	n results
Peak Acceleration	Pulse Duration	Gain Setting	Voltage Sensitivity	Rel. Expanded Uncertainty
in m/s ²	in ms	in $mV/(m/s^2)$	in $mV/(m/s^2)$	in $\%(k=2)$
524	3.01	10	2.1388	0.8
1001	2.05	10	2.1387	0.6
1886	1.49	10	2.1387	0.6
2714	1.02	10	2.1391	0.6
3783	0.79	10	2.1383	0.6
4875	0.51	1	0.21384	0.8

Actual conditions for calibration		Calibration results	
Peak Acceleration	Pulse Duration	Charge Sensitivity	Rel. Expanded Uncertainty
in m/s ²	in ms	in pC/(m/s ²)	in $\%(k=2)$
516	3.03	0.99101	0.8
975	1.98	0.98844	0.6
1890	1.48	0.98742	0.6
2821	1.04	0.98360	0.6
3760	0.81	0.98323	0.6
5214	0.51	0.97998	0.8

4-NMIJ

Voltage shock sensitivity

Actual conditions for calibration			Calibratio	n results
Peak Acceleration	Pulse Duration	Gain Setting	Voltage Sensitivity	Rel. Expanded Uncertainty
in m/s ²	in ms	in $mV/(m/s^2)$	in $m V/(m/s^2)$	in $\%(k=2)$
511	3.04	10	2.138	0.2
1015	1.91	10	2.137	0.2
2039	1.54	10	2.136	0.2
2951	1.05	3.16	0.6753	0.2
3786	0.83	3.16	0.6746	0.2
5041	0.46	3.16	0.6738	0.2

Actual conditions for calibration		Calibration results	
Peak Acceleration	Pulse Duration	Charge Sensitivity	Rel. Expanded Uncertainty
in m/s ²	in ms	in pC/(m/s ²)	in $\%(k=2)$
506	3.00	0.9885	0.4
1006	1.93	0.9868	0.4
2009	1.53	0.9843	0.4
2987	1.03	0.9808	0.4
3869	0.77	0.9813	0.4
5027	0.48	0.9852	0.4

5 -VNIIM

Voltage shock sensitivity

Actual conditions for calibration			Calibratio	n results
Peak Acceleration	Pulse Duration	Gain Setting	Voltage Sensitivity	Rel. Expanded Uncertainty
in m/s ²	in ms	in $mV/(m/s^2)$	in $mV/(m/s^2)$	in $\%(k=2)$
487.0	2.7	10	0.2154	1.5
1123.0	2.1	10	0.2130	1.5
1997.0	1.4	10	0.2122	1.5
3119.0	1.0	3.16	0.2158	1.5
4085.0	0.8	3.16	0.2158	1.5
4870.0	0.5	3.16	0.2120	1.5

Actual conditions	s for calibration	Calibratio	n results
Peak Acceleration	Pulse Duration	Charge Sensitivity	Rel. Expanded Uncertainty
in m/s ²	in ms	in pC/(m/s ²)	in $\%(k=2)$
507.0	2.9	1.0022	1.5
1040.0	1.9	1.0032	1.5
2087.0	1.4	1.0031	1.5
3084.0	0.9	1.0017	1.5
4136.0	0.7	0.9974	1.5
5141.0	0.5	0.9894	1.5

6 -NMISA

Voltage shock sensitivity

Actual conditions for calibration			Calibratio	n results
Peak Acceleration	Pulse Duration	Gain Setting	Voltage Sensitivity	Rel. Expanded Uncertainty
in m/s ²	in ms	in $mV/(m/s^2)$	in $mV/(m/s^2)$	in $\%(k=2)$
502.9	3.00	10	2.1377	1.0
988.6	2.56	10	2.1383	1.0
1985.2	2.02	10	2.1323	1.0
3019.1	0.33	3.16	0.6755	1.1
4041.2	0.31	3.16	0.6754	1.1
5034.4	0.29	3.16	0.6754	1.1

Actual conditions	s for calibration	Calibratio	n results
Peak Acceleration	Pulse Duration	Charge Sensitivity	Rel. Expanded Uncertainty
in m/s ²	in ms	in pC/(m/s ²)	in % (k=2)
511.1	3.0	0.9897	1.1
1014.2	2.5	0.9888	1.1
2000.3	2.0	0.9878	1.1
2984.3	0.3	0.9759	1.2
3986.4	0.3	0.9768	1.2
5027.9	0.2	0.9761	1.2

7 –PTB

Voltage shock sensitivity

Actual conditions for calibration			Calibration results	
Peak Acceleration	Pulse Duration	Gain Setting	Voltage Sensitivity	Rel. Expanded Uncertainty
in m/s ²	in m s	in $mV/(m/s^2)$	in $mV/(m/s^2)$	in $\%(k=2)$
507	3.5	10	2.1362	0.25
1026	2.5	10	2.1362	0.25
2008	1.8	10	2.1359	0.25
2990	1.4	3.16	0.6750	0.25
4023	1.2	3.16	0.6749	0.25
5005	1.1	3.16	0.6750	0.25

8 –NMIA

Voltage shock sensitivity

Actual	conditions for ca	alibration	Calibration	results
Peak Acceleration	Pulse Duration	Gain Setting	Voltage Sensitivity	Rel. Expanded Uncertainty
in m/s ²	in ms	in $mV/(m/s^2)$	in $mV/(m/s^2)$	in $\%(k=2)$
506	3.1	10.0	2.1363	0.5
1028	1.9	10.0	2.1352	0.5
1982	1.4	10.0	2.1348	0.5
2923	1.0	3.16	0.6744	0.5
4004	0.7	3.16	0.6743	0.5
5041	0.4	3.16	0.6737	0.5

Actual condition	s for calibration	Calibratio	n results
Peak Acceleration	Pulse Duration	Charge Sensitivity	Rel. Expanded Uncertainty
in m/s ²	in ms	in pC/(m/s ²)	in $\%(k=2)$
503	3.0	0.9858	0.6
1000	1.9	0.9823	0.6
2009	1.4	0.9810	0.6
3004	0.9	0.9785	0.6
3999	0.7	0.9773	0.6
4993	0.4	0.9746	0.6

9 -KRISS

Voltage shock sensitivity

Actual	conditions for ca	alibration	Calibratio	n results
Peak Acceleration	Pulse Duration	Gain Setting	Voltage Sensitivity	Rel. Expanded Uncertainty
in m/s ²	in ms	in $mV/(m/s^2)$	in $mV/(m/s^2)$	in $\%(k=2)$
510	3.08			1.1
1003	1.99	10	2.145	1.1
1991	1.49	10	2.141	1.1
2903	0.96	3.16	0.6780	1.1
3977	0.79	3.16	0.6768	1.1
4918	0.50	3.16	0.6783	1.1

Actual condition	s for calibration	Calibratio	n results
Peak Acceleration	Pulse Duration	Charge Sensitivity	Rel. Expanded Uncertainty
in m/s ²	in ms	in $pC/(m/s^2)$	in $\%(k=2)$
501	2.96	0.9886	1.1
1008	2.01	0.9884	1.1
1966	1.48	0.9853	1.1
2990	0.99	0.9838	1.1
4009	0.79	0.9838	1.1
4995	0.51	0.9840	1.1

Annex C: Measurement uncertainty Budget (MUB)

1 – NIM

Source of Uncertainty	Symbol	U or (semi- range)%	Probability distribution model	k factor	Туре	Standard uncertainty %
Accelerometer output voltage peak value measurement	u_1	0.06	Rectangular	$\sqrt{3}$	В	0.04
Voltage filtering effect on accelerometer output voltage peak value	u_2	0.10	Normal	2	В	0.05
Effect of voltage disturbance on accelerometer output voltage peak value	u_3	0.05	Normal	2	В	0.03
Influence of resonant vibration on anvil for accelerometer	u_4	0.15	Rectangular	$\sqrt{3}$	В	0.09
Effect of transverse, rocking and bending acceleration on accelerometer output voltage peak value	u_5	0.05	Normal	2	В	0.03
Zero voltage Uncertainty	u_6	0.10	Normal	2	Α	0.05
Effect of interferometer quadrature output signal disturbance on acceleration peak value	u_7	0.05	Normal	2	В	0.03
Effect of interferometer quadrature output signal disturbance on acceleration peak value	u_8	0.10	Rectangular	$\sqrt{3}$	В	0.06
Influence of resonant vibration on anvil for acceleration	u_9	0.15	Rectangular	$\sqrt{3}$	В	0.09
Interferometer signal filtering effect on acceleration peak value	u_{10}	0.10	Rectangular	$\sqrt{3}$	В	0.06
Effect of voltage disturbance on acceleration peak value	<i>u</i> ₁₁	0.05	Normal	2	В	0.03
Effect of motion disturbance on acceleration peak value	<i>u</i> ₁₂	0.08	Normal	2	В	0.04

Residual interferometric effects on acceleration peak value	<i>u</i> ₁₃	0.01	Normal	2	В	0.01
Effect of errors associated with zero acceleration	$u_{14}^{}$	0.10	Normal	2	В	0.05
Calibration of charge amplifier and cable (only for charge sensitivity)	<i>u</i> ₁₅	0.15	Rectangular	√3	В	0.09
Combined uncertainty	u_c	For voltage sensitivity				0.19
Combined uncertainty	u_c	For charge sensitivity				0.22
Coverage factor				2		
Expended uncertainty		For voltage sensitivity				0.38
U_{c}		For charge sensitivity				0.44
Stated expended		For voltage sensitivity				0.40
uncertainty		For charge sensitivity				0.50

2 -INMETRO

Voltage shock sensitivity

Ο,									
	i	Standard uncertaint y component u(x ₁)	Source of uncertainty	description	Probability distribution model	Factor x _i	Sens. fector	Relative expanded uncertainty or bounds of estimated error components (%)	Relative uncertainty contribution $\omega_{nkl}(y)$ (%)
	1	u(V, y*)	accelerameter autput voltage peak value measurement (DAQ calibration, traceability)	DAD calibration / check	normal (I+2)	0.5		0.150	0.075
	2	u(V _{prod} y _e)	scoclarancter output voltage peak value measurement (DAQ resolution)	Resolution of A/D converter = 16-bit	relangular	0.58	1	0.005	0.003
	3	u(V _{prod} v _d)	accelerameter output voltage peak value measurement (DAQ drift)	drift br 1 year, estimated to be < 0.05 % per year		0.56		0.004	0.002
398			accelerameter autput voltage peak value measurement (DWW drift)	residual efection sensitivity estimated tobelless	relangular	038	1	0.004	0.002
ood pool vollage	4	и (V _{реф, 9})	voltage filtering effect on accelerameter output voltage peak (frequency band limitation)	than (same digital filer is applied to numerator and denominator)	relangular	0.58	1	0.050	0.029
ans and and court find	5	u (V,	effect of voltage disturbance on acceleranctor output voltage peak value (disturbance by anvil resonance)	residual effect after fillering and LS curve fitting	normal (i=1)	1	-1	0.080	0.080
b 5	6	u(V _{−+} qs)	effect of voltage disturbance on accelerances output voltage peak value (effect of noise on shock peak region, and baseline)	residual effect after fillering and LS curve fitting	normal (#1)	1	1	0.050	0.050
refer.	7	ت (۷ _{اسطو} ۲)	effect of transverse scoeleration on accelerancter output voltage peak value (transverse sensitivity)	transverse scoel = 2%, Stil max 1%	special	024	-1	0.020	0.005
Acc	8	:: (V _{pred, N})	effect of rocking acceleration on accelerances output voltage peak value	Estimated to be less than, considering the sir bearing guidance	relangular	0.58	1	0.020	0.012
	_	u (V)	effect of mounting parameters (torque, cable, etc) on accelerancter						
	9		output voltage peak value	Estimated to be less than	relangular	0.58	- 1	0.020	0.012
	10	u (V _{pris} z)	effect of base strain on accelerancter output voltage peak value	Estimated to be less than	relangular	0.58	- 1	0.020	0.012
ang an	11	u (a _{pate} a)	scorloration peak value (e.g. offsets, voltage amplitude deviation from 90°)	Estimated to be less than (heterodyne interferometer is used and ISC are obtained digitally)	retangular	0.58	1	0.050	0.029
700	12	(د _{اه} مو ۵) د	interferenceter signal filtering effect on acceleration peak value (frequency band limitation)	residual fitering effect siresdy considered in item 4	retangular	0.58	-1	0.000	0.000
af fox	13	(وي پيسر ه) د	effect of voltage disturbance on acceleration peck value (e.g. randon noise in the photoelectric measuring chain)	estimated to be less than	retangular	0.58	1	0.050	0.029
reference acceleration pask	14	u(a,,,,,,)	effect of voltage disturbance on acceleration peak value measurement (DAQ calibration, traceability)	DAD calibration / check	normal (I+2)	0.5		0.150	0.075
r a swa	15	u(a,, v.)	effect of voltage disturbance on acceleration peak value measurement (DAQ resolution)	Effect of resolution of A/D converter = 14-bit and 100 MHz sample rate	retangular	0.58	-1	0.050	0.029
, et et	16	u(a,4 ve)	accelerancter output voltage peak value measurement (DAQ drift)	drift for 1 year, estimated to be < 0,05 % per year	retangular	0.58	- 1	0.004	0.002
8	17	u (a _{pade} 2022)	effect of motion disturbance on acceleration peak value (relative motion between the accelerance reference surface and the apot sensed by the interferometer)	Not splicable for the KC, Teichnical protocol required measurement at the centre of dummy mass.	re langular	038	1	0.050	0.029
pro en ensua e	18	u (a _{pad, 80,23})	effect of motion disturbance on acceleration peak value (relative motion between different apots sensed by the interferemeter)	Not aglicable for the KC, Technical protocol required measurement at the centre of dummy mass	relangular	0.58	1	0.050	0.029
*	19	(چېښوء) ت	effect of phase disturbance on acceleration peak value (c.g. phase noise of the interferencter signal)	estimated to be less than	relangular	0.58	1	0.030	0.017
IN to 2 to var ed 2.30	20	(پر پیسر ء) د	residual interferemetric effects on acceleration peak value (interferemeter function)	estimated to be less than	retangular	0.58	,	0.030	0.017
2 0	21	(ه پښېره) ت	uncertainty due to traceability of nor-stabilized laser wavelength	cal bration of laser 4 bandwidth (1200 MHz)	normal (I=2)	0.5	- 1	0.0002	0.000
	22	u (a _{prel} #)	envisonmental effects on laser wavelength. Estimated to be less than (dT =+/- 3 C, dP = +/- 70 hPq, dU = +/- 20 %)	Estimated to be less than (Temp range from 21 to 25 degrees)	retain gullar	0.55	- 1	0.001	0.000
effects slock ivity	23	u (S _{ab,52})	remidual effects on shock mensitivity measurement (effect of remonance escitation in the transducer or shock machine)	estimated to be less than	retangular	0.58	1	0.050	0.029
급을병	24	u(5 _{4,2(4})	residual effects on shock sensitivity measurement (random effect in repeat measurements)	measured (for N=5, atd dev of the mean)	normal (#=1)	1.00	4	0.050	0.050
	25	u(5 🚜 🚅 🕳)	residual effects on shock sensitivity measurement (experimental standard deviation of arithmetic mean)	measured (for N=10, std dev of the mean)	normal (le 1)	1.00	-1	0.030	0.030
14.50 10.00	26	□ (V _{p+4} p)	calibration of reference emplifier gain	cal braton of charge amplifier	normal (I=2)	0.5	0	0.050	0.000
2000	27	u (V _{pre(} ⊈)	amplitude linearity deviation of reference amplifier	estimated to be less than	relangular	0.58	0	0.020	0.000
fatta components for charge shock sensitively of an	28	<i>u</i> (<i>V_{p−4} g</i>)	instability of reference amplifier gain, drift and effect of source impedance on gain and phase shift	drift for 1 year, estimated to be < 0,05 % ger year and instability of 0,02 %	re tan gular	0.58		0.024	0.000
for sensi	29	<i>u</i> (<i>V_{pr4} ∉</i>)	environmental effects on gain and phase shift of reference amplifier (temperature effects during calibration)	estimated to be less than	retan gular	0.58	0	0.010	0.000
2 8 3	30	<i>u</i> (<i>V</i> _{p−4} <i>x</i>)	instability of accelerometer nonsitivity during period of calibration (nagnitude and phase shift)	estimated to be less than (2210 manufacturer specinon-linearity of ± 0.116/1000g)	retangular	0.55	-1	0.050	0.029
ects ove our our	31	u (V _{preq} m)	frequency dependence of accelerometer sensitivity	estimated to be less than	retangular	0.58	1	0.050	0.029
57.7c 1.0e 1.0e	32	u (V _{p=4} ≝)	environmental effects on reference accelerancter sensitivity (magnitude and phase shift)	temperature variation: (23 \pm 4 1)*C; S_{theop} = 0,03% per *C	retan gular	0.58	1	0.030	0.017

 $u_{rd}(S_2)$ Estimated Uncertainty for additionance sensitivity (k=1) 0.18 $u_{rd}(S_2)$ Estimated Uncertainty for additionance sensitivity (k=2) 0.36

Charge shock sensitivity

to coffiger	1 1 2 3	Standard uncertaint y component u(x ₂) u(y _{pol,Y}) u(y _{pol,Y}) u(y _{pol,Y}) u(y _{pol,Y})	Source of uncertainty acclaranter output voltage peak value measurement (IM) calibration, transmillity) acclaranter output voltage peak value measurement (IM) resolution) acclaranter output voltage peak value measurement (IM) drift) whitage filtering affect on acclaranter output voltage peak (frequency land limitation)	description DAG celtration / check Redultion of AD conveiter + 16-bit Find types estimated to be + 20-bit (purple) Band (and types) and (bit (bit (bit (bit (bit (bit (bit (bit	Probability distribution model normal (0~2) retaingular retaingular retaingular retaingular	Factor x, 0.5	Sens, fedor d	Rebitive expanded unceratify or bounds of estimated error components (%) 0.150 0.005 0.004	Relative uncertainty contribution way(n) (%) 0075 0003 0002
na see see.	5	u (V,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	effect of voltage disturbance on acceleranceur output voltage peak value (disturbance by amil I resonance) effect of voltage disturbance on acceleranceur output voltage peak value	residual effect after filtering and LS curve fitting	normal (k=1)	1	1	0.080	0.080
e form of or	6	υ(V _{prei} , η μ) υ(V _{prei} , η)	(effect of noise on shock peak region, and baseline) effect of transverse acceleration on accelerance or output voltage peak	residual effect after filtering and LS curve fiting	normal (k=1)	1	1	0.050	0.050
Acce	7	u(V_mai_m)	value (transverse sensitivity) effect of rocking secolarstian an secolarmeter autput valtage peak value	transverse accel = 2%, St 1 max 1 % Estimated to be less than, considering the sir bearing guidance	agecial retangular	0.24	1	0.020	0.005
	9	u(V _{pred, SP})	officet of mounting parameters (torque, cable, etc) on accollarameter output voltage peak value	Estimated to be less than	relangular	0.58	1	0.020	0.012
<u> </u>	10	u(V _{print} or)	effect of base strain on accelerometer output voltage peak value acceleration peak value (e.g. offsets, voltage asplitude deviation from	Estimated to be less than	retangular	0.58	1	0.020	0.012
y and	11	u(a _{pade,a})	90")	Estimated to be less than (helerodyne interferometer is used and ISO are obtained digitally)	retangular	0.55	1	0.050	0.029
	12	u(a _{pade} y)	interference or signal filtering effect on acceleration peak value (frequency band limitation)	residual filtering effect stready considered in item 4	relangular	0.55	1	0.000	0.000
Jeast	13	u(a _{pet} u)	effect of voltage disturbance on acceleration peak value (e.g. randon noise in the photoelectric neasoring chain)	estimated to be less than	relangular	0.58	1	0.050	0.029
oor pearja son a mearjan	14	u(a _{pred} 7.4)	effect of voltage disturbance on acceleration peak value seasurement (DA) calibration, traceability)	DAG call braillon / check	normal (k=2)	0.5	1	0.150	0075
wa.au	15	u(a _{pred} V _s)	effect of voltage disturbance on acceleration peak value measurement (IAQ resolution)	Effect of resolution of A/O converter = 14-bit and 100 MHz xx moje rate	relangular	0.58	1	0.050	0.029
7. Ø	16	u(a pag 74)	accelarameter output voltage peak value measurament (DAQ drift)	drift for 1 year, estimated to be < 0,05 % per year	retangular	0.58	1	0.004	0.002
Ĭ.	17	и (с _{рефер пр})	effect of motion disturbance on acceleration peak value (relative motion between the accelerances reference surface and the spot sensed by the interference of effect of meetion disturbance on acceleration peak value (relative motion	estimated to be less than	retangular	0.58	1	0.050	0.029
D. 202 S D .	18	u (a _{pmig} ag as)	between different spots sensed by the interferencter)	estimated to be less than	retangular	0.58	1	0.050	0.029
	19	u(a _{pol(} 10)	offect of phase disturbance on acceleration peak value (e.g. phase noise of the interferences rignal)	estimated to be less than	retangular	0.58	1	0.030	0.017
And earl earne elaste	20	(مريموم)	residual interferenctric effects en acceleration peak value (interferencter function)	estimated to be less than	relangular	0.58	1	0.030	0.017
feat	21	u(a _{pade 4})	uncertainty due to traccability of non-atabilised laser wordingth	calibration of laser + band width (1200 MHz)	normal (k=2)	0.5	1	0,0002	0.000
	22	u(a _{pa} , <u>s</u>)	environmental effects on laser wave length. Estimated to be less than (all $\pm 4/-3$ C, aF $\pm 4/-70$ kFa, dU $\pm 4/-20$ %)	Estimated to be less than (Temp range from 2.1 b 25 degrees)	retangular	0.58	1	0.001	0.000
effect shock svity	23	u (5 _{m) m})	residual effects on shock sensitivity measurement (effect of resonance oscitation in the transducer or shock machine)	estimated to be less than	retangular	0.55	1	0.050	0.029
Residual of the sensiti	24	u(5 <u>a, a</u> € a _p)	residual effects on shock sensitivity measurement (random effect in repeat measurements)	measured (for N=5, atd deviof the mean)	normal (k=1)	1.00	1	0.050	0.050
2	25	u(5 🚓 🛒 🚅	residual effects on shock sensitivity measurement (experimental standard deviation of orithmetic mean)	messured (for N=10, aid dev of the mesn)	normal (k=1)	1.00	1	0.030	0.030
sycen of av	26	u(V _{print} gr)	calibration of reference amplifier gain	calibration of charges molifier	normal (k=Z)	0.5	1	0.050	0.025
deres s	27	u(V _{produce}) u(V _{produce})	amplitude linearity deviation of reference amplifier instability of reference amplifier gain, drift and effect of source	estimated to be less than drift for 1 year, estimated to be < 0,05 % per year	relangular	0.58	1	0.020	0.012
fixing components for charge short sensitivity of an	28	u(V _{product})	impedance on gain and phase shift overvironmental effects on gain and phase shift of reference amplifier	and instability of 0,02 %	relangular	0.58	1	0.024	0014
0 8 9	29	u(V _{prek} zr)	(temperature effects during calibration) instability of accelerancter sensitivity during period of calibration	estimated to be less than	relangular	0.58	1	0.010	0.006
exfs ove our ours calibrati	30	u(V_ma_m)	(pagestude and phase shift)	estimated to be less than	retangular	0.58	1	0.050	0.029
fibe on	31	u(V _{prob, al})	frequency dependence of accelerancter acraitivity environmental effects on reference accelerances rensitivity (magnitude	estimated to be less than temperature variation: (23 4-1)*C; $S_{temp} = 0.1 \%$ per temperature variation:	relangular	0.58	1	0.050	0.029
	32		and phase shift)	TC .	relangular	0.58	1 1	0.100	0.058

 $u_{\rm M}(S_2)$ Estimated Uncertainty for accidenmental sensitivity (k=0 0.19 $u_{\rm M}(S_2)$ Estimated Uncertainty for accidenmental sensitivity (k=0 0.38

Reported Uncertainty for accelerometer sensitivity (k=2) 0.45

3-CENAM

500 & 5 000 m/s^2	1000, 2000, 3000 & 4000 m/s^2
-------------------	----------------------------------

Source of uncertainty	Distribution	Туре	Uncertainty contribution	Uncertainty contribution
				1. 900E-01
Quantization peak voltaje	Normal	A	2.30E-01	8. 81E-03
Resolution of data adquisition	Rectangular	В	8.81E-03	1. 48E-03
Voltage disturbance	Rectangular	В	1.48E-03	1. 00E-01
Offset voltage	Normal	A	1.00E-01	
				0. 19
Quantization peak aceleration	Normal	A	2.30E-01	1. 48E-03
Aceleration disturbance	Rectangular	В	1.48E-03	1. 58E-05
Laser wavelength	Rectangular	В	1.58E-05	5. 00E-05
Sampling frequency of data adquisition	Rectangular	В	5.00E-05	5. 00E-02
Charge amplifier	Rectangular	В	5.000E-02	
				8.000E-02
Randon effect in repeat measurements	Normal	В	2.000E-01	
Relative cobined standard uncertainty [%]			0.40	0.30
Relative expanded standard			0.80	0.60

4 –NMIJ

Voltage shock sensitivity

Indetification code	CCAUV.V-K4	/.V–K4							
Device under test	Endevco 2270, BK 2692	< 2692							
Calibration period	3rd to 21th July 2017	y 2017							
Uncertainty components	Comment	Type	Distribution	500 m/s ²	1000 m/s ²	2000 m/s ²	3000 m/s ²	4000 m/s ²	5000 m/s ²
Voltage standard	voltage accuracy	В	normal	3.00E-04	3.00E-04	3.00E-04	3.00E-04	3.00E-04	3.00E-04
Digitizer calibration	voltage correction	В	lemon	1.00E-02	1.00E-02	1.00E-02	1.00E-02	1.00E-02	1.00E-02
Digitizer quantizaton error	accelerometer output	В	rectangular	1.03E-03	4.98E-04	2.55E-04	5.51E-04	4.32E-04	3.30E-04
Peak voltage	anvil's resonance	В	normal	7.50E-03	7.50E-03	7.50E-03	7.50E-03	7.50E-03	7.50E-03
Zero voltage		A	lemon	6.33E-04	3.24E-04	1.62E-04	2.25E-03	2.79E-04	2.45E-04
Transverse motion	3 % trans. Sens. 2 % trans. Motion	В	rectangular	4.24E-02	4.24E-02	4.24E-02	4.24E-02	4.24E-02	4.24E-02
Digitizer quantizaton error	acceleration measurement	8	normal	6.00E-02	6.00E-02	6.00E-02	6.00E-02	6.00E-02	6.00E-02
Laser wavelength	unstabilized He-Ne laser	В	normal	1.60E-03	1.60E-03	1.60E-03	1.60E-03	1.60E-03	1.60E-03
Peak acceleration	anvil's resonance	В	normal	7.50E-03	7.50E-03	7.50E-03	7.50E-03	7.50E-03	7.50E-03
Zero acceleration	±0.1 m/s²	В	normal	4.00E-02	1.93E-02	9.91E-03	6.76E-03	5.29E-03	4.03E-03
Sampling frequency	10 MHz accuracy	В	normal	5.80E-08	5.80E-08	5.80E-08	5.80E-08	5.80E-08	5.80E-08
Relative motion	exciter and laser interferometer	В	normal	2.00E-04	9.67E-05	4.95E-05	3,38E-05	2.64E-05	2.02E-05
Residual influences		A	lemon	1.32E-02	6.67E-03	7.52E-03	1.80E-02	1.39E-02	6.27E-03
Repeatability	different days	A	normal	2.90E-02	8.59E-03	1.06E-02	5.61E-02	1.81E-02	4.01E-02
Zero voltage shift	Zero voltage compensation	8	rectangular	2.00E-02	2.00E-02	2.00E-02	2.00E-02	2.00E-02	2.00E-02
comb. Std. uncertainty	in %			0.093	0.081	0.079	0.098	0.081	0.088
expanded uncertainty $(k=2)$	in %			0.186	0.161	0.159	0.195	0.162	0.175
stated expanded Uncertainty in %	in %			0.200	0.200	0.200	0.200	0.200	0.200

Charge shock sensitivity

Indetification code	CCAUV.V-K4	.V-K4							
Device under test	PCB 357B03	57B03							
Calibration period	3rd to 21th Jul	July 2017							
Uncertainty components	Comment	Type	Distribution	500 m/s ²	1000m/s^2	2000m/s^2	3000 m/s^2	4000 m/s^2	5000 m/s ²
Voltage standard	voltage accuracy	В	normal	3.00E-04	3.00E-04	3.00E-04	3.00E-04	3.00E-04	3.00E-04
Digitizer calibration	voltage correction	В	normal	1.00E-02	1.00E-02	1.00E-02	1.00E-02	1.00E-02	1.00E-02
Digitizer quantizaton error	accelerometer output	В	rectangular	1.03E-03	4.98E-04	2.55E-04	5.51E-04	4.32E-04	3.30E-04
Peak voltage	accelerometer resonance (3KHz)	В	normal	9.81E-02	9.81E-02	9.81E-02	9.81E-02	9.81E-02	9.81E-02
Zero voltage		٧	normal	6.33E-04	3.24E-04	1.62E-04	2.25E-03	2.79E-04	2.45E-04
Transverse motion	3 % trans. Sens. 2 % trans. Motion	В	rectangular	4.24E-02	4.24E-02	4.24E-02	4.24E-02	4.24E-02	4.24E-02
Digitizer quantizaton error	acceleration measurement	В	normal	6.00E-02	6.00E-02	6.00E-02	6.00E-02	6.00E-02	6.00E-02
Laser wavelength	unstabilized He-Ne laser	В	normal	1.60E-03	1.60E-03	1.60E-03	1.60E-03	1.60E-03	1.60E-03
Peak acceleration	accelerometer resonance (3KHz)	В	normal	9.81E-02	9.81E-02	9.81E-02	9.81E-02	9.81E-02	9.81E-02
Zero acceleration	±0.1 m/s²	В	normal	4.00E-02	1.93E-02	9.91E-03	6.76E-03	5.29E-03	4.03E-03
Sampling frequency	10 MHz accuracy	В	normal	5.80E-08	5.80E-08	5.80E-08	5.80E-08	5.80E-08	5.80E-08
Relative motion	exciter and laser interferometer	В	normal	2.00E-04	9.67E-05	4.95E-05	3.38E-05	2.64E-05	2.02E-05
Residual influences		٧	normal	1.32E-02	6.67E-03	7.52E-03	1.80E-02	1.39E-02	6.27E-03
Repeatability	different days	٧	normal	1.10E-01	4.41E-02	1.11E-01	5.73E-02	3.22E-02	3.49E-02
charge amplifier calibration	deconvolution	В	rectangular	2.00E-02	2.00E-02	2.00E-02	2.00E-02	2.00E-02	2.00E-02
comb. Std. uncertainty	in %			0.198	0.166	0.194	0.170	0.163	0.163
expanded uncertainty (k=2)	in %			0.396	0.332	0.388	0.340	0.325	0.325
stated expanded Uncertainty in %	in %			0.400	0.400	0.400	0.400	0.400	0.400

5 -VNIIM

i	Standard uncertainty	Source of uncertainty	Probability distribution	Factor	Type of uncertainty	Relative standard uncertainty, %
1	u(upeak,V)	accelerometer output voltage peak value measurement (waveform recorder; e.g. A DC-resolution)	rectangular	1.732	В	0.1
2	u(upeak,F)	voltage filtering effect on accelerometer output voltage peak value (frequency band limitation)	rectangular	1.732	В	0.25
3	u(upeak,D)	effect of voltage disturbance on accelerometer output voltage peak value (e.g. hum and noise)	rectangular	1.732	В	0.1
4	u(upeak,T)	effect of transverse, rocking and bending acceleration on accelerometer output voltage peak value (transverse sensitivity)	Normal	2.000	Α	0.25
5	u(apeak,Q)	effect of interferometer quadrature output signal disturbance on acceleration peak value (e.g. offsets, voltage amplitude deviation, deviation from 90	rectangular	1.732	В	0.2
6	u(apeak,F)	interferometer signal filtering effect on acceleration peak value (frequency band limitation)	rectangular	1.732	В	0.2
7	u(apeak,VD)	effect of voltage disturbance on acceleration peak value (e.g. random noise in the photoelectric measuring chain)	rectangular	1.732	В	0.2
8	u(apeak,MD)	effect of motion disturbance on acceleration peak value (e.g. drift; relative motion between the accelerometer reference surface and the spot sensed	rectangular	1.732	В	0.2
9	u(apeak,PD)	effect of phase disturbance on acceleration peak value (e.g. phase noise of the interferometer signal)	rectangular	1.732	В	0.2
10	u(apeak,RE)	residual interferometric effects on acceleration peak value (interferometer function)	Normal	2.000	Α	0.2
11	u(Ssh,RE)	residual effects on shock sensitivity measurement (e.g. effect of resonance excitation in the transducer or shock machine, random effect in repeat measurements; experimental standard deviation of arithmetic mean)	Normal	2.000	Α	0.4
		Standard uncertainty The relative expanded uncertainty of measurement of the shock sensitiv				0.74 1.48

6-NMISA

Voltage shock sensitivity

	VENATOROGIA	BUIDE		MAIN VIGTAM	W						Cerum	Ceruicate No	AVIVS-3619
	UNCERTAINTY BODGET	BUDGE	0.1	ואוא (חם	(14)						Proce	Procedure No	AVIVS-0019
П	Notes	Reference Cuality to Engine	Esperador.	sales of Uncartainty in Newsonment, bound by SPMs, IEC, IPOC, IBO, ILFAC, ILFAP, CNA, 150 1995 (1959) (1) (1) (1) (1) (1)	areat, have	day Safu, IEC	E IFOC. GO NIPAC	AUPAP COAL I	50 H88 (0)	Switch for the Sign			1111111
	64 66064 460	model:		Brüel & Kjar / Endewoo / PCB	r/Ender	ADD / PCB		Barren		> 2 km/s	> 2 km/s* to 10 km/s*		Metrologist
Search Electric	Shock sensitivity carbration (modulus) as per ISO 10005-13	Serial			0					0,1 me	to 1,0 ms		lan Veldman
1	Mathematical Model:							S=D	0 10 11 0 14				
Symbol	Input Quantity (Source of Uncartainty)	Estimated Uncertainty	20	Probability Distribution	*	Divisor factor	Standard Uncertainty	Sensitivity Coefficient	41	Standard Uncertainty Contribution Uf(y)	Reliability	Degrees of Freedom	Remarks
+	▼ Standards and Reference Equipment (Uncorrelated) ▼	600	Unit	(N, R, T, U)			noon	3	Unit	*	36		
B.com. D	Effect of interferometer quadriture output signal disturbance on acceleration	1,0	*	Rectangular v3	2,00	1,73	0,058	1	×	0,058	100	infinite	e.g. effects, voltage amplitude deviations, quadrature $\sim 90^{\circ}$
	pear, value Effect of interferometer storal fibering effect on acceleration peak value	0.3	*	Reclangular v3	2,00	1,73	0,173	-	*	0,173	100	infinite	Frequency and band limbation:
S are to E	Effect of voltage disturbance on acceleration peak value	1,0		Rectangular v3	2,00	1,73	3,358		×	0,058	100	infinite	a.g. tandom noise in the photoelectric mensuring cheen
	Effect of motion disturbance on acceleration peak value	0,4	*	Rectangular 43	2,00	1,73	0,231	1	*	0,234	100	infinite	a.g. drift, relative motion between accelerondar reference auchice and apol sensed by the interferencese
	Effect of phase disturbance on acceleration peak valve	1.0	*	Rectangular 43	2,00	1,73	0,058	1	×	0,058	100	infinite	a.g. phase noise in the interferometer agnet
	Acceleration peak determination accuracy	0,4	*	Rectangular 43	2,00	1,73	0,231	-	*	0,231	100	infinite	Double differentiation and pask detection accuracy
	Residuel effects on shock sansitivity massurament	6,0	*	Rectangular 43	2,00	57,7	0,173	-	*	0,173	100	infinite	a.g., effect of necessing activities in the transducer or shock, machine
									6000	ME.		03	
-				1								60	
-											*		
		0											
1	Resolution of Standart / Equipment (If applicable)										100		
	▼ Unit Under Test / Calibration (Uncorrolated) ▼						NOTE	100	CHANG	SE BLUE CELL	S-AILOTH	ER CELLS P	ONLY CHANGE BLUE CELLS - All OTHER CELLS (WHITE) ARE PROTECTED
A TOTAL	Accelerometer output voltage pask massurement	0,1	×	Triangular vis		1,73	650'0		×	0,058	100	infinite	NI PXI-5822 Specifications (0.5 % of input + 50 pV)
	Accelerameter output voltage pask fit	0,15	*	Normal k = 3		2.00	0,075		×	0,075	100	infinite	Closeness for fit to measured pulse (e.g. r* value)
1000	Effect of fittering & residual charge on sansitivity measurement	0.4	×	Triangular VS		1,73	0,231		¥	0,231	100	infinite	Haring effect is small as the same may be appreced to both signals. (Rado of accelerometer output voltage
	Effect of voltage disturbence on accelerometer output voltage peak	90'0	*	Normal k = 2,576		1,00	0000	+	×	090'0	904	infinite	Distantion in accelerometer output peak voltage
	measurement. Effect of transverse motion on accalerometer output voltage peak measurement	10	×			1,73	2,887	60.03	×	0,087	100	infinite	Transverse motion in the presence of transverse sensibility. Taken 3 % transverse sensibility.
1000	Uncertainty in conditioning amplifier gain delibration	00'0	*			2,00	0000	-	×	000'0	100	infinite	o of gain values over selected frequency span (typically 10 Hz to 10 kHz)
	Resolutor of UUT / Equipment (If applicable)										100		
10	Data - Type "8" Evaluation Range of the results (Rectangular)										100		
10	Data - Type "A" Evaluation Exp Std Dev of the Mean (ESDM)	0,25	*	Normal k = 1		1,73	0,144		*	0,144		8	No of Readings 10
please Lifetie	TOTAL COMBINED	BINED UNK	UNCERTAINTY	ΠY		1				*			
4			Com	Combined Uncertainty (Normal)	ity (Norr	(leu	W Level o	▼ Level of Confidence ▼	្ន	0,420	Vac	etiului	Checked and Approved By:
-	Best Measurement Capability (<u>Excluding</u> UUT contribution)			Expanded Uncertainty	stainty		95,45 %	K K=2		0,84	k =	2,00	111
			Com	Combined Uncertainty (Normal)	ty (Non	(jeu	▼ Level o	▼ Level of Confidence ▼		0,519	7	infinite	
	Uncertainty of Measurement (Including UUT contribution)			Connected I transfelate	-		20 27 20	K = 2		1.04	- 4	2.00	1

	BODGE	T W	UNCERTAINTY BUDGET MATRIX (UBM)	(Jane						4		Canada Garaga
								-		Proces	Procedure No	AVIVS-0019
•	Reference, Cucle to the Ex Marker &	E I	mainer of University and Indexes	Salvand, Ind.	aday BPW, if	Annual by BPM, ICG ICG ICG ICG NPAC NPAP, ONA ICG INSE (188H ICG-10188-)	NPAP, OBAL - SK	1000 (120	N 80-47-10189-0			Metabodes
Shock sensitivity calibration (modulus) as per ISO 16063-13	model:		Bruel & Nask / Endeway / Pub	Br / End	and I have		Ranger		500 m/s² (500 m/s² to 2 000 m/s²		- Contract of the Contract of
	number			0					du o'i	dii 0'F 75 dii 0's		lan Veldman
Mathematical Model:							Sm	a le	The first or			
Input Quantity (Source of Uncertainty)	Estimated Uncertainty	p di	Probability Distribution	*	Divisor	Standard Uncertainty	Sensitivity	24	Standard Uncertainty Contribution (II(y)	Reliability	Degrees of Freadom	Remarks
▼ Standards and Reference Equipment (Uncorrelated) ▼	(x)	#S	(N, R, T, U)			(ixi)n	C)	Cult	*	×	>	
Effect of hybritanometer quadrature output signal deturbance on acceleration	1,0	*	Rectangular 43	2,00	1,73	0,058	-	*	990'0	100	infinite	e.g. offsels, voltage amphibole deviations, quadrature $\sim 90^\circ$
Effect of Interferometer storal filtering effect on acceleration peak value	0,3	*	Rectangular 43	2.00	1,73	0,173	1	*	0,173	100	infinite	Frequency and band limitation
Effect of woltage disturbance on acceleration peak value	1.0	*	Rectangular 43	2,00	1,73	850'0	1	2	990'0	100	infinite	e.g. rendom noise in the phobalectric measuring chain
Effect of motion disturbance on acceleration peak value	6,0	*	Rectangular v3	2,00	1,73	0,173	-	*	0,173	100	aliniha	a.g. drift: relative motion between acceleromater reference surface and appl sensed by the interferences
Effect of phase disturbance on acceleration peak vetve	1.0	*	Rectangular v3	2,00	1,73	0,058	1	*	0,058	100	eliuliui	a.g. phase noise in the interferometer signal
Acceleration peak determination accuracy	9'0		Rectangular v3	2,00	1,7	0,231	+	*	0,231	100	infinite	Double differentiation and pass defection security
Residual effects on shock sansitivity measurament	0.3	*	Rectangular v3	2,00	1,73	0,173	-	*	0,173	100	infinite	a g. effect of resonence auditation in the transducer or about
										Section 2		
										-		
		1								Section 1		
Resolution of Standard / Equipment (If applicable)										100		
▼ Unit Under Test / Calibration (Uncorrelated) ▼						NOTE		CHANG	E BLUE CELL	S - All OTH	IR CELLS (ONLY CHANGE BLUE CELLS - All OTHER CELLS (WHITE) ARE PROTECTED
Accelerometer output voltage peak measurement	0.1	*	Triangular 48		1,73	0,058	1	×	0,058	100	infinite	NI PXI-5622 Specifications (0,5 % of input + 50 pm)
Accelerometer output voltage peak fit	0,15	*	Normal k = 3		2,00	0,075	4	ø	0,075	100	infinite	Closeness for fit to measured pulse (e.g. r. value)
Effect of filtering & residual charge on sensitivity measurement.	0.4	2	Triangular 48		1,73	0,231	1	×	0,231	100	egugui	Filtering effect is small as the same flor is applied to both signals. (Ratio of accelerometer output voltage
Effect of voltage disturbance on accelerometer output voltage peak measurement	200	*	Normal k = 2,576		1,00	090'0	-	*	090'0	100	equipu	Distortion in accelerometer output peak voltage and residuel charge effect correction
Effect of transverse motion on accelerometer output voltage peak measurement	2	,			1,73	1,155	0003	×	0.035	100	infinite	Transverse motion in the presence of transverse sensitivity. Taken 3 % transverse sensitivity.
Uncertainty in conditioning amplifier gain calibration	0.62	,			2,00	0,259	+	2	0,259	100	infinite	a of gain values over selected frequency span (typically 10 Hz to 10 MHz)
Resolution of UUT / Equipment (If applicable)										100		
Data - Type "B" Evaluation Range of the results (Rectangular)										100		
	0.15	,	Normal 8 = 1		1,73	0,087	1		0,087			No of Readings 10
	TOTAL COMBINED UNCERTAINTY	CERTA	INTY						ž			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		8	Combined Uncertainty (Normal)	nty (No	mal)	▲ Lavel o	▼ Level of Confidence ▼		0,392	*	infinite	Checked and Approved By:
Best Measurement Capability (Excluding UUT contribution)			Expanded Uncertainty	ertainty		95,45 %	6 K=2	٦	82'0		2,00	11/1
		8	Combined Uncertainty (Normal)	nty (No	mal)	▼ Level of	▼ Level of Confidence ▼		0,542	, A	infinite	To the second
Uncertainty of Measurement (Including UUT contribution)			Evenedad I bearings	- Contraction	1	20 45 54	K = 2		4 00	- 4	900	

				-	-						25	Certificate No	AWVS-3618
	UNCERTAINTY	BUDGET		MATRIX (USM)	(w						Proce	Procedure No	AV/VS-0019
	Pala	Releases: Oubb to the Expr	Esperation	of Circumstanty in Massaco	erer, bas	dby bena, IEC	lawy is blackwared, based by BPM, IEC, IFCC, IRC, APAC, AIPAP, CRA ISO 1805 (SDN 92-61-10195-9)	MIPAP, CAM 15	0 1985 (5	DN 92-61-10186-8)			
		Make &	The state of the s	Bribel & Kjaer / Enderco / PCB	y / Ende	Woo / PCB				> 2 tombs	> 2 tomts* to 10 km/s*		Metrologiet
De scription.	Shock sensitivity calibration (modulus) as per ISO 16053-13	Serial			0			Name of		0,1 ms	0,1 ms to 1,0 ms		Ian Veldman
	Mathematical Model:							5 = 0	C2 1%				
Symbol	Input Quantity (Source of Uncertainty)	Estimated Uncertainty	2 2	Probability Distribution	*	Divisor Sector	Standard Uncertainty	Sensitivity	ant a	Standard Uncertainty Contribution UI(y)	Reliability	Degraes of Freedom	Remarks
1	▼ Standards and Reference Equipment (Uncorrelated) ▼	(00)	Sel	(N, R, T, U)			noxii	23	Unit	*	×	۵	
0	Effect of interferometer quadrature output signal disturbance on acceleration	1,0	*	Rectangular 43	200	1,73	0,058	-	*	0,058	100	infinite	a.g. offsets, voltage emplitude devistions, quedrature <- 90*
-	Filters of interferometer stonel filtering effect on acceleration peak value	0.3	8	Rectangular v3	2.00	1,73	0,173	100	*	0,173	100	allulle	Frequency and band lankation
0	Effect of voltage disturbance on acceleration peak value	0,1	100	Rectangular v3	2,00	1,73	0,058	1	2	0,058	100	infinite	a.g. random ruise in the photoelectric measuring chain
-	Effect of motion dislurbance on acceleration peak varue	0,4	¥	Rectangular v3	2.00	1,73	0,231	1	*	0,231	901	infinite	a.g. drift, relative motion between acceleranteer reference aurition and spot warrant by the interferencesor.
	Effect of phase disturbance on acceleration peak varies	0,1	,	Rectangular v3	2.00	1,73	0,058	100	*	890'0	100	etiutini	a.g. phase noise in the interferometer algred
	Acceleration peak determination accuracy	0,4	y	Rectangular 43	2,00	1,73	0,231	-	*	0,231	100	eguijus	Double offferentiation and peek detection accuracy
40	Residuel effects on shock sensitivity measurement	50	v	Rectangular (3	2,00	1,73	0,173		*	0.173	100	entimite	a g. effect of resonance auchation in the tresiducer or shock metrine
													A Company of the Comp
Ī	Rescution of Standard / Equipment (If applicable)										100		
	▼ Unit Under Test / Calibration (Uncorrelated) ▼			Section 2		E-3	NOTE		CHAM	ONLY CHANGE BLUE CELLS	S - All OTH	ER CELLS O	- All OTHER CELLS (WHITE) ARE PROTECTED
2	Accelerometer output vottage peak measurement	0,1	*	Triangular 46	Г	1,73	0,058		×	0,058	100	infinite	NI PX0-5922 Specifications (0,5 % of input + 50 pm)
	Accelerometer output voltage pask fit	0.15	,	Normal k = 3		2,00	0,075		2	0,075	100	infinite	Closeness for fit to measured public (e.g. r" value)
	Effect of Reading & residual charge on sensitivity measurement.	0.4	*	Triangular vib		1,73	0,231	1	×	0,231	100	infinite	both signific. (Ratio of accelerometer output vidage
	Effect of voltage disturbance on acceleromater output voltage pasit.	0.05	,	Normal k = 2,576		1,00	050'0		¥	0,050	100	infinite	Distortion in accelerometer output peak voltage
-	Effect of transverse motion on accelerometer output voltage peak measurement	0	,			1,73	2,887	80'0	s	780,0	100	etingui	Transverso motion in the presence of transverse sensitivity. Taken 3 % transverse sensitivity.
	Uncertainty in conditioning amplifier gain ceitbration	0,52	,			2,00	0,259	1	*	0,259	100	infinite	or of gain values over selected frequency spain (typically 10 Hz to 10 MHz)
	Resolution of ULT / Equipment (If abolicable)					Ī					100		
T	Date - Type 19: Evaluation Range of the results (Rectangular)										100		
Ī	Data - Type "A" Evaluation Exa Std Dev of the Mean (ESDM)	0,25	,	Nomai's = 1		1,73	0,144		*	0,144		6	No of Readings 10
About USM	TOTAL COMBINED		UNCERTAINTY	AT.						×			
-			S	Combined Uncertainty (Normal)	My (Nor	(lem	₩ Levelo	▼ Level of Comblence ▼		0,420	> 4	infinite	Checked and Approved By:
	Best Measurement Capability (Excluding UUT contribution)			Expanded Uncertainty	ertainty		95,45 %	K K=2		0,84	40	2,00	111
	1		Con	Combined Uncertainty (Normal)	Wy (Nor	(lem	▼ Level o	▼ Lavel of Confidence		0,580	7	infinite	The same
	Uncertainty of Measurement (Including UUT contribution)			Consequent I topostations	- delinite		OK 45 %	6 1 2		1 16	4	2.00	,

7 –PTB

Voltage shock sensitivity

Uncertainty Budget for Shock Sensitivity of accelerometer measurement chain at PTB Schock NME 5 km/s²

Unit: mV/(m/	5 /	-						
-		Component	value	distri	bution	k	u	u²
1	u (u peak,v)	Voltage measurement, calibration uncertainty , long term drift	0,01%	rec	0,58	2	2,89E-05	8,33E-10
2	u (u peak,D)	Voltage measurement , noise,hum	0,02%	norm	1	2	1,00E-04	1,00E-08
3	u (a peak,LDV)	Dual channel LDV acceleration measurement	0,03%	norm	1	1	3,00E-04	9,00E-08
4	u (S _{sh} ,≠)	Filter and peak fitting to peak sensitivity (acceleration,voltage jointly)	0,02%	rec	0,58	1	1,15E-04	1,33E-08
5	u (u peak,T)	effect of transverse, rocking and bending acceleration on accelerometer output voltage peak value (transverse sensitivity)	0,03%	norm	1	1	3,00E-04	9,00E-08
6	u (a pesk,MD)	effect of transverse, rocking and bending acceleration and laser locations on LDV peak value	0,04%	rec	0,58	1	2,31E-04	5,33E-08
7	u(S _{sh ,Pu})	effect of pulse shape variation on sensitivity (after 10kHz LP-filter)	0,10%	rec	0,58	1	5,77E-04	3,33E-07
8	u(S _{sh,RE})	residual effects on shock sensitivity measurement (e.g. effect of resonance excitation in the transducer or shock machine, random effect in repeated measurements; experimental standard deviation of arithmetic mean)	0,09%	norm	1	1	9,00E-04	8,10E-07

Relative Combined Uncertainty	0,12%
Relative Expanded Uncertainty (k=2)	0,24%
Stated Expanded Uncertainty (k=2)	0.25%

8 –NMIA

Voltage shock sensitivity

Source of Uncertainty	Symbol	U or semi- range (maximum) %	Probability distribution model	k factor	Sensitivity eoefficient	Relative contribution, u _i %	DOF
Accelerometer output voltage peak value measurement	u _I	0.06	Rectangular	1.73	1	0.04	30
Voltage filter effect on accelerometer output voltage peak	и2	0.11	Normal	2.00	1	0.06	30
Effect of residual non-linarites in determination of peak acceleration amplitude due to anvil and pulse characteristics.	из	0.10	Normal	2.00	1	0.05	10
Effect of voltage disturbance on accelerometer output voltage peak value	ш	0.04	Normal	2.00	1	0.02	30
Effect of transverse, rocking, and bending acceleration on accelerometer output peak value	115	0.05	Rectangular	1.73	1	0.03	30
Effect of interferometer quadrature output signal disturbance on acceleration peak value	ив	0.05	Normal	2.00	1	0.03	30
Stability of LDVs, and accuracy of laser wavelength	и7	0.05	Normal	2.00	1	0.05	30
Effect of errors associated with baseline determination.	иг	0.15	Normal	2.00	1	0.08	10
Interferometer signal filtering effect on acceleration peak value	ия	0.19	Rectangular	1.73	1	0.11	30
Effect of voltage disturbance on acceleration peak value	и10	0.10	Normal	2.00	1	0.05	30
Effect of motion disturbance on acceleration peak value	1(1)	0.10	Normal	2.00	1	0.05	30
Effect of phase disturbance on acceleration peak value	14.12	0.01	Rectangular	1.73	1	0.01	30

Source of Uncertainty	Symbol	U or semi- range (maximum) %	Probability distribution model	k factor	Sensitivity coefficient	Relative contribution, u _i %	DOF
Residual interferometric effects on acceleration peak value	11/3	0.01	Rectangular	1.73	1	0.01	30
Effect of resonance excited in accelerometer or SE-201	<i>U</i> 14	0.01	Normal	2.00	1	0.01	30
Résidual effects on shock sensitivity measurement including variation in repeated measurements	и15	0.10	Normal	2.00	1	0.05	30
Rounding error	U16	0.05	Rectangular	1.73	1	0.03	30
Combined uncertainty	uc				0	0.19	
Effective degrees of freedom		8				131	
Coverage or k factor			14			2.0	
Expanded uncertainty of voltage sensitivity, U _c (round up of U _c)						0.4	
Stated expanded uncertainty in mV / (m·s ⁻²) value.						0.5	

Source of Uncertainty	Symbol	U or semi- range (maximum) %	Probability distribution model	k factor	Sensitivity coefficient	Relative contribution, u _i %	DOF
Accelerometer output voltage peak value measurement	uį	0.06	Rectangular	1.73	1	0.04	30
Voltage filter effect on accelerometer output voltage peak	и2	0.11	Normal	2.00	1	0.06	30
Effect of residual non-linarites in determination of peak acceleration amplitude due to anvil and pulse characteristics.	из	0.10	Normal	2.00	l	0.05	10
Effect of voltage disturbance on accelerometer output voltage peak value	114	0.04	Normal	2.00	1	0.02	30
Effect of transverse, rocking, and bending acceleration on accelerometer output peak value	165	0.05	Rectangular	1.73	1	0.03	30
Effect of interferometer quadrature output signal disturbance on acceleration peak value	116	0.05	Normal	2.00	1	0.03	30
Stability of LDVs, and accuracy of laser wavelength	117	0.05	Normal	2.00	l	0.05	30
Effect of errors associated with baseline determination.	tts	0.15	Normal	2.00	1	0.08	10
Interferometer signal filtering effect on acceleration peak value	ti9	0.19	Rectangular	1.73	1	0.11	30
Effect of voltage disturbance on acceleration peak value	uio	0.10	Normal	2.00	1	0.05	30
Effect of motion disturbance on acceleration peak value	ин	0.10	Normal	2.00	1	0.05	30
Effect of phase disturbance on acceleration peak value	и12	0.01	Rectangular	1.73	1	0.01	30
Residual interferometric effects on acceleration peak value	11/3	0.01	Rectangular	1.73	Ī	0.01	30

Source of Uncertainty	Symbol	U or semi- range (maximum) %	Probability distribution model	k factor	Sensitivity coefficient	Relative contribution, u _i	DOF
Effect of resonance excited in accelerometer or SE-201	<i>u</i> 14	0.01	Normal	2.00	1	0.01	30
Residual effects on shock sensitivity measurement including variation in repeated measurements	и15	0.10	Normal	2.00	1	0.05	30
Rounding error	и16	0.05	Rectangular	1.73	1	0.03	30
Combined uncertainty	uc					0.19	
Effective degrees of freedom						131	
Coverage or k factor						2.0	
Expanded uncertainty of voltage sensitivity, U _e (round up of U _e)						0.4	
Stated expanded uncertainty in mV / (m·s ⁻²) value.						0.5	
Uncertainty with calibration of charge amplifier, including effects of accelerometer cable on reference capacitance and broad-band characteristics of shock pulse.	<i>u</i> ₁₇	0.14	Normal	2.00	1	0.07	30
Expanded uncertainty of charge sensitivity, U _c (round up of U _c)						. 0.5	
Stated expanded uncertainty in pC / (m·s ⁻²) value.						0.6	

9 -KRISS

Voltage shock sensitivity

	Uncertainty Component	Type (A or B)	Distribution
u_1	Voltage correction of digitizer	В	Normal
<i>u</i> ₂	Zero voltage uncertainty	A	t
из	Quantization error of peak voltage	В	Rectangular
И4	Influence of resonant vibration on anvil (for accelerometer)	В	Rectangular
u 5	Sampling time uncertainty of digitizer	В	Rectangular
<i>u</i> ₆	Laser wavelength instability	В	Rectangular
u 7	Quantization error of phase displacement	В	Rectangular
u ₈	Zero acceleration uncertainty	В	Rectangular
<i>11</i> 9	Influence of resonant vibration on anvil (for acceleration)	В	Rectangular
<i>u</i> ₁₀	Transverse sensitivity effect	В	Rectangular
<i>u</i> ₁₁	Relative motion between exciter and laser interferometer	В	Rectangular
<i>u</i> ₁₂	Measurement repeatability	A	t
<i>u</i> ₁₃	Subsequent measurement repeatability	В	Rectangular
<i>u</i> ₁₄	Residual effects (long-term stability, reproducibility)	В	Rectangular
<i>u</i> ₁₅	Calibration of charge amplifier and cable (only for SE type accelerometer)	В	Rectangular

	Туре	500 m/s ²	1,000 m/s ²	2,000 m/s ²	3,000 m/s ²	4,000 m/s ²	5,000 m/s ²	Probability distribution	Degree of freedom	
u_1	В	6.0×10 ⁻³	6.0×10 ⁻³	6.0×10 ⁻³	6.0×10 ⁻³	6.0×10 ⁻³	6.0×10 ⁻³	Normal	infinite	
u_2	A	5.0×10 ⁻²	5.0×10 ⁻²	5.0×10 ⁻²	5.0×10 ⁻²	5.0×10 ⁻²	5.0×10 ⁻²	t	infinite	
из	В	4.3×10 ⁻³	4.3×10 ⁻³	4.3×10 ⁻³	4.3×10 ⁻³	4.3×10 ⁻³	4.3×10 ⁻³	Rectangular	infinite	
И4	В	2.0×10 ⁻¹	2.0×10 ⁻¹	2.0×10 ⁻¹	2.0×10 ⁻¹	2.0×10 ⁻¹	2.0×10 ⁻¹	Rectangular	infinite	
u_5	В	1.5×10 ⁻¹¹	1.5×10 ⁻¹¹	1.5×10 ⁻¹¹	1.5×10 ⁻¹¹	1.5×10 ⁻¹¹	1.5×10 ⁻¹¹	Rectangular	infinite	
и6	В	1.5×10 ⁻⁴	1.5×10 ⁻⁴	1.5×10 ⁻⁴	1.5×10 ⁻⁴	1.5×10 ⁻⁴	1.5×10 ⁻⁴	Rectangular	infinite	
и7	В	1.0×10 ⁻¹	1.0×10 ⁻¹	1.0×10 ⁻¹	1.0×10 ⁻¹	1.0×10 ⁻¹	1.0×10 ⁻¹	Rectangular	infinite	
u_8	В	1.0×10 ⁻¹	1.0×10 ⁻¹	1.0×10 ⁻¹	1.0×10 ⁻¹	1.0×10 ⁻¹	1.0×10 ⁻¹	Rectangular	infinite	
и9	В	2.0×10 ⁻¹	2.0×10 ⁻¹	2.0×10 ⁻¹	2.0×10 ⁻¹	2.0×10 ⁻¹	2.0×10 ⁻¹	Rectangular	infinite	
<i>u</i> ₁₀	В	4.2×10 ⁻²	4.2×10 ⁻²	4.2×10 ⁻²	4.2×10 ⁻²	4.2×10 ⁻²	4.2×10 ⁻²	Rectangular	infinite	
u_{11}	В	1.0×10 ⁻²	1.0×10 ⁻²	1.0×10 ⁻²	1.0×10 ⁻²	1.0×10 ⁻²	1.0×10 ⁻²	Rectangular	infinite	
<i>u</i> ₁₂	A	4.1×10 ⁻⁴	6.7×10 ⁻⁴	2.8×10 ⁻⁴	3.6×10 ⁻⁴	2.4×10 ⁻⁴	1.9×10 ⁻⁴	t	16	
u ₁₃	В	1.5×10 ⁻⁴	5.8×10 ⁻⁴	2.0×10 ⁻⁴	2.8×10 ⁻⁴	1.6×10 ⁻⁴	1.2×10 ⁻⁴	Rectangular	infinite	
<i>u</i> ₁₄	В	4.5×10 ⁻¹	4.5×10 ⁻¹	4.5×10 ⁻¹	4.5×10 ⁻¹	4.5×10 ⁻¹	4.5×10 ⁻¹	Rectangular	infinite	
Relative combined standard uncertainty		0.55	0.55	0.55	0.55	0.55	0.55			
Relative expanded uncertainty (k=2)		1.1	1.1	1.1	1.1	1.1	1.1			

Acceleration m/s ²		Relative standard uncertainty, %													u _c , %	U, % (k=2)
	u_1	u_2	из	2/4	u ₅	<i>u</i> ₆	u 7	u ₈	<i>U</i> 9	<i>u</i> ₁₀	<i>u</i> ₁₁	<i>u</i> ₁₂	и13	u 14		(11-2)
500	6.0×10 ⁻³	5.0×10 ⁻²	4.3×10 ⁻³	2.0×10 ⁻¹	1.5×10 ⁻¹¹	1.5×10 ⁻⁴	1.0×10 ⁻¹	1.0×10 ⁻¹	2.0×10 ⁻¹	4.2×10 ⁻²	1.0×10 ⁻²	4.1×10 ⁻⁴	1.5×10 ⁻⁴	4.5×10 ⁻¹	0.55	1.1
1,000	6.0×10 ⁻³	5.0×10 ⁻²	4.3×10 ⁻³	2.0×10 ⁻¹	1.5×10 ⁻¹¹	1.5×10 ⁻¹¹	1.0×10 ⁻¹	1.0×10 ⁻¹	2.0×10 ⁻¹	4.2×10 ⁻²	1.0×10 ⁻²	6.7×10 ⁻⁴	5.8×10 ⁻⁴	4.5×10 ⁻¹	0.55	1.1
2,000	6.0×10 ⁻³	5.0×10 ⁻²	4.3×10 ⁻³	2.0×10 ⁻¹	1.5×10 ⁻¹¹	1.5×10 ⁻¹¹	1.0×10 ⁻¹	1.0×10 ⁻¹	2.0×10 ⁻¹	4.2×10 ⁻²	1.0×10 ⁻²	2.8×10 ⁻⁴	2.0×10 ⁻⁴	4.5×10 ⁻¹	0.55	1.1
3,000	6.0×10 ⁻³	5.0×10 ⁻²	4.3×10 ⁻³	2.0×10 ⁻¹	1.5×10 ⁻¹¹	1.5×10 ⁻¹¹	1.0×10 ⁻¹	1.0×10 ⁻¹	2.0×10 ⁻¹	4.2×10 ⁻²	1.0×10 ⁻²	3.6×10 ⁻⁴	2.8×10 ⁻⁴	4.5×10 ⁻¹	0.55	1.1
4,000	6.0×10 ⁻³	5.0×10 ⁻²	4.3×10 ⁻³	2.0×10 ⁻¹	1.5×10 ⁻¹¹	1.5×10 ⁻¹¹	1.0×10 ⁻¹	1.0×10 ⁻¹	2.0×10 ⁻¹	4.2×10 ⁻²	1.0×10 ⁻²	2.4×10 ⁻⁴	1.6×10-4	4.5×10 ⁻¹	0.55	1.1
5,000	6.0×10 ⁻³	5.0×10 ⁻²	4.3×10 ⁻³	2.0×10 ⁻¹	1.5×10 ⁻¹¹	1.5×10 ⁻¹¹	1.0×10 ⁻¹	1.0×10 ⁻¹	2.0×10 ⁻¹	4.2×10 ⁻²	1.0×10 ⁻²	1.9×10 ⁻⁴	1.2×10 ⁻⁴	4.5×10 ⁻¹	0.55	1.1

Annex D – Frequency response of comparison artefacts

Frequency response of accelerometer chain with a dummy mass of 20 g used in voltage shock sensitivity

Note: Uniformity in the frequency response of Accelerometer Chain with a dummy mass of 20 g (ENDEVCO 2270, S/N 14155 and Brüel & Kjær 2692, S/N 2752215) from 5 Hz to 5 kHz reveals insignificant influence of shock pulse width on voltage shock sensitivity measurement.

Frequency response of accelerometer used in charge shock sensitivity

Note: Non-uniformity in the frequency response of accelerometer PCB 357B03 (S/N LW50432) from 5 Hz to 5 kHz reveals significant influence of shock pulse width on charge shock sensitivity measurement.