#### CCPR Key Comparison CCPR-K3.2014

#### **Luminous Intensity**

### **Final Report**

Arnold Gaertner<sup>1</sup>, Éric Côté<sup>1</sup>, Joaquin Campos<sup>2</sup>, Gaël Obein<sup>3</sup>, Peter Blattner<sup>4</sup>, Reto Schafer<sup>4</sup>, Liu Hui<sup>5</sup>, Jiang Xiaomei<sup>5</sup>, Cameron Miller<sup>6</sup>, Yuqin Zong<sup>6</sup>, Errol Atkinson<sup>7</sup>, Erik Thorvaldson<sup>7</sup>, Kenichi Kinoshita<sup>8</sup>, Rheinhardt Sieberhagen<sup>9</sup>, Irma Rabe<sup>9</sup>, Teresa Goodman<sup>10</sup>, Barry Scott<sup>10</sup>, Armin Sperling<sup>11</sup>, Detlef Lindner<sup>11</sup>, Boris Khlevnoy<sup>12</sup>, Evgeniy Ivashin<sup>12</sup>.

- 1 National Research Council Canada (NRC), Canada (pilot laboratory)
- 2 Instituto de Optica (IO-CSIC), Spain
- 3 Laboratoire Commun de Métrologie (LNE-CNAM), France
- 4 Federal Institute of Metrology (METAS), Switzerland
- 5 National Institute of Metrology (NIM), China
- 6 National Institute of Standards and Metrology (NIST), United States of America
- 7 National Measurement Institute, Australia (NMIA), Australia
- 8 National Metrology Institute of Japan (NMIJ, AIST), Japan
- 9 National Metrology Institute of South Africa (NMISA), South Africa
- 10 National Physical Laboratory (NPL), United Kingdom
- 11 Physikalisch-Technische Bundesanstalt (PTB), Germany
- 12 All-Russian Research Institute for Optical and Physical Measurements (VNIIOFI), Russia

#### Contents

| 1. | Introdu | ction                                                                     |    |  |  |  |  |  |
|----|---------|---------------------------------------------------------------------------|----|--|--|--|--|--|
| 2. | Organiz | zation                                                                    | 4  |  |  |  |  |  |
|    | 2.1.    | Participants, selection                                                   | 4  |  |  |  |  |  |
|    | 2.2.    | Participants, contact information                                         | 4  |  |  |  |  |  |
|    | 2.3.    | Task Group, selection                                                     | 6  |  |  |  |  |  |
|    | 2.4.    | Task Group, duties                                                        |    |  |  |  |  |  |
|    | 2.5.    | Comparison artifacts, selection                                           | 6  |  |  |  |  |  |
|    | 2.6.    | Comparison measurement and analysis components                            |    |  |  |  |  |  |
| 3. | Compar  | rison Procedures and Timetable                                            | 9  |  |  |  |  |  |
|    | 3.1.    | Comparison Protocol                                                       | 9  |  |  |  |  |  |
|    | 3.2.    | Lamp Shipment to Pilot                                                    |    |  |  |  |  |  |
|    | 3.3.    | Lamp Measurement at Pilot                                                 | 10 |  |  |  |  |  |
|    | 3.4.    | Lamp Re-measurement by Participants and Report of Results                 | 10 |  |  |  |  |  |
|    | 3.5.    | Pre-Draft-A Process 1: Verification of Reported Results                   | 10 |  |  |  |  |  |
|    | 3.6.    | Pre-Draft-A Process 2: Review of Uncertainty Budgets                      | 10 |  |  |  |  |  |
|    | 3.7.    |                                                                           |    |  |  |  |  |  |
|    | 3.8.    | . Pre-Draft-A Process 4: Identification of Outliers and Consistency Check |    |  |  |  |  |  |
|    | 3.9.    | Draft A                                                                   | 12 |  |  |  |  |  |
|    | 3.10.   | Comparison Timetable                                                      | 14 |  |  |  |  |  |
| 4. | Measur  | ement Data and Analysis                                                   | 15 |  |  |  |  |  |
|    | 4.1.    | Uncertainty Analysis                                                      | 15 |  |  |  |  |  |
|    | 4.2.    | Participant Lamp Data                                                     | 16 |  |  |  |  |  |
|    | 4.3.    | Measurements at Pilot                                                     |    |  |  |  |  |  |
|    | 4.4.    | Calculation of the KCRV and the DOE                                       |    |  |  |  |  |  |
| 5. | Compar  | rison with 1999 CCPR-K3.a Key Comparison of Luminous Intensity            |    |  |  |  |  |  |
| 6. |         | ry                                                                        |    |  |  |  |  |  |
| 7. | Acrony  | ms                                                                        | 32 |  |  |  |  |  |
| 8. | Referen | ces                                                                       | 32 |  |  |  |  |  |
| 9. | Append  | ices                                                                      | 33 |  |  |  |  |  |
|    | Append  | dix A NMI Reports                                                         |    |  |  |  |  |  |
|    | Append  |                                                                           |    |  |  |  |  |  |
|    | Append  | dix C Summary of Participant Lamp Luminous Intensity Values               |    |  |  |  |  |  |
|    | Append  | dix D Summary of Pilot Measurements of Participant Lamps                  |    |  |  |  |  |  |
|    | Append  | dix E Calculation of the KCRV and the Unilateral DOE                      |    |  |  |  |  |  |

Appendix F Calculation of the Bilateral DOE

#### 1. Introduction

- 1.1 The metrological equivalence of national measurement standards will be determined by a set of key comparisons chosen and organized by the Consultative Committees of the CIPM working closely with the Regional Metrology Organizations (RMOs).
- 1.2 At the 14<sup>th</sup> meeting of the Consultative Committee for Photometry and Radiometry (CCPR) held on 1997-June-10 and 11, several key comparisons in the field of optical radiation metrology were identified. In particular, it decided that luminous intensity/responsivity be considered a Key Comparison (KC) and that the comparisons being piloted by PTB (K3.a Luminous Intensity of lamps) and the BIPM (K3.b Luminous Responsivity of photometers) at that time be treated as Key Comparisons. These first KCs of luminous intensity/responsivity were completed in 1999 [1]. At the 20<sup>th</sup> meeting of the CCPR (2009-September-17, 18), it was decided that a second round of key comparison CCPR-K3 be commenced [2]. The CCPR approved "that for this next round there will be only one CCPR-K3 comparison, called luminous intensity, and the details of the comparison. The task group will be established by the WG-KC and its proposal of comparison artifacts shall be submitted to CCPR for approval."<sup>1</sup> The National Research Council of Canada (NRC) was chosen to pilot this comparison, with the intention that measurements would start in 2012.
- 1.3 The technical protocol was drawn up by the eight-member Task Group (TG) of the participants of the CCPR-K3.2014 key comparison (see Section 2.3.), approved by all the participants, and approved by the WG-KC.
- 1.4 This is the Final Report of the CCPR-K3.2014 Key Comparison. Draft A was reviewed and approved by the participants in 2020-October. The draft B report was reviewed by CCPR WG-KC from 2020-October to 2021-April, including one revision. The Draft B-2 was approved by the CCPR WG-KC on 2021-April-02 and by the CCPR on 2021-November-30.
- 1.5 This report describes the comparison organisation (Section 2), the measurement methods and uncertainties achieved at all the participants and at the pilot (Sections 3 and 4), and the method for analysis and the results of the comparison according to this method (Section 4). It includes a comparison of the results of this comparison with the 1999 comparison [1] (Section 5). Section 6 presents a summary of the comparison.

<sup>&</sup>lt;sup>1</sup> WG-KC = CCPR Working Group on Key Comparisons

### 2. Organization

#### 2.1. Participants, selection

- 2.1.1 The invitation to participate in this comparison was prepared by the pilot laboratory and the WG-KC, and then sent to all CCPR members by Michael Stock, Executive Secretary of the CCPR.
- 2.1.2 The selection process for the participants was guided by the following criteria [4]:
  - 1. The participant must be a member of CCPR.
  - 2. The participant must be willing to serve as a link laboratory to their RMO.
  - 3. The participant must have an independent realization of the unit or scale of the comparison quantity.
  - 4. The participant's measurement capability of the comparison quantity, over the full range of the comparison (e.g., full spectral range), must be listed in the CMC table published at the time of the call for participants.
- 2.1.3 Since the number of applications exceeded the maximum of 12, the RMO Groups were requested by the pilot to select the maximum number of participants in accordance with the following Table One [4]:

|                               | Table One      |                                |  |  |  |
|-------------------------------|----------------|--------------------------------|--|--|--|
| RMO<br>GroupRMO Group Members |                | Maximum Number of Participants |  |  |  |
| Group 1                       | EURAMET+COOMET | 6                              |  |  |  |
| Group 2                       | APMP+AFRIMETS  | 4                              |  |  |  |
| Group 3                       | SIM            | 2                              |  |  |  |

#### 2.2. Participants, contact information

The final 12 participants selected are given in the following Table Two.

| Table Two |                                                                                                                                             |             |                                   |                                                                 |  |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------|-----------------------------------------------------------------|--|
|           | NMI                                                                                                                                         | NMI Contact |                                   |                                                                 |  |
| NMI       | Address                                                                                                                                     | RMO         | Name                              | Address                                                         |  |
| NMISA     | National Metrology Institute of South<br>Africa<br>Building 5, CSIR Campus<br>Meiring Naudé Road, Brummeria, 0184<br>Pretoria, South Africa | AFRIMETS    | Sieberhagen,<br>Dr.<br>Rheinhardt | TEL: +27 12 841 3618<br>EMAIL:<br><u>rsieberhagen@nmisa.org</u> |  |
| NIM       | National Institute of Metrology, China<br>No. 18, Bei San Huan Dong Lu<br>Chaoyang Dist<br>Beijing, P.R.China 100029                        | APMP        | Hui, Mrs. Liu                     | TEL: 86-10-64524830<br>EMAIL:<br><u>liuhui@nim.ac.cn</u>        |  |

|              |                                                                                                                                                                                                                                                                             |         | 1                                          |                                                                                                                  |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| NMIA         | National Measurement Institute,<br>Australia<br>36 Bradfield Rd,<br>West Lindfield, NSW 2070,<br>AUSTRALIA                                                                                                                                                                  | APMP    | Manson,<br>Dr. Peter                       | TEL: +61 2 8467 3858<br>EMAIL:<br>peter.manson@measurement.gov.au                                                |
| NMIJ         | Optical Radiation Section<br>Photometry and Radiometry Division<br>National Metrology Institute of Japan<br>(NMIJ)<br>National Institute of Advanced Industrial<br>Science and Technology (AIST)<br>Tsukuba Central 3-1, 1-1-1 Umezono,<br>Tsukuba, Ibaraki, 305-8563 Japan | APMP    | Kinoshita,<br>Dr. Kenichi                  | TEL: +81 29 861 4082<br>EMAIL:<br><u>kenichi.kinoshita@aist.go.jp</u>                                            |
| IO-CSIC      | Instituto de Optica (IO, CSIC)<br>Serrano, 144.<br>28006 Madrid, Spain                                                                                                                                                                                                      | EURAMET | Pons, Dr. Alicia<br>Campos,<br>Dr. Joaquin | TEL: +34 915618806<br>EMAIL:<br>apons@io.cfmac.csic.es<br>TEL: +34 915616800<br>EMAIL:<br>joaquin.campos@csic.es |
| LNE-<br>CNAM | LNE-CNAM<br>Laboratoire Commun de Métrologie<br>(LCM)<br>61, rue du Landy<br>93210 La Plaine Saint Denis, France                                                                                                                                                            | EURAMET | Obein, Dr. Gaël                            | TEL: +33 1 58 80 87 88<br>EMAIL:<br>gael.obein@lecnam.net                                                        |
| METAS        | Federal Institute of Metrology METAS<br>Lindenweg 50<br>CH-3084 Wabern, Switzerland                                                                                                                                                                                         | EURAMET | Blattner,<br>Dr. Peter                     | TEL: +41 58 387 03 40<br>EMAIL:<br>peter.blattner@metas.ch                                                       |
| NPL          | National Physical Laboratory<br>Hampton Road<br>Teddington, Middlesex<br>TW11 0LW United Kingdom                                                                                                                                                                            | EURAMET | Goodman,<br>Ms Teresa                      | TEL: +44 (0)20 8943 6813<br>EMAIL:<br>teresa.goodman@npl.co.uk                                                   |
| РТВ          | Physikalisch-Technische Bundesanstalt<br>Bundesallee 100<br>38116 Braunschweig, Germany                                                                                                                                                                                     | EURAMET | Sperling,<br>Dr. Armin                     | TEL: +49 531 592 4120<br>EMAIL:<br><u>armin.sperling@ptb.de</u>                                                  |
| VNIIOFI      | All-Russian Research Institute for<br>Optical and Physical Measurements<br>(VNIIOFI)<br>46 Ozernaya Str.<br>119361 Moscow, RUSSIA                                                                                                                                           | COOMET  | Khlevnoy,<br>Dr. Boris                     | TEL: +7 (495) 437-29-88<br>EMAIL:<br><u>Khlevnoy-m4@vniiofi.ru</u>                                               |
| NIST         | National Institute of Standards and<br>Technology<br>100 Bureau Drive, MS 8442<br>Gaithersburg, MD 20899 USA                                                                                                                                                                | SIM     | Miller,<br>Dr. Cameron                     | TEL: +1 301-975-4713<br>EMAIL:<br><u>c.miller@nist.gov</u>                                                       |
| NRC          | National Research Council of Canada<br>NRC Metrology<br>1200 Montreal Road, Building M36<br>Ottawa, Ontario, Canada K1A 0R6                                                                                                                                                 | SIM     | Gaertner,<br>Dr. Arnold                    | TEL: +1 613-993-9344<br>EMAIL:<br>arnold.gaertner@nrc-cnrc.gc.ca                                                 |

#### 2.3. Task Group, selection

The Chair of the WG-KC requested that a subset of the 12 participants be appointed to serve on the Task Group (TG). The following eight NMIs requested to serve on the TG and were appointed by the Chair of the WG-KC:

- METAS Federal Office of Metrology, Switzerland
- NIM National Institute of Metrology, China
- NIST National Institute of Standards and Technology, USA
- NMIA National Measurement Institute, Australia
- NMIJ National Metrology Institute of Japan
- NPL National Physical Laboratory, UK
- NRC National Research Council of Canada, pilot
- PTB Physikalisch-Technische Bundesanstalt, Germany

#### 2.4. Task Group, duties

- 2.4.1 Decide upon the type of artifact (lamps or photometers), and obtain CCPR approval.
- 2.4.2 Draft the technical protocol for the comparison.

#### 2.5. Comparison artifacts, selection

- 2.5.1 <u>Type of artifact:</u> In response to the Call for Participants, eight of the participants had indicated a preference for standard lamps as the comparison artifact, two of the participants had indicated a preference for photometers as the comparison artifact, and two of the participants had indicated that they had no preference. The TG discussed the suitability of photometers and lamps to represent a key comparison of luminous intensity. After some (email) discussions, the TG selected standard lamps to be the comparison artifact. This decision, together with a summary report of the discussions, was submitted to the full CCPR for their approval, which was subsequently received.
- 2.5.2 <u>Type of lamp</u>: The pilot undertook a survey of all twelve participants in the comparison to determine the number and type of lamps that the participants wished to use for the comparison. Based upon the responses to this survey of the CCPR-K3.2014 participants, the comparison included both the Osram Wi41/G lamp and the NPL/Polaron Heavy Current LIS incandescent lamp. The minimum set of any traveling standards used for this comparison was a group of four lamps, with a set of six lamps recommended.
- 2.5.3 <u>Type of comparison</u>: Because of the fragile nature of the incandescent lamps, the comparison was organised as a star comparison. Each participant was required to supply their own comparison artifacts. Any individual lamp was measured by the pilot and by one participating NMI, only. The participants were requested to measure each travelling standard on at least two occasions and the pilot was also asked to make measurements on two occasions to obtain some information about the lamp stability.

For the comparison, the measurement sequence NMI - Pilot - NMI was taken to achieve the comparison results. Due to multiple measurements with a group of at least four lamps for each participant, it was expected that the uncertainties due to the comparison itself could be reduced by averaging.

#### 2.6. Comparison measurement and analysis components

2.6.1 <u>Pilot laboratory measurement</u>. The detailed information concerning the measurements at the pilot laboratory has been presented in the Technical Protocol for the comparison. It was the

intent of the pilot laboratory to measure all lamps from all participants under as identical conditions as possible. To this end, the measurements at the pilot did not commence until all NMI travelling standard lamps had been received at the pilot laboratory, and all lamps were then measured sequentially using the same measurement set-up, over a time period of approximately 2 months. The NMI lamps were measured upon at least two occasions for all NMIs and several lamp sets were measured three times.

The quantity compared using this setup was the photometer signal produced by the optical radiation of each lamp. This procedure does not compare the lamps to any photometric scale of the pilot laboratory, so that the lamps from the pilot NMI may be considered on an equal basis to all NMI participants. Since near-identical measurement conditions were used for each lamp, the photometer signal gives a direct comparison of all NMI lamps. Two photometers were used, sequentially at each measurement, to provide a measurement and equipment check. The measurement results from the two photometers over the two-month time period also provided information concerning the stability of the comparison reference scale. Additional information concerning the stability of this scale was determined from extra repeat measurement of the pilot lamps, and the repeat measurements of the NMI lamps also gave an indication of the scale stability.

2.6.2 <u>Comparison analysis:</u> The fundamental outcomes of a key comparison are the Key Comparison Reference Value (KCRV), the unilateral Degrees of Equivalence (DOEs) between each NMI and the KCRV, and the bilateral DOEs between pairs of NMIs.

The measurement procedure presented above results in a photometer responsivity  $R_{i,j,m}$  in units of (cd/V) for each measurement. In this symbol, *i* is the NMI number (*i*=1 to 12), *j* is the NMI lamp number (*j*=1 to number of lamps submitted by the NMI), and *m* is the measurement number of that lamp at the pilot (*m*=1 to number of times the lamp was measured at the pilot laboratory). The candela values are the values for each lamp as obtained from the measurements submitted by the NMIs.

An average (weighted mean) value  $R_i$  is determined for each NMI. This ensures that each NMI is treated equitably and that the results do not depend upon the number of lamps submitted by the NMI, nor the number of times the lamps were measured at the pilot laboratory. However, the uncertainties associated with the final  $R_i$  for each NMI will depend upon both the number of lamps and the number of repeat measurements since the uncorrelated (random) aspects will be affected.

The KCRV is then determined from these 12 values of  $R_i$ . In this comparison, the luminous intensity scale of one of the NMIs (NMISA) was not their own independent realization. Consequently, a tentative KCRV was determined from the remaining 11 NMIs. The DOEs can be determined for all 12 participants. The KCRV determined from the  $R_i$  is the responsivity  $R_{KCRV}$  (cd/V) of the pilot photometer as determined by the measurement of a *virtual* KCRV Luminous Intensity lamp measured under the same conditions as the NMI lamps.

The uncertainties in the determination of this KCRV are based upon the combination of three basic uncertainties applied to the  $R_{i,j}$  measurements of each lamp: (1) the uncertainties in the luminous intensity calibration of each NMI travelling standard as determined from the measurements of each NMI, (2) the uncertainties of the comparison measurements made at the pilot laboratory, and (3) an estimate of each lamp's repeatability as determined from the measurements at the pilot laboratory. These uncertainties are combined to produce the uncertainties in the weighted mean  $R_i$  for each participant.

The determination of the initial tentative KCRV for this comparison was made according to the CCPR guidelines [6], using only the data for the 11 NMIs as indicated above. It is based upon a weighted mean with 'cut-off'. The weights are determined based upon the NMI reported uncertainties adjusted by the cut-off, combined with the transfer uncertainty of the comparison and the uncertainty caused by the estimated lamp reproducibility observed during the measurements at the pilot lab. The cut-off value for the NMI uncertainty is determined as the average of the uncertainty values of those participants that reported uncertainties smaller than or equal to the median of all the participants.

This initial KCRV was then tested for statistical consistency with the measurement results using two criteria [6]: testing for statistical 'outliers', and testing for statistical indications of under-estimated uncertainties.

As indicated in the CCPR-G2 guidelines [6], Pre-Draft-A Process 4, an 'obvious outlier' was defined as participant results whose  $R_i$  deviated from the KCRV by more than 3 times its associated expanded (k=2) uncertainty. There were no 'obvious outlier' participants.

The CCPR-G2 guidelines [6] defined the Chi-Square ( $\alpha$ =0.05) test as the statistical indication of under-estimated uncertainties. This test failed for the measurement data. It was observed that a large contribution to the Chi-Square (observed) for the measurements was due to the results from one participant, whose contribution to the Chi-square (observed) was more than one-half the total. In addition, although not an outlier, their  $R_i$  deviation from the KCRV was close to 3 times its' associated expanded (k=2) uncertainty. The comparison participants agreed that the results from this NMI would not be used to determine the KCRV, although the DOE for their results would be determined.

A new tentative KCRV was then calculated from the results of the remaining 10 participants and the statistical tests were re-applied. The Chi-square (observed) test again failed and the Mandel-Paule method was applied as suggested in the CCPR-G2 guidelines [6]. The additional uncertainty required to enable the Chi-square (observed) to pass the test was determined to be reasonable and the participants agreed to use this procedure to determine the KCRV for this comparison.

After the publication of Draft A v1.0, LNE-CNAM pointed out that the results for their transfer lamps deviated much farther from the KCRV than could be expected based upon their previous experience and measurements. It was noted that their results were for the participant identified above with  $R_i$  deviation from the KCRV close to 3 times its' associated expanded (k=2) uncertainty. It was also noted that for the shipment of lamps from LNE-CNAM, two lamps of the Polaron-type were received broken at NRC, and that one of the Osram-type lamps indicated significant changes when re-measured at LNE-CNAM after the pilot measurements, indicating that the entire shipment of their lamps had experienced a severe shock during the shipment from LNE-CNAM to the pilot. They considered it highly likely that the remaining 3 lamps would have suffered a short-term instability that would not have been noticed during the comparison measurement sequence, and requested that the results for their lamps be withdrawn from the comparison. This was accepted by the participants. This request did not affect the calculations for the KCRV or the DOE, since, as discussed above, the results from LNE-CNAM were considered 'outlier' data and not included in these calculations.

### 3. Comparison Procedures and Timetable

#### 3.1. Comparison Protocol

The protocol was approved by the comparison participants on 2013-October-25 and submitted to the CCPR WG-KC for their approval. After some minor edits, the protocol was approved by the CCPR WG-KC on 2014-January-14. This was then submitted to the BIPM KCDB Coordinator and registered on 2014-January-17.

#### 3.2. Lamp Shipment to Pilot

The first lamps were received at NRC on 2014-March-13 and the last set of lamps was received on 2014-August-26. The lamps were hand-carried by four NMIs and shipped by seven NMIs. All lamps were checked visually and electrically for electric continuity of the filaments. In the shipment of lamps from LNE-CNAM, two lamps of the Polaron-type were received broken at NRC. These lamps were attached to heavy sockets that had broken loose from their shipping mounting and the lamps had broken at the glass to metal joint of the lamp base. We received a total of 56 Osram-type lamps and 6 Polaron-type (not including the broken lamps) lamps from the 11 NMIs that delivered lamps to NRC. Together with the 6 lamps from the pilot that did not travel, the total number of lamps received was 62 Osram-type lamps and 6 Polaron-type (not including the broken lamps) lamps. A list of the lamps received is given in the following Table Three. The column labelled 'Final' is explained in Section 3.7.

| Table Three |                 |                |                |                 |                |                |
|-------------|-----------------|----------------|----------------|-----------------|----------------|----------------|
| NMI         | Number of Lamps |                |                |                 |                |                |
|             | Osram           | Polaron        | Final          | Transportation  | Receipt        | Returned       |
| NMISA       | 4               | 0              | 4/0            | Ship            | 2014-Aug-26    | 2015-Jun-19    |
| NIM         | 6               | 0              | 5/0            | Hand Carry      | 2014-Mar-19    | 2015-Apr-16    |
| NMIA        | 6               | 0              | 5/0            | Ship            | 2014-Mar-18    | 2015-Feb-19    |
| NMIJ        | 6               | 0              | 5/0            | Ship            | 2014-Mar-21    | 2015-Jan-26    |
| VNIIOFI     | 6               | 0              | 6/0            | Ship            | 2014-Apr-23    | 2015-Feb-19    |
| IO-CSIC     | 4               | 2 <sup>1</sup> | 4/1            | Ship            | 2014-Mar-21    | 2015-Feb-27    |
| LNE-CNAM    | 3 <sup>2</sup>  | 32             | 0 <sup>2</sup> | Ship/Hand Carry | 2014-Apr-10    | 2015-Apr-24    |
| METAS       | 6               | 0              | 6/0            | Ship            | 2014-Mar-13/19 | 2015-Feb-12/20 |
| NPL         | 2               | 3              | 2/3            | Hand Carry      | 2014-May-05    | 2015-Jul-30    |
| РТВ         | 6               | 0              | 6/0            | Hand Carry      | 2014-Apr-14    | 2015-Jun-01    |
| NIST        | 7               | 0              | 6/0            | Hand Carry      | 2014-Apr-16    | 2015-Mar-06    |
| NRC         | 6               | 0              | 6/0            | No travel       |                |                |
| Total       | 62              | 8              | 55/4           |                 |                |                |

One of the Polaron lamps from IO-CSIC failed during measurements at the Pilot lab.

<sup>2</sup> Two of the Polaron lamps shipped from LNE-CNAM were received broken at the Pilot lab. As a result the remaining lamps were hand carried by LNE-CNAM for the return to LNE-CNAM. Upon their return measurements, they observed a large change in one of the Osram lamps and asked to have it removed from the comparison. After the publication for Draft A v1.0 it was agreed to remove all the LNE-CNAM lamps from the comparison. See Section 2.6.2.

#### 3.3. Lamp Measurement at Pilot

All the lamps were measured from 2014-November to 2015-January. All the Osram-type lamps were measured first, at least two times for each lamp, and then all the Polaron-type lamps were measured, also at least two times per lamp. One Polaron-type lamp from IO-CSIC failed during the measurements. On 2015-February-04 the participating NMIs were invited to pick-up, or have shipped, their lamps for their return (round #2) measurements. The first set of lamps was shipped from NRC on 2015-January-26 and the last set of lamps was picked-up from NRC on 2015-July-30.

#### 3.4. Lamp Re-measurement by Participants and Report of Results

All participants re-measured their lamps (Round #2) and sent their measurement results, together with the measurement facility information, scale traceability and uncertainty budget to the Pilot by 2015-November-30. As a result of their return measurements, LNE-CNAM observed a large change in one of their Osram lamps and requested that it be removed from the comparison (see Appendix A). This was approved by all participants by 2018-October-15.

The NMI submissions concerning their measurement facility information, scale traceability and uncertainty budgets are presented in Appendix A. The uncertainty budgets given in Appendix A may contain the additional information requested as a result of the Pre-Draft-A Process 2 review of uncertainty budgets (see section 3.6 below) by all NMIs.

#### 3.5. Pre-Draft-A Process 1: Verification of Reported Results

The Pilot assembled the data received from each participant and sent to each participant, individually, their reported values as received by the Pilot, for their verification. With some minor modifications, the results received and used by the pilot were confirmed by 2016-February-09.

#### 3.6. Pre-Draft-A Process 2: Review of Uncertainty Budgets

The pilot distributed to all the participants the uncertainty budgets of all the participants to allow them to review all the uncertainty budgets and request further information if deemed necessary. Comments were sent to the pilot who then assembled all the comments and forwarded the comments anonymously to the participant being asked and copied to all participants. The comments received requested more information from many of the participants. Replies were received from the participants involved, assembled and reported to all participants, who were then given a further opportunity to respond. During this process the participants agreed to the request of one participant (VNIIOFI) to change their reported luminous intensity values as a result of an evaluation of their uncertainty budget. The revised VNIIOFI luminous intensity values and uncertainties are those given in Appendix A.

The results of this PDA Process 2 are presented in Appendix B. This contains both the review comments (shown in black type) and the responses received from the NMIs (shown in

red type). It also includes the reason for the changes in VNIIOFI luminous intensity and uncertainty values. PDA Process 2 was completed by 2016-July-11.

#### 3.7. Pre-Draft-A Process 3: Review of Relative Data

The pilot lab prepared the "Relative Data" of each participant, which are the data reduced to show only the stability of transfer standards for each participant before (Round #1) and after travel (Round #2) and the internal consistency of all the transfer standards measured at each participant lab. The "Relative Data" for all participants was distributed to all participants without identifying any of the participants.

As a response to this data, there were three requests to remove a lamp from the comparison, one request to change the reported Luminous Intensity of a lamp, and one request to use only data from the first set (Round #1) of measurements by the NMI.

- 1. NMIJ requested removal of their lamp #69 due to the large change in value between their Round #1 and Round #2 measurements.
- 2. NMIA requested removal of their lamp S14 due to the large change in value between their Round #1 and Round #2 measurements.
- 3. After some discussion among the participants, NIM requested removal of their lamp G-1071 due to the large difference in the relative value of this lamp between the Pilot and NIM. It was concluded that this difference was due to a difference in the construction of this lamp from their other lamps that caused the measurement setups at the two laboratories (Pilot and NIM) to produce different results.
- 4. IO-CSIC requested a change in the Luminous Intensity value given to their lamp A454 for the Round #2 measurements. They traced this to be caused by the use of the incorrect value for the resistance of their standard resistor used to measure the lamp current (see Appendix A).
- 5. NPL compared the relative data and their repeat (R#1, R#2) measurements and concluded that 2 lamps (Wotan lamps 877 and 890) had changed after the pilot measurements. Thus the R#1 data could still be used, but the R#2 data removed (see Appendix A).

After some discussion, these changes were accepted by all the participants (2017-February-09). This explains the values in the 'Number of Lamps/Final' column in Table Three above. The values for LNE-CNAM are explained in Section 2.6.2 above.

#### 3.8. Pre-Draft-A Process 4: Identification of Outliers and Consistency Check

#### 3.8.1 <u>Pre-Draft-A Process 4: Identification of outliers:</u>

A tentative KCRV was calculated by the pilot using the procedure described above in Section 2.6.2. There were no 'obvious outliers', as pre-defined in the CCPR-G2 Guideline [6], whose average  $R_i$  deviated from the tentative KCRV by as much as 6 times (k=1) the associated uncertainty for  $R_i$ .

#### 3.8.2 <u>Pre-Draft-A Process 4: Consistency check</u>:

The consistency check of the data with the initial tentative weighted mean KCRV, using the Chi-square ( $\alpha$ =0.05) test defined in the CCPR-G2 Guideline [6], resulted in  $\chi^2_{obs} \approx 45.4$ . This was larger than the  $\chi^2_{0.05}(\nu = 10) \approx 18.3$  consistency check indicated in the example in Appendix B of the CCPR-G2 Guideline [6]. Since the data fails this Chi-square test, the Guideline then suggests the use of the Mandel-Paule method, applying an additional "interlaboratory variance"  $s^2$  to all the participant uncertainties that will force the data set to pass the Chi-square test. However, it was noted that more than one-half of this  $\chi^2_{obs}$  was due to the

results of the measurements on the lamps from one NMI. It was also noted that the measurements of these particular lamps showed a deviation from the tentative KCRV that were close to the 6 times (k=1) their associated uncertainty for  $R_i$ .

Considering the possibility of removing this data from the calculation of the KCRV, the data was reanalyzed for a tentative KCRV based upon the remaining 10-participant data. This resulted in  $\chi^2_{obs} \approx 18.3$ , which is only slightly higher than the  $\chi^2_{0.05}(\nu = 09) \approx 16.9$  given in the table in the example Appendix B of the CCPR-G2 Guideline [6].

The pilot then conveyed this data to the participants (2019-March-11), and suggested that the comparison KCRV be based upon the measurements of the 10 participants whose data resulted in the  $\chi^2_{obs}$  close to the CCPR-G2 guideline [6]. Replies were received from 4 of the participants, all of whom approved the determination of the KCRV from the data of the remaining 10 participants. Several replies recommended, noting the requirement of the CCPR-G2 guideline [6], that since the  $\chi^2_{obs}$  was still higher than 16.9, that the Mandel-Paule method be applied to reduce the  $\chi^2_{obs}$  to the  $\chi^2_{0.05}(\nu = 09) \approx 16.9$  given in the table in the example Appendix B of the CCPR-G2 Guideline [6].

The pilot then performed the analysis to include the Mandel-Paule uncertainty. It was determined that the additional uncertainty required to reduce the  $\chi^2_{obs}$ , from approximately 18.3 to approximately 16.9, was small, approximately 0.06%, and that the changes in the KCRV and the unilateral degrees of equivalence were also small, approximately 0.0014%. This uncertainty could be explained as an adjustment due to 'uncertainties' in calculating the uncertainties. The pilot then proposed that the data analysis for the Draft A comparison report would include the Mandel-Paule adjustment of the uncertainties of the comparison. The participants agreed (2019-May-24) to this procedure to determine the KCRV and DOEs for this comparison.

#### 3.8.3 <u>Pre-Draft-A Process 4: Inconsistent Data Issues</u>:

At this point it can be noted that the inconsistent data were from the measurements of the lamps submitted by LNE-CNAM. As indicated above in Section 3.2, two of the Polaron lamps shipped from LNE-CNAM were received broken at the Pilot laboratory. In addition, as indicated above in Section 3.4, LNE-CNAM observed, upon their return measurements, a large change in one of their Osram lamps between their pre-shipment and after return measurements, and requested that this lamp be removed from the comparison.

The return measurements at LNE-CNAM for the remaining 3 lamps did not indicate a change in these lamps larger than they would expect from the uncertainties in their measurements. Consequently, this comparison cannot choose between an actual difference in the luminous intensity scale at LNE-CNAM with respect to the KCRV, and the possibility that the lamps were damaged during their transit to the pilot laboratory and subsequently 'annealed' during the measurements performed at the pilot and then at LNE-CNAM upon their return, which was done by hand-carrying the lamps.

#### 3.9. Draft A

3.9.1 Draft A v1.0

Draft A v1.0 was prepared and sent on 2019-July-24 to all participants for review. As a results of comments received the next version of Draft A was prepared.

#### 3.9.2 <u>Draft A v2.0</u>

Draft A v2.0 was prepared as described below and sent on 2020-January-09 to all participants for their review.

3.9.2.1 <u>Removal of LNE-CNAM results:</u>

As discussed in Section 2.6.2 above, after the publication of Draft A v1.0, LNE-CNAM pointed out that the results for their transfer lamps deviated much farther from the KCRV than could be expected based upon their previous experience and measurements. Noting the shock that their shipment of lamps had sustained upon shipment to the pilot, causing the breakage of some lamps, they requested that the results for all their lamps be removed from the comparison. This was agreed to by the participants. This request did not affect the calculations for the KCRV or the DOE, since, as discussed above, the results from LNE-CNAM were considered 'outlier' data and not included in these calculations.

#### 3.9.2.2 Adjustment of Weighting Factors used for Weighted Means of Participant Data:

Participant measurement data is combined at two stages: i) the combination of Round #1 and Round #2 values for each lamp, and ii) the combination of the results for all lamps used by a participant into a final value for the participant. The weights used in Draft A v1.0 for each of these combinations was the usual statistical inverse square of the (absolute) uncertainties of the luminous intensities. It was noted that this caused an issue with the combination of results of all lamps for participants that used both the Osram-type lamps and the Polaron-type lamps. If the lamps all have the same fractional luminous intensity uncertainties, but quite different luminous intensities, the weights for the higher intensity (Type Polaron) lamps are considerably smaller than the weights for the Osram-type lamps if absolute uncertainties are used. It was requested that fractional uncertainties be used for these calculations in order to provide a more equal weighting of all lamps used by the participant. This will have an almost negligible effect for participants that only sent one type of lamp, but will affect those that sent both types of lamps. For Draft A v2.0, fractional uncertainties are used for the combination of the results for all lamps used by a participant.

#### 3.9.2.3 Uncertainty Analysis:

The uncertainty analysis, presented in Section 4, combines the many uncertainty components of the participant and pilot measurements. Concern was expressed that the use of the terms Type A, Type B, uncorrelated and correlated were inconsistently and incorrectly applied by both the participants and the pilot in the uncertainty analysis. The explanation and analysis in Section 4 has been reworked to provide more clarity in the procedures used in the preparation of this report. In particular, the use of the terms Type A and Type B has been avoided since they describe the origins/evaluations of uncertainties, whereas the combination of uncertainties requires the use of the correlations or non-correlations between variables. The predominant changes in calculations were made in the combination of participant uncertainties for each lamp into a final participant uncertainty (Section 4.2.3), and in the calculation of the pilot transfer uncertainty (Section 4.3.4). These changes had very little effect on the DOEs and their uncertainties from the values presented in Draft A v1.0.

#### 3.9.3 Draft A v2.1

As a results of comments upon Draft A v2.0, a slightly modified version, Draft A v2.1, was prepared. This version corrected the mathematical application of the split of the uncorrelated component of each participant lamp into correlated and uncorrelated components as described in Section 4.2.3. If a fraction f of the original uncorrelated component is taken as the final uncorrelated component, then a fraction  $\sqrt{(1-f^2)}$  of the original uncorrelated

component must be taken as the additional correlated component in order to keep the total final uncertainty for each lamp the same before and after the split. This correction (f=0.5) had a negligible effect upon the results.

As a result of further comments concerning the preparation of participant uncertainty analyses and the separation of uncertainties into correlated and uncorrelated components at various stages of uncertainty combination, an additional paragraph was added to the Summary.

#### 3.10. Comparison Timetable

| Table Four                                                                                                                                |                         |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--|--|--|
| Comparison Timetable                                                                                                                      | Comparison Timetable    |  |  |  |
| Activity (responsibility)                                                                                                                 | Completion Date         |  |  |  |
| Call for participants (CCDD)                                                                                                              | Start 2010-September-06 |  |  |  |
| Call for participants (CCPR)                                                                                                              | End 2010-October-31     |  |  |  |
| Finalise participants (pilot)                                                                                                             | 2011-March-10           |  |  |  |
| Finalise and appoint Task Group (chair of WG-KC)                                                                                          | 2011-April-15           |  |  |  |
| Choice of comparison artifact (TG)                                                                                                        | 2011-August-23          |  |  |  |
| CCPR approval of comparison artifact (CCPR)                                                                                               | 2011-September-17       |  |  |  |
| Develop draft Protocol (TG)                                                                                                               | 2013-July-31            |  |  |  |
| Approval of draft Protocol by all participants (pilot, participants)                                                                      | 2013-October-25         |  |  |  |
| Protocol approved by CCPR WG-KC (WG-KC)                                                                                                   | 2014-January-14         |  |  |  |
| Submit KCDB entry form and technical protocol to CCPR<br>Executive Secretary for Registration of CCPR-K3.2014 with<br>KCDB office (pilot) | 2014-January-17         |  |  |  |
| Receipt of calibrated traveling standards by pilot (participants)                                                                         | 2014-August-26          |  |  |  |
| Maanuant of antioinents' traveling stor douds (rilet)                                                                                     | Start 2014-November     |  |  |  |
| Measurement of participants' traveling standards (pilot)                                                                                  | End 2015-January        |  |  |  |
| Return of traveling standards to participants (pilot/participants)                                                                        | 2015-July-30            |  |  |  |
| Repeat measurements of traveling standards (participants)                                                                                 | Start 2015-February     |  |  |  |
| Participant data received by pilot (participants)                                                                                         | 2015-November-30        |  |  |  |
| Pre-Draft A Process 1: Verification of reported results (pilot)                                                                           | 2016-January-12         |  |  |  |
| Pre-Draft A Process 1: Response to 'Verification' (participants)                                                                          | 2016-February-09        |  |  |  |
| Pre-Draft A Process 2: Distribution of uncertainty budgets (pilot)                                                                        | 2016-February-23        |  |  |  |
| Pre-Draft A Process 2: Response to Review of uncertainty budgets,<br>with one iteration (participants)                                    | 2016-July-11            |  |  |  |

| Pre-Draft A Process 3: Distribution of "Relative Data" (pilot)                               | 2016-July-28     |
|----------------------------------------------------------------------------------------------|------------------|
| Pre-Draft A Process 3: Response to "Relative Data" (participants)                            | 2017-February-09 |
| Pre-Draft A Process 4: Identification of outliers and consistency check (pilot/participants) | 2019-May-24      |
| Distribution of Draft A v1.0(pilot)                                                          | 2019-July-24     |
| Review of Draft A v1.0 (participants)                                                        | 2020-January-09  |
| Distribution of Draft A v2.0(pilot)                                                          | 2020-January-28  |
| Review of Draft A v2.0 (participants)                                                        | 2020-March-02    |
| Distribution of Draft A v2.1(pilot)                                                          | 2020-March-19    |
| Review of Draft A v2.1 (participants)                                                        | 2020-October-09  |
| Approval of final Draft A (participants)                                                     | 2020-October-09  |
| Submit Draft B to CCPR WG-KC for approval (pilot)                                            | 2020-October-15  |
| Review of Draft B (CCPR WG-KC)                                                               | 2021-February-24 |
| Submit Draft B-2 to CCPR WG-KC for approval (pilot)                                          | 2021-March-11    |
| Review of Draft B-2 (CCPR WG-KC)                                                             | 2021-April-02    |
| Approval of Draft B-2 (CCPR WG-KC)                                                           | 2021-April-02    |
| Submit Draft B-2 to CCPR for approval (pilot)                                                | 2021-April-08    |
| Approval of Draft B-2 (CCPR)                                                                 | 2021-November-30 |
| Publication of final report                                                                  | 2022-May-20      |
|                                                                                              |                  |

### 4. Measurement Data and Analysis

The comparison data is discussed under three basic components: the data received from each participant concerning the lamps submitted, the measurement/comparison of all these lamps at the pilot laboratory, and the repeatability of each lamp as determined by the measurements at the pilot laboratory.

#### 4.1. Uncertainty Analysis

Participants were requested to submit uncertainty values, separated into the random (uncorrelated) and the systematic (correlated) components, for each of their lamp measurements. These components were carried throughout the analysis of the data. Weighted means were determined for most quantity values. If we use the function f to be the weighted mean of the quantities  $x_i$ , and use normalised weights  $\omega_i$ , we can calculate the uncertainties for the function f as:

$$f = \sum_{i=1}^{n} \omega_i \cdot x_i \tag{1}$$

$$\frac{\partial f}{\partial x_i} = \omega_i \tag{2}$$

$$u_{uc}^{2}(f) = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_{i}}\right)^{2} \cdot u_{uc}^{2}(x_{i}) = \sum_{i=1}^{n} \omega_{i}^{2} \cdot u_{uc}^{2}(x_{i})$$
(3)

$$u_c^2(f) = \left[\sum_{i=1}^n \left(\frac{\partial f}{\partial x_i}\right) \cdot u_c(x_i)\right]^2 = \left[\sum_{i=1}^n \omega_i \cdot u_c(x_i)\right]^2 \tag{4}$$

The subscripts uc and c indicate uncorrelated and correlated, respectively. These uncorrelated and correlated uncertainties can be carried into subsequent calculations as appropriate. The final total uncertainty for the function f is given by the combination:

$$u_T^2(f) = \{ (\sum_{i=1}^n \omega_i^2 \cdot u_{uc}^2(x_i)) + ([\sum_{i=1}^n \omega_i \cdot u_c(x_i)]^2) \}$$
(5)

#### 4.2. Participant Lamp Data

- 4.2.1 Participant Lamp Luminous Intensity values for each measurement round
- For each round, participants were requested to make at least 2 independent (after full realignment) sets of measurements of luminous intensity on each lamp and to record/report the results, with uncertainties, in their submission of data to the pilot. Some of the participants submitted the data for each set of measurements. In these cases, the pilot was able to calculate weighted means and uncertainties, with weights determined from the uncorrelated uncertainties, as indicated in Section 4.1 above. The random/systematic components submitted by the participants were directly used as uncorrelated/correlated for these calculations. Some participants indicated that they had performed several sets of measurements, but only submitted the final values determined from these sets of measurements. In these cases, the pilot used the participants' values as the final values for the luminous intensity for each lamp.

#### 4.2.2 <u>Participant Lamp Luminous Intensity values: combined Round#1 and Round#2</u>

The final comparison value of the luminous intensity of each lamp was determined as the weighted mean of the values obtained from each round (Section 4.2.1), with the uncorrelated and the correlated uncertainties for this final value determined as indicated in Section 4.1 above. The pilot assumed that the same random/systematic (uncorrelated/correlated) uncertainties submitted by the participants for each lamp were the same for each round. This does have the effect of reducing the uncorrelated uncertainty for the final luminous intensity of each lamp. Some participants indicated the final values they applied to their lamps from the results of both rounds. In these cases, the pilot used the participant values as the final values.

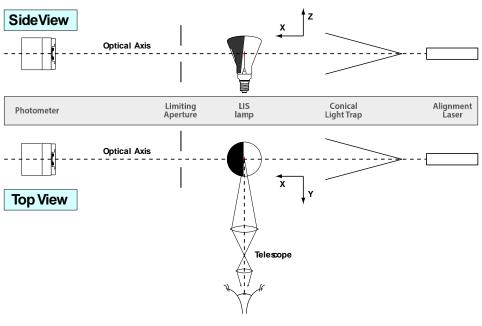
#### 4.2.3 Average Uncertainty of Measurement for each participant

The uncertainty in each participant's representative luminous intensity 'scale', exemplified by the uncertainties in the luminous intensity values of each lamp, as determined in Section 4.2.2 above, can be determined using equations (3) to (5). If fractional standard uncertainties are used for the  $u_{uc}(x_i)$  and the  $u_c(x_i)$  in equations (3) and (4), the final fractional standard uncertainty of the participant representative luminous intensity, as embodied in the travelling standard lamps, can be determined with equation (5). This enables the combination of uncertainties from lamps with different luminous intensities, especially if the participant used both Osram and Polaron lamps.

In Draft A v1.0 the weights used were determined from the final (equation (5)) absolute uncertainties for each lamp. For Draft A v2.0 the weights used were also determined from the final (equation (5)) uncertainties for each lamp, but using fractional values. See Section 3.9.2 above. This had very little difference on the final values.

In Draft A v1.0 the uncorrelated/correlated components of each lamp uncertainty used for the uncertainty of the combination of all the lamps for each participant was assumed to be the

same as for the uncorrelated/correlated combination of repeat measurements of that lamp as used in Sections 4.2.1 and 4.2.2. Concern was expressed that this may have reduced the uncorrelated components incorrectly. See Section 3.9.3 above. For Draft A v2.0 the uncorrelated component of each participant lamp, resulting from the calculations in Section 4.2.2 above, has been divided equally into two parts: one part considered uncorrelated for this NMI combination, and the other part considered correlated for this NMI combination. This also had very little difference in final comparison values.


It was pointed out that a 50:50 split of the uncorrelated component did not result in maintaining the same final combined uncertainty for the lamp luminous intensity. This was corrected in Draft A v2.1 by noting that if a fraction f of the original uncorrelated component is taken as the final uncorrelated component, then a fraction  $\sqrt{(1-f^2)}$  of the original uncorrelated component must be taken as the additional correlated component in order to keep the total final uncertainty for each lamp the same before and after the split. With f = 0.5 this also had very little difference in final comparison values.

The participant lamp data is summarised in Appendix C.

#### 4.3. Measurements at Pilot

4.3.1 NRC Measurement Configuration

The basic measurement procedures used at the pilot were discussed in Section 2.6.1 above, including reference to the Technical Protocol of this comparison. The schematic of the NRC measurement configuration from the Protocol is reproduced here in Figure One.



**Figure One** Schematic of NRC Measurement Configuration LIS = Luminous Intensity Standard (Osram lamp shown)

The photometer measurement position consisted of three photometers mounted on a computer-controlled linear table. The motion was along the Y-axis (horizontal). This enabled

measurements by three photometers sequentially for each lamp measurement. There were three cycles of measurement for each lamp lighting. Each cycle consisted of the measurements:

Lamp current, lamp voltage, photometer #1, photometer #2, photometer #3, lamp current lamp voltage. Since there were shutters in front of each photometer, photometer zero measurements were taken before and after the photometer signal measurements. Each of all these (13) measurements was a sequence of 5 voltmeter readings.

The use of three photometers gave one measure of the stability of the measurement configuration during the comparison. The data from one photometer was discarded due to drift that was traced to a mechanical instability in the mounting of the photometer upon the linear table. The remaining two photometers gave almost identical results. Consequently, the data from only one of these photometers was used for the final analysis.

Further discussion of the NRC measurements is given in the following uncertainty analysis for the comparison measurements.

#### 4.3.2 <u>Uncertainty of Comparison Measurements at Pilot (NRC)</u>

A summary of the uncertainties is presented in Table Five. The column 'Combination Type' indicates the correlation between the variables for the purpose of combining participant lamp measurements.

Γ

| 1  | Alignment of Z-axis                          | correlated    | 0.0000002       |
|----|----------------------------------------------|---------------|-----------------|
| 2  | Alignment of Y-axis (Telescope optical axis) | correlated    | 0.0000025       |
|    | ax15)                                        |               |                 |
|    |                                              |               |                 |
| 3  | Spectral Mismatch Error                      | correlated    | 0.0001          |
| 4  | Responsivity Drift                           | uncorrelated  | 0.0005          |
| 5  | Signal Noise/fluctuations                    | uncorrelated  | 0.000001        |
| 6  | Alignment to optical axis (Y-Z center)       | correlated    | 0.000000        |
| 7  | Alignment to optical axis (Y-Z angular)      | correlated    | 0.000000        |
|    |                                              |               |                 |
|    |                                              |               |                 |
| 8  | Standard resistor calibration                | correlated    | 0.0000042       |
| 0  |                                              | correlated    | 0.0000042       |
| 9  | DVM voltage calibration (lamp current)       | correlated    | 0.00007         |
| 10 | Lamp current setting                         | uncorrelated  | 0.0000498       |
| 10 | Lamp current fluctuations                    | uncorrelated  | 0.0000616       |
|    |                                              |               | 0.0000010       |
| 12 | Vertical filament plane (Z-axis)             | uncorrelated  | 0.000140        |
| 13 | Vertical filament plane (Y-axis)             | uncorrelated  | 0.000035        |
| 14 | Lamp to Photometer distance                  | uncorrelated  | 0.0003          |
|    |                                              |               |                 |
| 15 | Lamp output fluctuations                     | un comelata d | 0.0000262 /     |
| 15 | (Osram/Polaron)                              | uncorrelated  | 0.0002322       |
|    |                                              |               |                 |
|    |                                              |               | 0.061% / 0.065% |
|    | (Osram/Polaron)                              |               |                 |
|    | (Osram/Polaron)                              |               | 0.012% / 0.012% |
|    |                                              |               |                 |

#### 4.3.2.1 Angular Uncertainties

As indicated in the protocol, the measurand is the luminous intensity of an incandescent lamp in a specified direction from a defined point on a reference plane defined by the plane of the lamp filament. The required measurement optical axis passes through the center of the filament, and is perpendicular to the plane of the filament (Osram Wi41/G), or to the rear surface of the front window of the lamp envelope (Polaron). Setting to the normal of a plane does not fix the rotation of the plane about the normal. In our case, this is a rotation about the X-axis. In the case of the Osram lamps with the lower filament support, rotation about the Xaxis was adjusted until a plumb line is visually equidistant from the two filament wires at the center of the filament. In the case of the Osram lamps with a filament with the center support, the horizontal sections on each side of the filament are aligned along the Y-axis (horizontal). The side of the lamp envelope was used to set the lamp envelope of the Polaron lamps to vertical. It is assumed that the uncertainty of lamp intensity due to an uncertainty in the rotation about the X-axis may be neglected.

The geometric measurement configuration involves two basic components: an optical coordinate system with the 3 orthogonal axes, and the components required to set the photometers and the participant lamps to this coordinate system.

The measurement optical axis is given by the horizontal laser beam to define the X-Axis as indicated in Figure One. The telescope is then set to indicate the Y and Z axes.

The lamp mount enabled the rotation of the lamp about all 3 axes and the motion of the lamp along all three axes.

The uncertainties in the luminous intensity as a result of the uncertainties in setting up the required angles for the lamp positioning follow the analysis presented in the CIE publications [8, 9]. The luminous intensity distribution of the lamps as a function of the two angles of rotation about the Y and Z axis is discussed in reference [9, section 1.10 Lamp Properties]. The example given uses modified cosine functions in the two angles, where modified means exponents to the cosine functions, and rectangular probability distributions (RPD) for the uncertainties in the alignments. The equations for the uncertainties are developed in the main document (reference [8], section 3.3.4 "Cosine Function as Non-linear Example"). The cosine function is replaced with a non-linear series (1<sup>st</sup> and 2<sup>nd</sup> terms in Taylor expansion), the shift in the average values below cos(0)=1.0 is 'ignored' and the uncertainty is increased to take up this error. The result is that the measurement uncertainty of the luminous intensity due to angular uncertainty is given by the modified/serialized/shifted cosine function as

$$u_{rel}^2(I) = \frac{g^2 \cdot \theta_{max}^4}{20} \tag{6}$$

Where

$$I(\theta) = I_0 \cdot \cos^g(\theta) \approx I_0 \left(1 - \frac{g \cdot \theta^2}{2} + O[3]\right), replaced by I_0$$

and  $\theta_{max}$  is the limit of the rectangular probability distribution.

The uncertainties in the angles used in these measurements are small. It is assumed that the choice of g=1 gives a reasonable estimate of the associated uncertainties in the luminous intensity. Equation (6) is used to estimate the uncertainties in the pilot uncertainty budget that are due to angular uncertainties.

#### 4.3.2.2 NRC Optical Coordinate System

The uncertainties associated with setting up the 3D orthogonal coordinate system for measuring the lamps are basically the two uncertainties in establishing the Z-axis and the Y-axis, listed as uncertainties 1 and 2 in Table Five. The Y- and Z-axes are set with respect to the X-axis laser beam using a commercial right-angle prism that has a quoted angular uncertainty of 2 arcmin. This is aligned to the laser beam using retroreflection from two plane faces of the prism.

<u>Uncertainty #1: Alignment of Z-axis</u>: This is composed of three components: the accuracy of the prism angles, the accuracy of the laser retroreflection, and, for the purposes of aligning the lamp filament plane for rotation about the Y-axis, the accuracy of our lamp mount in motion along the Z-axis.

<u>Uncertainty #2: Alignment of Y-axis</u>: This is composed of three components: the accuracy of the prism angles, the accuracy of the laser retroreflection, and the accuracy of the alignment of the telescope optical axis along the Y-axis laser beam from the prism. The latter is the predominant contributor to this uncertainty.

#### 4.3.2.3 NRC Photometer

<u>Uncertainty #3: Photometer Spectral Mismatch Error</u>: The relative spectral responsivities of the three commercial photometers used were measured in our laboratory. The Spectral Mismatch Error (F\*) calculated for Planck radiators between 2800 K and 2900 K indicated a change in F\* from +0.01% to -0.01%. A Type B uncertainty of 0.01% was applied to all measurements and no corrections were made to individual lamps.

<u>Uncertainty #4: Photometer Responsivity Drift</u>: Since each comparison lamp was measured at least two times, an estimate of the potential photometer drift may be made from the changes in the measurements on the lamps. An estimate of the possible change over the course of the measurements was 0.1%. (This value could include any drift in lamp output such as due to ageing.) Since the final value for the lamp measurements is an average of all the measurements on that lamp, an estimate of the uncertainty due to possible photometer drift of 0.05% is used. See also Section 4.3.3 below, which uses the standard deviation of the mean values for individual lamps for the lamp reproducibility.

<u>Uncertainty #5: Photometer Signal Noise/Fluctuations</u>: The fluctuations in the photometer signal due to the photometer itself were estimated from the fluctuations in the zero signals of the photometer for the measurements.

<u>Uncertainty #6: Photometer Alignment to optical axis (Y-Z center)</u>: This is the positioning of the center of the photometer input aperture on to the X-axis. A small displacement in the Y-Z plane at 3.2 m from the lamp causes a negligible change in the measured signal.

<u>Uncertainty #7: Photometer Alignment to optical axis (Y-Z angular)</u>: This is the angle of the photometer input aperture with respect to the X-axis. It is determined by the reflection of the laser beam back upon itself. At perhaps 1 or 2 mm in 3.2m, it causes a negligible uncertainty.

#### 4.3.2.4 Participant Lamps - Electrical

<u>Uncertainty #8: Standard Resistor Calibration:</u> The relative uncertainty in the calibration of the standard resistor used to determine the electrical current through the lamps is 0.6ppm. If we use a factor of 7 for the effect on the lamp output, we have an uncertainty of 4.2 ppm, or 0.0000042.

<u>Uncertainty #9: DVM voltage calibration (lamp current)</u>: The DVM used to measure the voltage across the standard resistor for determining the lamp current was verified to 0.001%, or 0.00001. If we use a factor of 7 for the effect on the lamp output, we have an uncertainty of 0.00007.

<u>Uncertainty #10: Lamp current setting</u>: Since we measured the lamp currents for each lamp (see Section 4.3.1), we can compare the difference between the measured value and the NMI set value. The average difference was -0.00021% with scatter of 0.00068%. Instead of correcting for the shift, a larger uncertainty may be calculated by combining the two [Reference (8), equation (22)]:

 $u^2 = (0.0000021)^2 + (0.0000068)^2 => u = 0.0000071$ 

This is an uncertainty in current, so the commensurate uncertainty in lamp output is scaled by a factor of 7 as we did for Uncertainties 8 and 9.

<u>Uncertainty #11: Lamp current Fluctuations</u>: Since we measured the lamp current 30 times at each lighting, we can calculate the fractional standard deviation for each lighting, and then calculate an average value for all the lamps and lightings. This gave a result of 0.0000088. This is an uncertainty in current, so the commensurate uncertainty in lamp output will be scaled by a factor of 7 as we did for Uncertainties 8 and 9.

#### 4.3.2.5 Participant Lamps - Optical

<u>Uncertainty #12: Vertical Filament Plane (Z-axis)</u>: This is the uncertainty in luminous intensity caused by the uncertainty in aligning the filament plane parallel to the Z-axis for a rotation about the Y-axis. For the case of lamps with center filament support where only one-half of the filament is visible, estimate an uncertainty of 0.2 mm in the 8 mm visible. Using the equations from Section 4.3.2.1, we obtain the estimated uncertainty of 0.000140. <u>Uncertainty #13: Vertical Filament Plane (Y-axis)</u>: This is the uncertainty in luminous intensity caused by the uncertainty in aligning the filament plane parallel to the Y-axis for a rotation about the Z-axis. Estimate an uncertainty of 0.2 mm in the 16 mm of the filament plane. Using the equations from Section 4.3.2.1, we obtain the estimated uncertainty of 0.000140.

<u>Uncertainty #14: Lamp to Photometer Distance:</u> This is the uncertainty in luminous intensity caused by the uncertainty in setting the lamp filament plane to the telescope crosshair focus point. Estimate 0.5 mm, which results in a relative standard uncertainty in luminous intensity of:

$$u = 2 * \frac{0.5}{3200} = 0.0003$$

#### 4.3.2.6 Participant Lamps - Photometric

<u>Uncertainty #15: Lamp Output Fluctuations:</u> This was estimated from the average fractional standard deviation in all the photometer measurements of all the lamps. It was different for the two types of lamps (Osram and Polaron).

4.3.3 Transfer Lamp Reproducibility at Pilot

Most participant lamps were measured at the pilot only two times. The reproducibility of each transfer lamp was estimated as the standard deviation of the mean of all the (m) measurements of the lamp at the pilot. While this value may contain effects of photometer drift (Section 4.3.2.3 above), and is based on only a few (m) measurements, it gives information concerning the scatter of the (m) pilot measurements about their mean value.

#### 4.3.4 <u>Pilot Measurement Data</u>

The Pilot measurement data for each participant lamp is summarised in Appendix D. The NMI Lamp Luminous Intensity values are taken from Appendix C (Section 4.2). The column R(i,j) is the average photometer responsivity  $R_{i,j}$  (see Section 2.6.2) as determined from all the (*m*) measurements of the lamp *j* of the participant *i* at the pilot laboratory. The Pilot uncertainties u<sub>uncorr</sub> and u<sub>corr</sub> are taken from Table Five above. The Pilot uncertainty u<sub>uncorr</sub> has

been reduced by the factor  $1/\sqrt{m}$  where *m* is the number of measurements of the lamp *j*. The column  $u_{uncorr}(lamp)$  is the transfer lamp reproducibility as described in Section 4.3.3 above. These 5 uncertainty components (NMI  $u_{uncorr}$  and  $u_{corr}$ , Pilot  $u_{uncorr}$  and  $u_{corr}$ , and  $u_{uncorr}(lamp)$ ) are combined to give the uncorrelated and correlated uncertainties of  $u_{R_{i,j}}$ , the uncertainty of  $R_{i,j}$ , the combined "NMI+Pilot" quantity. At this point the uncertainties of the NMI and the Pilot are not correlated, so the NMI total uncertainty is combined in quadrature with the Pilot correlated uncertainty to give the final correlated component for the combination of the measurements for each NMI. The uncorrelated component for this combination is the combination of the Pilot uncorrelated uncertainty (Pilot  $u_{uncorr}$ ) and the lamp uncorrelated uncertainty ( $u_{uncorr}(lamp)$ ).

The calculations for the determination of the average value  $R_i$  for each participant are also presented in Appendix D. The average value is a weighted mean where the weights are determined from the final 'Participant + Pilot' uncertainty  $u_{R_{i,j}}$  for each lamp given in the 'combined uncertainty' column  $u_T$  (relative standard uncertainty) and subsequent  $u_T$ (cd/V). The uncertainty  $u_{R_i}$  for this weighted mean  $R_i$  is determined from the uncertainties of the individual uncertainties (uncorrelated and correlated) of  $u_{R_{i,j}}$  using the formulas of equations (1) to (5).

The calculation of the uncertainties of the comparison measurements made at the pilot laboratory (transfer uncertainty of the comparison, Section 2.6.2), are also presented in Appendix D. This was calculated for each participant as the difference uncertainty

$$u_{NMI\_transfer}^2 = u_{R_i}^2 - u_{NMI}^2$$

as described in Section 5 of Appendix B of the CCPR Guidelines [6].

#### 4.4. Calculation of the KCRV and the DOE

#### 4.4.1 <u>Calculation of the KCRV</u>

The calculations for determining the KCRV are summarised in Appendix E. The calculations for the KCRV do not include the results of the two NMIs, NMISA and LNE-CNAM, as discussed above in Sections 2.6.2, 3.8.2, 3.8.3 and 3.9.1

The column R(i) is the average  $R_i$  from Appendix D as described above in Sections 4.3.3 and 4.3.4.

The column u(NMI) is the uncertainty of the NMI luminous intensity 'scale' from Appendix C, as described above in Section 4.2.3.

The median NMI (10 NMIs) relative standard uncertainty is 0.002339, with the cutoff relative standard uncertainty value of 0.001722. As seen in the column uc(NMI), the NMI uncertainties with cutoff applied, this cutoff value is applied to four NMIs: NIM, PTB, NMIA, and NPL.

The column 'Pilot Transfer u(t)' is the transfer uncertainty of the comparison for each NMI as described above in Section 4.3.4  $(u_{NMI\_transfer}^2)$  and calculated in Appendix D.

The uncertainty of  $R_i$  for each NMI, after cutoff, is the combination of three uncertainties: the uc(NMI), the Pilot transfer u(t), and the Mandel-Paule adjustment uncertainty s. The final uncertainty values are given in the two columns 'Uncertainty u(c,t,s)', one column giving the relative standard values and the second the values in cd/V for determining the weights. The resulting weights  $w_i$  for each NMI for calculating the weighted KCRV are given in the two columns 'KCRV weights wi'. The Mandel-Paule relative standard adjustment uncertainty s=0.0003100 is applied in order to reduce the  $\chi^2_{obs}$  value to the  $\chi^2_{0.05}(\nu = 09) \approx 16.919$ , as discussed above in Section 3.8.2. This Draft A v2.1 value is reduced from the previous draft values of s=0.0006163 (Draft A v1.0) and s=0.0003400 (Draft A v2.0). All values are quite small. The calculations for the Chi-square  $\chi^2_{obs}$  consistency test are given in the column 'Chi-square'.

The resulting 'weighted mean with cutoff' KCRV is 86.2558 cd/V— the responsivity of the pilot photometer as determined by the measurement of a *virtual* KCRV Luminous Intensity lamp measured under the same conditions as the NMI lamps (Section 2.6.2). The Draft A v1.0 value of the KCRV was 86.2596 cd/V, and the Draft A v2.0 values of the KCRV was 86.2543 cd/V.

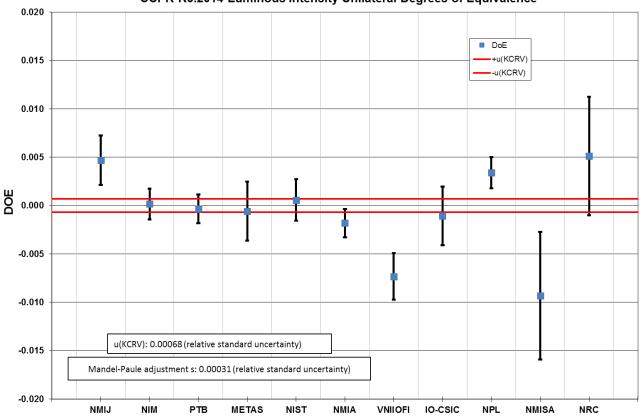
The uncertainty of this KCRV, 'u(KCRV)', is calculated from the data given in the three columns 'KCRV uncertainty calculation'.

$$u^2(KCRV) = \sum_i w_i^2 \cdot u^2(R_i)$$

where  $u(R_i)$  is the combination of the u(NMI), without cutoff, and the 'Pilot Transfer u(t)' uncertainties. This is the uncorrelated uncertainty combination as shown in Equation (3). The value is 0.0588 cd/V, which gives a fractional standard deviation for the KCRV of 0.068%. The calculations for the 'Outlier Test' (Section 3.8.1) are also given in Appendix E. The calculations for the Chi-square  $\chi^2_{obs}$  consistency test are given in the column 'Chi-square'.

$$\chi_{obs}^{2} = \sum_{i} \frac{(R_{i} - KCRV)^{2}}{u_{i}^{2}(c, t, s)}$$

#### 4.4.2 <u>Calculation of the Unilateral DOE</u>


with uncertainty values (k=1)

The calculations for the Unilateral Degree of Equivalence  $(D_i)$  for each NMI are also given in Appendix E.

$$D_i = \frac{R_i - KCRV}{KCRV}$$
$$u_i^2 = u_{R_i}^2 + u_{KCRV}^2 - 2 \cdot (w_i \cdot u_{R_i}^2)$$

),

as given in equation (22) of the CCPR Guidelines (reference [6], Appendix B). The results are plotted in Figure Two.



CCPR-K3.2014 Luminous Intensity Unilateral Degrees of Equivalence

Figure Two CCPR-K3.2014 Luminous Intensity Unilateral Degrees of Equivalence Uncertainties are k=1 values.

#### 4.4.3 <u>Calculation of the Bilateral DOE</u>

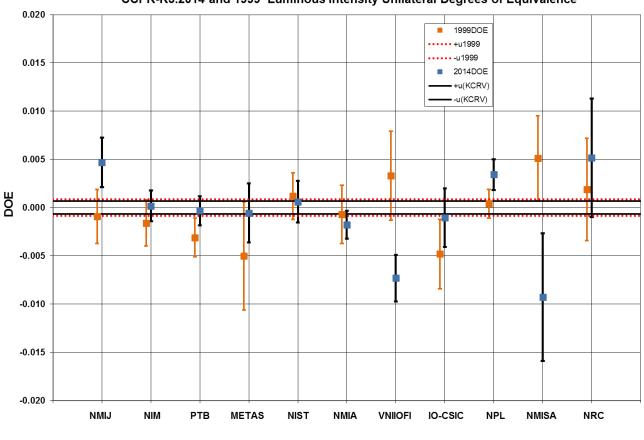
with uncertainty values (k=1)

The calculations for the Bilateral Degrees of equivalence  $D_{i,j}$  between NMI *i* and NMI *j* are given in Appendix F.

$$D_{i,j} = \frac{R_i - R_j}{KCRV} = D_i - D_j$$
$$u_{i,j}^2 = u_{R_i}^2 + u_{R_j}^2$$

#### 4.4.4 Summary Comparison Values

To assist in the subsequent linkage of the results of this comparison to subsequent bilateral and RMO comparisons, a summary of some of the calculation results of Sections 4.4.1 to 4.4.3 above is presented in Table Six. Note that for the purposes of Table Six, the uncertainties for the Unilateral DOEs are given as expanded k=2 relative uncertainties. The uncertainties associated with each participant's measurements of each of their artifacts, particularly the correlated and uncorrelated components, are described in Section 4.2 above,


and detailed in Appendix C. As discussed in Sections 3.9 and 4.2 above, care should be used in the determination of when (at which stage of data analysis and combination) uncertainty components are considered correlated or uncorrelated.

| K       | CRV relative standard (k=    | 1) uncertainty <i>u(KCR</i> | V) = 0.068%                        |
|---------|------------------------------|-----------------------------|------------------------------------|
| Mande   | el-Paule relative standard ( | k=1) adjustment uncer       | s = 0.031%                         |
|         |                              |                             | Weighting Factor<br>W <sub>i</sub> |
| NMIJ    | 0.0047                       | 0.0051                      | 0.0716                             |
| NIM     | 0.0002                       | 0.0032                      | 0.1560                             |
| РТВ     | -0.0004                      | 0.0030                      | 0.1563                             |
| METAS   | -0.0006                      | 0.0061                      | 0.0516                             |
| NIST    | 0.0006                       | 0.0043                      | 0.0982                             |
| NMIA    | -0.0018                      | 0.0029                      | 0.1622                             |
| VNIIOFI | -0.0073                      | 0.0048                      | 0.0803                             |
| IO-CSIC | -0.0011                      | 0.0061                      | 0.0525                             |
| NPL     | 0.0034                       | 0.0032                      | 0.1578                             |
| NMISA   | -0.0093                      | 0.0132                      | 0.0000                             |
| NRC     | 0.0051                       | 0.0123                      | 0.0135                             |

# 5. Comparison with 1999 CCPR-K3.a Key Comparison of Luminous Intensity

The results of the 1999 CCPR-K3.a key comparison, which also used incandescent lamps as transfer standards, are available at reference [1]. The unilateral DOE results for the 11 NMIs that participated in both the 1999 comparison and this comparison are presented in Table Seven and compared in Figure Three. Uncertainties are relative standard (k=1). In Figure Three, the abscissae of the two sets of data are offset slightly to enable easier comparison. The two comparisons give results that are strikingly similar.

|         | 0.0000  | 0.0000 | 0.0047  | 0.000  |
|---------|---------|--------|---------|--------|
| NMIJ    | -0.0009 | 0.0028 | 0.0047  | 0.0026 |
| NIM     | -0.0016 | 0.0024 | 0.0002  | 0.0016 |
| РТВ     | -0.0031 | 0.0020 | -0.0004 | 0.0015 |
| METAS   | -0.0050 | 0.0056 | -0.0006 | 0.0031 |
| NIST    | 0.0012  | 0.0024 | 0.0006  | 0.0021 |
| NMIA    | -0.0007 | 0.0030 | -0.0018 | 0.0015 |
| VNIIOFI | 0.0033  | 0.0046 | -0.0073 | 0.0024 |
| IO-CSIC | -0.0048 | 0.0036 | -0.0011 | 0.0030 |
| NPL     | 0.0004  | 0.0015 | 0.0034  | 0.0016 |
| NMISA   | 0.0051  | 0.0044 | -0.0093 | 0.0066 |
| NRC     | 0.0019  | 0.0053 | 0.0051  | 0.0061 |



CCPR-K3.2014 and 1999 Luminous Intensity Unilateral Degrees of Equivalence

Figure Three Comparison of CCPR-K3.a 1999 and CCPR-K3.2014 Uncertainties are relative standard (k=1)

The 1999 KCRV was determined from the results of 15 NMIs. The uncertainty of the KCRV has changed slightly from  $u_{KCRV}^{1999} = 0.086\%$  to  $u_{KCRV}^{2014} = 0.068\%$ . As can be seen from Figure Three, this change is negligible compared to the DOE and the DOE uncertainties. The relationships between the NMIs are also very similar for the two comparisons, with perhaps only one NMI (VNIIOFI) showing a significant shift in its DOE compared to the other NMIs. The second NMI (NMISA) with a significant shift does not have an independent LI scale and was not used for the calculation of the KCRV for this 2014 comparison. The changes in the DOE for each NMI between the two comparisons is within the (k=1) uncertainties of the two comparisons, except for the two NMIs mentioned above (VNIIOFI and NMISA).

There has been a small change in the DOE uncertainty values  $u_i$ . The ratios  $\frac{u_i^{2014}}{u_i^{1999}}$  vary from approximately 0.5 to 1.5, with an average of 0.8.

The 1999 comparison measurements were made in 1997 [1] and these 2014 comparison measurements were made in 2014. This comparison would suggest that there has not been a significant change in the luminous intensity scales of many NMIs during these 17 years. There could be several possible reasons for this observation:

1. There have been no new independent realisations of luminous intensity since 1997.

2. The primary realization of luminous intensity requires the measurement of luminous/optical power within specified geometrical conditions. Have we reached an important limitation in our measurement ability for either of these measurement challenges?

3. The primary realization of luminous intensity indicated in (2) above must be transferred to working standards and transfer standards. The CCPR comparisons used incandescent lamps as these transfer standards. Are we limited by the characteristics of these standards?

3.1 The second largest uncertainty at the pilot lab for the measurement/comparison of all the lamps was the Lamp-to-Photometer distance at 0.03%, predominantly due to the issues of aligning a non-planar thick filament plane. While this is an order of magnitude less than the typical DOE uncertainty, it is a significant component in defining the geometrical measurement conditions.

3.2 The reproducibility/repeatability/ageing/portability of the transfer standards. The average repeatability of the 62 lamps measured at the pilot was 0.09%, with a standard deviation (of the dataset) of 0.08%. While this repeatability will contain some of the realignment uncertainty (0.03%), and some of the photometer responsivity drift, it is still an important uncertainty. (Note that for this comparison it was difficult to completely separate the lamp repeatability and the photometer drift uncertainties during the pilot measurements.)

#### 6. Summary

The CCPR Key Comparison of Luminous Intensity using incandescent lamps as transfer standards (CCPR-K3.2014) was carried out between the years of 2014 to 2020 with NRC selected as the Pilot laboratory. The 12 participants (NMIs) were selected from/by the 3 RMO groups to participate and to be willing to serve as a link laboratory to other NMIs in their RMO. The decision to use incandescent lamps rather than photometers as the transfer standards was determined by the 8-member task group after discussions with the participants. The comparison was organised as a star comparison with measurement sequence NMI-Pilot-NMI, and transfer lamps supplied by each NMI. To facilitate the measurement of all lamps from all participants under as identical conditions as possible, the measurements at the pilot did not commence until all NMI travelling standard lamps had been received at the pilot laboratory. All lamps were then measured sequentially using the same measurement set-up, over a time period of approximately 2 months during 2014-November to 2015-January.

A total of 70 transfer standards (62 of Type Osram and 8 of Type Polaron) were received at the pilot. Two lamps (Type Polaron, fixed to heavy sockets) were received at pilot broken in shipment. One lamp (Type Polaron) failed during measurement at the pilot lab. Five lamps (Type Osram) were removed from the comparison after re-measurements at the originating NMI indicated changes in the lamps larger than could be explained by the uncertainties of measurement. Three more lamps (2 Type Osram and one Type Polaron) were removed after publication of the Draft A v1.0 report. These three lamps were part of the same shipment of lamps that arrived at the pilot with two broken lamps and their withdrawal from the comparison meant the withdrawal of all the LNE-CNAM lamps from the comparison. Consequently a total of 59 lamps (55 of Type Osram and 4 of Type Polaron) were used to produce the final results of the comparison. All participants supplied detailed reports of their measurements including uncertainty statements. These uncertainty statements have been reviewed and commented upon by all participants. Subsequent revisions and clarifications have been made, in accordance with the CCPR G2 guidelines for the preparation of comparison reports.

The KCRV is to be determined from the transfer lamps of the NMIs that have an independent realization of luminous intensity. One NMI (NMISA) did not have an independent scale, so the values of their lamps were not used in the calculation of the KCRV, although calculations of the Degree of Equivalence (DOE) were determined for all 11 (final) participants.

The KCRV was calculated as a weighted mean with 'cut-off'. The weights were determined based upon the NMI reported uncertainties adjusted by the 'cut-off', combined with the transfer uncertainty of the comparison and the uncertainty caused by the estimated lamp reproducibility observed during the measurements at the pilot lab. The cut-off value for the NMI uncertainty is determined as the average of the uncertainty values of those participants that reported uncertainties smaller than or equal to the median of all the participants.

The KCRV was then tested for statistical consistency with the measurement results using two criteria: testing for statistical 'outliers', and testing for statistical indications of underestimated uncertainties using the Chi-Square ( $\alpha$ =0.05) test, as defined in the CCPR-G2 guidelines. There were no outliers, but the data failed the Chi-square test. Further analysis indicated issues with the results of one participant, and it was agreed by all participants that the data of this participant would not be included in the calculation of the KCRV, but that the DOE would still be determined for all 11 (final) participants. The data for the remaining 10 participants still did not pass the Chi-square test and it was agreed by all participants that a (small) Mandel-Paule adjustment uncertainty (s) be applied to the calculations of the KCRV to enable the data to pass the Chi-Square ( $\alpha$ =0.05) test. This uncertainty (s=0.031%) was comparable to the KCRV uncertainty u(KCRV)=0.068% and the average pilot transfer uncertainty u(t)=0.046%, but small compared to the cut-off uncertainty of 0.17% or the median NMI uncertainty of 0.23%.

The unilateral and bilateral DOE have been calculated for all 11 (final) participants. Of the 10 participants whose data were used to calculate the KCRV, 8 participants had unilateral DOEs consistent with their DOE uncertainties at the k=2 level, one participant had DOE just above the k=2 level, and one participant had DOE just above the k=3 level.

The results have not changed substantially since the last CCPR comparison 1999 CCPR-K3.a Key Comparison of Luminous Intensity with Lamps as Transfer Standards piloted by PTB.

The submission, organisation and itemisation of uncertainty components, contributions and correlations are an important part of key comparisons: for the evaluation of participant results, the combination of all participant uncertainties into a final KCRV with its uncertainty and participant DOEs, and the linkage of the key comparison results to subsequent RMO comparisons. The submission of the uncertainty budgets by each participant must be structured to enable the subsequent use of this information to all these purposes. This is becoming no longer a simple uncertainty budget table. Each uncertainty component will be combined with the other uncertainty components in different ways (correlated/uncorrelated) at the different stages of the final comparison data analysis. For example, in this comparison uncertainty components are combined in at least five stages: repeat measurements of each lamp by each participant at round #1 measurements, then combination of the two round values into

one final value for the lamp, then combination of all lamps from each participant into a final participant representative value, and finally the combination with the measurements of each lamp at the pilot to estimate a KCRV, DOEs and their uncertainties. The correlations between uncertainty components will change for each stage. In addition, the determination of the weighting methods (relative uncertainties, absolute uncertainties, or other) used for each of these combinations needs to be considered.

The method for combining measurement values and their uncertainties will also depend upon the purpose of the key comparison: to obtain a best worldwide determination of the value of the candela unit, to determine current NMI measurement capability (best or calibration level), or in some way to justify CMC claims.

The protocol developed for this key comparison did not anticipate the detail and documentation required to address this amount of detail in uncertainty evaluations, which was later noted by several participants during the pre-draft A and Draft A stages of the report preparation. However, the protocol did identify the use of the CCPR G2 guideline that was followed reasonably closely for this comparison.

Nevertheless, the several versions of the Draft A with several changes to the combination of the uncertainties showed that the differences in the final KCRV and DOE values and their uncertainties were very small between different methods of combining the measurement values and uncertainties. This may indicate that a more important aspect indicated by this key comparison is the absolute accuracy of the primary luminous intensity scales developed by each participant and/or the suitability of present travelling transfer artefacts to evaluate the relationships between the participants at the uncertainty levels presently attainable by the participants in developing their luminous intensity values.

The pilot laboratory (NRC) would like to thank all the participants for their constructive support and collaboration during the course of this comparison. The intercontinental, international, shipment of fragile transfer standards requires considerable effort from all participants. The subsequent evaluation of transfer standard data acceptability and measurement analysis requires collaboration from all participants. The pilot is grateful that all participants have readily participated during the many facets of the comparison.

#### 7. Acronyms

| BIPM  | Bureau International des Poids et Mesures            |
|-------|------------------------------------------------------|
| CCPR  | Consultative Committee for Photometry and Radiometry |
| CCT   | Correlated Colour Temperature                        |
| CIPM  | Comité international des poids et measures           |
| KC    | Key Comparison                                       |
| KCDB  | Key Comparison Data Base                             |
| KCRV  | Key Comparison Reference Value                       |
| LIS   | Luminous Intensity Standard                          |
| NMI   | National Metrology Institute                         |
| RMO   | Regional Metrology Organization                      |
| TG    | Task Group for CCPR-K3.2014                          |
| WG-KC | CCPR Working Group on Key Comparisons                |

#### 8. References

[1] **K3.a**: Georg Sauter, Detlef Lindner, Matthias Lindemann, *CCPR Key Comparisons K3a of Luminous Intensity and K4 of Luminous Flux with Lamps as Transfer Standards*, PTB Bericht, PTB-Opt-62, 1999.

K3.b: R. Köhler, M. Stock, C. Garreau, *Final Report on the International Comparison of Luminous Responsivity CCPR-K3.b*, Metrologia 41, 2004, Tech. Suppl., 02001.

Summary results are available at the BIPM Key Comparison Database (KCDB) at <u>www.bipm.org</u>.

- [2] Consultative Committee for Photometry and Radiometry (CCPR), Report of the 20<sup>th</sup> meeting (17-18 September 2009) to the International Committee for Weights and Measures, Version 2: amended 13 April 2011, BIPM, Paris, file CCPR20.pdf available from www.bipm.org.
- [3] CIPM MRA-D-05, *Measurement Comparisons in the CIPM MRA*, Version 1.3 October 2012, BIPM, Paris, file CIPM\_MRA-D-05.pdf available from <u>www.bipm.org</u>.
- [4] CCPR-G4, July 01, 2013 *Guidelines for preparing CCPR Key Comparisons*, CCPR WG-KC, BIPM, Paris.
- [5] *Minutes of CCPR WG-KC meeting 9 July 2010, NPL, Teddington, UK*, file WGKC-10-Minutes.pdf, available from <u>www.bipm.org</u>.
- [6] CCPR-G2 Rev.3, July 01, 2013 *Guidelines for CCPR Comparison Report Preparation*, CCPR WG-KC, BIPM, Paris.
- JCGM 100:2008, Joint Committee for Guides in Metrology (September 2008), Evaluation of Measurement Data — Guide to the expression of uncertainty in measurement (GUM). Available from http://www.bipm.org. See also JCGM 104:2009, Evaluation of measurement Data — An introduction to the "Guide to the expression of uncertainty in measurement" and related documents.
- [8] CIE Publication 198:2011, *Determination of Measurement Uncertainties in Photometry*, Commission Internationale de l'Eclairage, Vienna, Austria.
- [9] CIE Publication 198-SP1.1:2011, Supplement 1: Modules and Examples for the Determination of Measurement Uncertainties, Part 1: Modules for the Construction of Measurement Equations, Commission Internationale de l'Eclairage, Vienna, Austria.

### 9. Appendices

Appendix A NMI Reports

- Description of Measurement facility
- Record of Lamp Operating Time
- Measurement Uncertainty Budget
- Measurement Results, round#1 and #2

Appendix B Review of Uncertainty Budgets

- replies to general comments
- replies to questions to specific NMIs
- attachments
  - VNIIOFI, NPL, NMIJ, NMISA
- Appendix C Summary of Participant Lamp Luminous Intensity Values
- Appendix D Summary of Pilot Measurements of Participant Lamps
- Appendix E Calculation of the KCRV and the Unilateral DOE
- Appendix F Calculation of the Bilateral DOE

CCPR Key Comparison CCPR-K3.2014

**Luminous Intensity** 

**Final Report** 

Appendix A

**NMI Reports** 

- Description of Measurement Facility

- Record of Lamp Operating Time

- Measurement Uncertainty Budget

- Measurement Results, Round#1 and #2

## CCPR Key Comparison CCPR-K3.2014

### Luminous Intensity

**Final Report** 

Appendix A

**NMISA Report** 

# **CCPR Key Comparison Luminous Intensity (CCPR-K3.a)**

# **Report by:** NMISA Photometry & Radiometry

### 2015-11-24

The luminous intensity of the four standard lamps was measured at the National Metrology Institute of South Africa for the CCPR-K3.2013 luminous intensity intercomparison. Measurements were performed at electrical operating conditions such that the correlated colour temperature of the luminous intensity was approximately 2 856 K.

#### Appendix A.3 Description of the measurement facility

A partial-filtering type LMT photometer with 60 mm  $\emptyset$  input aperture was used. The reference standards are Si-trap detectors (3-trap design) which have traceability to the National Physical Laboratory (NPL) where they were calibrated.

#### **Description of Measurement Procedures**

Alignment was done with a laser alignment system (which consists of two HeNe lasers) and according to the alignment procedure normally used by the NMISA for calibration of luminous intensity lamps. The alignment was done while the lamps were powered down, *i.e.* the lamp filaments were at room temperature. The centre filament support #2 was used for alignment with the defined point at the centre of the filament as shown in *Figure Two* of *Section 4.4.8* of the technical protocol.

The mounting/alignment stage used in the setup of the standard lamps is shown in Figure 1. It allows five degrees of freedom *viz*. translation on the *x*-axis and *y*-axis (5), tip and tilt (3 & 4) and rotation (1 & 2).



Figure 1: Explanation of the mounting/alignment stage.

#### Correlated Colour Temperature

The correlated colour temperature of each lamp was measured with a filter-photometer during the first round of measurements, and with a diode-array spectroradiometer during the second round of measurements. The measurement setup consisted of the lamp in use, a Spectralon SRS-99-020 diffuse reflectance standard with known reflectance values at  $0^{\circ}$  /45° geometry, the filter-photometer or diode-array spectroradiometer and optical baffles, all mounted on an optical bench.

Each lamp was mounted base down and aligned perpendicularly to the diffuse reflectance standard at a distance of approximately 1,0 m as measured from the centre of the lamp filament. The filter-photometer or diode-array spectroradiometer head was aligned at an angle of  $\sim 45^{\circ}$  to the diffuse reflectance standard. The optical axis was horizontal and passed through the centre of the lamp filament and perpendicular to the plane of the lamp filament. The diffuse reflectance standard and filter-photometer or diode-array spectroradiometer head were aligned with the optical axis.

In order to reduce stray light, three 30 cm  $\times$  30 cm baffles with ~10 cm Ø apertures were placed between the lamp and the diffuse reflectance standard. A baffle tube with an ~45° extension tube and two 32 cm  $\times$  32 cm baffles with ~8 cm Ø apertures was placed between the filter-photometer or diode-array spectroradiometer, the reflectance standard and the lamp. Refer to the experimental layout in Figure 2 for the approximate distance placement of the baffles. For additional shielding, the photometric bench was surrounded by black curtains from ceiling to floor.

The reported correlated colour temperature value for each lamp is the result of the average of ten measurements. The operating current and voltage of the respective lamps were determined for the reported correlated colour temperatures.

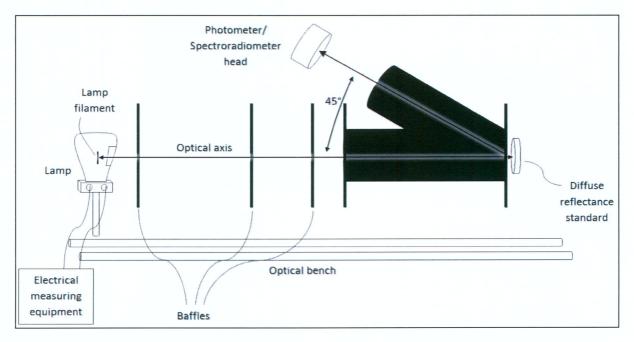



Figure 2: Diagram of experimental setup for correlated colour temperature.

# Luminous Intensity

The lamps were connected to the power supply according to the polarity as indicated on the lamp terminals. Each lamp was mounted base down and aligned perpendicularly to the partial-filtering photometer at a distance of 2,7 m as measured from the centre of the lamp filament. The optical axis was horizontal and passed through the centre of the lamp filament and perpendicular to the plane of the lamp filament. The partial-filtering photometer was aligned with the optical axis.

In order to reduce stray light, three 30 cm  $\times$  30 cm baffles with ~10 cm Ø apertures were placed between the lamp and the partial-filtering photometer. A baffle tube with a closed ~45° extension tube and two 32 cm  $\times$  32 cm baffles with ~8 cm Ø apertures was placed between the lamp and partial-filtering photometer. Refer to the experimental layout in Figure 3 for the approximate distance placement of the baffles. For additional shielding, the photometric bench was surrounded by black curtains from ceiling to floor.

Five measurements per lamp were performed during each measurement set. The lamps were powered down, repositioned and realigned, and powered up between the different sets. The reported luminous intensity value is the average of the two sets.

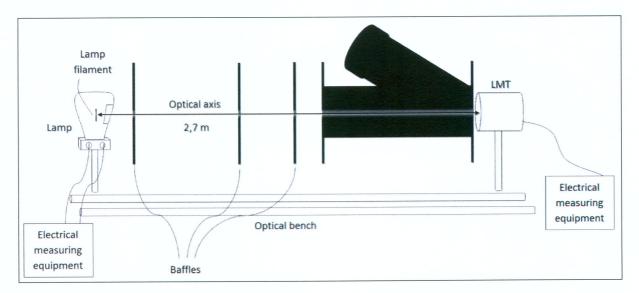



Figure 3: Diagram of experimental setup for luminous intensity.

# **Laboratory Conditions**

The ambient conditions in the laboratory during the first round of measurements were:

- Correlated colour temperature:
  - Average Temperature = 21°C
  - Average Humidity = 39 %RH
- Luminous intensity:
  - Average Temperature = 21°C
  - Average Humidity = 40 %RH

The ambient conditions in the laboratory during the second round of measurements were:

- Correlated colour temperature: .
  - Average Temperature =  $21^{\circ}C$
  - Average Humidity = 57 %RH
- Luminous intensity: .
  - Average Temperature =  $20 \degree C$
  - Average Humidity = 62 %RH

#### **Operating conditions of the lamps**

The power supply to the lamps was gradually ramped up and down. The operating currents of the lamps were set to the current values as determined during the correlated colour temperature measurements. During the Round 2 measurements the current setting of lamp NSI 10 was readjusted to achieve the required colour temperature. Results for Round 2 are reported for the Round 1 current setting and the readjusted current setting.

The lamps were allowed to stabilize for at least 10 minutes before measurements were performed. The current and voltage during the measurement period were recorded at regular intervals.

Participants: RH Sieberhagen; EM Coetzee; I Kruger; RD Pepenene; PJW du Toit; EK Mofokeng

**NMI: NMISA** 

Date: 24/11/2015

Signatures:

Hieberhagen Merkeng Mod

#### Appendix A.4 Record of lamp operating time

| Date       | Activity         | Burn<br>time<br>[hrs] | Lamp<br>Current<br>[amperes] | Lamp<br>Voltage<br>[volts] | Operator<br>initials   |  |
|------------|------------------|-----------------------|------------------------------|----------------------------|------------------------|--|
|            |                  | Round                 | 1                            |                            |                        |  |
| 06/05/2014 | CCT measurement  | 0,35                  | 5,824                        | 30,247                     | EC; RS; IK;            |  |
| 19/05/2014 | Measurement $-1$ | 0,33                  | 5,824                        | 30,241                     | RP                     |  |
| 20/05/2014 | Measurement $-2$ | 0,33                  | 5,824                        | 30,243                     | NI                     |  |
|            |                  | Round                 | 2                            |                            |                        |  |
| 04/08/2015 | CCT measurement  | 0,42                  | 5,824                        | 30,242                     | EC. DS. IV.            |  |
| 05/08/2015 | Measurement $-1$ | 0,58                  | 5,824                        | 30,255                     | EC; RS; IK;<br>PdT; EM |  |
| 05/08/2015 | Measurement-2    | 0,53                  | 5,824                        | 30,254                     |                        |  |

#### Lamp number: "24" 4595 PTB 09

# Lamp number: "39" 4596 PTB 09

| Date       | Activity         | Burn<br>time<br>[hrs] | Lamp<br>Current<br>[amperes] | Lamp<br>Voltage<br>[volts] | Operator<br>initials |  |
|------------|------------------|-----------------------|------------------------------|----------------------------|----------------------|--|
|            |                  | Round                 | 1                            |                            |                      |  |
| 06/05/2014 | CCT measurement  | 0,37                  | 5,892                        | 30,823                     | EC; RS; IK;          |  |
| 19/05/2014 | Measurement $-1$ | 0,33                  | 5,892                        | 30,817                     | RP                   |  |
| 20/05/2014 | Measurement-2    | 0,35                  | 5,892                        | 30,816                     | KI                   |  |
|            |                  | Round                 | 2                            |                            |                      |  |
| 04/08/2015 | CCT measurement  | 0,73                  | 5,892                        | 30,823                     | EC; RS; IK;          |  |
| 05/08/2015 | Measurement – 1  | 0,42                  | 5,892                        | 30,826                     | PdT; EM              |  |
| 05/08/2015 | Measurement-2    | 0,38                  | 5,892                        | 30,827                     |                      |  |

Participants: RH Sieberhagen; EM Coetzee; I Kruger; RD Pepenene; PJW du Toit; EK Mofokeng

**NMI:** NMISA

Date: 24/11/2015

Signatures:

Hiberhagen Klockenog

#### Lamp number: "42" 4597 PTB 09

| Date       | Activity         | Burn<br>time<br>[hrs] | Lamp<br>Current<br>[amperes] | Lamp<br>Voltage<br>[volts] | Operator<br>initials |
|------------|------------------|-----------------------|------------------------------|----------------------------|----------------------|
|            |                  | Round                 | 1                            |                            |                      |
| 06/05/2014 | CCT measurement  | 0,42                  | 5,880                        | 30,719                     | EC; RS; IK;          |
| 19/05/2014 | Measurement $-1$ | 0,50                  | 5,880                        | 30,716                     | RP                   |
| 20/05/2014 | Measurement - 2  | 0,33                  | 5,880                        | 30,710                     | ΚΓ                   |
|            |                  | Round                 | 2                            |                            |                      |
| 04/08/2015 | CCT measurement  | 0,50                  | 5,880                        | 30,718                     |                      |
| 05/08/2015 | Measurement $-1$ | 0,45                  | 5,880                        | 30,722                     | EC; RS; IK;          |
| 05/08/2015 | Measurement $-2$ | 0,37                  | 5,880                        | 30,720                     | PdT; EM              |
| 06/08/2015 | Measurement - 3  | 0,47                  | 5,880                        | 30,728                     |                      |

#### Lamp number: NSI 10

| Date       | Activity tin<br>[h  |       | Lamp<br>Current<br>[amperes] | Lamp<br>Voltage<br>[volts] | Operator<br>initials |
|------------|---------------------|-------|------------------------------|----------------------------|----------------------|
|            |                     | Round | 1                            |                            |                      |
| 09/05/2014 | CCT measurement     | 0,42  | 5,890                        | 31,959                     | EC; RS; IK;          |
| 19/05/2014 | Measurement $-1$    | 0,33  | 5,890                        | 31,966                     | RP                   |
| 20/05/2014 | Measurement - 2     | 0,33  | 5,890                        | 31,959                     | ΝΓ                   |
|            |                     | Round | 2                            |                            |                      |
| 04/08/2015 | CCT measurement – 1 | 0,58  | 5,890                        | 31,942                     |                      |
| 06/08/2015 | CCT measurement – 2 | 0,60  | 5,840                        | 31,453                     |                      |
| 05/08/2015 | Measurement - 1     | 0,45  | 5,890                        | 31,943                     |                      |
| 05/08/2015 | Measurement $-2$    | 0,42  | 5,890                        | 31,946                     | EC; RS; IK;          |
| 06/08/2015 | Measurement $-3$    | 0,58  | 5,724                        | 30,292                     | PdT; EM              |
| 06/08/2015 | Measurement – 4     | 0,48  | 5,724                        | 30,289                     |                      |
| 06/08/2015 | Measurement – 5     | 0,50  | 5,840                        | 31,456                     |                      |
| 06/08/2015 | Measurement – 6     | 0,38  | 5,840                        | 31,459                     |                      |

Participants: RH Sieberhagen; EM Coetzee; I Kruger; RD Pepenene; PJW du Toit; EK Mofokeng

**NMI:** NMISA

Date: 24/11/2015 Haberhagen Blogokeney Signatures:

CCPR-K3.2014: Luminous Intensity Final Report, Appendix A



6

| Appendix A.5 | Measurement | Uncertainty | Budget |
|--------------|-------------|-------------|--------|
|--------------|-------------|-------------|--------|

| Measurement Parameter                         | Uncertainty<br>Type<br>(A or B) | Standard Uncertainty<br>in luminous intensity<br>(%) |
|-----------------------------------------------|---------------------------------|------------------------------------------------------|
| Systematic effects:                           |                                 |                                                      |
| Calibration of working standards              |                                 |                                                      |
| - reference photometer                        | В                               | 0.6500                                               |
| Electrical                                    |                                 |                                                      |
| - standard resistor                           | В                               | 0.0037                                               |
| - voltmeter                                   | В                               | 0.0009                                               |
| Photometer                                    |                                 |                                                      |
| - distance                                    | В                               | 0.0091                                               |
| - spatial uniformity                          | В                               | 0.0577                                               |
| Environment                                   |                                 |                                                      |
| - stray light                                 | А                               | 0.0300                                               |
| RMS total systematic effects:                 |                                 | 0.6533                                               |
| Random effects:                               |                                 |                                                      |
| Lamp parameters:                              |                                 |                                                      |
| - lamp ageing                                 | А                               | 0.0631                                               |
| - lamp alignment                              | А                               | 0.1424                                               |
| - lamp output fluctuations (lamp voltage)     | А                               | 0.0031                                               |
| Electrical parameters:                        |                                 |                                                      |
| - power supply fluctuations                   | А                               | 0.0005                                               |
| Photometer noise:                             | А                               | 0.0001                                               |
| (Measurement Set standard deviation of mean): | А                               | 0.0033                                               |
| RMS total random effects:                     |                                 | 0.1558                                               |
|                                               |                                 |                                                      |
| RMS total standard uncertainty $(k = 1)$ :    |                                 | 0.68                                                 |

Participants: RH Sieberhagen; EM Coetzee; I Kruger; PJW du Toit; EK Mofokeng

**NMI:** NMISA Bleebertragen ANG Date: 10/12/2015 Mar Signatures:

#### Appendix A.6 Measurement Results

#### Measurement Round #1:

#### Lamp number: "24" 4595 PTB 09

| Measurement<br>Set Number | Number of<br>measurements<br>per set | Date       | Lamp<br>current<br>[A] | Lamp<br>voltage<br>[V] | Correlated<br>colour<br>temperature<br>[K] | Luminous<br>Intensity<br>[cd] |
|---------------------------|--------------------------------------|------------|------------------------|------------------------|--------------------------------------------|-------------------------------|
| #1                        | 5                                    | 19/05/2014 | 5,824                  | 30,241                 |                                            |                               |
| #2                        | 5                                    | 20/05/2014 | 5,824                  | 30,243                 |                                            |                               |
| Average                   |                                      |            | 5,824                  | 30,242                 | 2 841                                      | 269,0                         |

# Lamp number: "39" 4596 PTB 09

| Measurement<br>Set Number | Number of<br>measurements<br>per set | Date       | Lamp<br>current<br>[A] | Lamp<br>voltage<br>[V] | Correlated<br>colour<br>temperature<br>[K] | Luminous<br>Intensity<br>[cd] |
|---------------------------|--------------------------------------|------------|------------------------|------------------------|--------------------------------------------|-------------------------------|
| #1                        | 5                                    | 19/05/2014 | 5,892                  | 30,817                 |                                            |                               |
| #2                        | 5                                    | 20/05/2014 | 5,892                  | 30,816                 |                                            |                               |
| Average                   |                                      |            | 5,892                  | 30,816                 | 2 853                                      | 283,9                         |

# Lamp number: "42" 4597 PTB 09

| Measurement<br>Set Number | Number of<br>measurements<br>per set | Date       | Lamp<br>current<br>[A] | Lamp<br>voltage<br>[V] | Correlated<br>colour<br>temperature<br>[K] | Luminous<br>Intensity<br>[cd] |
|---------------------------|--------------------------------------|------------|------------------------|------------------------|--------------------------------------------|-------------------------------|
| #1                        | 5                                    | 19/05/2014 | 5,880                  | 30,716                 |                                            |                               |
| #2                        | 5                                    | 20/05/2014 | 5,880                  | 30,710                 |                                            |                               |
| Average                   |                                      |            | 5,880                  | 30,713                 | 2 848                                      | 274,6                         |

# Lamp number: NSI 10

| Measurement<br>Set Number | Number of<br>measurements<br>per set | Date       | Lamp<br>current<br>[A] | Lamp<br>voltage<br>[V] | Correlated<br>colour<br>temperature<br>[K] | Luminous<br>Intensity<br>[cd] |
|---------------------------|--------------------------------------|------------|------------------------|------------------------|--------------------------------------------|-------------------------------|
| #1                        | 5                                    | 19/05/2014 | 5,890                  | 31,966                 |                                            |                               |
| #2                        | 5                                    | 20/05/2014 | 5,890                  | 31,959                 |                                            |                               |
| Average                   |                                      |            | 5,890                  | 31,962                 | 2 854                                      | 314,4                         |

Participants: RH Sieberhagen; EM Coetzee; I Kruger; RD Pepenene

#### **NMI:** NMISA

Date 24/11/2015

Signatures:

; Hüberhagen

CCPR-K3.2014: Luminous Intensity Final Report, Appendix A

#### **Measurement Round #2:**

#### Lamp number: "24" 4595 PTB 09

| Measurement<br>Set Number | Number of<br>measurements<br>per set | Date       | Lamp<br>current<br>[A] | Lamp<br>voltage<br>[V] | Correlated<br>colour<br>temperature<br>[K] | Luminous<br>Intensity<br>[cd] |
|---------------------------|--------------------------------------|------------|------------------------|------------------------|--------------------------------------------|-------------------------------|
| #1                        | 5                                    | 05/08/2015 | 5,824                  | 30,255                 |                                            | 1 (a)                         |
| #2                        | 5                                    | 05/08/2015 | 5,824                  | 30,254                 |                                            |                               |
| Average                   |                                      |            | 5,824                  | 30,254                 | 2 838                                      | 268,7                         |

#### Lamp number: "39" 4596 PTB 09

| Measurement<br>Set Number | Number of<br>measurements<br>per set | Date       | Lamp<br>current<br>[A] | Lamp<br>voltage<br>[V] | Correlated<br>colour<br>temperature<br>[K] | Luminous<br>Intensity<br>[cd] |
|---------------------------|--------------------------------------|------------|------------------------|------------------------|--------------------------------------------|-------------------------------|
| #1                        | 5                                    | 05/08/2015 | 5,892                  | 30,826                 |                                            |                               |
| #2                        | 5                                    | 06/08/2015 | 5,892                  | 30,827                 |                                            |                               |
| Average                   |                                      |            | 5,892                  | 30,826                 | 2 849                                      | 284,4                         |

# Lamp number: "42" 4597 PTB 09

| Measurement<br>Set Number | Number of<br>measurements<br>per set | Date       | Lamp<br>current<br>[A] | Lamp<br>voltage<br>[V] | Correlated<br>colour<br>temperature<br>[K] | Luminous<br>Intensity<br>[cd] |  |
|---------------------------|--------------------------------------|------------|------------------------|------------------------|--------------------------------------------|-------------------------------|--|
| #1                        | 5                                    | 05/08/2015 | 5,880                  | 30,722                 |                                            |                               |  |
| #2                        | 5                                    | 06/08/2015 | 5,880                  | 30,728                 |                                            |                               |  |
| Average                   |                                      |            | 5,880                  | 30,725                 | 2 844                                      | 277,1                         |  |

#### Lamp number: NSI 10

| Measurement<br>Set Number | Number of<br>measurements<br>per set | Date       | Lamp<br>current<br>[A] | Lamp<br>voltage<br>[V] | Correlated<br>colour<br>temperature<br>[K] | Luminous<br>Intensity<br>[cd] |
|---------------------------|--------------------------------------|------------|------------------------|------------------------|--------------------------------------------|-------------------------------|
| #1                        | 5                                    | 05/08/2015 | 5,890                  | 31,943                 |                                            |                               |
| #2                        | 5                                    | 05/08/2015 | 5,890                  | 31,946                 |                                            |                               |
| Average                   |                                      |            | 5,890                  | 31,944                 | 2 869                                      | 317,2                         |
| #1                        | 5                                    | 06/08/2015 | 5,840                  | 31,456                 |                                            |                               |
| #2                        | 5                                    | 06/08/2015 | 5,840                  | 31,459                 |                                            |                               |
| Average                   |                                      |            | 5,840                  | 31,458                 | 2 855                                      | 299,3                         |

Participants: RH Sieberhagen; EM Coetzee; I Kruger; RD Pepenene; PJW du Toit; EK Mofokeng

#### **NMI:** NMISA

NMI: NMISA Date: 24/11/2015 Diberhagen Signatures: Jos Milthe Lout Byokeny CCPR-K3.2014: Luminous Intervity Final Report, Appendix A Appendix A Page 12 of 181

# NMISA:

Model of evaluation:

See attached page for NMISA Uncertainty Budget Matrix (UBM).

$$I = \frac{K_m d^2 F I_c}{SA}$$

where

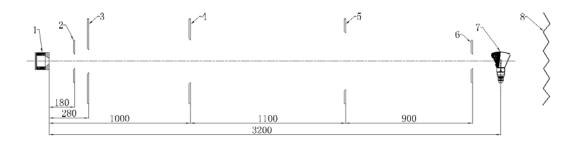
- *I* is the luminous intensity
- $K_m$  is the luminous efficacy
- d is the distance from the lamp filament to the photometer
- *F* is the spectral mismatch factor
- $I_c$  is the current, determined for the gain of the amplifier and the voltage as measured for the LMT photometer
- *S* is the responsivity of the LMT photometer
- *A* is the area of the LMT photometer
- Spectral mismatch: We corrected for spectral mismatch and therefore did not include it in the model of evaluation.
- Lamp alignment: We allowed for 1° uncertainty in the alignment of the lamps, as you can see in the model of evaluation.

CCPR-K3.2014: Luminous Intensity

Final Report

|              | Final Report                                           |                    |                      |              |                                  |             |                   |                     |                    |             |                              | 1                       |                        |                                                          |
|--------------|--------------------------------------------------------|--------------------|----------------------|--------------|----------------------------------|-------------|-------------------|---------------------|--------------------|-------------|------------------------------|-------------------------|------------------------|----------------------------------------------------------|
|              | 1 1 1 1                                                | CERTAIN            | דע פווה              | FT           | MATRIX (U                        | IRM)        |                   |                     |                    |             |                              | Certific                | cate No                |                                                          |
|              |                                                        |                    |                      |              |                                  | (1910)      |                   |                     |                    |             |                              | Proced                  | dure No                |                                                          |
|              |                                                        | Refer              | ence: Guide to the E | xpression of | of Uncertainty in Measurer       | nent, issue | d by BIPM, IEC    | C, IFCC, ISO, IUPAC | , IUPAP, OIML - IS | 60 1995 (IS | BN 92-67-10188-9)            |                         |                        |                                                          |
| Description: | CCPR-K3 Luminous Intensity Intercompari                | son                | Type & Serial        |              |                                  |             |                   |                     | Range:             |             |                              |                         | Metrologist            |                                                          |
|              |                                                        |                    | Number               | lumber       |                                  |             |                   |                     |                    |             |                              |                         |                        |                                                          |
|              | Mathematical Model:                                    |                    |                      |              |                                  |             |                   |                     |                    |             |                              |                         |                        |                                                          |
|              | Input Quantity                                         | Estimated<br>Input | Estimate             | d            | Probability                      | k=          |                   | Standard            | Sensitiv           |             | Standard<br>Uncertainty      | Reliability             | Degrees<br>of          |                                                          |
| Symbol       | (Source of Uncertainty)                                | Quantity           | Uncertair            | nty          | Distribution                     | K-          | Divisor<br>factor | Uncertainty         | Coeffici           | ent         | Contribution                 | Reliability             | Freedom                | Remarks                                                  |
|              | $(X_i)$                                                | $(x_i)$            |                      | Unit         | (N, R, T, U)                     | ▼           |                   | U(Xi)               | Ci                 | Unit        | Ui (y)                       | %                       | v                      |                                                          |
|              | Standards and Reference Equipment (Up)                 | ncorrelated)       | ▼                    |              |                                  |             |                   |                     |                    |             | Unit                         |                         |                        |                                                          |
| Std          | Photometer (LMT)                                       |                    | 1.300000             | %            | Normal k = 2                     |             | 2.00              | 6.500E-01           | 1.000E+00          |             | 6.500E-01                    | 100.00                  | infinite               | From certificate OR\SR-5082                              |
|              | Spatial uniformity                                     |                    | 0.100000             | %            | Rectangular √3                   |             | 1.73              | 5.774E-02           | 1.000E+00          |             | 5.774E-02                    | 95.00                   | 200.00                 | Literature Type B                                        |
|              | Distance uncertainty                                   |                    | 0.018170             | %            | Normal k = 2                     |             | 2.00              | 9.085E-03           | 1.000E+00          |             | 9.085E-03                    | 100.00                  | infinite               | Optical bench certificate DM\DIM-4016 type B             |
|              | Lamp fluctuations during operation (lamp stability     |                    | 0.003100             | %            | Normal k = 1                     |             | 1.00              | 3.100E-03           | 1.000E+00          |             | 3.100E-03                    | 100.00                  | infinite               | Empirical test Type A, I:\Laboratories\Optical Radiome   |
|              | Lamp alignment                                         |                    | 1.000000             | deg          | Rectangular √3                   |             | 1.73              | 5.774E-01           | 2.467E-01          | %/deg       | 1.424E-01                    | 100.00                  | infinite               | Empirical test PH-03, sens coef unit is %/deg type A     |
|              | Electrical noise on photometer signal                  |                    | 0.000100             | %            | Normal k = 1                     |             | 1.00              | 1.000E-04           | 1.000E+00          |             | 1.000E-04                    | 100.00                  | infinite               | Empirical test Type A, I:\Laboratories\Optical Radiome   |
|              | Lamp power setting (lamp current)                      |                    | 0.000450             | %            | Normal k = 1                     |             | 1.00              | 4.500E-04           | 1.000E+00          |             | 4.500E-04                    | 100.00                  | infinite               | Empirical test Type A, I:\Laboratories\Optical Radiome   |
|              | Drift/ageing of lamps                                  |                    | 0.063100             | %            | Normal k = 1                     |             | 1.00              | 6.310E-02           | 1.000E+00          |             | 6.310E-02                    | 100.00                  | infinite               | Type A I:\Laboratories\Optical Radiometry\Irma\Interco   |
|              | electrical - std resistor                              |                    | 0.007410             | %            | Normal k = 2                     |             | 2.00              | 3.705E-03           | 1.000E+00          |             | 3.705E-03                    | 100.00                  | infinite               | Certificates, type B, I:\Laboratories\Optical Radiometry |
|              | electrical - voltmeters                                |                    | 0.001760             | %            | Normal k = 2                     |             | 2.00              | 8.800E-04           | 1.000E+00          |             | 8.800E-04                    | 100.00                  | infinite               | Certificates, type B, I:\Laboratories\Optical Radiometry |
|              | Stray light                                            |                    | 0.030000             | %            | Normal k = 1                     |             | 1.00              | 3.000E-02           | 1.000E+00          |             | 3.000E-02                    | 100.00                  | infinite               | Empirical test Type A, I:\Laboratories\Optical Radiome   |
| Res          | Decolution of Standard (Equipment (If applicable)      |                    |                      |              |                                  |             |                   |                     |                    |             |                              | 100                     |                        |                                                          |
| Res          | Resolution of Standard / Equipment (If applicable)     |                    |                      |              |                                  |             |                   | NOTE!               |                    |             |                              |                         |                        | S (WHITE) ARE PROTECTED                                  |
|              |                                                        | Sorrelated)        | /                    |              |                                  |             | r                 | NOTE                | UNLYCH             | ANGE        | SLUE CELLS -                 |                         |                        | (WHITE) ARE PROTECTED                                    |
|              |                                                        |                    |                      |              |                                  |             |                   |                     |                    |             |                              |                         |                        |                                                          |
|              |                                                        |                    |                      |              |                                  |             |                   |                     |                    |             |                              |                         |                        |                                                          |
|              |                                                        |                    |                      |              |                                  |             |                   |                     |                    |             |                              |                         |                        |                                                          |
|              | W Unit Under Test / Colibration /Unser                 | veleted) W         |                      |              |                                  |             |                   | NOTEL               |                    |             |                              | A# 071                  |                        |                                                          |
|              | Unit Under Test / Calibration (Uncor                   | related) 🔻         |                      |              |                                  |             |                   | NOTE!               | ONLYCH             | ANGE        | SLUE CELLS -                 |                         | RCELLS                 | S (WHITE) ARE PROTECTED                                  |
|              |                                                        |                    |                      |              |                                  |             |                   |                     |                    |             |                              |                         |                        |                                                          |
| Res          | Resolution of UUT (If applicable)                      |                    |                      |              |                                  |             |                   |                     |                    |             |                              | 100                     |                        |                                                          |
| Data         | Type "B" Evaluation Range of the results (Rectangular) |                    |                      |              |                                  |             |                   |                     |                    |             |                              | 100                     |                        |                                                          |
| Data         | Type "A" Evaluation Exp Std Dev of the Mean (ESDM)     |                    | 0.003                | %            | Normal K = 1                     |             | 1.00              | 3.300E-03           | 1.000E+00          |             | 3.300E-03                    |                         | 4                      | No of Readings 5                                         |
|              | Unit Under Test / Calibration (Correlation)            | elated) 🔻          |                      |              |                                  |             |                   | NOTE!               | ONLY CH            | ANGE E      | BLUE CELLS -                 | All OTHE                | R CELLS                | (WHITE) ARE PROTECTED                                    |
|              |                                                        |                    |                      |              |                                  |             |                   |                     |                    |             |                              |                         |                        |                                                          |
|              |                                                        |                    |                      |              |                                  |             |                   |                     |                    |             |                              |                         |                        |                                                          |
|              |                                                        |                    |                      |              |                                  |             |                   |                     |                    |             |                              |                         |                        |                                                          |
| About UBM    |                                                        | TOTAL              | COMBINED             | UNCE         | RTAINTY                          |             |                   |                     |                    |             | Unit                         | ]                       |                        |                                                          |
| Bes          | st Measurement Capability ( <u>Excluding</u> UU        | T contribut        | tion)                | Co           | ombined Uncertai<br>Expanded Unc |             |                   | ▼ Level<br>68,27    | of Confidence      | -           | 6.716E-01<br><b>6.72E-01</b> | V <sub>eff</sub><br>k = | 3662867<br><b>1.00</b> | Checked and Approved By:                                 |
| 11.          | ncertainty of Measurement (Including UUT               | contributi         | on)                  | Co           | ombined Uncertai                 | nty (No     | ormal)            | ▼ Level o           | of Confidenc       | e <b>v</b>  | 6.716E-01                    | V <sub>eff</sub>        | infinite               |                                                          |
| U            | incertainty of measurement (including 001              | Contributi         | 011)                 |              | Expanded Unc                     | ertaint     | y                 | 68,27               | % K = 1            |             | 6.72E-01                     | k =                     | 1.00                   |                                                          |
|              | CCPR-K3 2014: Luminous Intensity Find                  |                    |                      |              |                                  |             |                   |                     |                    |             |                              |                         |                        | Appendix A Page 14 of 181                                |

CCPR-K3.2014: Luminous Intensity Final Report, Appendix A


Appendix A Page 14 of 181

| CCPR Key Comparison CCPR-K3.2014<br>Luminous Intensity<br>Final Report |
|------------------------------------------------------------------------|
| Appendix A                                                             |
| <u>NIM Report</u>                                                      |
|                                                                        |
|                                                                        |

# Appendix A.3 Description of the measurement facility

#### **Description of NIM measurement geometry**

The optical configuration for luminous intensity measurement at NIM is shown schematically in Figure One. Position unit in Figure One is mm.



#### **Figure One**

Schematic of NIM measurement configuration: 1 photometer; 2-6 baffles; 7 luminous intensity lamp; 8 radiation trap.

The basic geometric conditions are as follows:

- The lamp is mounted base down.
- The optical axis is horizontal and passes through the center of the filament.
- The optical axis is perpendicular to the plane of the filament (Osram Wi41/G).
- Distance from the lamp is measured from the center of the filament.
- The photometric measurements accept only the light passing through the rectangular opening in the black mask on the face of the Osram Wi41/G lamp.

The distance between the photometer input aperture and the lamp filament plane on the NIM photometric bench is 3.2 m. The NIM photometer has an input aperture diameter of approximately 9 mm. Thus the solid angle for the light emitted from the lamp that is measured by the photometer is approximately 6  $\mu$ sr.

In Figure One, 2-5 are baffles with rectangular aperture sizes of  $50 \text{mm} \times 50 \text{mm}$ ,  $80 \text{mm} \times 80 \text{mm}$ ,  $150 \text{mm} \times 150 \text{mm}$ , and  $200 \text{mm} \times 200 \text{mm}$ , respectively; 6 is a baffle located 200 mm before the lamp with a 50 mm diameter circular aperture; a radiation trap (8) made of a piece of black velvet cloth is mounted 2.0 m behind the luminous intensity lamp (7) to ensure the reflectance to be less than 0.02%.

#### **Description of NIM measurement procedures**

All lamps were operated with DC power at the fixed polarity and fixed current. The electrical operating parameters of the lamps were measured using the standard four-terminal measurement to permit an accurate measurement of the lamp operating current and voltage. The voltage was measured at the lamp socket, rather than the lamp base.

The lamp current was ramped up slowly over approximately one minute to the specified value. The luminous intensity of the standard lamps was measured together with the electrical values. After measurements, the lamp voltage was ramped down slowly over approximately one minute.

After connecting the electrical power to the lamp, ten minutes warm-up procedure for each lamp was followed.

The measurement is conducted on an 8 m photometric bench using a group of eight BDQ8 luminous intensity lamps as reference to calibrate a group of six Wi41/G lamps.

Lamp Wi41/G-152, Wi41/G-180, and Wi41/G-159 were calibrated on 26-01-2014 and 27-01-2014. All the six Wi41/G lamps were calibrated on 06-03-2014 and 11-03-2014. All the lamps and measurement facilities were reinstalled in each measurement.

# Make and type of NIM photometer

The measurement is conducted using an LMT full filter photometer, with the following features:

- no temperature control is applied.
- the  $f_1$ ' is 1.2%.
- no diffuser is used.
- the diameter of the detector is about 9 mm.

A Keithley 6485 picometer is used for the measurement of the photocurrent.

# NIM operating conditions of the lamps

NIM electrical conditions:

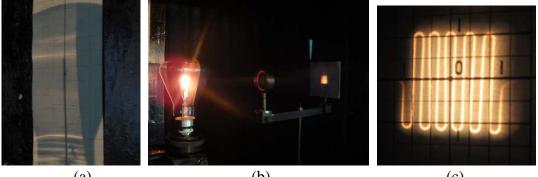
- DC electrical power.
- Defined fixed electrical current for each lamp operation.

- Defined electrical polarity at lamp contacts, the center is positive (+) and the side base is negative (-).

- The defined electrical current has been determined by NIM to result in a CCT between 2829 K and 2841K for the photometric output of the lamp. The actual CCT value has been report in Appendix A.6 Measurement Results.

- The warm-up time for each lamp is ten minutes.

NIM optical coordinate system:


The optical axis for the measurements is the straight line between the center of the photometer input aperture and the defined point on the reference plane defined by the plane of the lamp filament. A regulator (Figure Two b) was used to align the photometer input aperture and the lamp filament center position. The axis of the regulator coincides with the photometric bench axis. The coordinate axis system is same as that illustrated in Figure One of the Luminous Intensity Technical Protocol.

The origin of the coordinate system is established in NIM using an alignment telescope. The alignment telescope is positioned such that its optical axis is identical to the optical axis of the center of the regulator and perpendicular to the indicator board. The telescope mount and the center regulator mount are adjusted such that the crosshair of the indicator board coincides with the crosshair of the telescope at any position along the X direction.

The spatial position of the lamp is defined as "For Center Filament Support #2" of the protocol. The alignment of the filament was at the room temperature.

A special carriage having five degrees of freedom in its physical adjustments was used for lamp position adjustment.

The vertical direction of the lamp was adjusted using the shadow of the filament (Figure Two a). A collimated light beam projects the lamp filament on an indicator board with a mark of line (plumb line) which is perpendicular to the optical axis. The lamp was rotated about the Z-axis until the width (in the X direction) of the shadow of the filament is minimized.



(a)



(c)

**Figure Two** Filament alignment.

Rotation about the Y-axis is adjusted until the shadow of the filament on the indicator board is parallel to the plumb line.

A regulator (Figure Two b) is used for the filament plane and the photometer input aperture center alignment. The regulator is an optical imaging system consists of a lens and an indicator board and its optical axis coincides with the optical axis of the photometric bench. The lamp was adjusted until the filament center coincides with the crosshairs in the indicator board (Figure Two c), so that the optical axis of the photometric bench passes through the center of lamp filament plane.

# **Description of NIM calibration laboratory conditions**

During the measurement for this comparison the ambient temperature at NIM is stabilized at 24.5 °C with fluctuations less than 1 °C. The hum idity is (35% -39%) RH.

# Laboratory transfer standards used at NIM

BDQ8 (see Figure Three for an example) luminous intensity lamps are used as laboratory transfer standards with the following features:

- current is about 6.6000 A.
- voltage is about 97 V.
- luminous intensity is about 1230 cd.
- CCT is about 2835 K.

These lamps are made in China.

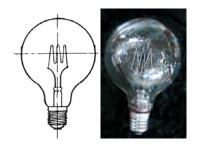



Figure Three A BDQ8 luminous intensity lamp

# Establishment or traceability route of primary scale including date of last realisation and uncertainty budget.

The luminous intensity unit was realized by a group of seven electrically calibrated radiometers of with conical cavity, precision aperture,  $V(\lambda)$  filter. BDQ 8 lamps with gas-filled tungsten filament, specially developed as the secondary standard, maintaining the luminous intensity unit. The latest realization was done in 2013. The standard uncertainty for the realization is 0.16%.

| Uncertainty component                      | Туре   | Relative standard<br>uncertainty/ % |
|--------------------------------------------|--------|-------------------------------------|
| Measurement of the irradiance              | В      | 0.11                                |
| $V(\lambda)$ filter spectral transmittance | В      | 0.06                                |
| at 555nm                                   |        |                                     |
| Spectral mismatch                          | В      | 0.03                                |
| Distance measurement                       | В      | 0.06                                |
| Homogeneity of the lamp group              | A      | 0.06                                |
| Current control of the lamp                | В      | 0.05                                |
| Combined standard uncer                    | tainty | 0.16                                |

Uncertainty budget for realization of the unit of luminous intensity

Participant: National Institute of Metrology NMI: NIM Date: April 12, 2014 Signature: Lin Lin

| Date       | Lamp<br>ON | Activity/Comments<br>(test, alignment, | Lamp<br>OFF | Burn<br>time | Lamp<br>Current     | Lamp<br>Voltage   | Operator<br>initials |
|------------|------------|----------------------------------------|-------------|--------------|---------------------|-------------------|----------------------|
| 06/03/2014 | time       | testing                                | time        | (mins)<br>12 | (amperes)<br>5.7940 | (volts)<br>29.851 | Jiang                |
| 11/03/2014 |            | testing                                |             | 12           |                     | 29.841            | Liu                  |
| 17/08/2015 |            | testing                                |             | 12           |                     | 29.829            | Liu                  |
| 18/08/2015 |            | testing                                |             | 24           |                     | 29.826            | Lv                   |

### Appendix A.4 Record of lamp operating time Lamp number: Wi41/G -96(NIM-01)

# Lamp number: Wi41/G -152(NIM-02)

| Date       | Lamp<br>ON | Activity/Comments<br>(test, alignment, | Lamp<br>OFF | Burn<br>time | Lamp<br>Current | Lamp<br>Voltage | Operator<br>initials |
|------------|------------|----------------------------------------|-------------|--------------|-----------------|-----------------|----------------------|
|            | time       | measurement)                           | time        | (mins)       | (amperes)       | (volts)         |                      |
| 26/01/2014 |            | testing                                |             | 12           | 5.8184          | 30.013          | Liu                  |
| 27/01/2014 |            | testing                                |             | 12           |                 | 30.013          | Jiang                |
| 06/03/2014 |            | testing                                |             | 12           |                 | 30.013          | Jiang                |
| 11/03/2014 |            | testing                                |             | 12           |                 | 30.014          | Liu                  |
| 17/08/2015 |            | testing                                |             | 12           |                 | 30.019          | Liu                  |
| 18/08/2015 |            | testing                                |             | 26           |                 | 30.020          | Lv                   |

### Lamp number: Wi41/G -164(NIM-03)

| Date       | Lamp | Activity/Comments | Lamp | Burn   | Lamp      | Lamp    | Operator |
|------------|------|-------------------|------|--------|-----------|---------|----------|
|            | ON   | (test, alignment, | OFF  | time   | Current   | Voltage | initials |
|            | time | measurement)      | time | (mins) | (amperes) | (volts) |          |
| 06/03/2014 |      | testing           |      | 12     | 5.8072    | 29.781  | Liu      |
| 11/03/2014 |      | testing           |      | 12     |           | 29.780  | Jiang    |
| 17/08/2015 |      | testing           |      | 36     |           | 29.770  | Liu      |
| 18/08/2015 |      | testing           |      | 36     |           | 29.775  | Lv       |

# Lamp number: Wi41/G -180(NIM-04)

| Date       | Lamp<br>ON | Activity/Comments<br>(test, alignment, | Lamp<br>OFF | Burn<br>time | Lamp<br>Current | Lamp<br>Voltage | <b>Operator</b><br>initials |
|------------|------------|----------------------------------------|-------------|--------------|-----------------|-----------------|-----------------------------|
|            | time       | measurement)                           | time        | (mins)       | (amperes)       | (volts)         |                             |
| 26/01/2014 |            | testing                                |             | 12           | 5.8044          | 29.955          | Liu                         |
| 27/01/2014 |            | testing                                |             | 12           |                 | 29.955          | Jiang                       |
| 06/03/2014 |            | testing                                |             | 12           |                 | 29.955          | Jiang                       |
| 11/03/2014 |            | testing                                |             | 12           |                 | 29.949          | Liu                         |
| 17/08/2015 |            | testing                                |             | 12           |                 | 29.944          | Liu                         |
| 18/08/2015 |            | testing                                |             | 24           |                 | 29.950          | Lv                          |

| Date       | Lamp | Activity/Comments | Lamp | Burn   | Lamp      | Lamp    | Operator |
|------------|------|-------------------|------|--------|-----------|---------|----------|
|            | ON   | (test, alignment, | OFF  | time   | Current   | Voltage | initials |
|            | time | measurement)      | time | (mins) | (amperes) | (volts) |          |
| 26/01/2014 |      | testing           |      | 12     | 5.7797    | 29.731  | Liu      |
| 27/01/2014 |      | testing           |      | 12     |           | 29.732  | Jiang    |
| 06/03/2014 |      | testing           |      | 12     |           | 29.738  | Jiang    |
| 11/03/2014 |      | testing           |      | 12     |           | 29.719  | Liu      |
| 17/08/2015 |      | testing           |      | 12     |           | 29.711  | Liu      |
| 18/08/2015 |      | testing           |      | 36     |           | 29.711  | Lv       |

# Lamp number: Wi41/G -189(NIM-05)

# Lamp number: Wi41/G -1071(NIM-06)

| Date       | Lamp | Activity/Comments | Lamp | Burn   | Lamp      | Lamp    | Operator |
|------------|------|-------------------|------|--------|-----------|---------|----------|
|            | ON   | (test, alignment, | OFF  | time   | Current   | Voltage | initials |
|            | time | measurement)      | time | (mins) | (amperes) | (volts) |          |
| 06/03/2014 |      | testing           |      | 12     | 5.8379    | 30.103  | Jiang    |
| 11/03/2014 |      | testing           |      | 12     |           | 30.099  | Liu      |
| 17/08/2015 |      | testing           |      | 12     |           | 30.090  | Liu      |
| 18/08/2015 |      | testing           |      | 24     |           | 30.091  | Lv       |

Participant: National Institute of Metrology

NMI: NIM

Date: Aug. 28,2015

Signature:

# Appendix A.5 Measurement Uncertainty Budget

# Lamp Number: Wi41/G -96(NIM-01)

| Measurement Round #1: |
|-----------------------|
|-----------------------|

| Measurement Parameter                            | Uncertainty Type<br>(A or B) | Standard Uncertainty<br>in luminous intensity<br>(%) |
|--------------------------------------------------|------------------------------|------------------------------------------------------|
| Systematic effects:                              |                              |                                                      |
| Calibration of reference standard                | В                            | 0.16                                                 |
| Electrical                                       |                              |                                                      |
| -standard resistor and voltmeter                 | В                            | 0.03                                                 |
| Photometer                                       |                              |                                                      |
| - spectral mismatch                              | В                            | 0.01                                                 |
| - linearity                                      | В                            | 0.02                                                 |
| - distance                                       | В                            | 0.03                                                 |
| Environment                                      |                              |                                                      |
| - stray light                                    | В                            | 0.01                                                 |
| RMS total systematic effects:                    |                              | 0.167                                                |
| Random effects:                                  |                              |                                                      |
| Lamp parameters:                                 |                              |                                                      |
| - lamp reproducibility(including lamp alignment) | A                            | 0.047                                                |
| - lamp output fluctuations                       | А                            | 0.007                                                |
| Electrical parameters:                           |                              |                                                      |
| -lamp current supply fluctuations                | В                            | 0.006                                                |
| Photometer noise                                 | В                            | 0.01                                                 |
| RMS total random effects:                        |                              | 0.049                                                |
| RMS total standard uncertainty:                  |                              | 0.17                                                 |

# Lamp Number: Wi41/G -96(NIM-01)

Measurement Round #2:

| Measurement Parameter                            | Uncertainty Type<br>(A or B) | Standard Uncertainty<br>in luminous intensity<br>(%) |
|--------------------------------------------------|------------------------------|------------------------------------------------------|
| Systematic effects:                              |                              |                                                      |
| Calibration of reference standard                | В                            | 0.16                                                 |
| Electrical                                       |                              |                                                      |
| -standard resistor and voltmeter                 | В                            | 0.03                                                 |
| Photometer                                       |                              |                                                      |
| - spectral mismatch                              | В                            | 0.01                                                 |
| - linearity                                      | В                            | 0.02                                                 |
| - distance                                       | В                            | 0.03                                                 |
| Environment                                      |                              |                                                      |
| - stray light                                    | В                            | 0.01                                                 |
| RMS total systematic effects:                    |                              | 0.167                                                |
|                                                  |                              |                                                      |
| Random effects:                                  |                              |                                                      |
| Lamp parameters:                                 |                              |                                                      |
| - lamp ageing                                    | В                            | 0.018                                                |
| - lamp reproducibility(including lamp alignment) | А                            | 0.077                                                |
| - lamp output fluctuations                       | A                            | 0.002                                                |
| Electrical parameters:                           |                              |                                                      |
| -lamp current supply fluctuations                | В                            | 0.006                                                |
| Photometer noise                                 | В                            | 0.01                                                 |
| RMS total random effects:                        |                              | 0.080                                                |
| RMS total standard uncertainty:                  |                              | 0.19                                                 |

# Lamp Number: Wi41/G -152(NIM-02)

Measurement Round #1:

| Measurement Parameter                            | Uncertainty Type<br>(A or B) | Standard Uncertainty<br>in luminous intensity<br>(%) |
|--------------------------------------------------|------------------------------|------------------------------------------------------|
| Systematic effects:                              |                              |                                                      |
| Calibration of reference standard                | В                            | 0.16                                                 |
| Electrical                                       |                              |                                                      |
| -standard resistor and voltmeter                 | В                            | 0.03                                                 |
| Photometer                                       |                              |                                                      |
| - spectral mismatch                              | В                            | 0.01                                                 |
| - linearity                                      | В                            | 0.02                                                 |
| - distance                                       | В                            | 0.03                                                 |
| Environment                                      |                              |                                                      |
| - stray light                                    | В                            | 0.01                                                 |
| RMS total systematic effects:                    |                              | 0.167                                                |
| Random effects:                                  |                              |                                                      |
| Lamp parameters:                                 |                              |                                                      |
| - lamp reproducibility(including lamp alignment) | А                            | 0.062                                                |
| - lamp output fluctuations                       | А                            | 0.001                                                |
| Electrical parameters:                           |                              |                                                      |
| -lamp current supply fluctuations                | В                            | 0.006                                                |
| Photometer noise                                 | В                            | 0.01                                                 |
| RMS total random effects:                        |                              | 0.063                                                |
| RMS total standard uncertainty:                  |                              | 0.18                                                 |

# Lamp Number: Wi41/G -152(NIM-02)

Measurement Round #2

| Measurement Parameter                            | Uncertainty Type<br>(A or B) | Standard Uncertainty<br>in luminous intensity<br>(%) |
|--------------------------------------------------|------------------------------|------------------------------------------------------|
| Systematic effects:                              |                              |                                                      |
| Calibration of reference standard                | В                            | 0.16                                                 |
| Electrical                                       |                              |                                                      |
| -standard resistor and voltmeter                 | В                            | 0.03                                                 |
| Photometer                                       |                              |                                                      |
| - spectral mismatch                              | В                            | 0.01                                                 |
| - linearity                                      | В                            | 0.02                                                 |
| - distance                                       | В                            | 0.03                                                 |
| Environment                                      |                              |                                                      |
| - stray light                                    | В                            | 0.01                                                 |
| RMS total systematic effects:                    |                              | 0.167                                                |
|                                                  |                              |                                                      |
| Random effects:                                  |                              |                                                      |
| Lamp parameters:                                 |                              |                                                      |
| - lamp ageing                                    | В                            | 0.024                                                |
| - lamp reproducibility(including lamp alignment) | А                            | 0.077                                                |
| - lamp output fluctuations                       | A                            | 0.001                                                |
| Electrical parameters:                           |                              |                                                      |
| -lamp current supply fluctuations                | В                            | 0.006                                                |
| Photometer noise                                 | В                            | 0.01                                                 |
| RMS total random effects:                        |                              | 0.081                                                |
| RMS total standard uncertainty:                  |                              | 0.19                                                 |

# Lamp Number: Wi41/G -164(NIM-03)

Measurement Round #1:

| Measurement Parameter                            | Uncertainty Type<br>(A or B) | Standard Uncertainty<br>in luminous intensity<br>(%) |
|--------------------------------------------------|------------------------------|------------------------------------------------------|
| Systematic effects:                              |                              |                                                      |
| Calibration of reference standard                | В                            | 0.16                                                 |
| Electrical                                       |                              |                                                      |
| -standard resistor and voltmeter                 | В                            | 0.03                                                 |
| Photometer                                       |                              |                                                      |
| - spectral mismatch                              | В                            | 0.01                                                 |
| - linearity                                      | В                            | 0.02                                                 |
| - distance                                       | В                            | 0.03                                                 |
| Environment                                      |                              |                                                      |
| - stray light                                    | В                            | 0.01                                                 |
| RMS total systematic effects:                    |                              | 0.167                                                |
| Random effects:                                  |                              |                                                      |
| Lamp parameters:                                 |                              |                                                      |
| - lamp reproducibility(including lamp alignment) | А                            | 0.006                                                |
| - lamp output fluctuations                       | A                            | 0.002                                                |
| Electrical parameters:                           |                              |                                                      |
| -lamp current supply fluctuations                | В                            | 0.006                                                |
| Photometer noise                                 | В                            | 0.01                                                 |
| RMS total random effects:                        |                              | 0.012                                                |
| RMS total standard uncertainty:                  |                              | 0.17                                                 |

# Lamp Number: Wi41/G -164(NIM-03)

Measurement Round #2

| Measurement Parameter                            | Uncertainty Type<br>(A or B) | Standard Uncertainty<br>in luminous intensity<br>(%) |
|--------------------------------------------------|------------------------------|------------------------------------------------------|
| Systematic effects:                              |                              |                                                      |
| Calibration of reference standard                | В                            | 0.16                                                 |
| Electrical                                       |                              |                                                      |
| -standard resistor and voltmeter                 | В                            | 0.03                                                 |
| Photometer                                       |                              |                                                      |
| - spectral mismatch                              | В                            | 0.01                                                 |
| - linearity                                      | В                            | 0.02                                                 |
| - distance                                       | В                            | 0.03                                                 |
| Environment                                      |                              |                                                      |
| - stray light                                    | В                            | 0.01                                                 |
| <b>RMS total systematic effects:</b>             |                              | 0.167                                                |
|                                                  |                              |                                                      |
| Random effects:                                  |                              |                                                      |
| Lamp parameters:                                 |                              |                                                      |
| - lamp ageing                                    | В                            | 0.036                                                |
| - lamp reproducibility(including lamp alignment) | А                            | 0.056                                                |
| - lamp output fluctuations                       | A                            | 0.001                                                |
| Electrical parameters:                           |                              |                                                      |
| -lamp current supply fluctuations                | В                            | 0.006                                                |
| Photometer noise                                 | В                            | 0.01                                                 |
| RMS total random effects:                        |                              | 0.068                                                |
| RMS total standard uncertainty:                  |                              | 0.18                                                 |

# Lamp Number: Wi41/G -180(NIM-04)

Measurement Round #1:

| Measurement Parameter                            | Uncertainty Type<br>(A or B) | Standard Uncertainty<br>in luminous intensity<br>(%) |
|--------------------------------------------------|------------------------------|------------------------------------------------------|
| Systematic effects:                              |                              |                                                      |
| Calibration of reference standard                | В                            | 0.16                                                 |
| Electrical                                       |                              |                                                      |
| -standard resistor and voltmeter                 | В                            | 0.03                                                 |
| Photometer                                       |                              |                                                      |
| - spectral mismatch                              | В                            | 0.01                                                 |
| - linearity                                      | В                            | 0.02                                                 |
| - distance                                       | В                            | 0.03                                                 |
| Environment                                      |                              |                                                      |
| - stray light                                    | В                            | 0.01                                                 |
| RMS total systematic effects:                    |                              | 0.167                                                |
| Random effects:                                  |                              |                                                      |
| Lamp parameters:                                 |                              |                                                      |
| - lamp reproducibility(including lamp alignment) | А                            | 0.039                                                |
| - lamp output fluctuations                       | A                            | 0.002                                                |
| Electrical parameters:                           |                              |                                                      |
| -lamp current supply fluctuations                | В                            | 0.006                                                |
| Photometer noise                                 | В                            | 0.01                                                 |
| RMS total random effects:                        |                              | 0.040                                                |
| RMS total standard uncertainty:                  |                              | 0.17                                                 |

# Lamp Number: Wi41/G -180(NIM-04)

Measurement Round #2:

| Measurement Parameter                           | Uncertainty Type<br>(A or B) | Standard Uncertainty<br>in luminous intensity<br>(%) |
|-------------------------------------------------|------------------------------|------------------------------------------------------|
| Systematic effects:                             |                              | (,,,)                                                |
| Calibration of reference standard               | В                            | 0.16                                                 |
| Electrical                                      |                              |                                                      |
| -standard resistor and voltmeter                | В                            | 0.03                                                 |
| Photometer                                      |                              |                                                      |
| - spectral mismatch                             | В                            | 0.01                                                 |
| - linearity                                     | В                            | 0.02                                                 |
| - distance                                      | В                            | 0.03                                                 |
| Environment                                     |                              |                                                      |
| - stray light                                   | В                            | 0.01                                                 |
| RMS total systematic effects:                   |                              | 0.167                                                |
|                                                 |                              |                                                      |
| Random effects:                                 |                              |                                                      |
| Lamp parameters:                                |                              |                                                      |
| - lamp ageing                                   | В                            | 0.018                                                |
| - lamp reproducibility(including lamp alignment | А                            | 0.057                                                |
| - lamp output fluctuations                      | А                            | 0.001                                                |
| Electrical parameters:                          |                              |                                                      |
| -lamp current supply fluctuations               | В                            | 0.006                                                |
| Photometer noise                                | В                            | 0.01                                                 |
| RMS total random effects:                       |                              | 0.061                                                |
| RMS total standard uncertainty:                 |                              | 0.18                                                 |

# Lamp Number: Wi41/G -189(NIM-05)

Measurement Round #1

| Measurement Parameter                            | Uncertainty Type<br>(A or B) | Standard Uncertainty<br>in luminous intensity<br>(%) |
|--------------------------------------------------|------------------------------|------------------------------------------------------|
| Systematic effects:                              |                              |                                                      |
| Calibration of reference standard                | В                            | 0.16                                                 |
| Electrical                                       |                              |                                                      |
| -standard resistor and voltmeter                 | В                            | 0.03                                                 |
| Photometer                                       |                              |                                                      |
| - spectral mismatch                              | В                            | 0.01                                                 |
| - linearity                                      | В                            | 0.02                                                 |
| - distance                                       | В                            | 0.03                                                 |
| Environment                                      |                              |                                                      |
| - stray light                                    | В                            | 0.01                                                 |
| RMS total systematic effects:                    |                              | 0.167                                                |
| Random effects:                                  |                              |                                                      |
| Lamp parameters:                                 |                              |                                                      |
| - lamp reproducibility(including lamp alignment) | А                            | 0.046                                                |
| - lamp output fluctuations                       | A                            | 0.001                                                |
| Electrical parameters:                           |                              |                                                      |
| -lamp current supply fluctuations                | В                            | 0.006                                                |
| Photometer noise                                 | В                            | 0.01                                                 |
| RMS total random effects:                        |                              | 0.047                                                |
| RMS total standard uncertainty:                  |                              | 0.17                                                 |

# Lamp Number: Wi41/G -189(NIM-05)

Measurement Round #2:

| Measurement Parameter                            | Uncertainty Type<br>(A or B) | Standard Uncertainty<br>in luminous intensity<br>(%) |
|--------------------------------------------------|------------------------------|------------------------------------------------------|
| Systematic effects:                              |                              |                                                      |
| Calibration of reference standard                | В                            | 0.16                                                 |
| Electrical                                       |                              |                                                      |
| -standard resistor and voltmeter                 | В                            | 0.03                                                 |
| Photometer                                       |                              |                                                      |
| - spectral mismatch                              | В                            | 0.01                                                 |
| - linearity                                      | В                            | 0.02                                                 |
| - distance                                       | В                            | 0.03                                                 |
| Environment                                      |                              |                                                      |
| - stray light                                    | В                            | 0.01                                                 |
| <b>RMS total systematic effects:</b>             |                              | 0.167                                                |
|                                                  |                              |                                                      |
| Random effects:                                  |                              |                                                      |
| Lamp parameters:                                 |                              |                                                      |
| - lamp ageing                                    | В                            | 0.024                                                |
| - lamp reproducibility(including lamp alignment) | А                            | 0.040                                                |
| - lamp output fluctuations                       | А                            | 0.001                                                |
| Electrical parameters:                           |                              |                                                      |
| -lamp current supply fluctuations                | В                            | 0.006                                                |
| Photometer noise                                 | В                            | 0.01                                                 |
| RMS total random effects:                        |                              | 0.048                                                |
| RMS total standard uncertainty:                  |                              | 0.17                                                 |

# Lamp Number: Wi41/G -1071(NIM-06)

# Measurement Round #1

| Measurement Parameter                 | Uncertainty Type<br>(A or B) | Standard Uncertainty<br>in luminous intensity<br>(%) |
|---------------------------------------|------------------------------|------------------------------------------------------|
| Systematic effects:                   |                              | ( /0)                                                |
| Calibration of reference standard     | В                            | 0.16                                                 |
| Electrical                            |                              |                                                      |
| -standard resistor and voltmeter      | В                            | 0.03                                                 |
| Photometer                            |                              |                                                      |
| - spectral mismatch                   | В                            | 0.01                                                 |
| - linearity                           | В                            | 0.02                                                 |
| - distance                            | В                            | 0.03                                                 |
| Environment                           |                              |                                                      |
| - stray light                         | В                            | 0.01                                                 |
| <b>RMS total systematic effects:</b>  |                              | 0.167                                                |
|                                       |                              |                                                      |
| Random effects:                       |                              |                                                      |
| Lamp parameters:                      |                              |                                                      |
| - lamp alignment                      | В                            | 0.065                                                |
| - lamp reproducibility(including lamp | А                            | 0.001                                                |
| alignment)                            |                              |                                                      |
| Electrical parameters:                |                              | 0.007                                                |
| -lamp current supply fluctuations     | B                            | 0.006                                                |
| Photometer noise                      | В                            | 0.01                                                 |
| RMS total random effects:             |                              | 0.066                                                |
| RMS total standard uncertainty:       |                              | 0.18                                                 |

# Lamp Number: Wi41/G -1071(NIM-06)

Measurement Round #2:

| Measurement Parameter                            | Uncertainty Type<br>(A or B) | Standard Uncertainty<br>in luminous intensity<br>(%) |
|--------------------------------------------------|------------------------------|------------------------------------------------------|
| Systematic effects:                              |                              |                                                      |
| Calibration of reference standard                | В                            | 0.16                                                 |
| Electrical                                       |                              |                                                      |
| -standard resistor and voltmeter                 | В                            | 0.03                                                 |
| Photometer                                       |                              |                                                      |
| - spectral mismatch                              | В                            | 0.01                                                 |
| - linearity                                      | В                            | 0.02                                                 |
| - distance                                       | В                            | 0.03                                                 |
| Environment                                      |                              |                                                      |
| - stray light                                    | В                            | 0.01                                                 |
| RMS total systematic effects:                    |                              | 0.167                                                |
| Random effects:                                  |                              |                                                      |
| Lamp parameters:                                 |                              |                                                      |
| - lamp ageing                                    | В                            | 0.018                                                |
| - lamp reproducibility(including lamp alignment) | A                            | 0.081                                                |
| - lamp output fluctuations                       | А                            | 0.001                                                |
| Electrical parameters:                           |                              |                                                      |
| -lamp current supply fluctuations                | В                            | 0.006                                                |
| Photometer noise                                 | В                            | 0.01                                                 |
| RMS total random effects:                        |                              | 0.083                                                |
| RMS total standard uncertainty:                  |                              | 0.19                                                 |

Participant: National Institute of Metrology

NMI: NIM

Date: Aug. 28,2015

Signature:

# Appendix A.6 Measurement Results

# Lamp Number: Wi41/G -96(NIM-01)

| Wieast      | Measurement Round #1. |            |         |         |             |           |            |              |  |  |  |  |
|-------------|-----------------------|------------|---------|---------|-------------|-----------|------------|--------------|--|--|--|--|
| Measurement | Number of             | Date/time  | Lamp    | Lamp    | Correlated  | Luminous  | Standard V | Uncertainty  |  |  |  |  |
| Set Number  | measurements          |            | Current | Voltage | Colour      | Intensity | in Lumino  | us Intensity |  |  |  |  |
|             | per set               |            |         |         | Temperature |           | (%)        |              |  |  |  |  |
|             |                       |            | (A)     | (V)     | (K)         | (cd)      | Random     | Systematic   |  |  |  |  |
| 3           | 1                     | 06/03/2014 | 5.7940  | 29.851  | 2837        | 253.23    | 0.049      | 0.167        |  |  |  |  |
| 4           | 1                     | 11/03/2014 | 5.7940  | 29.841  | 2837        | 253.06    |            |              |  |  |  |  |

#### Measurement Round #1:

# Lamp Number: Wi41/G -152(NIM-02)

Measurement Round #1:

| Measurement | Number of    | Date/time  | Lamp    | Lamp    | Correlated  | Luminous  | Standard I | Uncertainty  |
|-------------|--------------|------------|---------|---------|-------------|-----------|------------|--------------|
| Set Number  | measurements |            | Current | Voltage | Colour      | Intensity | in Lumino  | us Intensity |
|             | per set      |            |         |         | Temperature |           | (*         | %)           |
|             |              |            | (A)     | (V)     | (K)         | (cd)      | Random     | Systematic   |
| 1           | 1            | 26/01/2014 | 5.8184  | 30.013* | 2829        | 263.75    | 0.063      | 0.167        |
| 2           | 1            | 27/01/2014 | 5.8184  | 30.013* | 2829        | 263.65    |            |              |
| 3           | 1            | 06/03/2014 | 5.8184  | 30.013* | 2829        | 263.16    |            |              |
| 4           | 1            | 11/03/2014 | 5.8184  | 30.014  | 2829        | 263.76    |            |              |

# Lamp Number: Wi41/G -164(NIM-03)

Measurement Round #1:

| Measurement | Number of    | Date/time  | Lamp    | Lamp    | Correlated  | Luminous  | Standard              | Uncertainty |
|-------------|--------------|------------|---------|---------|-------------|-----------|-----------------------|-------------|
| Set Number  | measurements |            | Current | Voltage | Colour      | Intensity | in Luminous Intensity |             |
|             | per set      |            |         |         | Temperature |           | (%)                   |             |
|             |              |            | (A)     | (V)     | (K)         | (cd)      | Random                | Systematic  |
| 3           |              | 06/03/2014 | 5.8072  | 29.781  | 2841        | 275.16    | 0.012                 | 0.167       |
| 4           |              | 11/03/2014 | 5.8072  | 29.780  | 2841        | 275.14    |                       |             |

# Lamp Number: Wi41/G -180(NIM-04)

Measurement Round #1:

| Measurement | Number of    | Date/time  | Lamp    | Lamp                | Correlated  | Luminous  | Standard V            | Uncertainty |
|-------------|--------------|------------|---------|---------------------|-------------|-----------|-----------------------|-------------|
| Set Number  | measurements |            | Current | Voltage             | Colour      | Intensity | in Luminous Intensity |             |
|             | per set      |            |         |                     | Temperature |           | (%)                   |             |
|             |              |            | (A)     | (V)                 | (K)         | (cd)      | Random                | Systematic  |
| 1           | 1            | 26/01/2014 | 5.8044  | 29.955*             | 2839        | 265.18    | 0.040                 | 0.167       |
| 2           | 1            | 27/01/2014 | 5.8044  | 29.955 <sup>*</sup> | 2839        | 265.11    |                       |             |
| 3           | 1            | 06/03/2014 | 5.8044  | 29.955 <sup>*</sup> | 2839        | 264.99    |                       |             |
| 4           | 1            | 11/03/2014 | 5.8044  | 29.949              | 2839        | 265.41    |                       |             |

# Lamp Number: Wi41/G -189(NIM-05)

| Wiedst      | Measurement Round #1. |            |         |                     |             |           |                       |             |  |  |  |  |
|-------------|-----------------------|------------|---------|---------------------|-------------|-----------|-----------------------|-------------|--|--|--|--|
| Measurement | Number of             | Date/time  | Lamp    | Lamp                | Correlated  | Luminous  | Standard              | Uncertainty |  |  |  |  |
| Set Number  | measurements          |            | Current | Voltage             | Colour      | Intensity | in Luminous Intensity |             |  |  |  |  |
|             | per set               |            |         |                     | Temperature |           | (%)                   |             |  |  |  |  |
|             |                       |            | (A)     | (V)                 | (K)         | (cd)      | Random                | Systematic  |  |  |  |  |
| 1           | 1                     | 26/01/2014 | 5.7797  | 29.731*             | 2840        | 269.63    | 0.047                 | 0.167       |  |  |  |  |
| 2           | 1                     | 27/01/2014 | 5.7797  | 29.732 <sup>*</sup> | 2840        | 269.85    |                       |             |  |  |  |  |
| 3           | 1                     | 06/03/2014 | 5.7797  | 29.738*             | 2840        | 269.41    |                       |             |  |  |  |  |
| 4           | 1                     | 11/03/2014 | 5.7797  | 29.719              | 2840        | 269.39    |                       |             |  |  |  |  |

#### Measurement Round #1:

# Lamp Number: Wi41/G -1071(NIM-06)

Measurement Round #1:

| Ī | Measurement | Number of    | Date/time  | Lamp    | Lamp    | Correlated  | Luminous  | Standard V            | Uncertainty |
|---|-------------|--------------|------------|---------|---------|-------------|-----------|-----------------------|-------------|
|   | Set Number  | measurements |            | Current | Voltage | Colour      | Intensity | in Luminous Intensity |             |
|   |             | per set      |            |         |         | Temperature |           | (%)                   |             |
|   |             |              |            | (A)     | (V)     | (K)         | (cd)      | Random                | Systematic  |
|   | 3           | 1            | 06/03/2014 | 5.8379  | 30.103  | 2839        | 271.40    | 0.066                 | 0.167       |
|   | 4           | 1            | 11/03/2014 | 5.8379  | 30.099  | 2839        | 271.15    |                       |             |

#### **Specification:**

The warm up time for each lamp is ten minutes.

The centre of the lamp is positive, the screw is negative.

The lamp socket has been changed since March 11th. We found that the electrical connection characteristics of the old socket is not good, the characteristics of the new one has been improved. In order to avoid increasing the lamp burning time, we don't measure too much. The measurement results of voltage in March 11th should be the lamp voltage.

\*Measurement with old lamp socket.

Participant: National Institute of Metrology

NMI: NIM

Date: Aug. 28,2015

Signature:

#### Appendix A.6 Measurement Results

# Lamp Number: Wi41/G -96(NIM-01)

Measurement Round #2:

| Measurement | Number of    | Date/time  | Lamp    | Lamp    | Correlated  | Luminous  | Standard U | Uncertainty  |
|-------------|--------------|------------|---------|---------|-------------|-----------|------------|--------------|
| Set Number  | measurements |            | Current | Voltage | Colour      | Intensity | in Lumino  | us Intensity |
|             | per set      |            |         |         | Temperature |           | (9         | %)           |
|             |              |            | (A)     | (V)     | (K)         | (cd)      | Random     | Systematic   |
| 1           | 1            | 17/08/2015 | 5.7940  | 29.829  | 2837        | 252.77    | 0.080      | 0.167        |
| 2           | 2            | 18/08/2015 |         | 29.826  | 2837        | 252.55    |            |              |

# Lamp Number: Wi41/G -152(NIM-02)

Measurement Round #2:

| Measurement | Number of    | Date/time  | Lamp    | Lamp    | Correlated  | Luminous  | Standard U | Uncertainty  |
|-------------|--------------|------------|---------|---------|-------------|-----------|------------|--------------|
| Set Number  | measurements |            | Current | Voltage | Colour      | Intensity | in Lumino  | us Intensity |
|             | per set      |            |         |         | Temperature |           | (9         | %)           |
|             |              |            | (A)     | (V)     | (K)         | (cd)      | Random     | Systematic   |
| 1           | 1            | 17/08/2015 | 5.8184  | 30.019  | 2829        | 264.06    | 0.081      | 0.167        |
| 2           | 3            | 18/08/2015 |         | 30.020  | 2829        | 263.79    |            |              |

# Lamp Number: Wi41/G -164(NIM-03)

Measurement Round #2:

| Measurement | Number of    | Date/time  | Lamp    | Lamp    | Correlated  | Luminous  | Standard U            | Uncertainty |
|-------------|--------------|------------|---------|---------|-------------|-----------|-----------------------|-------------|
| Set Number  | measurements |            | Current | Voltage | Colour      | Intensity | in Luminous Intensity |             |
|             | per set      |            |         |         | Temperature |           | (%)                   |             |
|             |              |            | (A)     | (V)     | (K)         | (cd)      | Random                | Systematic  |
| 1           | 3            | 17/08/2015 | 5.8072  | 29.770  | 2841        | 275.61    | 0.068                 | 0.167       |
| 2           | 3            | 18/08/2015 |         | 29.775  | 2841        | 275.59    |                       |             |

#### Lamp Number: Wi41/G -180(NIM-04)

| Medst       | Wedstreinent Round #2. |            |         |         |             |           |            |              |  |  |  |
|-------------|------------------------|------------|---------|---------|-------------|-----------|------------|--------------|--|--|--|
| Measurement | Number of              | Date/time  | Lamp    | Lamp    | Correlated  | Luminous  | Standard U | Uncertainty  |  |  |  |
| Set Number  | measurements           |            | Current | Voltage | Colour      | Intensity | in Lumino  | us Intensity |  |  |  |
|             | per set                |            |         |         | Temperature |           | (%)        |              |  |  |  |
|             |                        |            | (A)     | (V)     | (K)         | (cd)      | Random     | Systematic   |  |  |  |
| 1           | 1                      | 17/08/2015 | 5.8044  | 29.944  | 2839        | 265.43    | 0.061      | 0.167        |  |  |  |
| 2           | 2                      | 18/08/2015 |         | 29.950  | 2839        | 265.81    |            |              |  |  |  |

Measurement Round #2:

# Lamp Number: Wi41/G -189(NIM-05)

| Wieds       | Weasurement Round #2. |            |         |         |             |           |            |              |  |  |  |
|-------------|-----------------------|------------|---------|---------|-------------|-----------|------------|--------------|--|--|--|
| Measurement | Number of             | Date/time  | Lamp    | Lamp    | Correlated  | Luminous  | Standard U | Uncertainty  |  |  |  |
| Set Number  | measurements          |            | Current | Voltage | Colour      | Intensity | in Lumino  | us Intensity |  |  |  |
|             | per set               |            |         |         | Temperature |           | (%)        |              |  |  |  |
|             |                       |            | (A)     | (V)     | (K)         | (cd)      | Random     | Systematic   |  |  |  |
| 1           | 1                     | 17/08/2015 | 5.7797  | 29.711  | 2840        | 269.41    | 0.048      | 0.167        |  |  |  |
| 2           | 3                     | 18/08/2015 |         | 29.711  | 2840        | 269.42    |            |              |  |  |  |

# Measurement Round #2:

# Lamp Number: Wi41/G -1071(NIM-06)

Measurement Round #2:

| Measurement | Number of    | Date/time  | Lamp    | Lamp    | Correlated  | Luminous  | Standard U | Uncertainty  |
|-------------|--------------|------------|---------|---------|-------------|-----------|------------|--------------|
| Set Number  | measurements |            | Current | Voltage | Colour      | Intensity | in Lumino  | us Intensity |
|             | per set      |            |         |         | Temperature |           | (%)        |              |
|             |              |            | (A)     | (V)     | (K)         | (cd)      | Random     | Systematic   |
| 1           | 1            | 17/08/2015 | 5.8379  | 30.090  | 2839        | 271.43    | 0.083      | 0.167        |
| 2           | 2            | 18/08/2015 |         | 30.091  | 2839        | 271.54    |            |              |

# **Specification:**

The warm up time for each lamp is ten minutes.

The centre of the lamp is positive, the screw is negative.

Participant: National Institute of Metrology

NMI: NIM

Date: Aug. 28, 2015

Signature:

# CCPR Key Comparison CCPR-K3.2014 Luminous Intensity Final Report Appendix A <u>NMIA Report</u>

# National Measurement Institute, Australia

### **Lamp Selection**

A set of ten lamps were selected from a stock of Wotan Wi41/G lamps held at NMIA since the 1970s. The lamps were designed with the filament supports below the filament. Each lamp was originally aged shortly after it was purchased. However, in order to select the six lamps to be used for the comparison, the lamps were re-aged for a further period of two to three days each with lamp current, lamp voltage, relative illuminance and ambient temperature recorded every 30 minutes. The lamps were assessed for their ability to maintain luminous intensity as a function of lamp current, lamp voltage, lamp power and filament resistance resulting in a list of lamps with the more stable lamps prioritised over the less stable lamps.

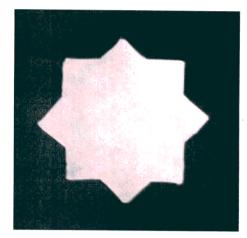
After each lamp had been left to return to ambient temperature, the lamps were then aged for a further period of one hour, including the period during which the lamp was activated, with lamp and ambient parameters recorded at 60 second intervals in order to determine the warmup period of each lamp. The optimum warm up period (stabilisation time) for each lamp was evaluated by visual analysis of a plot of each of the lamp electrical parameters against the relative illuminance to determine the time required before the plot reached a quasi-linear regime. The worst case time taken for any of the lamps was used for all of the lamps because, once any of the lamps had reached a quasi-stable state, the stability was maintained for the remainder of the ageing period.

The final selection of six lamps was made based on the quality of the black mask on each lamp and the stability of each lamp's base (since many of the lamp bases were poorly connected to the remainder of the lamp envelope).

# **Optical Setup**

For the measurements, the optical path was as follows:

- An absorption cone was mounted with the front edge approximately 50 mm behind the lamp envelope. The cone fully occupied the area behind each lamp visible to the photometer.
- Each lamp was mounted on a carriage on the cast iron photometric bench. A vernier scale on each carriage allowed separation measurement to within ± 0.02 mm in combination with a length scale on the bench. The carriage also provided a receptacle for the kinematic lamp base used with each lamp. The kinematic base allowed adjustment of the height, lateral displacement, longitudinal displacement and angular orientations of each lamp.
- A 16 sided regular stellated aperture, having an approximate dimension of 57 mm between opposing external vertices and shown in Figure 1, was located on the photometric bench at 500 mm in front of the filament mean plane to limit the view of each lamp to an area immediately around the lamp window and within the area of the black mask painted on the lamp.
- A second 16 sided regular stellated aperture having the same dimensions was located


approximately 500 mm in front of the photometer aperture plane to limit the view of the photometer to an area immediately surrounding the first limiting aperture. A double shutter was located immediately in front of this aperture to allow correction for ambient stray light.

- The photometer consisted of a precision aperture of diameter 8.2 mm placed directly in front of the centre of a 15 mm diameter undiffused LMT photometer. The spatial response of the photometer over the central 8 mm diameter area was uniform to within 0.7% of the mean responsivity value. The aperture plane was set at 3.20000 m from the filament mean plane of each lamp. The geometry of measurement corresponded to a solid angle of approximately 5.157 µsr centred on the photometric axis.
- The photometric axis was defined by the line intersecting the centre of the lamp filament and the centre of the sensitive surface of the photometer.

Figure 2 is a schematic diagram of the measurement geometry and a photograph of the approximate bench set up is shown in Figure 3.

Stray light was controlled using a number of components:

- The absorption cone minimised light reflections from behind the lamp using gloss black paint to trap the light.
- The stellated apertures minimised reflections from the inside edges of the aperture back towards the photometric axis, instead predominantly scattering light away from the axis where it was controlled by other means. Although the area of the inside edges is small, the near-grazing incidence geometry means that the reflectance can be significant. The stellated geometry has been found to be an improvement over circular apertures since the cylindrical geometry of the edge of a circular aperture reflects rays originating near the photometric axis back towards that axis.
- Flat black paint was used for optics away from the photometric axis to reduce back-scatter from optical components.
- Black velvet curtains were used to isolate the measurement system from ambient light as much as possible and absorb stray radiation in the visible region inside the measurement system.
- A shutter was used to correct for light leakage into the bench section containing the photometer and other electronic offsets.
- Inter-reflection between the photometer and the shutter plane was largely negated as the reflection factor forms part of the calibration of the photometer when it is calibrated against the working standard lamps.
- Inter-reflection between the baffles was mostly off axis with on axis contributions being negligible. This was also true for reflections between the lamp envelope/mount and the first baffle.
- Light reflected from the bench or the overhead lamp bay was controlled by the limited view allowed by the baffles.





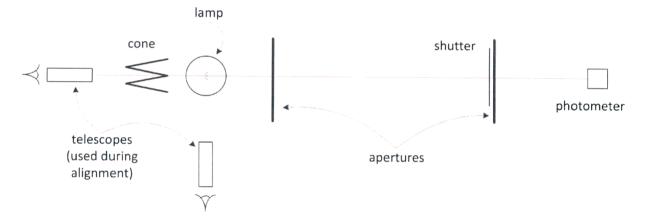



Figure 2 Schematic diagram of measurement setup

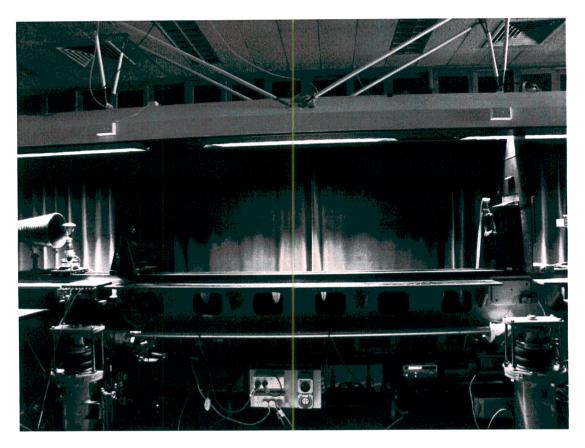



Figure 3 Photometric Bench Set Up

# Alignment of Lamps

Each lamp was aligned in accordance with the recommendations of the CCPR-K3.2014 protocol, section 4, with the filament mean plane set at 3.20000 m from the photometer reference plane when the filament was at room temperature.

Each lamp was aligned by use of two bench telescopes, one set to view along the photometric axis and the other set orthogonally to the axis. The axial telescope provided facility for alignment of the lamp filament centre with that of the photometric axis for each lamp (for height and lateral displacement). The vernier mounted telescope oriented orthogonally to the photometric axis provided facility for establishing the angular orientation of each lamp following the recommendations of the protocol.

An alignment jig was used to set the orthogonal telescope position to 3.20000 m from the photometer. For each lamp, the lamp carriage was then positioned so the filament was centred on the graticule of this telescope. A second jig was used at the photometer aperture position to enable the use of a calibrated inside micrometer to validate the photometric bench length scale. The telescope alignment procedure and scale validation was performed for each set of measurements. The procedure allowed the physical distance between the filament mean plane and the photometer aperture position to be set to within  $\pm 0.10$  mm. The angular orientation of the lamps was limited to within  $\pm 0.2^{\circ}$ , subject to the flatness of filament construction.

# **Operating Parameters**

Each lamp was run on direct current with positive polarity to the centre contact on the lamp base.

The current used for each lamp was determined by a series of spectral measurements covering the CCT spectral range to determine the value of current which delivers a lamp CCT closest to 2856 K.

On each use of the lamps, the lamp power supply was activated and checked before the lamps were connected and then the lamp current was slowly increased to the prescribed value over a period of approximately 60 seconds.

The optimum warm up time for the lamps was determined to be 19 minutes from reaching full prescribed current and measurements were performed in a period of 60 seconds following the warm up period. Based on the observed stability of the lamps, very little difference in luminous intensity would occur if the measurement period was extended to a few minutes.

During measurements the lamp illuminance values recorded were corrected for deviations in applied current using relationships determined during the short term ageing of each lamp.

At the end of each measurement cycle the lamp current was reduced to zero over a period of approximately 30 seconds before the lamp was disconnected from the power supply and the power supply deactivated.

The laboratory ambient temperature was monitored using a calibrated temperature logger with a sensor located immediately over the photometer position. The laboratory temperature was maintained between 19.9 °C and 22.0 °C for all measurements.

Laboratory humidity was  $50\% \pm 5\%$  RH during measurements.

# Traceability

The normalised spectral responsivity of the photometer is traceable to the NMIA cryogenic radiometer and bolometers via spectral responsivity transfer from working standard Hamamatsu plane silicon photodiodes, with calibration over the wavelength range between 250 nm and 1000 nm. The relative responsivity transfer was last performed in August 2011 showing minimal changes since the photometer was first calibrated by NMIA (then CSIRO NML) in 1996.

The geometry specific absolute calibration of the photometer is traceable to the NMIA cryogenic radiometer and bolometers via a 4-element transmission trap utilising a stabilised source with a number of selected filter combinations to limit the spectral bandwidth whilst matching the physical geometry and coherence state of the NMIA working standard lamps as closely as possible. A precision aperture, calibrated using the NMIA optical aperture area characterisation facility, is used in conjunction with the trap and photometer to define the area component of the calibration. The calibration of the photometer is immediately transferred to four working standard Phillips 6369 lamps operating at 2856 K CCT, each with lamp histories of more than 25 years showing a worst case drift of -0.45% in 26 years with the lamp being run on over 460 separate occasions during this time. The best of the four

lamps shows a drift of less than 0.009% in 26 years. The absolute transfers were last performed in July 2012.

The spectral distribution (correlated colour temperature) of each lamp is traceable to the NMIA scale of spectral irradiance as presented in the most recent CCPR-K1.a.

Lamp voltage is traceable to voltage standards maintained by the NMIA Low Frequency Electrical Project.

Lamp current is traceable to voltage and to resistance standards maintained by the NMIA Impedance Project.

The ambient temperature measurements were traceable to temperature standards maintained by the NMIA Temperature Project.

The laboratory humidity measurements were performed using a Vaisala probe whose calibration status is maintained by the NMIA Mass and Related Quantities Project.

Dimensional measurements were traceable to the dimensional standards maintained by the NMIA Length Project.

### **Uncertainty Evaluation**

The uncertainty of calibration for each measurement was evaluated with consideration of the CCPR-K3.2014 protocol and the current (more comprehensive) list of uncertainty components maintained at NMIA. A typical resultant uncertainty evaluation is listed here:

| Systematic Effects:              |                  |                 |  |
|----------------------------------|------------------|-----------------|--|
| Calibration of Working Standards | Uncertainty Type | Standard        |  |
|                                  | (A or B)         | Uncertainty (%) |  |
| Reference Calibration            | A & B            | 0.030           |  |
| Aperture Area                    | В                | 0.020           |  |
| Trap Area Correction             | В                | 0.005           |  |
| Trap Loss Correction             | А                | 0.001           |  |
| Spectral Variation               | A                | 0.090           |  |
| Aperture Lateral Position        | В                | 0.000           |  |
| Thermal variation                | В                | 0.000           |  |
| Out of band response             | В                | 0.000           |  |
| Reference Linearity              | В                | 0.055           |  |
| Reference Ageing                 | В                | 0.030           |  |
| Reference Position               | В                | 0.005           |  |
| Transfer 1                       | A                | 0.004           |  |
| Distance 1                       | B                | 0.005           |  |
| Current setting 1                | В                | 0.063           |  |
| V(lambda) mismatch               | В                | 0.001           |  |
| Non-linearity                    | В                | 0.012           |  |
| Reference Drift                  | В                | 0.000           |  |

| R Instrument resolution                                                                           | B     | 0.003 |
|---------------------------------------------------------------------------------------------------|-------|-------|
| Baffle Effects                                                                                    | В     | 0.000 |
| Test Lamp orientation                                                                             | В     | 0.000 |
| Temperature effects                                                                               | В     | 0.010 |
| Area Correction                                                                                   | В     | 0.000 |
| Cumulative Total for Working Standards                                                            | A & B | 0.133 |
| Electrical                                                                                        |       |       |
| Resistor Calibration                                                                              | A & B | 0.002 |
| Voltmeter Calibration                                                                             | A & B | 0.019 |
| Photometer                                                                                        |       | 0.019 |
| Spectral Mismatch / Fluorescence                                                                  | В     | 0.023 |
| Linearity                                                                                         | B     | 0.002 |
| Lamp envelope refractive index correction                                                         | B     | 0.031 |
| (Optical vs Physical separation)                                                                  |       | 0.001 |
| Lamp envelope diffusion effect on effective                                                       | В     | 0.000 |
| calibration plane                                                                                 | 2     | 0.000 |
| Thermal effects (localised reference lamp heat                                                    | В     | 0.000 |
| affecting separation on bench)                                                                    |       |       |
| Thermal effects (filament expansion affecting                                                     | В     | 0.000 |
| filament position within reference lamp)                                                          |       |       |
| Thermal effects (filament expansion affecting                                                     | В     | 0.013 |
| filament position within test lamp)                                                               |       |       |
| Area Correction                                                                                   | В     | 0.033 |
| Ageing                                                                                            | В     | 0.036 |
| Alignment of references                                                                           | В     | 0.000 |
| Reference agreement                                                                               | А     | 0.030 |
| Environment                                                                                       |       |       |
|                                                                                                   | D     | 0.000 |
| Stray light (Room light leakage)                                                                  | B     | 0.000 |
| Stray light (Baffle edge reflection)                                                              | B     | 0.002 |
| Stray light (Baffle inter-reflection)                                                             | В     | 0.000 |
| Temperature                                                                                       | В     | 0.019 |
| RMS Total Systematic Effects                                                                      |       | 0.153 |
| and any Effects.                                                                                  |       |       |
| andom Effects:<br>Transfer to Intercomparison Lamps                                               |       |       |
| Separation resolution (reference lamp to                                                          | В     | 0.000 |
| photometer)                                                                                       | D     | 0.000 |
| Separation stability (reference lamp to photometer)                                               | В     | 0.002 |
| (mount variability)                                                                               | U     | 0.002 |
| Separation resolution (Photometer to test lamp)                                                   | В     | 0.000 |
| Separation resolution (Thotometer to test lamp)<br>Separation stability (Photometer to test lamp) | B     | 0.000 |
| (mount variability)                                                                               | U     | 0.002 |
| Intercomparison lamp alignment                                                                    | В     | 0.031 |
| Cumulative total for transfer to                                                                  | B     | 0.031 |
| intercomparison lamps                                                                             |       | 0.031 |

| Lamp parameters                             |   |       |
|---------------------------------------------|---|-------|
| Reproducibility                             | А | 0.006 |
| Electrical parameters - see reproducibility |   |       |
| Photometer noise - see reproducibility      |   |       |
|                                             |   |       |
| <b>RMS Total Random Effects</b>             |   | 0.032 |

Participant: Peter Manson

NMI: NMI Australia

Date: 1 September 2015

Signature: 1 Manson

# Appendix A.6 Measurement Results

#### Lamp Number: 288 SI4

#### Measurement Round #1:

| Measurement<br>Set Number | Number of<br>measurements<br>per set | Date/time         | Lamp<br>Current<br>/ A | Lamp voltage<br>/ V | Luminous<br>Intensity<br>/ cd |        | rd Uncertainty<br>inous Intensity<br>(%) |
|---------------------------|--------------------------------------|-------------------|------------------------|---------------------|-------------------------------|--------|------------------------------------------|
| -                         |                                      |                   | 7 7 1                  |                     | / 64                          | Random | Systematic                               |
| 1                         | 20                                   | 26 Feb 2014 15:09 | 5.786                  | 31.6578             | 301.452                       | 0.093  | 0.153                                    |
| 2                         | 20                                   | 28 Feb 2014 12:00 | 5.786                  | 31.6493             | 301.277                       | 0.105  | 0.153                                    |
| 3                         | 20                                   | 03 Mar 2014 15:57 | 5.786                  | 31.7098             | 301.928                       | 0.082  | 0.153                                    |
|                           |                                      |                   |                        |                     |                               |        |                                          |

#### Measurement Round #2:

| Measurement<br>Set Number | Number of<br>measurements<br>per set | Date/time        | Lamp<br>Current<br>/ A | Lamp<br>Voltage<br>/ V | Luminous<br>Intensity<br>/ cd |        | Uncertainty<br>ous Intensity<br>(%) |
|---------------------------|--------------------------------------|------------------|------------------------|------------------------|-------------------------------|--------|-------------------------------------|
|                           | 1                                    |                  | / / 1                  | 7 •                    | 7 eu                          | Random | Systematic                          |
| 1                         | 20                                   | 1 Apr 2015 15:18 | 5.786                  | 31.6815                | 301.205                       | 0.100  | 0.150                               |
| 2                         | 20                                   | 6 May 2015 16:09 | 5.786                  | 31.6606                | 301.619                       | 0.077  | 0.153                               |
| 3                         | 20                                   | 8 May 2015 14:29 | 5.786                  | 31.6622                | 301.593                       | 0.077  | 0.150                               |
|                           |                                      |                  |                        |                        |                               |        |                                     |

The random/systematic labels in this table are those related to the measurements within the particular round of the measurements. If the systematic factors change between the measurement rounds, this information should be indicated separately.

CCPR-K3.2013: Luminous Intensity

| Participant: | Peter Manson   |
|--------------|----------------|
| NMI:         | NMI Australia  |
| Date:        | 31 August 2015 |
| Signature:   | 1. Maria       |

#### Appendix A.6 Measurement Results

# Lamp Number: 306 S15

Measurement Round #1:

| Measurement<br>Set Number | Number of<br>measurements<br>per set | Date/time         | Lamp<br>Current<br>/ A | Lamp<br>Voltage<br>/ V | Luminous<br>Intensity<br>/ cd | in Lumin | Uncertainty<br>ous Intensity<br>(%) |
|---------------------------|--------------------------------------|-------------------|------------------------|------------------------|-------------------------------|----------|-------------------------------------|
|                           | 1                                    |                   | / / / X                | / •                    | 7 cu                          | Random   | Systematic                          |
| 1                         | 20                                   | 26 Feb 2014 15:52 | 5.858                  | 32.0704                | 308.299                       | 0.029    | 0.153                               |
| 2                         | 20                                   | 28 Feb 2014 11:26 | 5.858                  | 32.0855                | 308.703                       | 0.029    | 0.153                               |
| 3                         | 20                                   | 03 Mar 2014 16:34 | 5.858                  | 32.0788                | 308.495                       | 0.029    | 0.153                               |
|                           |                                      |                   |                        |                        |                               |          |                                     |

Measurement Round #2:

| Measurement<br>Set Number | Number of<br>measurements<br>per set | Date/time        | Lamp<br>Current<br>/ A | Lamp<br>Voltage<br>/ V | Luminous<br>Intensity<br>/ cd | in Lumino | Uncertainty<br>us Intensity<br>%) |
|---------------------------|--------------------------------------|------------------|------------------------|------------------------|-------------------------------|-----------|-----------------------------------|
|                           | 1                                    |                  | / A                    | / v                    | 7 cu                          | Random    | Systematic                        |
| 1                         | 20                                   | 1 Apr 2015 16:01 | 5.858                  | 32.0955                | 309.078                       | 0.028     | 0.150                             |
| 2                         | 20                                   | 6 May 2015 15:35 | 5.858                  | 32.0989                | 308.340                       | 0.029     | 0.153                             |
| 3                         | 20                                   | 8 May 2015 15:05 | 5.858                  | 32.0944                | 308.370                       | 0.028     | 0.150                             |
|                           |                                      |                  |                        |                        |                               |           |                                   |

The random/systematic labels in this table are those related to the measurements within the particular round of the measurements. If the systematic factors change between the measurement rounds, this information should be indicated separately.

CCPR-K3.2013: Luminous Intensity

#### Appendix A.6 Measurement Results

#### Lamp Number: <u>318 SI2</u>

#### Measurement Round #1:

| Measurement<br>Set Number | Number of<br>measurements<br>per set | Date/time         | Lamp<br>Current<br>/ A | Lamp<br>Voltage<br>/ V | Luminous<br>Intensity<br>/ cd | in Lumino | d Uncertainty<br>nous Intensity<br>(%) |
|---------------------------|--------------------------------------|-------------------|------------------------|------------------------|-------------------------------|-----------|----------------------------------------|
|                           | 1                                    |                   |                        |                        | 7 CU                          | Random    | Systematic                             |
| 1                         | 20                                   | 26 Feb 2014 16:30 | 5.781                  | 31.7198                | 305.775                       | 0.032     | 0.153                                  |
| 2                         | 20                                   | 28 Feb 2014 10:52 | 5.781                  | 31.7200                | 305.921                       | 0.032     | 0.153                                  |
| 3                         | 20                                   | 03 Mar 2014 17:02 | 5.781                  | 31.7250                | 305.500                       | 0.062     | 0.153                                  |
|                           |                                      |                   |                        |                        |                               |           |                                        |

Measurement Round #2:

| Measurement<br>Set Number | Number of<br>measurements<br>per set | Date/time        | Lamp<br>Current<br>/ A | Lamp<br>Voltage<br>/ V | Luminous<br>Intensity<br>/ cd | Standard U<br>in Luminou<br>(% | s Intensity |
|---------------------------|--------------------------------------|------------------|------------------------|------------------------|-------------------------------|--------------------------------|-------------|
|                           |                                      |                  |                        |                        | 7.04                          | Random                         | Systematic  |
| 1                         | 20                                   | 1 Apr 2015 16:32 | 5.781                  | 31.7345                | 306.166                       | 0.031                          | 0.150       |
| 2                         | 20                                   | 6 May 2015 14:40 | 5.781                  | 31.7396                | 305.943                       | 0.031                          | 0.153       |
| 3                         | 20                                   | 8 May 2015 15:35 | 5.781                  | 31.7327                | 305.429                       | 0.031                          | 0.150       |
|                           |                                      |                  |                        |                        |                               |                                |             |

The random/systematic labels in this table are those related to the measurements within the particular round of the measurements. If the systematic factors change between the measurement rounds, this information should be indicated separately.

CCPR-K3.2013: Luminous Intensity

| Participant: | Peter Manson   |
|--------------|----------------|
| NMI:         | NMI Australia  |
| Date:        | 31 August 2015 |
| Signature:   | U. Mallisea    |

#### Appendix A.6 Measurement Results

#### Lamp Number: 350 LI3

#### Measurement Round #1:

| Measurement<br>Set Number | Number of<br>measurements<br>per set | Date/time         | Lamp<br>Current | Lamp<br>Voltage<br>/ V | Luminous<br>Intensity<br>/ cd | Standard U<br>in Luminou<br>(% | is Intensity |
|---------------------------|--------------------------------------|-------------------|-----------------|------------------------|-------------------------------|--------------------------------|--------------|
|                           | perset                               |                   |                 | / •                    | 7 cu                          | Random                         | Systematic   |
| 1                         | 20                                   | 26 Feb 2014 17:02 | 5.794           | 31.7390                | 297.712                       | 0.032                          | 0.153        |
| 2                         | 20                                   | 27 Feb 2014 18:02 | 5.794           | 31.7364                | 299.013                       | 0.032                          | 0.153        |
| 3                         | 20                                   | 04 Mar 2014 15:58 | 5.794           | 31.7489                | 298.163                       | 0.035                          | 0.153        |
| 4                         | 20                                   | 04 Mar 2014 17:35 | 5.794           | 31.7408                | 298.888                       | 0.033                          | 0.153        |

#### Measurement Round #2:

| Measurement<br>Set Number | Number of<br>measurements<br>per set | Date/time          | Lamp<br>Current<br>/ A | Lamp<br>Voltage<br>/ V | Luminous<br>Intensity | Standard Uncertainty<br>in Luminous Intensity<br>(%) |            |
|---------------------------|--------------------------------------|--------------------|------------------------|------------------------|-----------------------|------------------------------------------------------|------------|
|                           | perset                               |                    |                        | / •                    | / cd                  | Random                                               | Systematic |
| 1                         | 20                                   | 1 April 2015 17:01 | 5.794                  | 31.7493                | 298.577               | 0.033                                                | 0.150      |
| 2                         | 20                                   | 5 May 2015 15:14   | 5.794                  | 31.7542                | 299.078               | 0.032                                                | 0.153      |
| 3                         | 20                                   | 8 May 2015 16:02   | 5.794                  | 31.7500                | 298.392               | 0.032                                                | 0.150      |
|                           |                                      |                    |                        |                        |                       |                                                      |            |

The random/systematic labels in this table are those related to the measurements within the particular round of the measurements. If the systematic factors change between the measurement rounds, this information should be indicated separately.

.

CCPR-K3.2013: Luminous Intensity

| Participant: | Peter Manson   |
|--------------|----------------|
| NMI:         | NMI Australia  |
| Date:        | 31 August 2015 |
| Signature:   | 1. Marcha      |

#### Appendix A.6 Measurement Results

#### Lamp Number: <u>S7</u>

Measurement Round #1:

| Measurement<br>Set Number | Number of<br>measurements<br>per set | Date/time         | Lamp<br>Current<br>/ A | Lamp<br>Voltage<br>/ V | Luminous<br>Intensity<br>/ cd | Standard Uncertainty<br>in Luminous Intensity<br>(%) |            |
|---------------------------|--------------------------------------|-------------------|------------------------|------------------------|-------------------------------|------------------------------------------------------|------------|
|                           | per set                              |                   |                        | / •                    | 7.00                          | Random                                               | Systematic |
| 1                         | 20                                   | 26 Feb 2014 18:43 | 5.780                  | 31.7229                | 298.848                       | 0.015                                                | 0.153      |
| 2                         | 20                                   | 27 Feb 2014 16:46 | 5.780                  | 31.7284                | 298.640                       | 0.016                                                | 0.153      |
| 3                         | 20                                   | 04 Mar 2014 17:03 | 5.780                  | 31.7213                | 298.776                       | 0.016                                                | 0.153      |
|                           |                                      |                   |                        |                        |                               |                                                      |            |

Measurement Round #2:

| Measurement<br>Set Number | Number of<br>measurements<br>per set | Date/time        | Lamp<br>Current<br>/ A | Lamp<br>Voltage<br>/ V | Luminous<br>Intensity<br>/ cd | Standard Uncertainty<br>in Luminous Intensity<br>(%) |            |
|---------------------------|--------------------------------------|------------------|------------------------|------------------------|-------------------------------|------------------------------------------------------|------------|
|                           | 1                                    |                  | / / 1                  | / •                    | / са                          | Random                                               | Systematic |
| 1                         | 20                                   | 1 Apr 2015 17:32 | 5.780                  | 31.7304                | 299.062                       | 0.014                                                | 0.150      |
| 2                         | 20                                   | 5 May 2015 14:42 | 5.780                  | 31.7481                | 298.467                       | 0.014                                                | 0.153      |
| 3                         | 20                                   | 8 May 2015 16:30 | 5.780                  | 31.7302                | 298.620                       | 0.014                                                | 0.150      |
|                           |                                      |                  |                        |                        |                               |                                                      |            |

The random/systematic labels in this table are those related to the measurements within the particular round of the measurements. If the systematic factors change between the measurement rounds, this information should be indicated separately.

CCPR-K3.2013: Luminous Intensity

| Participant: | Peter Manson   |
|--------------|----------------|
| NMI:         | NMI Australia  |
| Date:        | 31 August 2015 |
| Signature:   | 1. Wanze       |

#### Appendix A.6 Measurement Results

#### Lamp Number: <u>S14</u>

Measurement Round #1:

| Measurement<br>Set Number | Number of<br>measurements<br>per set | Date/time         | Lamp<br>Current<br>/ A | Lamp<br>Voltage<br>/ V | Luminous<br>Intensity<br>/ cd | Standard Uncertainty<br>in Luminous Intensity<br>(%) |            |
|---------------------------|--------------------------------------|-------------------|------------------------|------------------------|-------------------------------|------------------------------------------------------|------------|
| 1                         | 1                                    |                   | / 1 k                  | , ,                    | 7.00                          | Random                                               | Systematic |
| l                         | 20                                   | 26 Feb 2014 17:33 | 5.816                  | 31.7462                | 298.853                       | 0.140                                                | 0.153      |
| 2                         | 20                                   | 27 Feb 2014 17:24 | 5.816                  | 31.7542                | 298.737                       | 0.140                                                | 0.153      |
| 3                         | 20                                   | 04 Mar 2014 16:30 | 5.816                  | 31.7539                | 297.767                       | 0.140                                                | 0.153      |
|                           |                                      |                   |                        |                        |                               |                                                      |            |

#### Measurement Round #2:

| Measurement<br>Set Number | Number of<br>measurements<br>per set | Date/time        | Lamp<br>Current<br>/ A | Lamp<br>Voltage | Luminous<br>Intensity<br>/ cd | in Lumino | Uncertainty<br>ous Intensity<br>%) |
|---------------------------|--------------------------------------|------------------|------------------------|-----------------|-------------------------------|-----------|------------------------------------|
|                           |                                      |                  | / / 1                  | , <b>v</b>      | / са                          | Random    | Systematic                         |
| 1                         | 20                                   | 1 Apr 2015 18:02 | 5.816                  | 31.7683         | 300.436                       | 0.140     | 0.150                              |
| 2                         | 20                                   | 5 May 2015 14:07 | 5.816                  | 31.7898         | 299.771                       | 0.140     | 0.153                              |
| 3                         | 20                                   | 8 May 2015 17:02 | 5.816                  | 31.7654         | 299.622                       | 0.140     | 0.150                              |
|                           |                                      |                  |                        |                 |                               |           |                                    |

The random/systematic labels in this table are those related to the measurements within the particular round of the measurements. If the systematic factors change between the measurement rounds, this information should be indicated separately.

CCPR-K3.2013: Luminous Intensity

| Participant: | Peter Manson    |
|--------------|-----------------|
| NMI:         | NMI Australia   |
| Date:        | 31 August 2015  |
| Signature:   | U. M. M. M. Se- |

# CCPR Key Comparison CCPR-K3.2014 Luminous Intensity Final Report Appendix A <u>NMIJ Report</u>

 TO: Dr. Arnold A. Gaertner Measurement Science and Standards Building M-36, Room 115 National Research Council of Canada 1200 Montreal Road Ottawa, Ontario, Canada K1A 0R6

> FAX: 613-952-1394 Email: <u>Arnold.Gaertner@nrc-cnrc.gc.ca</u>

FROM: Kenichi Kinoshita
Photometry and Radiometry Research Group,
Research Institute for Physical Measurement,
National Metrology Institute of Japan,
National Institute of Advanced Industrial Science and Technology,
Central 3-1, 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8563 Japan
TEL: +81 29 861 4082
FAX: +81 29 861 4860
E-Mail: kenichi.kinoshita@aist.go.jp

# CCPR-K3.2014 Luminous Intensity Final measurement results

### Appendix A.3 Description of the measurement facility

Description of measurement geometry:

In the calibration process at NMIJ, luminous intensity of a lamp is calibrated by a comparison with a group of luminous intensity standard lamps. During measurement, a lamp and a photometer are located on a photometric bench. A wall lying midway on the photometric bench separates the lamp area and the measurement area. A hole on the wall allows the light from the lamp to go to the measurement area where the photometer is placed. Baffles and a shutter are also placed between the lamp and the photometer. The number of baffles is four. In the measurement of an Osram Wi41/G lamp, a limiting aperture is used additionally to reduce stray light and to measure the light through the rectangular mask of the lamp only. The measurement geometry is shown in Fig. 1.

The lamp alignment system consists of a lamp alignment stage and alignment apparatus such as a laser and cameras. The lamp alignment stage is composed of six stages to adjust the lamp positions along the X, Y, and Z axes and the rotation angles of  $\theta_X$ ,  $\theta_Y$  and  $\theta_Z$ . The lamp alignment procedure is described later.

The position of the photometer is determined so that the laser beam that coincides with the optical axis comes to the center of the shielding tube of the photometer.

The sizes and the distances of the limiting aperture, the hole on the wall, the baffles, and the shutter are shown in Fig. 1.

The distance between the center of the lamp filament and the entrance diffuser of the photometer (reference plane) is 2.7 m. The diameter of the entrance diffuser of the photometer is 40 mm. Therefore, the solid angle formed by the entrance diffuser of the photometer is about  $1.7 \times 10^{-4}$  rad.

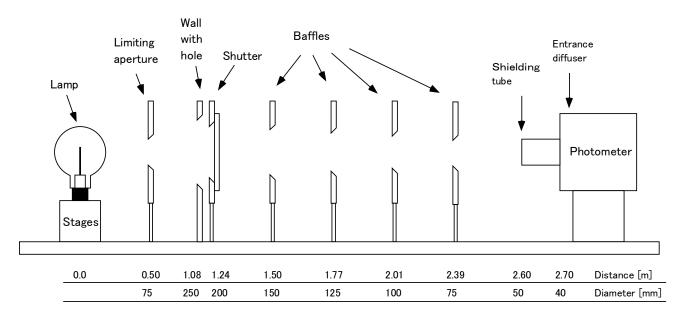



Fig. 1. Measurement geometry at NMIJ.

Description of measurement procedures:

Luminous intensity of a lamp is calibrated by a comparison with a group of luminous intensity standard lamps. For CCPR-K3 comparison, six traveling lamps (DUT<sub>1</sub>, DUT<sub>2</sub>, ..., and DUT<sub>6</sub>) are calibrated against two luminous intensity standard lamps ( $S_A$  and  $S_B$ ) maintained at NMIJ\*. In each calibration, the measurement data was obtained in a time-symmetrical sequence ( $S_A$ ,  $S_B$ , DUT<sub>1</sub>, ..., DUT<sub>6</sub>, DUT<sub>6</sub>, ..., DUT<sub>1</sub>,  $S_B$ ,  $S_A$ ). In each measurement, each lamp is turned on once and the dark-subtracted photometer signal is taken, which means each lamp is turned on and measured twice in one calibration procedure. The first half of the measurement sequence ( $S_A$ ,  $S_B$ , DUT<sub>1</sub>, ..., DUT<sub>6</sub>) is called "Go" measurement, and the latter half (DUT<sub>6</sub>, ..., DUT<sub>1</sub>,  $S_B$ ,  $S_A$ ) is "Return" measurement, respectively. The light from each lamp is detected with the photometer aligned on the photometric bench. Output signals from the photometer are measured with a 8.5-digit digital multimeter and collected by a computer. The average of the output signals for each lamp from two measurement sequences "Go" and "Return" is used for the following calculation of luminous intensity.

The luminous intensity of a traveling lamp  $I_i$  (*i*=1 to 6) is determined as the average of two values derived separately from the calculations based on the individual luminous intensity of the standard lamps.

The value to be calculated from one standard lamp for a traveling lamp is the product of three quantities, i.e., the luminous intensity of the standard lamp, the ratio of the output signal for the traveling lamp to that for the standard lamp, and the color correction factor. Therefore, the luminous intensity of the traveling lamp is obtained in the following equation.

$$I_i = \frac{1}{2} \left( k_{\rm ai} \frac{V_i}{V_{\rm a}} I_{\rm a} + k_{\rm bi} \frac{V_i}{V_{\rm b}} I_{\rm b} \right),\tag{1}$$

where  $I_i$  is the luminous intensity of the *i*-th traveling lamp,  $I_a$  and  $I_b$  are the luminous intensity of the standard lamps  $S_A$  and  $S_B$ ,  $V_i$ ,  $V_a$ , and  $V_b$  are the output signals of the *i*-th traveling lamp, the standard lamps  $S_A$  and  $S_B$ , and  $k_{ai}$  and  $k_{bi}$  are the color correction factors between the *i*-th traveling lamp and  $S_A$  and  $S_B$ , respectively. As mentioned above, the output signals used here are the averages of the measurement sequences "Go" and "Return" for the respective lamps.

\*) In this final measurement report, the data of the sixth lamp (No. 69) is excluded because of the large discrepancy in luminous intensity between the first round measurement and the second round measurement measured at NMIJ, which implies unexpected instability of this lamp.

Make and type of the photometer (or equivalent):

The photometer used for the calibration is manufactured by Kouno Kouki Sangyou KK, which has closed down its business already. The photometer consists of an 100 mm diameter integrating sphere with an entrance diffuser (matte opal glass) and three filtered Si photodiodes; B(blue), Y(yellow), and R(red) detectors. Spectral responsivity of the Y detector is approximated to  $V(\lambda)$  whose  $V(\lambda)$  mismatch index  $f_1$ ' is 2.11. The output signal from the Y detector is used for the calibration of luminous intensity. Spectral responsivity of the B and R detector has the peak around 460 nm and 660 nm, respectively. They are used to check the distribution temperature of lamps to be measured.

Operating conditions of the lamps:

The lamp filament is observed with two cameras. One camera is located along with the X axis ( optical axis) to see the rear view of the filament, and the other is located along with the Y axis to see the side view. The coordinate system is taken to agree with the description in the protocol. Each view has cross hairs pre-aligned to coincide with the origin of the coordinate system and the coordinate axes. The lamp alignment is made in such a way that the filament position comes in accordance with these cross hairs.

The alignment procedure for the Osram Wi41/G lamp is as follows.

The rotation about the Z axis ( $\theta_Z$ ) is adjusted so that the shape of the filament in the side view becomes narrowest. Care must be taken when aligning the traveling lamps #58 and #69, because the wires that compose the filament of both lamps are slightly uneven and not formed the single plane. For these lamps, the angle about the Z axis ( $\theta_Z$ ) is adjusted so that the widths of the upper half and lower half of the filament is balanced (see Fig. 2).

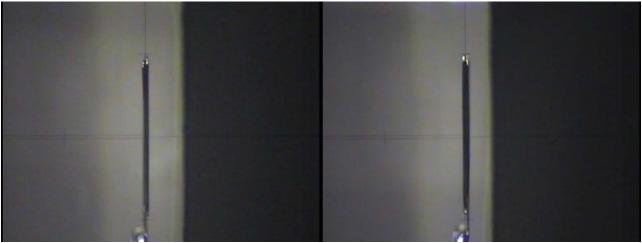



Fig. 2. Side views of the lamp #58(left) and #69(right).

The rotation about the X ( $\theta_X$ ) axis is adjusted so that the rectangular shape of the filament in the rear view stands upright.

Then the rotation about the Y axis ( $\theta_{Y}$ ) is adjusted so that the filament in the side view coincides with the vertical axis. Care must also be taken when aligning the traveling lamps #58 and #69 because the shapes of the filaments seem slightly curved. For these lamps, the angle about the Y axis is adjusted so that the line fitted to the shape of the filament coincides to the Y axis.

The height of the filament is adjusted so that the half height of the filament coincides with the horizontal line of the cross hair that is in accordance with the origin of the coordinate system.

The position of the filament along with the Y-axis is adjusted so that the origin of the coordinate system comes to the center between the 6th and 7th wires of the filament. The wires are numbered as shown in Fig. 3.

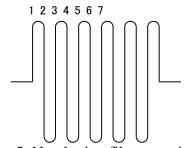



Fig. 3. Numbering filament wires.

The position of the filament along with the X-axis is adjusted so that the center of the filament coincides with the origin of the coordinate system.

The filament is aligned at room temperature.

No special jig for alignment is used.

The size and position of the limiting aperture are described in Fig. 1.

For all the traveling lamps, electrical polarity is defined so that the negative pole is connected to the center of the socket when electrical current is supplied. The measured lamp current and voltage for each traveling lamp are as follows. The lamps are operated with the constant current mode.

| #37 | 5.7563 A | 29.0689 V |
|-----|----------|-----------|
| #40 | 5.7943 A | 29.5493 V |
| #51 | 5.7362 A | 29.2641 V |
| #52 | 5.7646 A | 29.1673 V |
| #58 | 5.6101 A | 29.9704 V |
| #69 | 5.6198 A | 29.9225 V |
|     |          |           |

When turning on a traveling lamp, electrical current is increased gradually from zero to the fixed value in two minutes. After the lamp current reaches the fixed value, the warm-up time of 13 minutes is applied before measurement.

The distribution temperature of each lamp is as follows.

| #37 | 2800 K |
|-----|--------|
| #40 | 2800 K |
| #51 | 2800 K |
| #52 | 2800 K |
| #58 | 2800 K |
| #69 | 2800 K |
|     |        |

Description of calibration laboratory conditions: e.g. temperature, humidity etc.:

A schematic diagram of the luminous intensity calibration facilities is shown in Fig. 4. A lamp voltage is measured by a 8.5-digit digital multimeter. A lamp current is determined by measuring the voltage between the terminal of the standard shunt resistor that has a calibrated resistance. An output of a DC power supply for the lamp is regulated by a voltage/current source, whose output is controlled by the software with feedback-control using signals from the multimeters to stabilize the lamp voltage (constant voltage mode, for NMIJ standard lamps) or current (constant current mode, for travelling lamps: Osram Wi41/G). An amplified output of the photometer is measured by another 8.5-digit digital multimeter.

During the calibration, laboratory conditions are controlled as follows.

Temperature 23.0 °C  $\pm$  2.0 °C

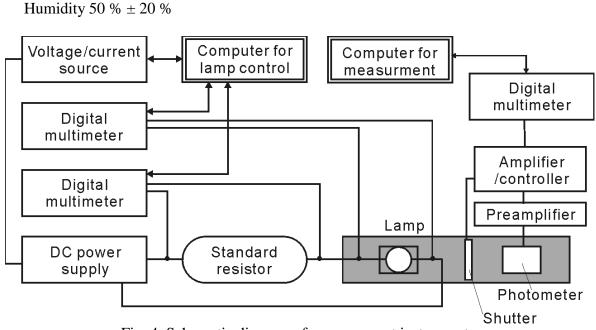



Fig. 4. Schematic diagram of measurement instruments.

Laboratory transfer standards used:

The luminous intensity scale of NMIJ is maintained with four standard lamps. The type of the standard lamps is Toshiba 55 V-330 W coil-M-type luminous intensity standard lamp. The traceability diagram is shown in Fig. 5. Two lamps are used as the luminous intensity standard lamps and another two are used as the luminous intensity working standard lamps according to Fig. 5. In this comparison, the traveling lamps are directly calibrated with the luminous intensity standard lamps.

The date of last realization of the NMIJ primary scale is Jan. 30th, 1998. The uncertainty budget is shown in Table 1.

| Source of uncertainty                                                                                                         | Uncertainty Type<br>(A or B) | Standard Uncertainty<br>in luminous intensity<br>(%) |
|-------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------|
| Spectral responsivity of the silicon photodiode measured with the cryogenic radiometer                                        | В                            | 0.05                                                 |
| Illuminance responsivity of the standard photometer<br>with respect to the spectral responsivity of the silicon<br>photodiode | В                            | 0.20                                                 |
| Measurement of the distance between the primary standard lamp and the transfer detector                                       | В                            | 0.05                                                 |
| Responsivity change of the transfer detector by room temperature fluctuation                                                  | В                            | 0.10                                                 |
| Setting of the luminous intensity primary standard lamp                                                                       | В                            | 0.10                                                 |
| Aperture area                                                                                                                 | В                            | 0.015                                                |
| Total standard uncertainty                                                                                                    |                              | 0.255                                                |

| Table 1: Uncertainty | budget for the | realization of | f luminous | intensity at NMII |
|----------------------|----------------|----------------|------------|-------------------|
| rable r. Oncertainty | budget for the | realization of | runnous    | mensity at 1 mis. |

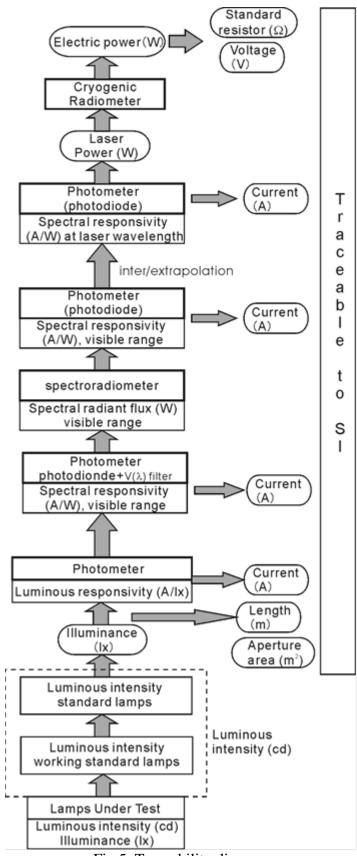



Fig.5. Traceability diagram

CCPR-K3.2014: Luminous Intensity Final Report 2022-May-20

Participant: Kenichi Kinoshita

NMI: National Metrology Institute of Japan

Date: Aug. 7, 2015

Signature: 木下建一

#### Lamp number: 37

| 3:13:<br>38<br>23:25:<br>6<br>1:22:<br>58<br>9:28:<br>53 | measurement<br>measurement<br>measurement<br>measurement | 13:27:<br>00<br>23:38:<br>37<br>11:36:<br>14<br>19:42:<br>07 | 0.222<br>8<br>0.222<br>2<br>0.221<br>1<br>0.220<br>3                                               | 5.7563<br>5.7563<br>5.7563<br>5.7563                                                                                       | 29.0706<br>29.0692<br>29.0697<br>29.0689                                                                                                                          | K.K<br>K.K<br>K.K                                                                                                                                                                                  |
|----------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6<br>1:22:<br>58<br>9:28:                                | measurement                                              | 37<br>11:36:<br>14<br>19:42:                                 | 2<br>0.221<br>1<br>0.220                                                                           | 5.7563                                                                                                                     | 29.0697                                                                                                                                                           | K.K                                                                                                                                                                                                |
| 9:28:                                                    |                                                          | 14<br>19:42:                                                 | 1<br>0.220                                                                                         |                                                                                                                            |                                                                                                                                                                   |                                                                                                                                                                                                    |
|                                                          | measurement                                              |                                                              |                                                                                                    | 5.7563                                                                                                                     | 29.0689                                                                                                                                                           | K.K                                                                                                                                                                                                |
|                                                          |                                                          |                                                              | 3                                                                                                  |                                                                                                                            |                                                                                                                                                                   |                                                                                                                                                                                                    |
| 1:31:<br>7                                               | measurement                                              | 11:44:<br>35                                                 | 0.221<br>4                                                                                         | 5.7563                                                                                                                     | 29.0644                                                                                                                                                           | K.K                                                                                                                                                                                                |
| 22:44:<br>55                                             | measurement                                              | 22:58:<br>10                                                 | 0.220<br>8                                                                                         | 5.7563                                                                                                                     | 29.0621                                                                                                                                                           | K.K                                                                                                                                                                                                |
| 2:42:0                                                   | measurement                                              | 9:55:1<br>6                                                  | 0.219<br>4                                                                                         | 5.7563                                                                                                                     | 29.0638                                                                                                                                                           | K.K                                                                                                                                                                                                |
| .6:24:<br>27                                             | measurement                                              | 16:37:<br>36                                                 | 0.219<br>2                                                                                         | 5.7563                                                                                                                     | 29.0612                                                                                                                                                           | K.K                                                                                                                                                                                                |
| 55<br>): <i>4</i><br>.6                                  | 42:0                                                     | 42:0 measurement<br>5:24: measurement                        | 42:0       measurement       9:55:1         6       6         5:24:       measurement       16:37: | 42:0       measurement       9:55:1       0.219         6       4         5:24:       measurement       16:37:       0.219 | 42:0       measurement       9:55:1       0.219       5.7563         6       4       5.7563         5:24:       measurement       16:37:       0.219       5.7563 | 10       8       10       8         42:0       measurement       9:55:1       0.219       5.7563       29.0638         5:24:       measurement       16:37:       0.219       5.7563       29.0612 |

Participant: Kenichi Kinoshita

NMI: National Metrology Institute of Japan

Date: Aug. 7, 2015

木下建-

# Lamp number: 40

| Date                 | Lamp<br>ON<br>time | Activity/Comments<br>(test, alignment,<br>measurement) | Lamp<br>OFF<br>time | Burn<br>time<br>(hrs) | Lamp<br>Current<br>(amperes) | Lamp<br>Voltage<br>(volts) | Operator<br>initials |
|----------------------|--------------------|--------------------------------------------------------|---------------------|-----------------------|------------------------------|----------------------------|----------------------|
| Feb.<br>2nd<br>2014  | 14:27:<br>20       | measurement                                            | 14:40:<br>41        | 0.222<br>5            | 5.7943                       | 29.5502                    | K.K                  |
| Feb.<br>2nd<br>2014  | 22:49:<br>30       | measurement                                            | 23:02:<br>46        | 0.221<br>4            | 5.7943                       | 29.5505                    | K.K                  |
| Feb.<br>8th<br>2014  | 11:55:<br>55       | measurement                                            | 12:09:<br>16        | 0.222<br>2            | 5.7943                       | 29.5496                    | K.K                  |
| Feb.<br>8th<br>2014  | 19:00:<br>47       | measurement                                            | 19:14:<br>08        | 0.222<br>5            | 5.7943                       | 29.5493                    | K.K                  |
| Mar.<br>21st<br>2015 | 12:01:<br>05       | measurement                                            | 12:14:<br>21        | 0.221<br>4            | 5.7943                       | 29.5431                    | K.K                  |
| Mar.<br>21st<br>2015 | 22:16:<br>42       | measurement                                            | 22:29:<br>56        | 0.220<br>3            | 5.7943                       | 29.5438                    | K.K                  |
| Mar.<br>27nd<br>2015 | 10:09:<br>36       | measurement                                            | 10:22:<br>45        | 0.219<br>2            | 5.7943                       | 29.5436                    | K.K                  |
| Mar.<br>27nd<br>2015 | 15:58:<br>33       | measurement                                            | 16:11:<br>40        | 0.218<br>9            | 5.7943                       | 29.5419                    | K.K                  |
|                      |                    |                                                        |                     |                       |                              |                            |                      |

Participant: Kenichi Kinoshita

NMI: National Metrology Institute of Japan

Date: Aug. 7, 2015

木下建-

#### Lamp number: 51

| Lamp<br>ON<br>time | Activity/Comments<br>(test, alignment,<br>measurement)                                                                                                                                       | Lamp<br>OFF<br>time                                                                                                                                                                                                           | Burn<br>time<br>(hrs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Lamp<br>Current<br>(amperes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lamp<br>Voltage<br>(volts)                                                                                                                                                                                                                                                                                                                                                                                                    | Operator<br>initials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15:14:<br>04       | measurement                                                                                                                                                                                  | 15:27:<br>23                                                                                                                                                                                                                  | 0.221<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.7362                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 29.2654                                                                                                                                                                                                                                                                                                                                                                                                                       | K.K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 22:19:<br>45       | measurement                                                                                                                                                                                  | 22:33:<br>02                                                                                                                                                                                                                  | 0.221<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.7362                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 29.2646                                                                                                                                                                                                                                                                                                                                                                                                                       | K.K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 12:31:<br>51       | measurement                                                                                                                                                                                  | 12:45:<br>09                                                                                                                                                                                                                  | 0.221<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.7362                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 29.2659                                                                                                                                                                                                                                                                                                                                                                                                                       | K.K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 18:30:<br>51       | measurement                                                                                                                                                                                  | 18:44:<br>08                                                                                                                                                                                                                  | 0.221<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.7362                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 29.2641                                                                                                                                                                                                                                                                                                                                                                                                                       | K.K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 12:33:<br>18       | measurement                                                                                                                                                                                  | 12:46:<br>34                                                                                                                                                                                                                  | 0.221<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.7362                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 29.2613                                                                                                                                                                                                                                                                                                                                                                                                                       | K.K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 17:13:<br>33       | measurement                                                                                                                                                                                  | 17:26:<br>49                                                                                                                                                                                                                  | 0.221<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.7362                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 29.2615                                                                                                                                                                                                                                                                                                                                                                                                                       | K.K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 10:36:<br>01       | measurement                                                                                                                                                                                  | 10:49:<br>08                                                                                                                                                                                                                  | 0.218<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.7362                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 29.2617                                                                                                                                                                                                                                                                                                                                                                                                                       | K.K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 15:32:<br>36       | measurement                                                                                                                                                                                  | 15:45:<br>47                                                                                                                                                                                                                  | 0.219<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.7362                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 29.2600                                                                                                                                                                                                                                                                                                                                                                                                                       | K.K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                    | ON<br>time           15:14:<br>04           22:19:<br>45           12:31:<br>51           18:30:<br>51           12:33:<br>18           17:13:<br>33           10:36:<br>01           15:32: | ON<br>time(test, alignment,<br>measurement)15:14:<br>04measurement22:19:<br>45measurement12:31:<br>51measurement18:30:<br>51measurement18:30:<br>51measurement17:13:<br>33measurement10:36:<br>01measurement15:32:measurement | ON<br>time         (test, alignment,<br>measurement)         OFF<br>time           15:14:<br>04         measurement         15:27:<br>23           22:19:<br>45         measurement         22:33:<br>02           12:31:<br>51         measurement         12:45:<br>09           18:30:<br>51         measurement         18:44:<br>08           12:33:<br>18:30:<br>33         measurement         12:46:<br>34           17:13:<br>33         measurement         17:26:<br>49           10:36:<br>01         measurement         10:49:<br>08           15:32:         measurement         15:45: | ON<br>time(test, alignment,<br>measurement)OFF<br>timetime<br>(hrs) $15:14:$<br>$04$ measurement $15:27:$<br>$23$ $0.221$<br>$7$ $22:19:$<br>$45$ measurement $22:33:$<br>$02$ $0.221$<br>$4$ $12:31:$<br>$51$ measurement $12:45:$<br>$09$ $0.221$<br>$4$ $18:30:$<br>$51$ measurement $18:44:$<br>$08$ $0.221$<br>$4$ $18:30:$<br>$51$ measurement $18:44:$<br>$08$ $0.221$<br>$4$ $12:33:$<br>$18$ measurement $12:46:$<br>$34$ $0.221$<br>$4$ $17:13:$<br>$33$ measurement $17:26:$<br>$49$ $0.221$<br>$1$ $10:36:$<br>$01$ measurement $10:49:$<br>$08$ $0.218$<br>$9$ $15:32:$<br>measurement $15:45:$ $0.219$ | ON<br>time(test, alignment,<br>measurement)OFF<br>timetime<br>(hrs)Current<br>(amperes) $15:14:$<br>04measurement $15:27:$<br>$230.22175.7362722:19:45measurement22:33:020.22145.7362412:31:51measurement12:45:090.22145.736218:30:51measurement18:44:080.22145.736212:33:18measurement12:46:340.22145.736217:13:33measurement17:26:490.22115.736210:36:01measurement10:49:0895.736215:32:measurement15:45:0.2195.73625.7362$ | ON<br>time(test, alignment,<br>measurement)OFF<br>timetime<br>(hrs)Current<br>(amperes)Voltage<br>(volts) $15:14:$<br>$04$ measurement $15:27:$<br>$23$ $0.221$<br>$7$ $5.7362$<br>$29.265429.265422:19:45measurement22:33:020.22145.736229.264629.264612:31:51measurement12:45:090.22145.736229.265929.265918:30:51measurement18:44:080.22145.7362429.264112:33:18measurement18:44:340.22145.7362429.261317:13:33measurement17:26:490.22115.736229.261529.261510:36:01measurement10:49:080.21895.736229.261729.261715:32:measurement15:45:0.2195.736229.2600$ |

Participant: Kenichi Kinoshita

NMI: National Metrology Institute of Japan

Date: Aug. 7, 2015

木下建-

#### Lamp number: 52

| Date                 | Lamp<br>ON<br>time | Activity/Comments<br>(test, alignment,<br>measurement) | Lamp<br>OFF<br>time | Burn<br>time<br>(hrs) | Lamp<br>Current<br>(amperes) | Lamp<br>Voltage<br>(volts) | Operator<br>initials |
|----------------------|--------------------|--------------------------------------------------------|---------------------|-----------------------|------------------------------|----------------------------|----------------------|
| Feb.<br>2nd<br>2014  | 16:34:<br>32       | measurement                                            | 16:47:<br>54        | 0.222<br>5            | 5.7646                       | 29.1680                    | K.K                  |
| Feb.<br>2nd<br>2014  | 21:40:<br>23       | measurement                                            | 21:53:<br>41        | 0.221<br>7            | 5.7646                       | 29.1676                    | K.K                  |
| Feb.<br>8th<br>2014  | 13:09:<br>22       | measurement                                            | 13:22:<br>39        | 0.221<br>4            | 5.7646                       | 29.1659                    | K.K                  |
| Feb.<br>8th<br>2014  | 18:00:<br>15       | measurement                                            | 18:13:<br>30        | 0.220<br>8            | 5.7646                       | 29.1673                    | K.K                  |
| Mar.<br>21st<br>2015 | 13:05:<br>08       | measurement                                            | 13:18:<br>26        | 0.221<br>4            | 5.7646                       | 29.1598                    | K.K                  |
| Mar.<br>21st<br>2015 | 16:40:<br>58       | measurement                                            | 16:54:<br>13        | 0.220<br>6            | 5.7646                       | 29.1602                    | K.K                  |
| Mar.<br>27nd<br>2015 | 11:04:<br>13       | measurement                                            | 11:17:<br>24        | 0.219<br>4            | 5.7646                       | 29.1595                    | K.K                  |
| Mar.<br>27nd<br>2015 | 15:07:<br>22       | measurement                                            | 15:20:<br>35        | 0.220                 | 5.7646                       | 29.1612                    | K.K                  |

Participant: Kenichi Kinoshita

NMI: National Metrology Institute of Japan

Date: Aug. 7, 2015

木下建-

#### Lamp number: 58

| Date                 | Lamp<br>ON<br>time | Activity/Comments<br>(test, alignment,<br>measurement) | Lamp<br>OFF<br>time | Burn<br>time<br>(hrs) | Lamp<br>Current<br>(amperes) | Lamp<br>Voltage<br>(volts) | Operator<br>initials |
|----------------------|--------------------|--------------------------------------------------------|---------------------|-----------------------|------------------------------|----------------------------|----------------------|
| Feb.<br>2nd<br>2014  | 17:25:<br>50       | measurement                                            | 17:39:<br>06        | 0.221<br>1            | 5.6101                       | 29.9692                    | K.K                  |
| Feb.<br>2nd<br>2014  | 21:02:<br>38       | measurement                                            | 21:15:<br>55        | 0.221<br>1            | 5.6101                       | 29.9689                    | K.K                  |
| Feb.<br>8th<br>2014  | 15:15:<br>35       | measurement                                            | 15:28:<br>51        | 0.221<br>1            | 5.6101                       | 29.9699                    | K.K                  |
| Feb.<br>8th<br>2014  | 17:17:<br>16       | measurement                                            | 17:30:<br>32        | 0.221<br>4            | 5.6101                       | 29.9704                    | K.K                  |
| Mar.<br>21st<br>2015 | 13:37:<br>09       | measurement                                            | 13:50:<br>25        | 0.221<br>4            | 5.6101                       | 29.9651                    | K.K                  |
| Mar.<br>21st<br>2015 | 16:05:<br>08       | measurement                                            | 16:18:<br>23        | 0.220<br>8            | 5.6101                       | 29.9652                    | K.K                  |
| Mar.<br>27nd<br>2015 | 11:34:<br>30       | measurement                                            | 11:47:<br>43        | 0.220<br>0            | 5.6101                       | 29.9643                    | K.K                  |
| Mar.<br>27nd<br>2015 | 14:37:<br>19       | measurement                                            | 14:50:<br>31        | 0.220                 | 5.6101                       | 29.9633                    | K.K                  |
|                      |                    |                                                        |                     |                       |                              |                            |                      |

Participant: Kenichi Kinoshita

NMI: National Metrology Institute of Japan

Date: Aug. 7, 2015

木下建-

# Lamp number: 69

| Date | Lamp<br>ON<br>time | Activity/Comments<br>(test, alignment,<br>measurement) | Lamp<br>OFF<br>time | Burn<br>time<br>(hrs) | Lamp<br>Current<br>(amperes) | Lamp<br>Voltage<br>(volts) | Operator<br>initials |
|------|--------------------|--------------------------------------------------------|---------------------|-----------------------|------------------------------|----------------------------|----------------------|
| Feb. | 18:05:             | measurement                                            | 18:18:              | 0.221                 | 5.6198                       | 29.9220                    | K.K                  |
| 2nd  | 18                 |                                                        | 35                  | 7                     |                              |                            |                      |
| Feb  | 20:16:             | measurement                                            | 20:29:              | 0.221                 | 5.6198                       | 29.9204                    | K.K                  |
| 2nd  | 21                 |                                                        | 40                  | 9                     |                              |                            |                      |
| Feb. | 15:52:             | measurement                                            | 16:05:              | 0.220                 | 5.6198                       | 29.9202                    | K.K                  |
| 8th  | 21                 |                                                        | 37                  | 8                     |                              |                            |                      |
| Feb  | 16:48:             | measurement                                            | 17:01:              | 0.221                 | 5.6198                       | 29.9225                    | K.K                  |
| 8th  | 29                 |                                                        | 44                  | 1                     |                              |                            |                      |
| Mar. | 14:13:             | measurement                                            | 14:26:              | 0.221                 | 5.6198                       | 29.9150                    | K.K                  |
| 21st | 10                 |                                                        | 27                  | 4                     |                              |                            |                      |
| 2015 |                    |                                                        |                     |                       |                              |                            |                      |
| Mar. | 15:33:             | measurement                                            | 15:46:              | 0.220                 | 5.6198                       | 29.9165                    | K.K                  |
| 21st | 20                 |                                                        | 35                  | 8                     |                              |                            |                      |
| 2015 |                    |                                                        |                     |                       |                              |                            |                      |
| Mar. | 11:59:             | measurement                                            | 12:12:              | 0.219                 | 5.6198                       | 29.9152                    | K.K                  |
| 27nd | 47                 |                                                        | 56                  | 4                     |                              |                            |                      |
| 2015 |                    |                                                        |                     |                       |                              |                            |                      |
| Mar. | 12:26:             | measurement                                            | 12:40:              | 0.218                 | 5.6198                       | 29.9166                    | K.K                  |
| 27nd | 52                 |                                                        | 00                  | 9                     |                              |                            |                      |
| 2015 |                    |                                                        |                     |                       |                              |                            |                      |
|      |                    |                                                        |                     |                       |                              |                            |                      |
|      |                    |                                                        |                     |                       |                              |                            |                      |

Participant: Kenichi Kinoshita

NMI: National Metrology Institute of Japan

Date: Jul. 1, 2016

木下建-

| Measurement Parameter                          | Uncertainty<br>Type<br>(A or B) | Standard Uncertainty<br>in luminous intensity<br>(%) |
|------------------------------------------------|---------------------------------|------------------------------------------------------|
| Systematic effects:                            |                                 |                                                      |
| Calibration of working standards               |                                 |                                                      |
| - Spectral responsivity of the silicon         | В                               | 0.05                                                 |
| photodiode measured with the cryogenic         |                                 |                                                      |
| radiometer                                     |                                 |                                                      |
| - Illuminance responsivity of the standard     | В                               | 0.20                                                 |
| photometer with respect to the spectral        |                                 |                                                      |
| responsivity of the silicon photodiode         |                                 |                                                      |
| - Measurement of the distance between the      | В                               | 0.05                                                 |
| primary standard lamp and the transfer         |                                 |                                                      |
| detector                                       |                                 |                                                      |
| - Responsivity change of the transfer detector | В                               | 0.10                                                 |
| by room temperature fluctuation                |                                 |                                                      |
| - Setting of the luminous intensity primary    | В                               | 0.10                                                 |
| standard lamp                                  |                                 |                                                      |
| - Aperture area                                | В                               | 0.015                                                |
| Electrical                                     |                                 |                                                      |
| - standard resistor                            |                                 | negligible                                           |
| - digital multimter                            | В                               | 0.01                                                 |
| Photometer                                     |                                 |                                                      |
| - spectral mismatch                            |                                 | negligible                                           |
| - linearity                                    |                                 | negligible                                           |
| - distance                                     | В                               | 0.02                                                 |
| Environment                                    |                                 |                                                      |
| - stray light                                  |                                 | negligible                                           |
| - temperature / humidity ?                     |                                 | included in (*)                                      |
| × ×                                            |                                 |                                                      |
| RMS total systematic effects:                  |                                 | 0.256                                                |
| Random effects:                                |                                 |                                                      |
| Lamp parameters:                               |                                 |                                                      |
| - lamp ageing                                  | В                               | 0.11                                                 |
| - lamp alignment (*)                           | B                               | 0.06                                                 |
| - lamp reproducibility                         |                                 | included in (*)                                      |
| - lamp output fluctuations                     | В                               | 0.02                                                 |
| Electrical parameters:                         | -                               |                                                      |
| - power supply fluctuations                    |                                 | included in (*)                                      |
| Photometer noise                               |                                 | included in (*)                                      |
| (Measurement Set standard deviation of mean)   |                                 |                                                      |
| · · · · · · · · · · · · · · · · · · ·          |                                 | 0.107                                                |
| RMS total random effects:                      |                                 | 0.127                                                |
| RMS total standard uncertainty:                |                                 | 0.29                                                 |

# Appendix A.5 Sample Measurement Uncertainty Budget

Participant: Kenichi Kinoshita

NMI: National Metrology Institute of Japan

木下建-

Date: Aug. 7, 2015

Dear Dr. Gaertner,

The following equations are the physical model of uncertainty of luminous intensity at NMIJ.

$$I_{1} = \frac{K_{\rm m} (d_{1} + \Delta d_{1})^{2}}{A} \frac{V_{0}}{G} \frac{\int_{\lambda_{1}}^{\lambda_{2}} \Phi_{\rm e,\lambda}(\lambda) V(\lambda) d\lambda}{\int_{\lambda_{1}}^{\lambda_{2}} \Phi_{\rm e,\lambda}(\lambda) s_{\rm e}(\lambda) d\lambda} (1 + c_{t}) (1 + c_{1})$$
(1)

$$I_{2} = I_{1} k_{c} \frac{V_{2}}{V_{1}} \frac{(d_{2} + \Delta d_{2})^{2}}{d_{2}^{2}} (1 + c_{i}) (1 + c_{a}) (1 + c_{2}) (1 + c_{3})$$
(2)

Equation (1) is the model to determine the luminous intensity of the standard lamp. Equation (2) is the model to transfer luminous intensity from the standard lamp to the transfer lamp. The meanings of each variable are listed below.

 $I_1$ : Luminous intensity of a standard lamp.

 $K_{\rm m}$   $\,$  : Maximum luminous efficiency constant. No uncertainty.

 $d_1$ : Distance between the standard lamp and the standard photometer. Constant. No uncertainty.

 $\Delta d_1$ : Deviation of distance setting.

A : Aperture area of the standard photometer.

 $V_0\colon {\rm Voltage\ measured\ by\ the\ multimeter.}$  Uncertainty negligible.

G : Conversion ratio of the current-voltage converter. Uncertainty negligible.

 $\Phi_{e,\lambda}(\lambda)$ : Relative spectral distribution of the standard lamp. Uncertainty to luminous intensity

negligible.

 $V(\lambda)$ : Luminous efficiency function. No uncertainty.

 $s_{e}(\lambda)$ : Spectral responsivity of the standard photometer. Uncertainty of this factor consists of two parts

in the budget. One is "Spectral responsivity of the silicon photodiode measured with the cryogenic radiometer", and another is "Illuminance responsivity of the standard photometer with respect to the spectral responsivity of the silicon photodiode".

 $c_t$ : Deviation of the standard photometer responsivity by the room temperature.

 $c_1$ : Deviation of the luminous intensity measurement for the standard lamp set on and removed from the lamp mount in many times. Accumulated data.

 $I_2$ : Luminous intensity of the transfer lamp.

 $k_c$  : Colour correction factor between the standard lamp and the transfer lamp. Uncertainty negligible.

 $V_2$ : Voltage output measured for the transfer lamp.

 $V_1$  : Voltage output measured for the standard lamp.

 $d_{\rm 2}\,$  : Distance between the lamp and the comparison photometer.

 $\Delta d_2$  : Deviation of distance setting.

 $c_i$ : Effect of the lamp current uncertainty.

 $c_{\scriptscriptstyle a}\,$  : Deviation of luminous intensity through the period of recalibraion-limit burning time. We take this

effect into the uncertainty without correction. So it is listed in "Random effects" because we cannot predict what value a lamp will take at each burning.

 $c_2$ : Deviation of the luminous intensity measurement for the transfer lamp set on and removed from the

lamp mount in many times. Accumulated data.

 $c_3$  : Fluctuation of lamp signal.

| The variables correspond to the uncertainty budget as follows. | The variables | correspond to th | e uncertainty | budget as | follows. |
|----------------------------------------------------------------|---------------|------------------|---------------|-----------|----------|
|----------------------------------------------------------------|---------------|------------------|---------------|-----------|----------|

|                      | Measurement Parameter                                                                                                           | Uncertainty<br>Type<br>(A or B) | Standard Uncertainty<br>in luminous intensity<br>(%) |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------|
|                      | Systematic effects:                                                                                                             |                                 |                                                      |
|                      | Calibration of working standards                                                                                                |                                 |                                                      |
| $s_{\rm e}(\lambda)$ | - Spectral responsivity of the silicon photodiode measured with the cryogenic radiometer                                        | В                               | 0.05                                                 |
| $s_{\rm e}(\lambda)$ | - Illuminance responsivity of the standard<br>photometer with respect to the spectral responsivity<br>of the silicon photodiode | В                               | 0.20                                                 |
| $\Delta d_1$         | - Measurement of the distance between the primary standard lamp and the transfer detector                                       | В                               | 0.05                                                 |
| C <sub>t</sub>       | - Responsivity change of the transfer detector by room temperature fluctuation                                                  | В                               | 0.10                                                 |
| $c_1$                | - Setting of the luminous intensity primary standard lamp                                                                       | В                               | 0.10                                                 |
| Α                    | - Aperture area                                                                                                                 | В                               | 0.015                                                |
|                      | Electrical                                                                                                                      |                                 |                                                      |
|                      | - standard resistor                                                                                                             |                                 | negligible                                           |
| C <sub>i</sub>       | -digital multimeter                                                                                                             | В                               | 0.01                                                 |
|                      | Photometer                                                                                                                      |                                 |                                                      |
|                      | - spectral mismatch                                                                                                             |                                 | negligible                                           |
|                      | - linearity                                                                                                                     |                                 | negligible                                           |
| $\Delta d_2$         | - distance                                                                                                                      | В                               | 0.02                                                 |
|                      | Environment                                                                                                                     |                                 |                                                      |
|                      | - stray light                                                                                                                   |                                 | negligible                                           |
|                      | - temperature / humidity ?                                                                                                      |                                 | included in (*)                                      |
|                      | RMS total systematic effects:                                                                                                   |                                 | 0.256                                                |

|                       | Random effects:                              |   |                 |
|-----------------------|----------------------------------------------|---|-----------------|
|                       | Lamp parameters:                             |   |                 |
| C <sub>a</sub>        | - lamp ageing                                | В | 0.11            |
| $c_2$                 | - lamp alignment (*)                         | В | 0.06            |
|                       | - lamp reproducibility                       |   | included in (*) |
| <i>C</i> <sub>3</sub> | - lamp output fluctuations                   | В | 0.02            |
|                       | Electrical parameters:                       |   |                 |
|                       | - power supply fluctuations                  |   | included in (*) |
|                       | Photometer noise                             |   | included in (*) |
|                       | (Measurement Set standard deviation of mean) |   |                 |
|                       | RMS total random effects:                    |   | 0.127           |
|                       |                                              |   |                 |
|                       | RMS total standard uncertainty:              |   | 0.29            |

The effect of baffles is regarded as negligibly small. We expect that that effect can be as small as 0.007 %, which is negligible in the NMIJ's uncertainty budget.

# Lamp Number: 37\_\_\_\_\_

Measurement Round #1:

| Measurement<br>Set Number | Number of<br>measurements<br>per set | Date/time | Lamp<br>current | Lamp<br>voltage | Luminous<br>Intensity | Standard Uncertainty<br>in Luminous Intensity<br>(%) |            |
|---------------------------|--------------------------------------|-----------|-----------------|-----------------|-----------------------|------------------------------------------------------|------------|
|                           | per set                              |           |                 |                 |                       | Random                                               | Systematic |
| 1                         | 2                                    | Feb. 2nd, | 5.7563          | 29.069          | 242.14 cd             | 0.127                                                | 0.256      |
|                           |                                      | 2014/11:  | А               | 2 V             |                       |                                                      |            |
|                           |                                      | 02am      |                 |                 |                       |                                                      |            |
| 2                         | 2                                    | Feb. 8th, | 5.7563          | 29.068          | 242.15 cd             | 0.127                                                | 0.256      |
|                           |                                      | 2014/9:5  | А               | 9 V             |                       |                                                      |            |
|                           |                                      | 7am       |                 |                 |                       |                                                      |            |
|                           |                                      |           |                 |                 |                       |                                                      |            |
|                           |                                      |           |                 |                 |                       |                                                      |            |

Measurement Round #2:

| Measurement<br>Set Number | Number of<br>measurements<br>per set | Date/time | Lamp<br>current | Lamp<br>voltage | Luminous<br>Intensity | Standard Un<br>in Luminous<br>(% | s Intensity |
|---------------------------|--------------------------------------|-----------|-----------------|-----------------|-----------------------|----------------------------------|-------------|
|                           | per set                              |           |                 |                 |                       | Random                           | Systematic  |
| 1                         | 2                                    | Mar.      | 5.7563          | 29.064          | 242.20 cd             | 0.127                            | 0.256       |
|                           |                                      | 21st,     | А               | V               |                       |                                  |             |
|                           |                                      | 2015/11:  |                 |                 |                       |                                  |             |
|                           |                                      | 31am      |                 |                 |                       |                                  |             |
| 2                         | 2                                    | Mar.      | 5.7563          | 29.064          | 242.11 cd             | 0.127                            | 0.256       |
|                           |                                      | 27nd,     | А               | V               |                       |                                  |             |
|                           |                                      | 2015/9:4  |                 |                 |                       |                                  |             |
|                           |                                      | 2am       |                 |                 |                       |                                  |             |
|                           |                                      |           |                 |                 |                       |                                  |             |
|                           |                                      |           |                 |                 |                       |                                  |             |

Participant: Kenichi Kinoshita

NMI: National Metrology Institute of Japan

Date: Aug. 7, 2015

木下建-

# Lamp Number: 40\_\_\_\_\_

Measurement Round #1:

| Measurement<br>Set Number | Number of<br>measurements<br>per set | Date/time | Lamp<br>current | Lamp<br>voltage | Luminous<br>Intensity | Standard Uncertainty<br>in Luminous Intensity<br>(%) |            |
|---------------------------|--------------------------------------|-----------|-----------------|-----------------|-----------------------|------------------------------------------------------|------------|
|                           | per set                              |           |                 |                 |                       | Random                                               | Systematic |
| 1                         | 2                                    | Feb. 2nd, | 5.7943          | 29.550          | 250.55 cd             | 0.127                                                | 0.256      |
|                           |                                      | 2014/11:  | А               | 5 V             |                       |                                                      |            |
|                           |                                      | 02am      |                 |                 |                       |                                                      |            |
| 2                         | 2                                    | Feb. 8th, | 5.7943          | 29.549          | 250.46 cd             | 0.127                                                | 0.256      |
|                           |                                      | 2014/9:5  | А               | 3 V             |                       |                                                      |            |
|                           |                                      | 7am       |                 |                 |                       |                                                      |            |
|                           |                                      |           |                 |                 |                       |                                                      |            |
|                           |                                      |           |                 |                 |                       |                                                      |            |

Measurement Round #2:

| Measurement<br>Set Number | Number of<br>measurements<br>per set | Date/time | Lamp<br>current | Lamp<br>voltage | Luminous<br>Intensity | Standard U<br>in Luminou<br>(% | s Intensity |
|---------------------------|--------------------------------------|-----------|-----------------|-----------------|-----------------------|--------------------------------|-------------|
|                           | per set                              |           |                 |                 |                       | Random                         | Systematic  |
| 1                         | 2                                    | Mar.      | 5.7943          | 29.543          | 250.34 cd             | 0.127                          | 0.256       |
|                           |                                      | 21st,     | А               | V               |                       |                                |             |
|                           |                                      | 2015/11:  |                 |                 |                       |                                |             |
|                           |                                      | 31am      |                 |                 |                       |                                |             |
| 2                         | 2                                    | Mar.      | 5.7943          | 29.544          | 250.23 cd             | 0.127                          | 0.256       |
|                           |                                      | 27nd,     | А               | V               |                       |                                |             |
|                           |                                      | 2015/9:4  |                 |                 |                       |                                |             |
|                           |                                      | 2am       |                 |                 |                       |                                |             |
|                           |                                      |           |                 |                 |                       |                                |             |
|                           |                                      |           |                 |                 |                       |                                |             |

Participant: Kenichi Kinoshita

NMI: National Metrology Institute of Japan

Date: Aug. 7, 2015

木下建-

# Lamp Number: 51\_\_\_\_\_

Measurement Round #1:

| Measurement<br>Set Number | Number of<br>measurements | Date/time | Lamp<br>current | Lamp<br>voltage | Luminous<br>Intensity | Standard Uncertainty<br>in Luminous Intensity<br>(%) |            |
|---------------------------|---------------------------|-----------|-----------------|-----------------|-----------------------|------------------------------------------------------|------------|
|                           | per set                   |           |                 |                 |                       | Random                                               | Systematic |
| 1                         | 2                         | Feb. 2nd, | 5.7362          | 29.264          | 240.91 cd             | 0.127                                                | 0.256      |
|                           |                           | 2014/11:  | А               | 6 V             |                       |                                                      |            |
|                           |                           | 02am      |                 |                 |                       |                                                      |            |
| 2                         | 2                         | Feb. 8th, | 5.7362          | 29.264          | 240.79 cd             | 0.127                                                | 0.256      |
|                           |                           | 2014/9:5  | А               | 1 V             |                       |                                                      |            |
|                           |                           | 7am       |                 |                 |                       |                                                      |            |
|                           |                           |           |                 |                 |                       |                                                      |            |
|                           |                           |           |                 |                 |                       |                                                      |            |

Measurement Round #2:

| Measurement<br>Set Number | Number of<br>measurements<br>per set | Date/time | Lamp<br>current | Lamp<br>voltage | Luminous<br>Intensity | Standard Un<br>in Luminous<br>(% | s Intensity |
|---------------------------|--------------------------------------|-----------|-----------------|-----------------|-----------------------|----------------------------------|-------------|
|                           | per set                              |           |                 |                 |                       | Random                           | Systematic  |
| 1                         | 2                                    | Mar.      | 5.7362          | 29.261          | 240.54 cd             | 0.127                            | 0.256       |
|                           |                                      | 21st,     | А               | V               |                       |                                  |             |
|                           |                                      | 2015/11:  |                 |                 |                       |                                  |             |
|                           |                                      | 31am      |                 |                 |                       |                                  |             |
| 2                         | 2                                    | Mar.      | 5.7362          | 29.262          | 240.59 cd             | 0.127                            | 0.256       |
|                           |                                      | 27nd,     | А               | V               |                       |                                  |             |
|                           |                                      | 2015/9:4  |                 |                 |                       |                                  |             |
|                           |                                      | 2am       |                 |                 |                       |                                  |             |
|                           |                                      |           |                 |                 |                       |                                  |             |
|                           |                                      |           |                 |                 |                       |                                  |             |

Participant: Kenichi Kinoshita

NMI: National Metrology Institute of Japan

Date: Aug. 7, 2015

木下建-

# Lamp Number: 52\_\_\_\_\_

Measurement Round #1:

| Measurement<br>Set Number | Number of<br>measurements<br>per set | Date/time | Lamp<br>current | Lamp<br>voltage | Luminous<br>Intensity | Standard Uncertainty<br>in Luminous Intensity<br>(%) |            |
|---------------------------|--------------------------------------|-----------|-----------------|-----------------|-----------------------|------------------------------------------------------|------------|
|                           | per set                              |           |                 |                 |                       | Random                                               | Systematic |
| 1                         | 2                                    | Feb. 2nd, | 5.7646          | 29.167          | 241.51 cd             | 0.127                                                | 0.256      |
|                           |                                      | 2014/11:  | А               | 6 V             |                       |                                                      |            |
|                           |                                      | 02am      |                 |                 |                       |                                                      |            |
| 2                         | 2                                    | Feb. 8th, | 5.7646          | 29.167          | 241.49 cd             | 0.127                                                | 0.256      |
|                           |                                      | 2014/9:5  | А               | 3 V             |                       |                                                      |            |
|                           |                                      | 7am       |                 |                 |                       |                                                      |            |
|                           |                                      |           |                 |                 |                       |                                                      |            |
|                           |                                      |           |                 |                 |                       |                                                      |            |

Measurement Round #2:

| Measurement<br>Set Number | Number of<br>measurements<br>per set | Date/time | Lamp<br>current | Lamp<br>voltage | Luminous<br>Intensity | Standard U<br>in Luminou<br>(% | s Intensity |
|---------------------------|--------------------------------------|-----------|-----------------|-----------------|-----------------------|--------------------------------|-------------|
|                           | per set                              |           |                 |                 |                       | Random                         | Systematic  |
| 1                         | 2                                    | Mar.      | 5.7646          | 29.160          | 241.48 cd             | 0.127                          | 0.256       |
|                           |                                      | 21st,     | А               | V               |                       |                                |             |
|                           |                                      | 2015/11:  |                 |                 |                       |                                |             |
|                           |                                      | 31am      |                 |                 |                       |                                |             |
| 2                         | 2                                    | Mar.      | 5.7646          | 29.159          | 241.50 cd             | 0.127                          | 0.256       |
|                           |                                      | 27nd,     | А               | V               |                       |                                |             |
|                           |                                      | 2015/9:4  |                 |                 |                       |                                |             |
|                           |                                      | 2am       |                 |                 |                       |                                |             |
|                           |                                      |           |                 |                 |                       |                                |             |
|                           |                                      |           |                 |                 |                       |                                |             |

Participant: Kenichi Kinoshita

NMI: National Metrology Institute of Japan

Date: Aug. 7, 2015

木下建-

# Lamp Number: 58\_\_\_\_\_

Measurement Round #1:

| Measurement<br>Set Number | Number of<br>measurements<br>per set | Date/time | Lamp<br>current | Lamp<br>voltage | Luminous<br>Intensity | Standard Uncertainty<br>in Luminous Intensity<br>(%) |            |
|---------------------------|--------------------------------------|-----------|-----------------|-----------------|-----------------------|------------------------------------------------------|------------|
|                           | per set                              |           |                 |                 |                       | Random                                               | Systematic |
| 1                         | 2                                    | Feb. 2nd, | 5.6101          | 29.968          | 244.27 cd             | 0.127                                                | 0.256      |
|                           |                                      | 2014/11:  | А               | 9 V             |                       |                                                      |            |
|                           |                                      | 02am      |                 |                 |                       |                                                      |            |
| 2                         | 2                                    | Feb. 8th, | 5.6101          | 29.970          | 244.29 cd             | 0.127                                                | 0.256      |
|                           |                                      | 2014/9:5  | А               | 4 V             |                       |                                                      |            |
|                           |                                      | 7am       |                 |                 |                       |                                                      |            |
|                           |                                      |           |                 |                 |                       |                                                      |            |
|                           |                                      |           |                 |                 |                       |                                                      |            |

Measurement Round #2:

| Measurement<br>Set Number | Number of<br>measurements<br>per set | Date/time | Lamp<br>current | Lamp<br>voltage | Luminous<br>Intensity | Standard U<br>in Luminou<br>(% | s Intensity |
|---------------------------|--------------------------------------|-----------|-----------------|-----------------|-----------------------|--------------------------------|-------------|
|                           | per set                              |           |                 |                 |                       | Random                         | Systematic  |
| 1                         | 2                                    | Mar.      | 5.6101          | 29.965          | 244.50 cd             | 0.127                          | 0.256       |
|                           |                                      | 21st,     | А               | V               |                       |                                |             |
|                           |                                      | 2015/11:  |                 |                 |                       |                                |             |
|                           |                                      | 31am      |                 |                 |                       |                                |             |
| 2                         | 2                                    | Mar.      | 5.6101          | 29.964          | 244.51 cd             | 0.127                          | 0.256       |
|                           |                                      | 27nd,     | А               | V               |                       |                                |             |
|                           |                                      | 2015/9:4  |                 |                 |                       |                                |             |
|                           |                                      | 2am       |                 |                 |                       |                                |             |
|                           |                                      |           |                 |                 |                       |                                |             |
|                           |                                      |           |                 |                 |                       |                                |             |

Participant: Kenichi Kinoshita

NMI: National Metrology Institute of Japan

Date: Aug. 7, 2015

木下建-

## Lamp Number: 69\_\_\_\_\_

Measurement Round #1:

| Measurement<br>Set Number | Number of<br>measurements | Date/time | Lamp<br>current | Lamp<br>voltage | Luminous<br>Intensity | Standard Un<br>in Luminou<br>(% | s Intensity |
|---------------------------|---------------------------|-----------|-----------------|-----------------|-----------------------|---------------------------------|-------------|
|                           | per set                   |           |                 |                 |                       | Random                          | Systematic  |
| 1                         | 2                         | Feb. 2nd, | 5.6198          | 29.920          | 243.26 cd             | 0.127                           | 0.256       |
|                           |                           | 2014/11:  | А               | 4 V             |                       |                                 |             |
|                           |                           | 02am      |                 |                 |                       |                                 |             |
| 2                         | 2                         | Feb. 8th, | 5.6198          | 29.922          | 243.09 cd             | 0.127                           | 0.256       |
|                           |                           | 2014/9:5  | А               | 5 V             |                       |                                 |             |
|                           |                           | 7am       |                 |                 |                       |                                 |             |
|                           |                           |           |                 |                 |                       |                                 |             |
|                           |                           |           |                 |                 |                       |                                 |             |

Measurement Round #2:

| Measurement<br>Set Number | Number of<br>measurements<br>per set | Date/time | Lamp<br>current | Lamp<br>voltage | Luminous<br>Intensity | Standard Un<br>in Luminous<br>(% | s Intensity |
|---------------------------|--------------------------------------|-----------|-----------------|-----------------|-----------------------|----------------------------------|-------------|
|                           | per set                              |           |                 |                 |                       | Random                           | Systematic  |
| 1                         | 2                                    | Mar.      | 5.6198          | 29.915          | 244.14 cd             | 0.127                            | 0.256       |
|                           |                                      | 21st,     | А               | V               |                       |                                  |             |
|                           |                                      | 2015/11:  |                 |                 |                       |                                  |             |
|                           |                                      | 31am      |                 |                 |                       |                                  |             |
| 2                         | 2                                    | Mar.      | 5.6198          | 29.915          | 244.74 cd             | 0.127                            | 0.256       |
|                           |                                      | 27nd,     | А               | V               |                       |                                  |             |
|                           |                                      | 2015/9:4  |                 |                 |                       |                                  |             |
|                           |                                      | 2am       |                 |                 |                       |                                  |             |
|                           |                                      |           |                 |                 |                       |                                  |             |
|                           |                                      |           |                 |                 |                       |                                  |             |

Participant: Kenichi Kinoshita

NMI: National Metrology Institute of Japan

Date: Jul. 1, 2016

木下建-

# CCPR Key Comparison CCPR-K3.2014

# Luminous Intensity

**Final Report** 

Appendix A

**IO-CSIC Report** 

CCPR Key Comparison CCPR-K .201 Luminous Intensity

MEASUREMENT REPORT. ROUND 1

INSTITUTO DE PTICA - CSIC MADRID-SPAIN

### 1.- Introduction

This report describes the procedure followed at IO-CSIC (covering first round of measurements) to determine the luminous intensity of six lamps: four OSRAM Wi 41/G identified as: Wi95A,Wi95B,Wi95C and Wi95D; and two NPL/GEC lamps (now called NPL/Polaron Heavy Current LIS incandescent lamps) identified as: A-454 and A-456.

### 2.- Measurement specifications

### NPL/GEC lamps (now called NPL/Polaron Heavy Current LIS). 2 lamps

- Colour temperature: 2840 K ± 20 K (individual values are reported below)
- Electrical supply: Direct current, negative polarity at the central contact of the lamp base; power input specified by the current through the lamp.
- Orientation: lamp base down with the vertical window (fitted with the mask) facing the detector.
- Positioning: The rear surface of the front window is perpendicular to the optical axis, defined by the centre of the detector and the centre of the filament.
- Lamp-detector distance: 3,6 m. From the detector to the center of the filament
- The detector accepts only light passing from the black mask placed over the lamp (each lamp possess its own mask identified with the same number as the lamp)
- Warm-up time: 15 min

# OSRAM lamps Wi41/G (4 lamps)

- Colour temperature: 2860 K ± 20 K (individual values are reported below)
- Electrical supply: Direct current, negative polarity at the central contact of the lamp base (E27); power input specified by the current through the lamp.
- Orientation: lamp base down, blackened part of the bulb facing the detector.
- Positioning: Plane of the filament perpendicular to the (horizontal) optical axis defined by the centre of the detector and the centre of the filament (Center Filament Support #1).
- Lamp-detector distance: 3,6 m. From the detector to the plane of the lamp filament.
- The detector accepts only the light passing through the rectangular opening in the black mask on the face of the lamp.
- Warm-up time: 15 min

### .- Calibration method and Procedure

The lamps have been calibrated in an optical bench, measuring the illuminance with a V( $\lambda$ ) corrected detector. Two standard photometers have been used as reference, which were calibrated for absolute responsivity against our cryogenic radiometer; and for relative responsivity against the IO-CSIC spectral responsivity scale.

Two temperature-controlled, full-filtered V( $\lambda$ )-corrected photometers, with aperture mode input, have been used as standards to measure illuminance at the reference plane. The IO-CSIC photometers have an input aperture diameter of approximately 9 mm.

Full description of the method used for the realization of the candela is reported in "*Realization of the candela from a partial filtering*  $V(\lambda)$  detector traceable to a cryogenic radiometer" by J. Campos, A. Corróns, A. Pons and P. Corredera. Metrologia. 1995, **2** and in "*Luminous intensity standard based on a cryogenic* radiometer" CIE 119-1995-23<sup>rd</sup> Session. New Delhi. Volume 1, 102-105

#### .- Experimental set-up

A laser beam has been used to visualize the optical axis in order to simplify the positioning and orientation of lamps and detector. A second laser beam, intercepting the first one at an angle of 45° approximately, has been used to define the reference plane for the measurement of illuminance, which is normal to the optical axis at the point where both laser beams crossed. Photometers were placed at the reference plane at normal incidence by using high precision positioning equipment. Lamp reference plane, as fixed in the measurement specifications, has been defined with a third laser beam. Figure 1

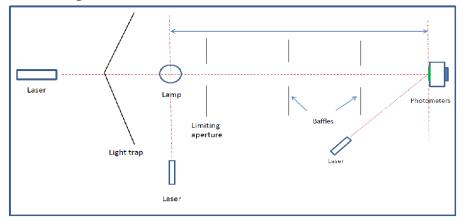



Figure 1.- Schematic of IO-CSIC Measurement Configuration

The lamps have been aligned with a cold (room temperature) filament. Next table shows individual values for electrical supply of each lamp and the measured Colour Temperature.

| Lamp | Current<br>Intensity/A | Lamp voltage/V | Colour<br>Temperature/<br>K |  |
|------|------------------------|----------------|-----------------------------|--|
| A-   | 25.500                 | 12,25          | 2844                        |  |
| A- 6 | 25.500                 | 12,56          | 2840                        |  |
| i a  | 5.836                  | 30,81          | 2869                        |  |
| i b  | 5.836                  | 31,08          | 2868                        |  |
| i c  | 5.832                  | 30,79          | 2862                        |  |
| i d  | 5.836                  | 30,59          | 2868                        |  |

Record of lamps operating time is shown in appendix A.4

### .- Measurement Results

Appendix A. 6 shows the results obtained.

### **6.- UNCERTAINTY**

Actual model of evaluation used is as expressed in equation (1)

$$I = \frac{c_{\nu}V}{S_{\nu}} \left(\frac{T_R}{T_A}\right)^m \left(\frac{c_jV_j}{J_RR_j}\right)^{m.m_T - m_I} \cdot \left(d + \Delta d_p + \Delta d_L\right)^2 \cdot \left(1 - c_{stray} - \varepsilon + h\varphi + f\upsilon\right)\right)$$
(1)

Quantities:

- I output quantity. Luminous Intensity
- c<sub>v</sub> calibration factor of picoammeter. Certified value
- V mean value, averaged from the number of readings, of the photocurrent
- S<sub>v</sub> luminous responsivity of photometer. Certified value
- T<sub>R</sub> measured colour temperature of the lamp. Certified value
- T<sub>A</sub> constant nominal value of colour temperature = 2856 K no uncertainty
- c<sub>i</sub> calibration factor of the DVM to control voltage across shunt resistance
- V<sub>i</sub> mean value voltage (lamp current), averaged from 10 readings
- J<sub>R</sub> constant lamp current, no uncertainty
- R<sub>j</sub> shunt resitance. Certified value
- m mismatch index, determined previously
- m<sub>1</sub> exponent for changes of lamp current affecting luminous intensity
- m<sub>T</sub> exponent for changes of lamp current affecting CCT
- d distance lamp-photometer
- $\Delta d_p$  alignment of photometer head for distance
- $\Delta d_L$  alignment of filament for distance
- c<sub>stray</sub> relative correction for straylight, estimated previously
- ε angular misalignment of photometer
- $h\phi$  angular (horizontal) misalignment of lamp
- fv angular (vertical) misalignment of lamp

Effects of resolution of the DVM or picoammeter are negligible. Uncertainty contribution of every component is stated at appendix A.5

# Appendix A.4 Record of lamp operating time

### Lamp number: i A

| Date       | Lamp<br>ON<br>time | Activity                                                            | Lamp<br>OFF<br>time | Burn<br>time<br>(hrs) | Lamp<br>Current<br>(amperes) | Lamp<br>Voltage<br>(volts) | Operator<br>initials |
|------------|--------------------|---------------------------------------------------------------------|---------------------|-----------------------|------------------------------|----------------------------|----------------------|
| 16/01/2014 | 11 h 45<br>min     | Measure                                                             | 12 h<br>20 min      | 0,58                  | 5,836                        | 30,81                      | A.P.                 |
| 16/01/2014 | 16h 20<br>min      | Measure                                                             | 17 h<br>05 min      | 0,75                  | 5,836                        | 30,80                      | A.P.                 |
| 17/01/2014 | 9 h 15<br>min      | Measure                                                             | 10 h<br>05 min      | 0,83                  | 5,836                        | 30,81                      | A.P.                 |
| 06/02/2014 | 10h<br>20min       | Spectral<br>distribution<br>measurement<br>(CCT deter-<br>mination) | 11h 05<br>min       | 0,75                  | 5,836                        | 30,81                      | A.P.                 |

# Lamp number: i B

| Date       | Lamp<br>ON<br>time | Activity                                                            | Lamp<br>OFF<br>time | Burn<br>time<br>(hrs) | Lamp<br>Current<br>(amperes) | Lamp<br>Voltage<br>(volts) | Operator<br>initials |
|------------|--------------------|---------------------------------------------------------------------|---------------------|-----------------------|------------------------------|----------------------------|----------------------|
| 16/01/2014 | 9 h                | Measure                                                             | 9 h 35<br>min       | 0,58                  | 5,836                        | 31,08                      | A.P.                 |
| 17/01/2014 | 11 h 20<br>min     | Measure                                                             | 11h 50<br>min       | 0,50                  | 5,836                        | 31,08                      | A.P.                 |
| 18/01/2014 | 13 h 30<br>m       | Measure                                                             | 14 h                | 0,50                  | 5,836                        | 31,09                      | A.P.                 |
| 06/02/2014 | 11h<br>20min       | Spectral<br>distribution<br>measurement<br>(CCT deter-<br>mination) | 12h                 | 0,67                  | 5,836                        | 31,08                      | A.P.                 |

# Appendix A.4 Record of lamp operating time

# Lamp number: i C

| Date       | Lamp<br>ON<br>time | Activity                                                            | Lamp<br>OFF<br>time | Burn<br>time<br>(hrs) | Lamp<br>Current<br>(amperes) | Lamp<br>Voltage<br>(volts) | Operator<br>initials |
|------------|--------------------|---------------------------------------------------------------------|---------------------|-----------------------|------------------------------|----------------------------|----------------------|
| 16/01/2014 | 9 h 50<br>min      | Measure                                                             | 10 h<br>25 min      | 0,58                  | 5,832                        | 30,79                      | A.P.                 |
| 17/01/2014 | 12 h 05<br>min     | Measure                                                             | 12 h<br>40 min      | 0,58                  | 5,832                        | 30,79                      | A.P.                 |
| 17/01/2014 | 14 h 15<br>min     | Measure                                                             | 14 h<br>45 min      | 0,50                  | 5,832                        | 30,79                      | A.P.                 |
| 06/02/2014 | 12 h 30<br>min     | Spectral<br>distribution<br>measurement<br>(CCT deter-<br>mination) | 12 h<br>55 min      | 0,42                  | 5,832                        | 30,79                      | A.P.                 |

# Lamp number: i D

| Date       | Lamp<br>ON<br>time | Activity                                                            | Lamp<br>OFF<br>time | Burn<br>time<br>(hrs) | Lamp<br>Current<br>(amperes) | Lamp<br>Voltage<br>(volts) | Operator<br>initials |
|------------|--------------------|---------------------------------------------------------------------|---------------------|-----------------------|------------------------------|----------------------------|----------------------|
| 16/01/2014 | 15 h 30<br>min     | Measure                                                             | 16 h<br>10 min      | 0,67                  | 5,836                        | 30,59                      | A.P.                 |
| 17/01/2014 | 10 h 20<br>min     | Measure                                                             | 10h 55<br>min       | 0,58                  | 5,836                        | 30,59                      | A.P.                 |
| 17/01/2014 | 12 h 45<br>min     | Measure                                                             | 13 h<br>15 min      | 0,50                  | 5,836                        | 30,58                      | A.P.                 |
| 06/02/2014 | 13 h 05<br>min     | Spectral<br>distribution<br>measurement<br>(CCT deter-<br>mination) | 13 h<br>30 min      | 0,42                  | 5,836                        | 30,58                      | A.P.                 |

# Appendix A.4 Record of lamp operating time

### Lamp number: A

| Date       | Lamp<br>ON<br>time | Activity                                                            | Lamp<br>OFF<br>time | Burn<br>time<br>(hrs) | Lamp<br>Current<br>(amperes) | Lamp<br>Voltage<br>(volts) | Operator<br>initials |
|------------|--------------------|---------------------------------------------------------------------|---------------------|-----------------------|------------------------------|----------------------------|----------------------|
| 21/01/2014 | 12 h 40<br>min     | Measure                                                             | 13 h<br>12 min      | 0,53                  | 25,500                       | 12,24                      | A.P.                 |
| 22/01/2014 | 9 h 50<br>min      | Measure                                                             | 10h 30<br>min       | 0,67                  | 25,500                       | 12,24                      | A.P.                 |
| 22/01/2014 | 16 h 05<br>min     | Measure                                                             | 16 h<br>40 min      | 0,58                  | 25,500                       | 12,26                      | A.P.                 |
| 06/02/2014 | 17 h 20<br>min     | Spectral<br>distribution<br>measurement<br>(CCT deter-<br>mination) | 17 h<br>50 min      | 0,33                  | 25,500                       | 12,25                      | A.P.                 |

# Lamp number: A 6

| Date       | Lamp<br>ON<br>time | Activity                                                            | Lamp<br>OFF<br>time | Burn<br>time<br>(hrs) | Lamp<br>Current<br>(amperes) | Lamp<br>Voltage<br>(volts) | Operator<br>initials |
|------------|--------------------|---------------------------------------------------------------------|---------------------|-----------------------|------------------------------|----------------------------|----------------------|
| 21/01/2014 | 10 h 40<br>min     | Measure                                                             | 11 h<br>20 min      | 0,67                  | 25,500                       | 12,54                      | A.P.                 |
| 21/01/2014 | 16 h 25<br>min     | Measure                                                             | 17 h<br>05 min      | 0,62                  | 25,500                       | 12,56                      | A.P.                 |
| 22/01/2014 | 12 h 25<br>min     | Measure                                                             | 13 h<br>05 min      | 0,67                  | 25,500                       | 12,56                      | A.P.                 |
| 06/02/2014 | 15 h 55<br>min     | Spectral<br>distribution<br>measurement<br>(CCT deter-<br>mination) | 16 h<br>20 min      | 0,42                  | 25,500                       | 12,56                      | A.P.                 |

| Measurement<br>parameter                                                            | Symbol             | Uncertainty<br>type (A or<br>B) | Standard Uncertainty<br>in luminous intensity<br>(%) |
|-------------------------------------------------------------------------------------|--------------------|---------------------------------|------------------------------------------------------|
| Calibration factor of picoammeter                                                   | C <sub>v</sub>     | B                               | 0,01                                                 |
| Mean value of the photocurrent                                                      | V                  | A                               | 0,05                                                 |
| Luminous<br>responsivity of<br>photometer                                           | Sv                 | В                               | 0,30                                                 |
| Colour temperature                                                                  | T <sub>R</sub>     | В                               | 0,004                                                |
| Calibration factor of multimeter used to                                            | Cj                 | В                               | 0,05                                                 |
| Mean value voltage (lamp current)                                                   | Vj                 | A                               | <0,0001                                              |
| Shunt resistance                                                                    | R <sub>i</sub>     | В                               | 0,0007                                               |
| Mismatch index                                                                      | m                  | В                               | 0,0002                                               |
| Exponent for<br>changes of lamp<br>current affecting<br>distribution<br>temperature | m <sub>T</sub>     | В                               | 0,0002                                               |
| Exponent for<br>changes of lamp<br>current affecting<br>luminous intensity          | mı                 | В                               | 0,01                                                 |
| Distance                                                                            | d                  | В                               | 0,008                                                |
| Locus photometer                                                                    | $\Delta d_p$       | В                               | 0,01                                                 |
| Locus lamp                                                                          | $\Delta d_L$       | В                               | 0,02                                                 |
| Correction for<br>straylight                                                        | C <sub>stray</sub> | В                               | 0,02                                                 |
| Angle photometer                                                                    | 3                  | В                               | 0,002                                                |
| Angle lamp                                                                          | hφ                 | В                               | 0,001                                                |
| Angle lamp vertical                                                                 | fν                 | В                               | 0,02                                                 |

# Appendix A.5 Sample Measurement Uncertainty Budget

# Lamp Number: i A

### Measurement Round 1:

| Measurement<br>Set Number | Number of<br>measurement<br>per set | Date/time  | Lamp<br>current | Lamp<br>voltage | Luminous<br>Intensity | in Lu | d Uncertainy<br>uminous<br>nsity (%) |
|---------------------------|-------------------------------------|------------|-----------------|-----------------|-----------------------|-------|--------------------------------------|
|                           |                                     |            |                 |                 |                       | Rando | Systematic                           |
|                           |                                     |            |                 |                 |                       | m     |                                      |
| 1                         | 10                                  | 16/01/2014 | 5,836           | 30,81           | 278,5                 | 0,01  | 0,31                                 |
| 2                         | 10                                  | 16/01/2014 | 5,836           | 30,80           | 278,5                 | 0,03  | 0,31                                 |
| 3                         | 10                                  | 17/01/2014 | 5,836           | 30,81           | 278,3                 | 0,01  | 0,31                                 |

## Lamp Number: i B

## Measurement Round 1:

| Measurement<br>Set Number | Number of<br>measurement<br>per set | Date/time  | Lamp<br>current | Lamp<br>voltage | Luminous<br>Intensity | in Lu  | Uncertainy<br>minous<br>sity (%) |
|---------------------------|-------------------------------------|------------|-----------------|-----------------|-----------------------|--------|----------------------------------|
|                           |                                     |            |                 |                 |                       | Random | Systematic                       |
| 1                         | 10                                  | 16/01/2014 | 5,836           | 31,08           | 285,2                 | 0,01   | 0,31                             |
| 2                         | 10                                  | 17/01/2014 | 5,836           | 31,08           | 285,8                 | 0,005  | 0,31                             |
| 3                         | 10                                  | 18/01/2014 | 5,836           | 31,09           | 284,7                 | 0,01   | 0,31                             |

# Lamp Number: i C

Measurement Round 1:

| Measurement<br>Set Number | Number of<br>measurement<br>per set | Date/time  | Lamp<br>current | Lamp<br>voltage | Luminous<br>Intensity | in Lu  | Uncertainy<br>minous<br>sity (%) |
|---------------------------|-------------------------------------|------------|-----------------|-----------------|-----------------------|--------|----------------------------------|
|                           |                                     |            |                 |                 |                       | Random | Systematic                       |
| 1                         | 10                                  | 16/01/2014 | 5,832           | 30,79           | 286,3                 | 0,006  | 0,31                             |
| 2                         | 10                                  | 17/01/2014 | 5,832           | 30,79           | 286,8                 | 0,003  | 0,31                             |
| 3                         | 10                                  | 17/01/2014 | 5,832           | 30,79           | 285,8                 | 0,03   | 0,31                             |

Lamp Number: i D

## Measurement Round 1:

| Measurement<br>Set Number | Number of<br>measurement<br>per set | Date/time  | Lamp<br>current | Lamp<br>voltage | Luminous<br>Intensity | in Lu  | Uncertainy<br>minous<br>sity (%) |
|---------------------------|-------------------------------------|------------|-----------------|-----------------|-----------------------|--------|----------------------------------|
|                           |                                     |            |                 |                 |                       | Random | Systematic                       |
| 1                         | 10                                  | 16/01/2014 | 5,836           | 30,59           | 271,8                 | 0,006  | 0,31                             |
| 2                         | 10                                  | 17/01/2014 | 5,836           | 30,59           | 271,6                 | 0,006  | 0,31                             |
| 3                         | 10                                  | 17/01/2014 | 5,836           | 30,58           | 272,1                 | 0,01   | 0,31                             |

### Lamp Number: A

### Measurement Round 1:

| Measurement<br>Set Number | Number of<br>measurement<br>per set | Date/time  | Lamp<br>current | Lamp<br>voltage | Luminous<br>Intensity | in Lu  | Uncertainy<br>minous<br>sity (%) |
|---------------------------|-------------------------------------|------------|-----------------|-----------------|-----------------------|--------|----------------------------------|
|                           |                                     |            |                 |                 |                       | Random | Systematic                       |
| 1                         | 10                                  | 21/01/2014 | 25,5            | 12,24           | 432,6                 | 0,02   | 0,31                             |
| 2                         | 10                                  | 22/01/2014 | 25,5            | 12,24           | 433,5                 | 0,02   | 0,31                             |
| 3                         | 10                                  | 22/01/2014 | 25,5            | 12,26           | 433,7                 | 0,03   | 0,31                             |

# Lamp Number: A 6

#### Measurement Round 1:

| Measurement<br>Set Number | Number of<br>measurement<br>per set | Date/time  | Lamp<br>current | Lamp<br>voltage | Luminous<br>Intensity | in Lu  | Uncertainy<br>minous<br>sity (%) |
|---------------------------|-------------------------------------|------------|-----------------|-----------------|-----------------------|--------|----------------------------------|
|                           |                                     |            |                 |                 |                       | Random | Systematic                       |
| 1                         | 10                                  | 21/01/2014 | 25,5            | 12,54           | 438,6                 | 0,05   | 0,31                             |
| 2                         | 10                                  | 21/01/2014 | 25,5            | 12,56           | 439,6                 | 0,05   | 0,31                             |
| 3                         | 10                                  | 22/01/2014 | 25,5            | 12,56           | 439,4                 | 0,03   | 0,31                             |

RE: K3PL011: Replies to CCPR-K3.2014 Pre-Draft-A Process 2: Review of Uncertainty Budgets 2016-May-03

Dear Arnold,

Enclosed please find a the Anex 5 with an extra column with the classification of uncertainty components,

Regards,

Alicia Pons Instituto de Optica-CSIC Serrano 144, 28006 Madrid Tf. 91 5618806; Fax. 91 5642122 e-mail: <u>alicia.pons@csic.es</u>

| Measurement<br>parameter                                                            | Symbol             | Uncertainty<br>type (A or<br>B) | Standard Uncertainty<br>in luminous intensity<br>(%) | Uncertainty type<br>(random or<br>systematic) |
|-------------------------------------------------------------------------------------|--------------------|---------------------------------|------------------------------------------------------|-----------------------------------------------|
| Calibration<br>factor of<br>picoammeter                                             | Cv                 | В                               | 0,01                                                 | systematic                                    |
| Mean value of the photocurrent                                                      | V                  | A                               | 0,05                                                 | random                                        |
| Luminous<br>responsivity of<br>photometer                                           | Sv                 | В                               | 0,30                                                 | systematic                                    |
| Colour<br>temperature                                                               | T <sub>R</sub>     | В                               | 0,004                                                | systematic                                    |
| Calibration<br>factor of<br>multimeter used<br>to                                   | Cj                 | В                               | 0,05                                                 | systematic                                    |
| Mean value<br>voltage (lamp<br>current)                                             | Vj                 | A                               | <0,0001                                              | random                                        |
| Shunt resistance                                                                    | R <sub>j</sub>     | В                               | 0,0007                                               | systematic                                    |
| Mismatch index                                                                      | m                  | В                               | 0,0002                                               | systematic                                    |
| Exponent for<br>changes of lamp<br>current affecting<br>distribution<br>temperature | m <sub>T</sub>     | В                               | 0,0002                                               | systematic                                    |
| Exponent for<br>changes of lamp<br>current affecting<br>luminous<br>intensity       | mı                 | В                               | 0,01                                                 | systematic                                    |
| Distance                                                                            | d                  | В                               | 0,008                                                | systematic                                    |
| Locus<br>photometer                                                                 | $\Delta d_p$       | В                               | 0,01                                                 | random                                        |
| Locus lamp                                                                          | $\Delta d_L$       | В                               | 0,02                                                 | random                                        |
| Correction for<br>straylight                                                        | C <sub>stray</sub> | В                               | 0,02                                                 | systematic                                    |
| Angle<br>photometer                                                                 | 3                  | В                               | 0,002                                                | systematic                                    |
| Angle lamp                                                                          | hφ                 | В                               | 0,001                                                | systematic                                    |
| Angle lamp<br>vertical                                                              | fν                 | В                               | 0,02                                                 | systematic                                    |

# Appendix A.5 Sample Measurement Uncertainty Budget

CCPR Key Comparison CCPR-K .201 Luminous Intensity

## MEASUREMENT REPORT. ROUND 2

INSTITUTO DE PTICA - CSIC MADRID-SPAIN

## 1.- Introduction

This report describes the values obtained in the calibration, in second round, of five lamps: four OSRAM Wi 41/G identified as: Wi95A,Wi95B,Wi95C and Wi95D; and one NPL/GEC lamps (now called NPL/Polaron Heavy Current LIS incandescent lamps) identified as: A-454. Polaron-type lamp identified as A-456 failed during the measurement at pilot laboratory.

Items related to measurement specifications, calibration method and procedure, experimental set-up and uncertainty budget are not included as they are the same as those described in the report corresponding to initial measurements.

### 2.- Lamp electrical values

I

| Lar | np | Current<br>Intensity/A | Lamp voltage/V |  |
|-----|----|------------------------|----------------|--|
| A-  |    | 25.501                 | 12,27          |  |
| i   | а  | 5.836                  | 30,93          |  |
| i   | b  | 5.837                  | 31,13          |  |
| i   | С  | 5.832                  | 30,86          |  |
| i   | d  | 5.836                  | 30,64          |  |

Shown values of current and voltage are effective values of electrical supply used in our laboratory, during the second round. They are mean values of the three sets of measurements made. The lamp current is measured as voltage across a shunt resistance.

### Laboratory conditions

For the second round the measurements were performed during July 2015. Laboratory temperature was always between 24 °C to 25 °C. Humidity was in the range 30%-40%.

### Record of lamp operating time

#### Lamp number: i A

| Date       | Lamp<br>ON<br>time | Activity | Lamp<br>OFF<br>time | Burn<br>time<br>(hrs) | Lamp<br>Current<br>(amperes) | Lamp<br>Voltage<br>(volts) | Operator<br>initials |
|------------|--------------------|----------|---------------------|-----------------------|------------------------------|----------------------------|----------------------|
| 13/07/2015 | 09 h 44            | Measure  | 10 h                | 0,58                  | 5,836                        | 30,97                      | A.P.                 |
|            | min                |          | 19 min              |                       |                              |                            |                      |
| 17/07/2015 | 9h 50              | Measure  | 10 h                | 0,67                  | 5,836                        | 30,95                      | A.P.                 |
|            | min                |          | 30 min              |                       |                              |                            |                      |
| 17/07/2015 | 14 h 05            | Measure  | 14 h                | 0,58                  | 5,836                        | 30,87                      | A.P.                 |
|            | min                |          | 40 min              |                       |                              |                            |                      |

| Date       | Lamp<br>ON<br>time | Activity | Lamp<br>OFF<br>time | Burn<br>time<br>(hrs) | Lamp<br>Current<br>(amperes) | Lamp<br>Voltage<br>(volts) | Operator<br>initials |
|------------|--------------------|----------|---------------------|-----------------------|------------------------------|----------------------------|----------------------|
| 13/07/2015 | 13 h 52<br>min     | Measure  | 14 h<br>33 min      | 0,68                  | 5,837                        | 31,13                      | A.P.                 |
| 15/07/2015 | 10 h 05<br>min     | Measure  | 10h 40<br>min       | 0,58                  | 5,836                        | 31,12                      | A.P.                 |
| 15/07/2015 | 13 h 36<br>m       | Measure  | 14 h<br>15 min      | 0,68                  | 5,837                        | 31,13                      | A.P.                 |

# Lamp number: i B

# Lamp number: i C

| Date       | Lamp<br>ON<br>time | Activity | Lamp<br>OFF<br>time | Burn<br>time<br>(hrs) | Lamp<br>Current<br>(amperes) | Lamp<br>Voltage<br>(volts) | Operator<br>initials |
|------------|--------------------|----------|---------------------|-----------------------|------------------------------|----------------------------|----------------------|
| 14/07/2015 | 13 h 40            | Measure  | 14 h                | 0,68                  | 5,832                        | 30,86                      | A.P.                 |
|            | min                |          | 20 min              |                       |                              |                            |                      |
| 16/07/2015 | 10 h 24            | Measure  | 11 h                | 0,60                  | 5,832                        | 30,84                      | A.P.                 |
|            | min                |          | 00 min              |                       |                              |                            |                      |
| 16/07/2015 | 13 h 37            | Measure  | 14 h                | 0,63                  | 5,832                        | 30,88                      | A.P.                 |
|            | min                |          | 15 min              |                       |                              |                            |                      |

# Lamp number: i D

| Date       | Lamp<br>ON<br>time | Activity | Lamp<br>OFF<br>time | Burn<br>time<br>(hrs) | Lamp<br>Current<br>(amperes) | Lamp<br>Voltage<br>(volts) | Operator<br>initials |
|------------|--------------------|----------|---------------------|-----------------------|------------------------------|----------------------------|----------------------|
| 13/07/2015 | 11 h 50<br>min     | Measure  | 12h 32<br>min       | 0,70                  | 5,836                        | 30,66                      | A.P.                 |
| 15/07/2015 | 12 h 00<br>min     | Measure  | 12h 42<br>min       | 0,70                  | 5,836                        | 30,62                      | A.P.                 |
| 17/07/2015 | 11 h 58<br>min     | Measure  | 12 h<br>30 min      | 0,53                  | 5,836                        | 30,62                      | A.P.                 |

### Lamp number: A

| Date       | Lamp<br>ON<br>time | Activity | Lamp<br>OFF<br>time | Burn<br>time<br>(hrs) | Lamp<br>Current<br>(amperes) | Lamp<br>Voltage<br>(volts) | Operator<br>initials |
|------------|--------------------|----------|---------------------|-----------------------|------------------------------|----------------------------|----------------------|
| 20/07/2015 | 12 h 35<br>min     | Measure  | 13 h<br>15 min      | 0,67                  | 25,499                       | 12,27                      | A.P.                 |
| 21/07/2015 | 9 h 58<br>min      | Measure  | 10h 35<br>min       | 0,62                  | 25,503                       | 12,26                      | A.P.                 |
| 21/07/2015 | 12 h<br>44min      | Measure  | 13 h<br>16 min      | 0,53                  | 25,500                       | 12,27                      | A.P.                 |

### 4.- Measurement Results

Lamp Number: i A

#### Measurement Round 2:

| Measurement<br>Set Number | Number of<br>measurement<br>per set | Date/time  | Lamp<br>current | Lamp<br>voltage | Luminous<br>Intensity | in Lu      | d Uncertainy<br>uminous<br>nsity (%) |
|---------------------------|-------------------------------------|------------|-----------------|-----------------|-----------------------|------------|--------------------------------------|
|                           |                                     |            |                 |                 |                       | Rando<br>m | Systematic                           |
| 1                         | 10                                  | 13/07/2015 | 5,836           | 30,97           | 278,5                 | 0,01       | 0,31                                 |
| 2                         | 10                                  | 17/07/2015 | 5,836           | 30,95           | 277,9                 | 0,01       | 0,31                                 |
| 3                         | 10                                  | 17/07/2015 | 5,836           | 30,87           | 277,9                 | 0,03       | 0,31                                 |

### Lamp Number: i B

## Measurement Round 2:

| Measurement<br>Set Number | Number of<br>measurement<br>per set | Date/time  | Lamp<br>current | Lamp<br>voltage | Luminous<br>Intensity | in Lu  | Uncertainy<br>minous<br>sity (%) |
|---------------------------|-------------------------------------|------------|-----------------|-----------------|-----------------------|--------|----------------------------------|
|                           |                                     |            |                 |                 |                       | Random | Systematic                       |
| 1                         | 10                                  | 13/07/2015 | 5,837           | 31,13           | 284,5                 | 0,02   | 0,31                             |
| 2                         | 10                                  | 15/07/2015 | 5,836           | 31,12           | 284,3                 | 0,01   | 0,31                             |
| 3                         | 10                                  | 15/07/2015 | 5,837           | 31,13           | 284,3                 | 0,01   | 0,31                             |

# Lamp Number: i C

# Measurement Round 2:

| Measurement<br>Set Number | Number of<br>measurement<br>per set | Date/time  | Lamp<br>current | Lamp<br>voltage | Luminous<br>Intensity | in Lu  | l Uncertainy<br>iminous<br>isity (%) |
|---------------------------|-------------------------------------|------------|-----------------|-----------------|-----------------------|--------|--------------------------------------|
|                           |                                     |            |                 |                 |                       | Random | Systematic                           |
| 1                         | 10                                  | 14/07/2015 | 5,832           | 30,86           | 286,4                 | 0,01   | 0,31                                 |
| 2                         | 10                                  | 16/07/2015 | 5,832           | 30,84           | 286,2                 | 0,01   | 0,31                                 |
| 3                         | 10                                  | 16/07/2015 | 5,832           | 30,88           | 285,7                 | 0,03   | 0,31                                 |

# Lamp Number: i D

# Measurement Round 2:

| Measurement<br>Set Number | Number of<br>measurement<br>per set | Date/time  | Lamp<br>current | Lamp<br>voltage | Luminous<br>Intensity | Standard Uncertainy<br>in Luminous<br>Intensity (%) |            |
|---------------------------|-------------------------------------|------------|-----------------|-----------------|-----------------------|-----------------------------------------------------|------------|
|                           |                                     |            |                 |                 |                       | Random                                              | Systematic |
| 1                         | 10                                  | 13/07/2015 | 5,836           | 30,66           | 270,9                 | 0,006                                               | 0,31       |
| 2                         | 10                                  | 15/07/2015 | 5,836           | 30,62           | 270,4                 | 0,006                                               | 0,31       |
| 3                         | 10                                  | 17/07/2015 | 5,836           | 30,62           | 270,9                 | 0,01                                                | 0,31       |

# Lamp Number: A

### Measurement Round 2:

| Measurement<br>Set Number | Number of<br>measurement<br>per set | Date/time  | Lamp<br>current | Lamp<br>voltage | Luminous<br>Intensity | in Lu  | l Uncertainy<br>minous<br>sity (%) |
|---------------------------|-------------------------------------|------------|-----------------|-----------------|-----------------------|--------|------------------------------------|
|                           |                                     |            |                 |                 |                       | Random | Systematic                         |
| 1                         | 10                                  | 20/07/2015 | 25,499          | 12,27           | 436,2                 | 0,02   | 0,31                               |
| 2                         | 10                                  | 21/07/2015 | 25,503          | 12,26           | 435,9                 | 0,02   | 0,31                               |
| 3                         | 10                                  | 21/07/2015 | 25,500          | 12,27           | 436,3                 | 0,03   | 0,31                               |

#### 2016-September-09

Dear Arnold,

Thank you for your work.

I have been analyzing the relative data of IO-CSIC and I have noticed some problems with data of Round #2 of our lamp identified as A-454.

After a detailed revision of the measurements and the calculus, I have noticed that there was an error in the data sent to you corresponding to round #2 of A-454 lamp. The problem was that in the measurements of this lamp we used a different standard resistor with a different value. At the time we calculate the luminous intensity I made a mistake.

Enclosed please find the corrected values (marked in red) for this lamp.

#### Lamp Number: A454

#### Measurement Round #2: (revised 2016-September-09)

| Measurement<br>Set Number | Number of<br>measurement<br>per set | Date/time  | Lamp<br>current | Lamp<br>voltage | Luminous<br>Intensity |        | Uncertainy<br>ous Intensity |
|---------------------------|-------------------------------------|------------|-----------------|-----------------|-----------------------|--------|-----------------------------|
|                           |                                     |            |                 |                 |                       | Random | Systematic                  |
| 1                         | 10                                  | 20/07/2015 | 25,499          | 12,27           | 434,8                 | 0,02   | 0,31                        |
| 2                         | 10                                  | 21/07/2015 | 25,503          | 12,26           | 434,4                 | 0,02   | 0,31                        |
| 3                         | 10                                  | 21/07/2015 | 25,500          | 12,27           | 434,8                 | 0,03   | 0,31                        |

# CCPR Key Comparison CCPR-K3.2014

# Luminous Intensity

**Final Report** 

Appendix A

# **LNE-CNAM Report**

# LNE-CNAM — Appendix A3

#### **Description of measuring technique (please include a diagram):**

The measurements are carried out on a photometric bench the length of which is 4 meters. Four square baffles, with external side of 400 mm and internal circular hole of 150 mm are placed between the light source and the photometer to reduce straight light. A fifth one, with a hole of 50 mm is put just after the lamp. The photometer is aligned orthogonal to the axis of the bench with a 6 degrees of freedom holder. The lampholder is set on a mechanical holder with 6 degrees of freedom too. Two sighting glasses are used for positioning the lamp on the photometric bench. One is aligned on the optical axis of the bench and is used to adjust the centre of the filament of the lamp on the bench axis. The second is perpendicular to the optical axis of the bench and shows the origin for the distance measurement. The distance for the measurement was 2.72890(10) m (round1) and 2.73180(10) m (round2). It is read on a calibrated ruler with a resolution of 0.02 mm. The DC current in the lamps is adjusted and controlled thanks to a standard resistor and a high precision voltmeter. It is provided by a power supply with a relative stability on one hour better than  $10^{-5}$ .

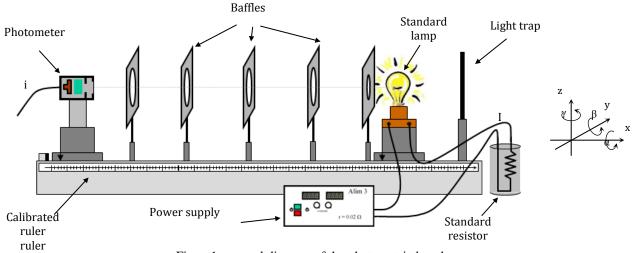



Figure1: general diagram of the photometric bench

The luminous intensity is derived from the illuminance measured by a set of three primary spectrophotometers of the laboratory according to the following procedure.

### Measurement procedure.

After alignment, the lamp is switched on with a slow current ramp. We respect a warmed up of 15 mn. For each photometer, the following measurement sequence is performed:

$$\langle S_1 \rangle \langle B_1 \rangle \langle S_2 \rangle \langle B_2 \rangle \langle S_3 \rangle$$

Were  $\langle S_i \rangle$  is the photocurrent when looking at the lamp (30 readings).  $\langle B_i \rangle$  is the photocurrent when the lamp is hidden (30 readings).

The symmetry of the sequence allows compensating a drift of the lamp radiation. The measurement results are

$$y_{ph} = \frac{(S_1 + S_2 + S_3)}{3}; y_0 = \frac{(B_1 + B_2)}{3}$$

The sequence is repeated for the 3 photometers.

For each photometer, the luminous intensity of the lamp is calculated according to the measurement model described below. The result of the measurement is the average on the 3 photometers. Each lamp has been measured 2 times on each round.

### Measurement model:

The measurement model is given by:

$$I_{ph}(T) = \frac{y_{ph} \cdot d^2}{S_{ph}(T)} \cdot cor$$
$$cor = \left(1 + \frac{2}{d}(d_L - d_{ph}) + \varepsilon_{ph} + \varepsilon_L - \frac{y_0}{y_{ph}} - 6.22 \cdot \Delta J - \gamma \cdot \Delta t\right)$$

Were  $I_{ph}(T)$ , luminous intensity when the lamp is operated perfectly

- , colour temperature of the lamp
- *d*, distance between the lamp filament and the photometer limiting aperture.
- $S_{ph}(T)$ , absolute sensitivity of the photometer at the colour temperature T.
- $d_L$  , misplacement of the lamp.
- $d_{\rm ph}$  , misplacement of the photometer.
- $y_{ph}$  , photocurrent corrected for straylight and offset  $y_0$
- *cor*, correction factor with about unity value.
- $\varepsilon_{ph}$ , misorientation of the photometer
- $\varepsilon_L$ , misorientation of the lamp
- $\Delta J$  , relative difference in the lamp current setting.
- $\gamma$  , ageing coefficient of the lamp.
- $\Delta t$  , burning time

# **Measurement uncertainty**

The lamps run at a colour temperature of  $(2800 \pm 15)$  K. The sensitivity of the photometers is calculated at 2800K. The slope of the spectral mismatch factor according to the CCT is low. The uncertainty component associated to the colour temperature is neglected

The other contributions to the combined uncertainty are summarised in Appendix A5.

Uncertainties on the photometer sensitivity and repeatability of the lamps are the main parts of the combined uncertainty.

# **Description of the primary photometers**

The photometers are made with four mains parts, the trap detector, the filter holder, the filter and the aperture. The trap detector is made with three identical silicon photodiodes of 18x18mm, provided by Hamamatsu. They are oriented in order to trap the light after 5 internal reflexions and to minimize the polarization effects.

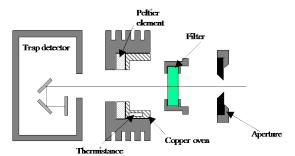



Figure 2 : General design of the photometers

The V( $\lambda$ ) filters are elaborated in the institute using different Schott glasses (GG10, BG39, FG13, VG4). We have 2 types of filters, made with 3 or 4 layers. As the transmittance of a filter is strongly dependent on its temperature, we designed a dedicated holder. The filter is fixed inside a copper oven and the temperature of the oven is regulated at 23°C with a Peltier element and an external controller. The temperature stability in the oven is better than 0.1 °C. A precision aperture defines the illumination area. We have three diameters of aperture (10mm, 8mm and 6mm).

The table below details the different elements associated in the photometers.

| Photometer ref | Filter   | Aperture            | Solid Angle |
|----------------|----------|---------------------|-------------|
| PH04A          | 4 layers | $\varnothing$ 10 mm | 10.5 µsr    |
| PH04B          | 4 layers | $\varnothing$ 8 mm  | 6.7 µsr     |
| PH04C          | 3 layers | $\varnothing$ 10 mm | 10.5 µsr    |

The absolute sensibility of the trap radiometer is calibrated according to our cryogenic radiometer at 3 laser wavelengths (514.53 nm, 543.36 nm, 611.80 nm). The calibration is extended between 380 and 780 nm on our relative spectral sensitivity measurement facility.

The  $V(\lambda)$  is calibrated on the visible domain using our primary transmittance measurement facility. The area of the diaphragms have been calibrated on our dedicated facility.

The presentation of theses facilities and the intermediate uncertainty budget for all these calibration steps can be found in the 2 following publications

- OBEIN, G., GONZALEZ-GALVAN, L., BASTIE, J., 2007, Nouvelle réalisation de la candela au LNE-INM/CNAM, *revue française de métrologie*, **12**, p19-28.
- OBEIN, G., GONZALEZ-GALVAN, L., BASTIE, J., 2007, A new realization of the candela at the Lne-Inm/Cnam, *Proceedings of the 26<sup>th</sup> session of the CIE*, Vol. 1, part. 1, pp192-195.

# **Description of calibration laboratory conditions:**

The measurements are performed at a temperature of 23  $\,\pm\,1^\circ C$  and a relative humidity of 50  $\pm\,10\%$  .

# Lamps and transport issues

For this comparison, a set of 6 working luminous intensity standard lamps has been used. 3 were of type Polaron LIS (ref A430, A431, A434), 3 were of type Osram WI41/G (ref #926, #927, #936).

The 6 lamps have been sent by private transporter at NRC after the first round. The box arrived at NRC in good shape, but unfortunately, 2 polaron lamps (ref A431, A434) were broken inside. The lamps were in a wood box specially designed to protect them. They were in the institute since more than 20 years, and had already travelled many times for CCPR or EURAMET key comparisons. The shock during the transport must has been of high violence to brake the boxes and the lamps.

After discussion with the pilot lab, we took the decision to maintain the comparison on a restricted set of the 4 remaining lamps (A430, #926, #927, #936).

Unfortunately, after round2 measurements, it appears that lamp #927 shows a drift of 0.88% between Round1 and Round2. This comportment is abnormal for such a lamp. We believe that this evolution might be due to the shock during the transport. We proposed to the pilot lab to remove that lamp also.

### **Operating conditions of the lamps**

| Lamp | Current | Voltage | CCT  |
|------|---------|---------|------|
|      | [A]     | [V]     | [K]  |
| 926  | 5,690   | 29,01   | 2796 |
| 927  | 5,690   | 28,97   | 2795 |
| 936  | 5,690   | 29,15   | 2799 |
| A430 | 25,000  | 11,95   | 2815 |

All the lamps are aligned at room temperature.

— Wi41/G lamps are aligned as in case #2 (w/2, h/2) described in the protocol section 4.4.8

- LIS Polaron lamps are aligned with retro-reflection of a laser on the front of the bulb.

The negative pole of the power supply is connected to the central electrical foot contact of the cap

| Measurement Parameter                          | Uncertainty<br>Type<br>(A or B) | Standard Uncertainty<br>in luminous intensity<br>(%) |
|------------------------------------------------|---------------------------------|------------------------------------------------------|
| Systematic effects:                            |                                 |                                                      |
| Electrical                                     |                                 |                                                      |
| - standard resistor                            | В                               | 0.02                                                 |
| - voltmeter                                    | В                               | <0.001                                               |
| Photometer                                     |                                 |                                                      |
| - absolute spectral responsivity trap detector | В                               | 0.073                                                |
| - linearity                                    | В                               | 0.033                                                |
| - filter transmission                          | В                               | 0.13                                                 |
| - aperture surface                             | В                               | 0.012                                                |
| - spectral Mismatch Factor                     | В                               | 0.14                                                 |
| - current voltage amplifier                    | В                               | 0.033                                                |
| - distance                                     | В                               | 0.004                                                |
| - inter-reflection                             |                                 | 0.05                                                 |
| Environment                                    |                                 |                                                      |
| - stray light                                  | В                               | <0.001                                               |
| - temperature / humidity                       | В                               | <0.001                                               |
| RMS total systematic effects:                  |                                 | 0.22                                                 |
| Random effects:                                |                                 |                                                      |
| Lamp parameters:                               |                                 |                                                      |
| - lamp ageing                                  | A                               | 0.04                                                 |
| - lamp alignment                               | А                               | 0.21                                                 |
| - lamp reproducibility                         | А                               | 0.10 (typical)                                       |
| Electrical parameters:                         |                                 |                                                      |
| - power supply fluctuations                    | А                               | 0.01                                                 |
| Photometer noise                               | A                               | <0.001                                               |
| RMS total random effects:                      |                                 | 0.21                                                 |
|                                                |                                 |                                                      |
| RMS total standard uncertainty:                |                                 | 0.32                                                 |

# LNE-CNAM — Appendix A.5 Sample Measurement Uncertainty Budget

The RMS total refers to the usual square root of the sum of the squares of all the individual uncertainty terms.

Participant: LNE-CNAM NMI: France Date: 27/11/2015 Signature: .....

#### LNE-CNAM – Appendix A.6 Measurement Results

#### Lamp Number:

Measurement Round #1:

|             | Number of    |           | Lamp    | Lamp    | Luminous  | Standard Une | •           |
|-------------|--------------|-----------|---------|---------|-----------|--------------|-------------|
| Lamp number | measurements | Date/time | current | voltage | Intensity | Luminous In  | tensity (%) |
|             | per set      |           | [A]     | [V]     | [cd]      | Random       | Systematic  |
| 926         | 2            | 23/03/14  | 5,69    | 29,01   | 234,4     | 0,22%        | 0,22%       |
| 927         | 2            | 23/03/14  | 5,69    | 28,97   | 238,3     | 0,22%        | 0,22%       |
| 936         | 2            | 23/03/14  | 5,69    | 29,15   | 241,8     | 0,23%        | 0,22%       |
| A430        | 2            | 23/03/14  | 25      | 11,95   | 397,3     | 0,22%        | 0,22%       |

#### Measurement Round #2:

|             | Number of    |           | Lamp    | Lamp    | Luminous  | Standard Une | certainty in |
|-------------|--------------|-----------|---------|---------|-----------|--------------|--------------|
| Lamp number | measurements | Date/time | current | voltage | Intensity | Luminous In  | tensity (%)  |
|             | per set      |           | [A]     | [V]     | [cd]      | Random       | Systematic   |
| 926         | 2            | 21/08/15  | 5,69    | 28,97   | 233,8     | 0, 24%       | 0,22%        |
| 927         | 2            | 21/08/15  | 5,69    | 28,94   | 236,2     | 0,24%        | 0,22%        |
| 936         | 2            | 21/08/15  | 5,69    | 29,10   | 241,2     | 0,29%        | 0,22%        |
| A430        | 2            | 21/08/15  | 25      | 11,96   | 397,4     | 0,24%        | 0,22%        |

The random/systematic labels in this table are those related to the measurements within the particular round of the measurements. If the systematic factors change between the measurement rounds, this information should be indicated separately.

Participant: .LNE-CNAM...... NMI: France...... Date: 27/11/2015

Signature: .....

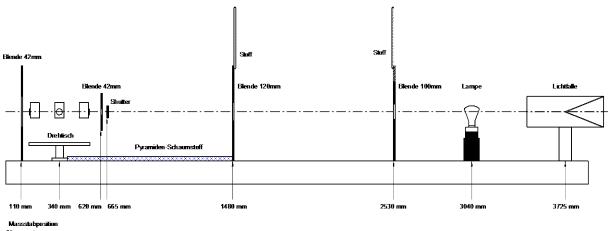
# CCPR Key Comparison CCPR-K3.2014

## Luminous Intensity

**Final Report** 

Appendix A

## **METAS Report**


#### METAS data:

Appendix A.3 Description of the measurement facility

The items listed on this form should be used as a guide. It is anticipated that many of the questions will require more information than the space allocated on this page. Please expand your reply document as necessary.

Description of measurement geometry (please include a diagram):

- positions of lamp, detector, bench, shielding, baffles (number, distances and sizes)



```
fig. 1
```

- alignment devices Laser beam, telescopes
- solid angle of luminous intensity measurements:  $1.0^{\circ}$
- distance of photometer from lamp 2500 mm
- size of photometer input aperture 8 mm (no diffusor)
- limiting aperture?

The photometers have a sharp limiting aperture defining the reference plane

Description of measurement procedures

20 consecutive measurements of 1 s per detector 3 reference detectors

Make and type of the photometer (or equivalent).

METAS built reflective trap detector based on 3 large sized hamamatsu Si photodiode (S6337). Each photometer has a precis aperture and a  $V(\lambda)$ -matching filter. The  $f_1$  of the photometer being approximately 1.8. The filters are temperature stabilized

Operating conditions of the lamps: base down - geometrical alignment

The optical axis is horizontal and passes through the center of the filament.

- definitions of defined point and reference plane at the lamp plane of the lamp filament

- for Osram lamps with center filament supports, which center filament support type is used for the alignment (see Figure Two and Section 4.4.8.) CenterFilament Support #1

- alignment procedure

With the telescope in front of the lamp Rotation about the X-axis: the horizontal sections on each side of the filament are aligned along the Y-axis (horizontal).

The spatial position of the lamp is adjusted in the Y direction until the vertical crosshair of the telescope is equidistant from the two filament wires at the center of the filament.

The spatial position of the lamp is adjusted in the Z direction until the horizontal crosshair of the telescope passes through the defined point of the filament plane.

With the telescope in side of the lamp

Rotation about the Y-axis is adjusted until the image of the filament in the telescope is parallel to the vertical crosshair. Only the top half of the filament is visible for this alignment.

Rotation about the Z-axis is adjusted until the width (in the Y direction) of the image of the filament in the telescope is minimized. In the case of the filament with the center support, only the top half of the filament will be visible for this alignment.

The distance along the X-axis is measured to the center along the X-axis of the image of the lamp filament in the telescope.

- is the filament at room temperature or glowing for the alignment? room temperature
- alignment jig? If so, how is it used? No
- size and position of limiting aperture as explained above

- electrical polarity, current, voltage for each traveling standard Positive potential on the base contact, negative potential on the thread, constant DC current

| Lamp No. | Current / A | Voltage / V    | CCT / K   |
|----------|-------------|----------------|-----------|
| 506      | 5.76000     | 30.557 ± 0.006 | 2856 ± 30 |
| 684      | 5.68000     | 30.685 ± 0.006 | 2856 ± 30 |
| 841      | 5.86000     | 30.341 ± 0.006 | 2856 ± 30 |
| 1060     | 5.85000     | 30.327 ± 0.006 | 2856 ± 30 |
| 1063     | 5.90000     | 30.558 ± 0.006 | 2856 ± 30 |
| 1064     | 5.90000     | 30.682 ± 0.006 | 2856 ± 30 |

- length of warm-up time for each lamp before measurements are taken > 15 min.
- measured CCT (or Distribution Temperature or Colour Temperature, see Section 3.5). See table

- stray-light reduction

three apertures are placed in the path between the lamp and the photometers (see also figure above): at around 100 mm from the photometer a round aperture of 42mm diameter, at 960 mm a round aperture of around 120mm and at 2000mm a round aperture of 100 mm. In addition a light trap is placed at around 725 mm after the lamp.

Description of calibration laboratory conditions: e.g. temperature, humidity etc.  $T = (25.0 \pm 1.0)$  °C and  $H = (40 \pm 10)$  %

Laboratory transfer standards used:

- type of transfer standards and traceability to primary scale the photometers are described in detail above. They are directly traceable to the METAS reference radiometers (METAS built reflective trap detector based on 3 large sized hamamatsu Si photodiode (S6337)). These radiometers are directly traceable to the METAS primary realization of optical radiation (cryo-radiometer)

Establishment or traceability route of primary scale including date of last realisation and uncertainty budget.

| Participant: | Peter Blattner   |
|--------------|------------------|
| NMI:         |                  |
| Date:        | 1.12.2014        |
| Signature:   | sig. P. Blattner |

#### Appendix A.5 Sample Measurement Uncertainty Budget

Notation is based on CIE 198

$$I_{CS1} = \frac{d_{PS}^{2} (y_{PS1} - y_{PS10})}{s_{CP1}} \left( \frac{c_{P}}{G_{PS1}} \right) \left( \frac{T_{dC1}}{T_{A}} \right)^{m_{P1}} \left( \frac{c_{J} \cdot U_{JS1}}{J_{C1} \cdot R_{J}} \right)^{m_{P1}m_{TS1} - m_{IS1}} \cdot \frac{\left( 1 + 2\Delta d_{P}/d_{PS} + a_{P}\Delta T_{P} + g_{P}(\varepsilon_{P}) \right)}{\left( 1 + 2\Delta d_{S1}/d_{PS} + a_{S1}\Delta T_{S1} + k_{S1}(\varphi_{S1}) + h_{S1}(\varphi_{S1}) \right)}$$

| No  | Quantity                                                  | Symbol                                  | Value        | Abs. stand.<br>uncertainty | Туре | DOF     | Absolute<br>sensitivity | Absolute contribution | Relative contributio |
|-----|-----------------------------------------------------------|-----------------------------------------|--------------|----------------------------|------|---------|-------------------------|-----------------------|----------------------|
| 1   | distance photometer lamp / (m)                            | $d_{_{ m PS}}$                          | 2.5          | 0.000058                   | В    | ø       | 221.1775                | 0.0128                | 0.005%               |
| 2*  | mean val photo. signal / (V)                              | y <sub>pS1</sub>                        | 0.73384      | 0.00013                    | А    | 9       | 376.7446                | 0.0479                | 0.017%               |
| 3*  | mean val photo. dark signal / (V)                         | $y_{PS10}$                              | -0.000438    | 0.000018                   | А    | 9       | -376.7446               | -0.0068               | 0.002%               |
| 4   | luminous respons photometer /<br>(nA/ lx)                 | S <sub>CP1</sub>                        | 16.580       | 0.051                      | В    | œ       | 16.6746                 | 0.8579                | 0.310%               |
| 5   | DVM calibration factor                                    | $c_{\mathrm{P}}$                        | 1            | 1.45E-05                   | В    | œ       | 276.4719                | 0.0040                | 0.001%               |
| 6   | gain setting resistance,<br>photometer picoammeter / Kohm | $G_{ m PS1}$                            | 1001.36      | 0.02                       | В    | ×       | -0.2761                 | -0.0044               | 0.002%               |
| 7*  |                                                           | $T_{\rm dC1}$                           | 2855.7       | 11.5                       | В    | ×       | -0.0007                 | -0.0086               | 0.003%               |
| 8   | nominal distribution temperature,<br>"illuminant A" / K   | T <sub>A</sub>                          | 2856         | 0                          | В    | ×       | 0                       | 0                     | 0.000%               |
| 9   | spect. mismatch factor for photometer                     | m <sub>P1</sub>                         | 0.0077       | 0.0003                     | В    | x       | -1.09E-02               | 0.0000                | 0.000%               |
| 10  | factor of the DVM used for the lamp supply                | C <sub>J</sub>                          | 1            | 0.0000025                  | В    | x       | -1'685.63               | -0.0042               | 0.002%               |
| 11* | DVM signal of lamp supply / V                             | U <sub>JS1</sub>                        | 0.576091068  | 0.0000015                  | А    | 21      | -2'925.98               | -0.0044               | 0.002%               |
| 12  | nominal current for the lamp / A                          | J <sub>C1</sub>                         | 5.76         | 0                          | В    | ×       | 0                       | 0                     | 0.000%               |
| 13  | shunt resistant used for the lamp<br>supply / Ohm         | R <sub>J</sub>                          | 1.000161E-01 | 5.00E-06                   | В    | ×       | 16853.5699              | 0.0843                | 0.030%               |
| 14  |                                                           | m <sub>TS1</sub>                        | 0.4          | 0.2                        | В    | ×       | -2.67E-06               | 0.0000                | 0.000%               |
| 15  | exponent for current sensitivity of intensity             | m <sub>IS1</sub>                        | 6.1          | 2                          | В    | ×       | 3.48E-04                | 0.0007                | 0.000%               |
| 16* | distance alignment of photometer<br>head                  | $\Delta d_{\mathrm{P}}/d_{\mathrm{PS}}$ | 0            | 0.000046                   | В    | ×       | 552.9438                | 0.0254                | 0.009%               |
| 17  | relative temperature coefficient of photometer / K-1      | $\alpha_{P}$                            | 0.0002       | 0.0001                     | В    | x       | 276.4719                | 0.0276                | 0.010%               |
| 18  | deviation to nominal ambient<br>temperature DUT/ K        | $\Delta T_{\rm P}$                      | 1            | 0.28                       | В    | x       | 0.0553                  | 0.0155                | 0.006%               |
| 19* | angular misalignment of DUT<br>photometer head            | $g_p(\varepsilon_p)$                    | 0            | 0.00007                    | В    | x       | 276.4719                | 0.0194                | 0.007%               |
| 20* | distance alignment of lamp<br>filament                    | $\Delta d_{ m S1}/d_{ m PS}$            | 0            | 0.00023094                 | В    | ø       | -552.9438               | -0.1277               | 0.046%               |
| 21  | relative temperature coefficient of<br>lamp / K-1         | $\alpha_{_{S1}}$                        | 0.0002       | 0.0001                     | В    | ø       | 0.0000                  | 0.0000                | 0.000%               |
| 22  | deviation to nominal ambient<br>temperature ref/ K        | $\Delta T_{S1}$                         | 0            | 0.28                       | В    | ø       | -0.0553                 | -0.0155               | 0.006%               |
| 23* | angular misalignment of ref                               | $k_{s1}(\varphi_{s1})$                  | 0            | 0.000054                   | В    | ø       | -276.4719               | -0.0149               | 0.005%               |
| 24* | angular misalignment of ref<br>photometer head            | $h_{S1}(\mathcal{G}_{S1})$              | 0            | 0.0002                     | В    | œ       | -276.4719               | -0.0553               | 0.020%               |
|     | luminous intensity lamp / (cd)                            | s <sub>CP1</sub>                        | 276.47       |                            | DOF  | 1.0E+06 |                         | 0.8761                | 0.317%               |

Peter Blattner, METAS, 2015-11-07

#### Appendix A.6 Measurement Results

METAS

Peter Blattner

07.11.2015

| Lamp Number | 506       |
|-------------|-----------|
| CCT         | 2855.74 K |

| Measurement Round #1:  |                                   |            |       |                        |                        |                               |        |                               |
|------------------------|-----------------------------------|------------|-------|------------------------|------------------------|-------------------------------|--------|-------------------------------|
| Measurement Set Number | Number of<br>measurements per set | Date       | Time  | Lamp<br>current /<br>A | Lamp<br>voltage /<br>V | Luminous<br>Intensity /<br>cd |        | ncertainty in<br>ntensity (%) |
|                        |                                   |            |       |                        |                        |                               | Random | Systematic                    |
| 732                    | 10                                | 12.02.2014 | 14:28 | 5.76                   | 30.558                 | 276.357                       | 0.054  | 0.312                         |
| 738                    | 10                                | 17.02.2014 | 14:46 | 5.76                   | 30.559                 | 276.104                       | 0.053  | 0.312                         |

| Measurement Round #2:  |                                   |            |       |                        |                        |                               |        |                               |
|------------------------|-----------------------------------|------------|-------|------------------------|------------------------|-------------------------------|--------|-------------------------------|
| Measurement Set Number | Number of<br>measurements per set | Date       | Time  | Lamp<br>current /<br>A | Lamp<br>voltage /<br>V | Luminous<br>Intensity /<br>cd |        | ncertainty in<br>ntensity (%) |
|                        |                                   |            |       |                        |                        |                               | Random | Systematic                    |
| 783                    | 10                                | 30.04.2014 | 13:12 | 5.76                   | 30.558                 | 276.241                       | 0.054  | 0.312                         |
| 783b                   | 10                                | 30.04.2014 | 16:15 | 5.76                   | 30.557                 | 276.148                       | 0.052  | 0.312                         |

| Lamp Number | 684       |
|-------------|-----------|
| ССТ         | 2854.35 K |

| Measurement Round #1:  |                                   |            |       |                        |                        |                               |        |                               |
|------------------------|-----------------------------------|------------|-------|------------------------|------------------------|-------------------------------|--------|-------------------------------|
| Measurement Set Number | Number of<br>measurements per set | Date       | Time  | Lamp<br>current /<br>A | Lamp<br>voltage /<br>V | Luminous<br>Intensity /<br>cd |        | ncertainty in<br>ntensity (%) |
|                        |                                   |            |       |                        |                        |                               | Random | Systematic                    |
| 733                    | 10                                | 13.02.2014 | 12:36 | 5.68                   | 30.687                 | 278.005                       | 0.074  | 0.312                         |
| 737                    | 10                                | 14.02.2014 | 15:55 | 5.68                   | 30.688                 | 277.937                       | 0.064  | 0.312                         |

| Measurement Round #2:  |                                   |            |       |                        |                        |                               |        |                               |
|------------------------|-----------------------------------|------------|-------|------------------------|------------------------|-------------------------------|--------|-------------------------------|
| Measurement Set Number | Number of<br>measurements per set | Date       | Time  | Lamp<br>current /<br>A | Lamp<br>voltage /<br>V | Luminous<br>Intensity /<br>cd |        | ncertainty in<br>ntensity (%) |
|                        |                                   |            |       |                        |                        |                               | Random | Systematic                    |
| 784a                   | 10                                | 04.05.2015 | 13:57 | 5.68                   | 30.685                 | 277.785                       | 0.053  | 0.312                         |
| 784b                   | 10                                | 04.05.2015 | 17:50 | 5.68                   | 30.686                 | 277.989                       | 0.056  | 0.312                         |

| Lamp Number | 841       |
|-------------|-----------|
| ССТ         | 2858.30 K |

| Measurement Round #1:  |                                   |            |       |                        |                        |                               |             |                               |
|------------------------|-----------------------------------|------------|-------|------------------------|------------------------|-------------------------------|-------------|-------------------------------|
| Measurement Set Number | Number of<br>measurements per set | Date       | Time  | Lamp<br>current /<br>A | Lamp<br>voltage /<br>V | Luminous<br>Intensity /<br>cd | Luminous li | ncertainty in<br>ntensity (%) |
|                        |                                   |            |       |                        |                        |                               | Random      | Systematic                    |
| 734                    | 10                                | 13.02.2014 | 14:46 | 5.86                   | 30.341                 | 280.804                       | 0.053       | 0.312                         |
| 736                    | 10                                | 14.02.2014 | 13:58 | 5.86                   | 30.341                 | 280.953                       | 0.055       | 0.312                         |

| Measurement Round #2:  |                                   |            |       |                        |                        |                               |        |                            |
|------------------------|-----------------------------------|------------|-------|------------------------|------------------------|-------------------------------|--------|----------------------------|
| Measurement Set Number | Number of<br>measurements per set | Date       | Time  | Lamp<br>current /<br>A | Lamp<br>voltage /<br>V | Luminous<br>Intensity /<br>cd |        | ncertainty in ntensity (%) |
|                        |                                   |            |       |                        | •                      | °u                            | Random | Systematic                 |
| 785a                   | 10                                | 05.05.2015 | 11:50 | 5.86                   | 30.335                 | 280.345                       | 0.054  | 0.312                      |
| 785b                   | 10                                | 05.05.2015 | 15:42 | 5.86                   | 30.338                 | 280.279                       | 0.052  | 0.312                      |
|                        |                                   |            |       |                        |                        |                               |        |                            |

| Lamp Number | 1060      |
|-------------|-----------|
| ССТ         | 2840.96 K |

| Measurement Round #1:  |                                   |            |       |                        |                        |                               |                           |                               |
|------------------------|-----------------------------------|------------|-------|------------------------|------------------------|-------------------------------|---------------------------|-------------------------------|
| Measurement Set Number | Number of<br>measurements per set | Date       | Time  | Lamp<br>current /<br>A | Lamp<br>voltage /<br>V | Luminous<br>Intensity /<br>cd | Standard Ur<br>Luminous I | ncertainty in<br>ntensity (%) |
|                        |                                   |            |       |                        |                        |                               | Random                    | Systematic                    |
| 729                    | 10                                | 11.02.2014 | 07:43 | 5.85                   | 30.323                 | 272.283                       | 0.056                     | 0.312                         |
| 740                    | 10                                | 18.02.2014 | 08:34 | 5.85                   | 30.327                 | 272.230                       | 0.053                     | 0.312                         |

| Measurement Round #2:  |                                   |            |       |                        |                        |                               |        |                               |
|------------------------|-----------------------------------|------------|-------|------------------------|------------------------|-------------------------------|--------|-------------------------------|
| Measurement Set Number | Number of<br>measurements per set | Date       | Time  | Lamp<br>current /<br>A | Lamp<br>voltage /<br>V | Luminous<br>Intensity /<br>cd |        | ncertainty in<br>ntensity (%) |
|                        |                                   |            |       |                        |                        |                               | Random | Systematic                    |
| 787a                   | 10                                | 06.05.2015 | 09:17 | 5.85                   | 30.340                 | 272.931                       | 0.055  | 0.312                         |
| 787b                   | 10                                | 06.05.2015 | 13:21 | 5.85                   | 30.337                 | 273.036                       | 0.052  | 0.312                         |

| Lamp Number | 1063      |
|-------------|-----------|
| ССТ         | 2854.46 K |

| Measurement Round #1:  |                                   |            |       |                        |                        |                               |        |                               |
|------------------------|-----------------------------------|------------|-------|------------------------|------------------------|-------------------------------|--------|-------------------------------|
| Measurement Set Number | Number of<br>measurements per set | Date       | Time  | Lamp<br>current /<br>A | Lamp<br>voltage /<br>V | Luminous<br>Intensity /<br>cd |        | ncertainty in<br>ntensity (%) |
|                        |                                   |            |       |                        |                        |                               | Random | Systematic                    |
| 730                    | 10                                | 11.02.2014 | 12:15 | 5.90                   | 30.555                 | 283.875                       | 0.053  | 0.312                         |
| 741                    | 10                                | 18.02.2014 | 10:31 | 5.90                   | 30.559                 | 284.103                       | 0.056  | 0.312                         |

| Measurement Round #2:  |                                   |            |       |                        |                        |                               |        |                               |
|------------------------|-----------------------------------|------------|-------|------------------------|------------------------|-------------------------------|--------|-------------------------------|
| Measurement Set Number | Number of<br>measurements per set | Date       | Time  | Lamp<br>current /<br>A | Lamp<br>voltage /<br>V | Luminous<br>Intensity /<br>cd |        | ncertainty in<br>ntensity (%) |
|                        |                                   |            |       |                        |                        |                               | Random | Systematic                    |
| 825a                   | 10                                | 29.07.2015 | 13:48 | 5.90                   | 30.571                 | 284.303                       | 0.052  | 0.312                         |
| 825b                   | 10                                | 29.07.2015 | 16:40 | 5.90                   | 30.565                 | 284.508                       | 0.054  | 0.312                         |

| Lamp Number | 1064      |
|-------------|-----------|
| ССТ         | 2854.84 K |

| Measurement Round #1:  |                                |            |       |                        |                        |                               |            |                               |
|------------------------|--------------------------------|------------|-------|------------------------|------------------------|-------------------------------|------------|-------------------------------|
| Measurement Set Number | Number of measurements per set | Date       | Time  | Lamp<br>current /<br>A | Lamp<br>voltage /<br>V | Luminous<br>Intensity /<br>cd | Luminous I | ncertainty in<br>ntensity (%) |
|                        |                                |            |       |                        |                        |                               | Random     | Systematic                    |
| 731                    | 10                             | 11.02.2014 | 15:41 | 5.90                   | 30.676                 | 287.852                       | 0.053      | 0.312                         |
| 742                    | 10                             | 18.02.2014 | 12:14 | 5.90                   | 30.682                 | 287.963                       | 0.052      | 0.312                         |

| Measurement Round #2:  |                                |            |       |                        |                        |                               |            |                               |
|------------------------|--------------------------------|------------|-------|------------------------|------------------------|-------------------------------|------------|-------------------------------|
| Measurement Set Number | Number of measurements per set | Date       | Time  | Lamp<br>current /<br>A | Lamp<br>voltage /<br>V | Luminous<br>Intensity /<br>cd | Luminous I | ncertainty in<br>ntensity (%) |
|                        |                                |            |       |                        |                        |                               | Random     | Systematic                    |
| 826a                   | 10                             | 30.07.2015 | 15:24 | 5.90                   | 30.696                 | 288.605                       | 0.052      | 0.312                         |
| 827b                   | 10                             | 30.07.2015 | 18:10 | 5.90                   | 30.689                 | 288.519                       | 0.053      | 0.312                         |

# **Blattner Peter**

Digitally signed by Blattner Peter DN: cn=Blattner Peter, o=METAS, ou, email=peter.blattner@metas.ch, c=CH Date: 2015.11.07 22:23:01 +01'00'

| CCPR Key Comparison CCPR-K3.2014<br>Luminous Intensity<br>Final Report | ŀ |
|------------------------------------------------------------------------|---|
| Appendix A                                                             |   |
| <u>NPL Report</u>                                                      |   |
|                                                                        |   |
|                                                                        |   |



NPL REPORT ENV (RES) 00

# MEASUREMENTS OF LUMINOUS INTENSITY STANDARDS FOR CCPR KEY COMPARISON CCPR-K .201

BARRY SCOTT, TERESA OODMAN

**APRIL 2016** 

CCPR-K3.2014: Luminous Intensity Final Report

## Measurements of Luminous Intensity Standards for CCPR Key Comparison CCPR-K3.2014

Barry Scott & Teresa Goodman Environment Division © Queen's Printer and Controller of HMSO, 2016

#### National Physical Laboratory Hampton Road, Teddington, Middlesex, TW11 0LW

Extracts from this report may be reproduced provided the source is acknowledged and the extract is not taken out of context.

Approved on behalf of NPLML by Dr Richard Brown, Knowledge Leader

#### CONTENTS

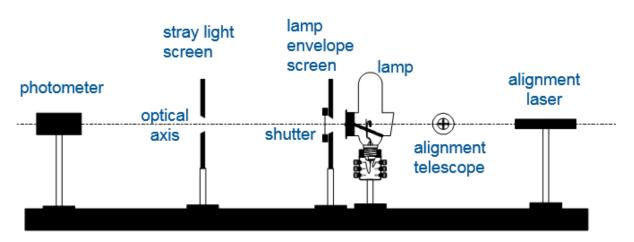
| INTRODUCTION                            | .1                                |
|-----------------------------------------|-----------------------------------|
| SELECTION OF COMPARISON ARTEFACTS       | .1                                |
| MEASUREMENT FACILITY                    | .1                                |
| LAMP ALIGNMENT                          | .3                                |
| RESULTS                                 | .5                                |
| UNCERTAINTY BUDGET                      | .6                                |
| CALIBRATION OF REFERENCE LAMP INTENSITY | .7                                |
| AGEING OF REFERENCE LAMPS               | .7                                |
| DISTANCE SETTING AND BENCH SCALE        | .7                                |
| ACCURACY OF LAMP CURRENT SETTING        | .8                                |
| PHOTOMETER PHOTOCURRENT                 | .8                                |
| PHOTOMETER SPECTRAL MISMATCH            | .8                                |
| STRAY LIGHT                             | .8                                |
| STABILISER CURRENT CONTROL              | .8                                |
| PHOTOMETER CALIBRATION FACTOR           | .8                                |
| 0 TEST LAMP REPEATABILITY               | .8                                |
| REFERENCES                              | .9                                |
|                                         | SELECTION OF COMPARISON ARTEFACTS |

CCPR-K3.2014: Luminous Intensity Final Report

#### 1 INTRODUCTION

NPL is one of twelve laboratories that has participated in the CCPR Key Comparison CCPR K3:2014 for Luminous Intensity which commenced in 2014. This report summarises the results of the measurements performed at NPL of the selected Luminous Intensity Standard lamps.

#### 2 SELECTION OF COMPARISON ARTEFACTS


The comparison protocol called for luminous intensity standard lamps as the comparison artefacts. The nominated lamp types were Osram Wi41/G lamps and NPL/Polaron LIS lamps. Participants were requested to submit between four and six lamps which could be of either one or both types. NPL chose to submit five lamps as travelling artefacts, three Polaron type and two Osram type, as indicated in Table 1.

#### Table 1 NPL Travelling Artefacts

| Source Type  | Identifier |
|--------------|------------|
| NPL/Polaron  | A644       |
| NPL/Polaron  | A647       |
| NPL/Polaron  | PA758      |
| Osram Wi41/G | 877        |
| Osram Wi41/G | 890        |

#### **3 MEASUREMENT FACILITY**

Measurements were performed at NPL on the 8 m photometric bench facility, shown schematically in Figure 1. The primary optical axis for this facility is defined by a laser aligned to run parallel to the bench and the datum position is defined by the vertical crosshair of a cathetometer which is aligned perpendicular to the optical axis. Distance is determined by a vernier length scale which has been calibrated using a laser interferometer.



optical bench with calibrated distance scale

#### Figure 1 NPL 8 m bench facility

An NPL-designed photometer was used to transfer the calibration from the NPL primary standard luminous intensity lamps to the travelling standard lamps used for the comparison. The photometer consists of a single element silicon photodiode with a four-element glass filter, which has been individually-designed to give a close match to the  $V(\lambda)$  function, and a precision aperture (10 mm in diameter) which defines the photometer reference plane for distance measurement. The photometer was aligned so that the aperture was perpendicular to, and centred on, the optical axis. The complete unit was temperature-controlled at 30.0 °C; the spectral responsivity of the photometer has also been calibrated at this temperature.

Stray light was minimised using a series of baffles between the lamp being measured and the photometer (three baffles were used, placed approximately 200 mm, 1900 mm and 2100 mm from the limiting aperture of the photometer – exact placement of the baffles depended on a visual assessment of stray light reaching the photometer). An additional baffle was placed immediately in front of the lamp so that only light passing through the lamp mask could reach the photometer. A black cloth screen was placed between the rear of the lamp and the alignment laser to eliminate reflections from the laser aperture. The walls, floor and ceiling of the laboratory are painted black. Residual stray light was allowed for by making a 'dark' measurement with the stray light screen closest to the lamp obstructed.

Measurements were made with the lamps aligned as described in Section 3.1 below with the photometer set so that its limiting aperture was at a distance of 2.4 m from the mean plane of the lamp filament; this gave a measurement solid angle of approximately 0.12 sr. The reference standards used were of the same type as the travelling standards and were aligned in the same way and measured at the same distance. The reference standards were directly traceable to NPL's cryogenic radiometer and were established as described in [1]. The NPL luminous intensity scale has been re-established directly against the cryogenic radiometer on a regular basis since the time of the first realisation described in [1] and this has confirmed the stability of the disseminated scale over this period. The calibration of the reference lamps has also been checked at regular intervals and found to be within the limits allowed for 'lamp ageing' in the uncertainty budget.

The lamps were operated from a stabilised dc power supply with a current stability of better than 0.005 %. Current was determined by measuring the voltage drop across a calibrated precision resistor (0.1  $\Omega$  in the case of the Osram lamps, 0.01  $\Omega$  for the Polaron lamps); the resistors were used in an oil bath to minimise any temperature fluctuations during use and were calibrated at the same temperature at which they were used. Each lamp had previously been calibrated against the NPL relative spectral irradiance scale to determine the current required for a correlated colour temperature of approximately 2856 K and this was the current set for this comparison; the individual lamp currents set and the corresponding correlated colour temperatures are given in Table 2. The reference lamps were also operated at a correlated colour temperature of approximately 2856 K and the close match of the photometer spectral responsivity to the  $V(\lambda)$  function meant that the spectral mismatch correction was negligibly small.

At least two independent measurements were made on each lamp, with the lamp being completely realigned for each measurement. Measurements were made over a period of several days. On each occasion of measurement the lamp was run up gradually to the required current and allowed to stabilise for at least 15 minutes before measurements commenced. The

lamps were operated in a 4-pin lamp holder and the lamp voltage and current at the time of measurement were recorded, together with the photocurrent from the photometer.

| Table 2 Currents and corre | ated colour temperatures for 1 | NPL travelling artefacts |
|----------------------------|--------------------------------|--------------------------|
|                            |                                |                          |

| Lamp identifier | Current<br>(A) | Correlated colour<br>temperature<br>(K) |
|-----------------|----------------|-----------------------------------------|
| A644            | 25.360         | 2850                                    |
| A647            | 25.310         | 2850                                    |
| PA758           | 25.220         | 2850                                    |
| 877             | 5.818          | 2853                                    |
| 890             | 5.804          | 2853                                    |

During the course of the measurements the laboratory was maintained at a temperature of  $21.0 \text{ }^{\circ}\text{C} \pm 2.0 \text{ }^{\circ}\text{C}$  and a humidity of 50 % RH ± 25 % RH.

#### 3.1 LAMP ALIGNMENT

The lamps were mounted base down and aligned with a cold filament (i.e. no current flowing).

The alignment procedure used for the Osram lamps was as follows:

- 1. The lamp was adjusted so that the filament was vertical when viewed along the optical axis.
- 2. The lamp was rotated so that the width of the image of the filament viewed through the cathetometer set perpendicular to the optical axis was minimised.
- 3. The tilt of the lamp was adjusted so that the image of the filament was vertical (i.e. parallel to the cathetometer vertical cross hair)
- 4. The lamp was adjusted in the horizontal and vertical direction so that the laser defining the optical axis passed through the centre of the filament.
- 5. A screen was placed immediately in front of the lamp so that only light passing through the aperture in the painted lamp mask could reach the photometer.
- 6. Distance was measured from the mean plane of the lamp filament as viewed using the cathetometer mounted perpendicular to the optical axis of the optical bench. The measurement distance was 2.40 m.

The alignment procedure used for the Polaron lamps was as follows:

- 1. The lamp was adjusted so that the envelope was vertical when viewed along the optical axis.
- 2. The lamp was rotated and tilted so that the flat front window was set perpendicular to the optical axis (i.e. so that the laser defining the optical axis was reflected from the rear of the front window directly back to the laser).
- 3. The lamp was adjusted in the horizontal and vertical direction so that the laser defining the optical axis passed through the centre of the filament.
- 4. A screen was placed immediately in front of the lamp so that only light passing through the aperture in the lamp mask fixed to the front window could reach the photometer.

5. Distance was measured from the mean plane of the lamp filament as viewed using the cathetometer mounted perpendicular to the optical axis of the optical bench. The measurement distance was 2.40 m.

#### 4 **RESULTS**

#### Table 3 Measurement Round #1, March 2014

|                      |                 |                 |                       |                                               | Standard Uncertainty in<br>Luminous Intensity (k = |            |  |
|----------------------|-----------------|-----------------|-----------------------|-----------------------------------------------|----------------------------------------------------|------------|--|
| Source<br>Identifier | Lamp<br>Current | Lamp<br>Voltage | Luminous<br>Intensity | Number of<br>independent<br>measure-<br>ments | Random                                             | Systematic |  |
|                      | (A)             | (V)             | (cd)                  |                                               | (%)                                                | (%)        |  |
| A644                 | 25.360          | 12.505          | 451.78                | 3                                             | 0.082 %                                            | 0.158 %    |  |
| A647                 | 25.310          | 12.510          | 459.43                | 2                                             | 0.082 %                                            | 0.158 %    |  |
| PA758                | 25.220          | 12.743          | 460.33                | 3                                             | 0.082 %                                            | 0.158 %    |  |
| 877                  | 5.818           | 30.013          | 276.34                | 2                                             | 0.082 %                                            | 0.158 %    |  |
| 890                  | 5.804           | 29.871          | 273.93                | 3                                             | 0.082 %                                            | 0.158 %    |  |

#### Table 4 Measurement Round #2, September 2015

|                      |                 |                 |                       |                                               | Standard Uncertainty in<br>Luminous Intensity (k = |            |
|----------------------|-----------------|-----------------|-----------------------|-----------------------------------------------|----------------------------------------------------|------------|
| Source<br>Identifier | Lamp<br>Current | Lamp<br>Voltage | Luminous<br>Intensity | Number of<br>independent<br>measure-<br>ments | Random                                             | Systematic |
|                      | (A)             | (V)             | (cd)                  |                                               | (%)                                                | (%)        |
| A644                 | 25.360          | 12.500          | 451.97                | 2                                             | 0.082 %                                            | 0.158 %    |
| A647                 | 25.310          | 12.533          | 459.63                | 2                                             | 0.082 %                                            | 0.158 %    |
| PA758                | 25.220          | 12.751          | 460.70                | 2                                             | 0.082 %                                            | 0.158 %    |
| 877                  | 5.818           | 30.013          | 275.91                | 3                                             | 0.082 %                                            | 0.158 %    |
| 890                  | 5.804           | 29.878          | 273.24                | 2                                             | 0.082 %                                            | 0.158 %    |

#### 5 UNCERTAINTY BUDGET

| Table 5 Uncertainty budget (identical for both rounds of measurements and both types of | of lamp) |
|-----------------------------------------------------------------------------------------|----------|
|-----------------------------------------------------------------------------------------|----------|

| Source of uncertainty                       | Type A<br>or<br>Type B | value   | Divisor | <b>u</b> <sub>i</sub> |
|---------------------------------------------|------------------------|---------|---------|-----------------------|
| Systematic effects:                         |                        |         |         |                       |
| Calibration of reference lamp intensity     | В                      | 0.200 % | 2       | 0.100 %               |
| Ageing of reference lamps                   | В                      | 0.125 % | 1.732   | 0.072 %               |
| Distance setting                            | В                      | 0.050 % | 1.732   | 0.029 %               |
| Accuracy of lamp current setting            | В                      | 0.160 % | 1.732   | 0.092 %               |
| Photocurrent measurement                    | В                      | 0.010 % | 1.732   | 0.006 %               |
| Spectral mismatch                           | В                      | 0.010 % | 1.732   | 0.006 %               |
| Stray light                                 | В                      | 0.020 % | 1.732   | 0.012 %               |
| RMS Total Systematic Effects                |                        |         |         | 0.158 %               |
| Random effects:                             |                        |         |         |                       |
| Stabiliser current control                  | А                      | 0.016 % | 2       | 0.008 %               |
| Photometer calibration factor repeatability | А                      | 0.064 % | 1       | 0.064 %               |
| Test lamp repeatability                     | А                      | 0.050 % | 1       | 0.050 %               |
| RMS Total Random Effects:                   |                        |         |         | 0.082 %               |
| RMS Total Standard Uncertainty              |                        |         |         | 0.178 %               |

The basis of these uncertainties is described in 5.1 to 5.10 below. The associated measurement equation is:

$$I_{v,t} = C_{cal}V_t(1 + C_{d,t})(1 + C_{J,t})(1 + C_{p,t})F_{SM,t}(1 - C_{stray,t})(1 + C_{align,t})$$
(1)

where

$$C_{\rm cal} = \frac{(I_{\rm v,r} + C_{\rm age,r})}{V_r} \tag{2}$$

and

 $I_{v,t}$  is the luminous intensity of test (comparison) lamp t

 $C_{cal}$  is the mean photometer calibration factor, calculated using Equation 2 and averaged across all the reference lamps used

 $I_{v,r}$  is the luminous intensity of reference lamp r

 $C_{\text{age},r}$  is the change in luminous intensity of reference lamp *r* since its original calibration due to ageing

- $V_r$  is the mean reading from the photometer for reference lamp r
- $V_t$  is the mean reading from the photometer for test lamp t

 $C_{d,t}$  is the error in luminous intensity for test lamp *t* due to error in setting the filaments of the reference and test lamps in the same vertical plane

 $C_{J,t}$  is the error in luminous intensity for test lamp *t* due to error in setting the current for the test lamp to the specified value (the uncertainty due to error in setting the current for the reference lamp to the specified value is included in the uncertainty budget for the luminous intensity of the reference lamp)

 $C_{p,t}$  is the error in luminous intensity for test lamp *t* due to differences in amplifier gain and DVM sensitivity between measurement of the photocurrent produced by the reference lamp and that produced by the test lamp

 $F_{SM,t}$  is the spectral mismatch correction factor for test lamp t

 $C_{\text{stray},t}$  is the error in luminous intensity for test lamp *t* due to differences in stray light between the reference and test lamps

 $C_{\text{align},t}$  is the error in luminous intensity for test lamp *t* due to misalignment of the lamp (the uncertainty due to misalignment of the reference lamp is included in the uncertainty budget for the luminous intensity of the reference lamp)

Note all of the C terms listed above have an expected value of zero and an associated uncertainty that has been estimated as described in sections 5.1 to 5.10 below.

#### 5.1 CALIBRATION OF REFERENCE LAMP INTENSITY

The calibration of the reference lamps, and the associated uncertainties, is detailed in [1].

#### 5.2 AGEING OF REFERENCE LAMPS

The reference lamps are used only for checks to confirm the stability of the NPL luminous intensity scale and as standards for calibration of working standards. They have been used for a maximum of 25 hours since their initial calibration (most have been used for less than this) and their polarity is reversed on each occasion of use to minimise ageing effects. Measurements on other lamps of the same type operated at the same correlated colour temperature and under the same conditions have shown ageing rates of approximately 0.5 % per 100 hours; a conservative allowance for ageing of 0.125 % has therefore been included in the uncertainty budget to allow for ageing. Regular checks using the NPL photometer as a reference (freshly calibrated against the cryogenic radiometer) have confirmed the reference lamps have been stable to within this limit.

#### 5.3 DISTANCE SETTING AND BENCH SCALE

The reference lamps and the travelling standards are both used at the same distance, which is also the distance at which the reference lamps were originally calibrated. Therefore the only contributions that need to be considered when assessing the uncertainty due to distance setting are the precision with which the bench scale can be read (since this limits the ability to set a reproducible distance value) and the uncertainty in defining the mean plane of the filament. The combined effect of these two contributions is estimated as 0.5 mm, which corresponds to an uncertainty in luminous intensity of 0.05 % at the measurement distance of 2.40 m.

#### 5.4 ACCURACY OF LAMP CURRENT SETTING

The accuracy of the lamp current setting is determined by the uncertainty associated with the calibration of the standard resistor (including an allowance for possible drift in the resistance since the time of calibration) and the uncertainty associated with the calibration of the voltmeter (again including an allowance for possible drift since the time of calibration). These were estimated to give a combined uncertainty of 0.02 % in current, which corresponds to an uncertainty of 0.160 % in luminous intensity (using an 8:1 relationship between intensity and current).

#### 5.5 PHOTOMETER PHOTOCURRENT

Since the measurement procedure used at NPL involves a direct comparison between lamps of similar types, the majority of the factors that influence the accuracy of the measurement of the photometer photocurrent (such as amplifier gain and digital voltmeter accuracy) have negligible impact on the final luminous intensity value. A small contribution (0.01 %) is included in the uncertainty budget to allow for any residual uncertainty e.g. due to the effect of ambient temperature fluctuations.

#### 5.6 PHOTOMETER SPECTRAL MISMATCH

As indicated in Section 3, the reference and test lamps have similar correlated colour temperatures and the photometer has a good match to the  $V(\lambda)$  function (f<sub>1</sub>' better than 3.5 %). No spectral mismatch correction was therefore necessary, but a small contribution (0.01 %) was allowed for spectral mismatch in the uncertainty budget.

#### 5.7 STRAY LIGHT

Stray light was minimised through the use of stray light screens between the lamp and the photometer. A small contribution of 0.02 % was included in the uncertainty budget to allow for any residual stray light.

#### 5.8 STABILISER CURRENT CONTROL

The lamps were operated from a stabilised power supply, able to control current to 0.002 %. The corresponding uncertainty in lamp luminous intensity was estimated as 0.016 % (using an 8:1 relationship between intensity and current).

#### 5.9 PHOTOMETER CALIBRATION FACTOR

The repeatability of the photometer calibration factor was determined by statistical analysis of the results using a number of the NPL reference standard lamps. The standard uncertainty was included as a Type A contribution in the uncertainty budget.

#### 5.10 TEST LAMP REPEATABILITY

The repeatability of the measurements on the test lamps was estimated based on statistical analysis of the results of previous measurements on similar lamps, in which the lamp was realigned a number of times at various extremes of what would be regarded as an 'acceptable' alignment. In practice, the measurement repeatability achieved was better than this, but the worst case estimate (0.05 %) was used in the uncertainty budget.

#### **6 REFERENCES**

[1] Goodman TM and Key PJ. The NPL radiometric realisation of the candela. Metrologia 1988; 25: 20-40.

#### NPL response to questions relating to uncertainty budgets for CCPR-K3.2014

#### General comments / questions

- 1. The lamps used for the comparison were calibrated directly against NPL's primary reference standard luminous intensity lamps, which are of exactly the same type as the comparison lamps. Any reflections from the inside edges of baffles or shutters are therefore common to both the reference and comparison lamps and the effects cancel; no correction is necessary. Extensive investigations into stray light effects (including light scattered, reflected or diffracted by apertures and baffles) were carried out during the realisation of the luminous intensity scale and assessed to be less than 0.01 % this is included in the uncertainty budget for NPL's realisation of the candela.
- The alignment of the NPL photometer was not changed between the calibration using the reference lamps and the measurements of the comparison lamps; therefore it is not necessary to include an uncertainty component for misalignment of the photometer aperture.
- 3. NPL did not follow the model given in CIE 198:2011 since this is not how we usually structure our uncertainty budget. We did, however, provide a detailed description of each of the uncertainty contributions included in our uncertainty budget, which we believe gives the information necessary to judge the legitimacy of each of these. For completeness, our measurement equation is given below (this has also been added to our measurement report):

$$I_{v,t} = C_{cal}V_t(1 + C_{d,t})(1 + C_{J,t})(1 + C_{p,t})F_{SM,t}(1 - C_{stray,t})(1 + C_{align,t})$$
(1)

where

$$C_{\rm cal} = \frac{(I_{\rm v,r} + C_{\rm age,r})}{V_r} \tag{2}$$

and

 $I_{\mathbf{v},t}$  is the luminous intensity of test (comparison) lamp t

 $C_{\rm cal}$  is the mean photometer calibration factor, calculated using Equation 2 and averaged across all the reference lamps used

 $I_{v,r}$  is the luminous intensity of reference lamp r

 $C_{\text{age},r}$  is the change in luminous intensity of reference lamp r since its original calibration due to ageing

 $V_r$  is the mean reading from the photometer for reference lamp r

 $V_t$  is the mean reading from the photometer for test lamp t

 $C_{d,t}$  is the error in luminous intensity for test lamp t due to error in setting the filaments of the reference and test lamps in the same vertical plane

 $C_{J,t}$  is the error in luminous intensity for test lamp t due to error in setting the current for the test lamp to the specified value (the uncertainty due to error in setting the

current for the reference lamp to the specified value is included in the uncertainty budget for the luminous intensity of the reference lamp)

 $C_{p,t}$  is the error in luminous intensity for test lamp t due to differences in amplifier gain and DVM sensitivity between measurement of the photocurrent produced by the reference lamp and that produced by the test lamp

 $F_{\text{SM},t}$  is the spectral mismatch correction factor for test lamp t

 $C_{\text{stray},t}$  is the error in luminous intensity for test lamp t due to differences in stray light between the reference and test lamps

 $C_{\text{align},t}$  is the error in luminous intensity for test lamp t due to misalignment of the lamp (the uncertainty due to misalignment of the reference lamp is included in the uncertainty budget for the luminous intensity of the reference lamp)

Note all of the *C* terms listed above have an expected value of zero and an associated uncertainty that has been estimated as described in our measurement report.

#### Specific comments / questions

- 1. Yes, it is impossible to isolate the effect of 'stabiliser current control' from 'test lamp repeatability' so there is potentially a small element of double counting in the random effects. However since the test lamp repeatability component is intended primarily to allow for lamp alignment variations and is treated as a worst case estimate, we have chosen to ignore this small element of double counting. The effect on the final uncertainty is insignificant.
- 2. We do not know the actual change in luminous intensity due to ageing for each individual reference lamp used. Each reference lamp has been used for a different length of time since the original calibration and will also age at a slightly different (unknown) rate. We therefore do not correct for ageing effects. The uncertainty estimate is a conservative allowance, which is based on measurements on other lamps of the same type operated at the same correlated colour temperature and under the same conditions coupled with knowledge of the maximum length of time for which the reference lamps have been used since the original calibration.
- 3. We apologise for these typing mistakes, which were due to importing the table from an Excel file. We have provided a corrected version of the report to the pilot laboratory.
- 4. The uncertainty due to lamp alignment is included under 'Test lamp repeatability' as described in section 5.10 of our report.

#### Dear Arnold,

Many thanks for sending the NPL relative data for CCPR-K3.2014 for review. I have the following comments:

- 1. We had noted from our measurements that the luminous intensity values for our two Wotan lamps, 877 and 890, were significantly different for our round 1 and round 2 measurements; the differences were significantly larger than would be expected based on the random uncertainty associated with measurements of these lamps. The Polaron lamps showed much better stability during the course of the comparison, with values from the two rounds agreeing at the levels we would expect (i.e. within the random uncertainty).
- 2. This suggested that the luminous intensity of both Wotan lamps had changed as a result of transportation. Other possible causes of a change in output, such as ageing, appeared unlikely because of the very short burn time during the course of the comparison measurements. Furthermore, we considered it likely that the change in output would have occurred either during transportation to NRC or during return to NPL; changes during both transportations could occur, but are less probable.
- 3. We obviously could not tell from our measurements whether the values had changed during the first transportation, from NPL to NRC, or during the second, from NRC to NPL. Based on the evidence of the relative data, it appears that for both lamps the change is most likely to have occurred after the NRC measurements, i.e. during transport back to NPL. This is demonstrated by the small standard deviation in the candela/volt ratios using the Round 1 luminous intensity values (0.06 %, which is consistent with the random uncertainties of 0.08 %) compared with the much larger standard deviation using the round 2 values (0.14 %, which is significantly higher than the random uncertainties).
- 4. Based on this review, I would request that the analysis for the NPL Wotan lamps should use only the round 1 luminous intensity values. Both rounds of measurements should be used for the Polaron lamps.

Please let me know whether this is acceptable. I am happy to give further details if necessary.

Best wishes

Teresa

# CCPR Key Comparison CCPR-K3.2014 Luminous Intensity Final Report Appendix A <u>PTB Report</u>

# Appendix A.3 Description of the measurement facility at PTB



#### **Description of measuring geometry**

The measurements are carried out at the photometer bench system. The photometer bench system is composed of three different photometer benches aligned in a row. They can be used singly or together, so that measuring distances up to 40 meter become possible. The distance readings are from absolute electronic linear encoders with resolution below 0.01 mm and linear well within that range. The calibration of all geometric relations is performed by a laser-tracker. The latter is traced back to the national PTB length standard with an expanded uncertainty of 0.1 mm for distances up to 8.5 m. The following Fig. 1, 2, 3, 4 and 5 show the main components of the bench and illustrate their interactions.

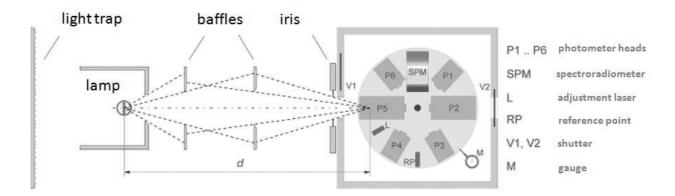



Fig. 1: Main components of the photometer bench (schematic) including light trap, baffles and the aperture plus shutter for field-of-view limitation and dark measurements, respectively.

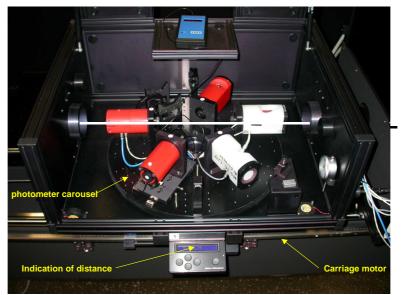
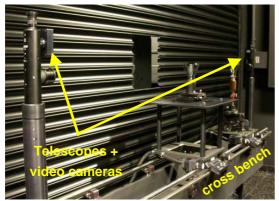




Fig. 2: Photometer carousel performing sequential measurement with up to 6 photometers / spectrometers mounted to the identical location with their limiting aperture



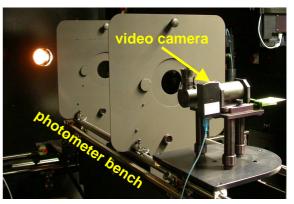



Fig. 3: Tools for the camera aided alignment are two video cameras (left) to the left and right side of the lamp and, behind the rolling gate, the third video camera (right) mounted temporarily within the photometer bench for front view.

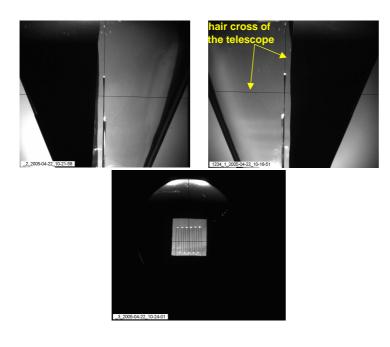



Fig 4: Images of the lamp's filament from left and right side (on top) and the front view (bottom). Note: The light trap behind the filament is temporarily covered with a higher reflecting cloth to enlarge the contrast within the image.



Fig.: 5: Automated lamp holder with: Motors and lamp power supply being - software controlled, enabling - automated determination of related - the sensitivity coefficients  $c(x), c(y), c(\vartheta), c(\varphi), c(i_{lamp}), c(T(i_{lamp}))$ Motor driven photometer carriage for a variation of the distance "x". Lamp holder, for an independent alignment of 6 degrees of freedom Lamp carriage with three motors for - rotating the "aligned lamp" around the two axes " $\vartheta$ " and " $\varphi$ " and for

- moving in direction "y".

#### **Description of measurement procedure**

At the PTB the unit of luminous intensity is the realized and maintained by a network of lamps and photometers [1]. All objects are characterized over long periods of time and well known for their relevant properties such as coefficients for ageing, geometrical misalignment, electric misadjustment, and ambient influences (temperature, humidity, air stream).

The 6 lamp transfer standards participating in this key comparison are organized as a fixed group since the last CCPR key comparison [2] which acts as a PTB- internal duplication for the lamp transfer standard group taking part in the last key comparison. Since then, they were operated for only 4 hours and were calibrated according to the value represented by PTBs network of lamps (see "Traceability chain and date of last realization"), before transport to the pilot laboratory. Hence, their values represent the valid national luminous intensity unit of PTB.

#### Make and type of the photometer

Two photometer heads LMT with thermostatic stabilization at 35°C are used and permanently heated.

- a) Type P30, aperture with diffuser, the reference plane is outside of the opal glass of the entrance window (diameter 30 mm)
- b) Type P10, aperture without diffuser, the reference plane is outside of the glass of the entrance window (diameter 10 mm)

#### **Description of calibration laboratory conditions**

- ambient temperature  $23.5^{\circ}C (\pm 0.5^{\circ}C)$
- relative humidity 45% ( $\pm 10\%$ )
- clean room class "100 000"

#### **Operating conditions of the lamps**

#### **Geometrical conditions:**

The lamps OSRAM WI41/G are aligned (see Fig. 4) without glowing:

- lamp's optical axis is central and rectangular to the filament plane
- lamp's optical axis is parallel to the bench's horizontal axis
- plane, containing lamp's optical axis and lamp axis (cap down) is vertical
- distance is measured from the centre of the filament
- <u>only</u> the light passing through the opening (see Fig. 4) in the mask is measured

For a measurement of the luminous intensity values the assigned distances vary depending on the effective location of the beginning of the light path within the filament of the lamps. Therefore, at PTB all luminous intensity measurements were carried out in a (large) distance of 5.5 m between the plane associated with the filament and the limiting aperture of the photometer. In most cases additional readings at reduced distances were taken to find out the sensitivity coefficient for a translation in the direction of the bench's optical axis. These coefficients are used for the evaluation of uncertainty as well as for a correction between the different measurements conditions, if needed. However, it turns out - as expected - that the influence is negligible under the conditions realized at PTB (distances 3 m to 7 m and apertures 10 mm to 30 mm in diameter; which corresponds to solid angels between  $1.6 \cdot 10^{-6}$  sr and  $79 \cdot 10^{-6}$  sr).

#### **Electrical power supply and measurements:**

The lamps are operated with constant DC-currents and the values are selected for a distribution temperature of about 2800 K. Every individual lamp is operated for a period of 15 minutes at nominal current before the measurement starts to warm up and to allow for the stabilization of its luminous output.

- the quantity to be set is constant DC current
- negative polarity connected to central contact
- lamp voltage is measured with two separate contacts, "four-pole-technique".

#### **Stray-light reduction**

The room for the measurements is divided by the rolling gate in two parts, one room for the lamp and a second room for measurement with the photometer bench (see Fig.3) ensuring large distances to the walls, ceiling and the floor. All sources of light except the lamp standard are switched off during measurement.

A light trap more than 1 m behind the lamp reduces the back reflected stray light. Baffles with various openings are placed on the photometer bench such that light illuminates neither the rails nor the room for measurements. The Fig. 6 gives an impression how baffles look like and are placed.

The land of a baffle if illuminated originates a relative stray-light of  $10^{-5}$  which is corrected numerically. The box with the photometer carousel screens the photometer heads from any sidedirection and a baffle with adjustable opening limits the field of view for the photometers. The illuminated entrance window of the photometer head reflects back and would illuminate the lamp. This is avoided by a minimal tilting just to direct the spot onto the baffles in between. CCPR-K3.2014: Luminous Intensity Final Report CCPR-K3.2014

Fig. 6: Baffles with variable openings and flexible locations for stray-light reduction on the Photometer bench. The coating is diffuse and spectrally neutral reflecting with maximum reflectance of 5%.

#### Traceability chain and date of last realization

The luminous intensity unit at PTB is realized annually. The last realization was carried out in December 2013. The traceability chain at PTB (see Fig. 7) starts with the cryogenic radiometer to establish the unit of spectral radiant power, which is used to determine the spectral power responsivity of trap detectors. Using a uniform source based on tunable lasers and trap detectors with precision apertures, the responsivity with respect to optical power is transferred into a spectral irradiance resonsivity, and, in a second step, using  $V(\lambda)$ -corrected photometers, into the photometric responsivity. Parallel to this step, filtered detectors are calibrated to determine the temperature of a high temperature Black-Body radiator, used to provide the relative spectral distribution of transfer standard lamps at Illuminant A. Using the photometric bench system at PTB, the photometric responsivity of the calibrated photometers and the relative spectral distribution of the transfer standard lamps are combined to verify and establish the SI base unit Candela at PTB.

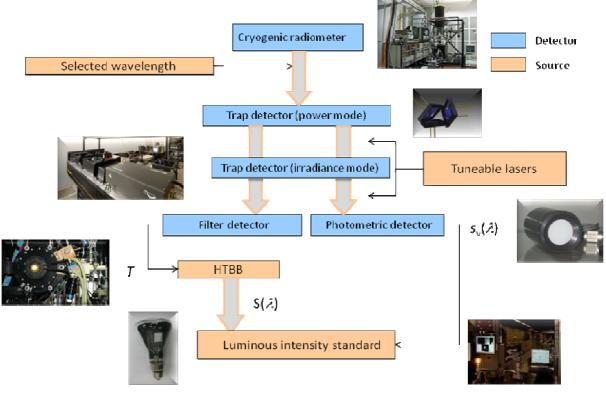



Fig. 7: Traceability chain at PTB



Parallel to this realization of the Candela, the unit Candela is also maintained at PTB since introduction of the new definition of the Candela in 1979 using a set of 17 Toshiba lamps operating at a distribution temperature of 2042 K, a set of 5 Toshiba lamps at 2353 K and 6 OSRAM WI41/G at 2600 K, and additional 12 OSRAM WI41/G lamps separated in two groups working at a distribution temperature of 2800 K, close to CIE-Illuminant A (see Fig. 8).

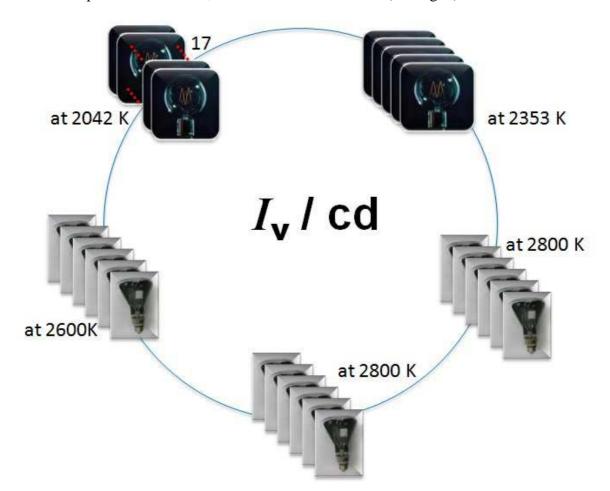



Fig. 8: Maintenance of the unit Candela by the luminous intensity lamps operated at various distribution temperatures.

Due to the different but very low aging rates of the various groups of lamps, which are only operated for traceability check once a year, the uncertainty of the preserved magnitude of the unit defined by this network of lamp groups is well below  $1 \cdot 10^{-3}$  (k = 1). The preserved quantity, together with the realized quantity via the detector based traceability chain finally establish official magnitude of the unit Candela of PTB with an uncertainty of  $1.02 \cdot 10^{-3}$  (k = 1). The magnitude of the unit is then disseminated by PTB by transfer standard lamps and transfer standard detectors with an uncertainty of typically  $3.6 \cdot 10^{-3}$  (k = 2).

#### **References:**

- [1] Erb, W., Sauter, G., *PTB network for realization and maintenance of the candela*, Metrologia, 1997, 34, 115-124
- [2] Georg Sauter, Detlef Lindner, Matthias Lindemann, CCPR Key Comparisons K3a of Luminous Intensity and K4 of Luminous Flux with Lamps as Transfer Standards, PTB Bericht, PTB-Opt-62, 1999.

CCPR-K3.2014: Luminous Intensity Final Report CCPR-K3.2014

Appendix A.5

# Uncertainty Budget (Example)



The following example of the complete measurement budget is based on the document "CIE 198-SP1:2011". The explanations for all entries are given in that document and the values are taken out of the quality management system of the photometry laboratory except those which are found from the measurement of the individual lamps. The measurement uncertainty in line 35 is stated as standard measurement uncertainty. It has been determined in accordance with the "Evaluation of measurement data – Guide to the Expression of Uncertainty in Measurement; JCGM 100:2008".

| Lypie    | ession of Oncertain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | пуш                                  | Measuren                                                                                    |                                                     | 1 100 | .2000                                   | •              |                 |                   |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------|-------|-----------------------------------------|----------------|-----------------|-------------------|
| CIEE13 C | Calibration of a luminous intensity standard (source based)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                      |                                                                                             |                                                     |       | manual entries are blue color           |                |                 |                   |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |                                                                                             |                                                     |       |                                         |                |                 |                   |
|          | $corS1 = (1 + 2\Delta d_{S1}/d_{PS} + \alpha_{S1}\Delta d_{PS})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TL                                   | $(n^2) + h + (n^2) = n^2$                                                                   | ( , , )                                             |       |                                         |                |                 |                   |
| Model    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |                                                                                             | · · · ·                                             |       |                                         |                |                 |                   |
|          | $corSR = \left(1 + 2\Delta d_{\rm SR} / d_{\rm PS} + \alpha_{\rm SR}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\Delta T_{aSR} + h$                 | $k_{\rm SR} \left( \vartheta_{\rm SR} \right) + k_{\rm SR} \left( \varphi_{\rm SR} \right)$ | $(-\gamma_{\rm SR} \Delta t_{\rm SR})$              |       |                                         |                |                 |                   |
|          | $I_{\rm CS1} = I_{\rm CSR} \frac{y_{\rm PS1}}{y_{\rm PSR}} \left(\frac{T_{\rm dC1}}{T_{\rm dCR}}\right)^{m_{\rm P}} \left(\frac{c_{\rm J}}{J_{\rm C1}}\right)^{m_{\rm P}} $ | $U_{m_{\rm P}}$                      | $T_{S_1} - mI_{S_1} (c_1 \cdot U_{m_1})^{-1}$                                               | $m_{\rm P} \cdot m T_{\rm SR} + m I_{\rm SR}$ corSR |       |                                         |                |                 |                   |
|          | $I_{\rm CS1} = I_{\rm CSR} \frac{J_{\rm PS1}}{v} \left  \frac{I_{\rm dC1}}{T} \right  \left  \frac{U_{\rm J}}{T} \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{O_{JS1}}{P}$                  | $\frac{U_{\rm J} - U_{\rm JSR}}{U_{\rm J} - U_{\rm SR}}$                                    | $\frac{corSi}{corS1}$                               |       |                                         |                |                 | -                 |
|          | $y_{PSR}$ $(I_{dCR})$ $(J_{CI})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $(\mathbf{R}_{\mathbf{J}})$          | $(J_{CR}, K_J)$                                                                             | 00/51                                               |       |                                         |                |                 |                   |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |                                                                                             |                                                     |       |                                         |                |                 |                   |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |                                                                                             | Abs.stand.                                          |       |                                         | Absolute       | Absolute        | Relative          |
| No       | Quantity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Symbol                               | Value                                                                                       | uncertainty                                         | Туре  | DOF                                     | sensitivity    | contribution    | contribution      |
|          | X <sub>i</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                    | X                                                                                           | $u(x_i)$                                            |       | vi                                      | C <sub>i</sub> | $u_i(y)$        | $u_{rek}(y)$      |
| 1        | amb.temp. difference [°C]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\Delta T_{aS1}$                     | 0.0                                                                                         | 0.50                                                | В     | 50                                      | 0.0002         | 0.00010         | 0.00010           |
| 2        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\alpha_{s_1}$                       | 0.0002                                                                                      | 0.00020                                             | В     | 80                                      | 0.0000         | 0.00000         | 0.00000           |
| 3        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $h_{S1}(v_{S1})$                     | 0.0                                                                                         | 0.00089                                             | В     | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 1.0000         | 0.00089         | 0.00089           |
| 4        | angular tilt [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $k_{s1}(\varphi_{s1})$               | 0.0                                                                                         | 0.00020                                             | B     |                                         | 1.0000         | 0.00020         | 0.00020           |
|          | angular turn [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      | 0.0                                                                                         |                                                     | B     | 00                                      |                |                 | 0.00020           |
| 5<br>6   | relative distance variation [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\Delta d_{\rm S1}/d_{\rm PS}$       |                                                                                             | 0.00030                                             | B     | 00                                      | 2.0000         | 0.00060         | -0.00060          |
| -        | rel.aging coeff. [1/h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\gamma_{s_1}$                       | 0.0003                                                                                      | 0.00020                                             |       | 00                                      | -0.1000        | -0.00002        | -0.00002          |
| 7        | burning time [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\Delta t_{S1}$                      | 0.10                                                                                        | 0                                                   | В     | ~~                                      |                |                 |                   |
| 8        | correct. factor source [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | corS1                                | 1.0000                                                                                      |                                                     |       | 14641000                                |                | 0.0011          | 0.0011            |
| 9        | amb.temp. difference REF [°C]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\Delta T_{aSR}$                     | 0.0                                                                                         | 0.5                                                 | В     | 50                                      | 0.00025        | 0.00012         | 0.00012           |
| 10       | rel.temp.coeff. REF [1/K]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\alpha_{\rm SR}$                    | 0.00025                                                                                     | 0.00025                                             | В     | 00                                      | 0.00000        | 0.00000         | 0.00000           |
| 11       | angular tilt REF [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $h_{SR}(\vartheta_{SR})$             | 0.0                                                                                         | 0.00020                                             | В     | 8                                       | 1.00000        | 0.00020         | 0.00020           |
| 12       | angular turn REF [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $k_{_{\rm SR}}(\varphi_{_{\rm SR}})$ | 0.0                                                                                         | 0.00010                                             | В     | 00                                      | 1.00000        | 0.00010         | 0.00010           |
| 13       | relative distance variation REF [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\Delta d_{\rm SR} / d_{\rm PS}$     | 0.0                                                                                         | 0.00010                                             | В     | 00                                      | 2.00000        | 0.00020         | 0.00020           |
| 14       | rel.aging coeff. REF [1/h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\gamma_{\rm SR}$                    | 0.00005                                                                                     | 0.000050                                            | В     | 00                                      | -0.10000       | 0.00000         | 0.00000           |
| 15       | burning time REF [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\Delta t_{SR}$                      | 0.10                                                                                        | 0                                                   | В     | 00                                      |                |                 |                   |
| 16       | correct. factor source REF [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | corSR                                | 1.0000                                                                                      |                                                     |       | 50568                                   |                | 0.00032         | 0.00032           |
| 17       | correction factor source REF [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | corSR                                | 1.0000                                                                                      | 0.00032                                             | A     | 1000                                    | 238.49         | 0.07632         | 0.00032           |
| 18       | correction factor photometer [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | corS1                                | 1.0000                                                                                      | 0.0011                                              | А     | 1000                                    | -238.50        | -0.26235        | -0.001            |
| 19       | luminous intensity REF [cd]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I <sub>CSR</sub>                     | 14.756                                                                                      | 0.0150                                              | В     | 00                                      | 16.1624        | 0.24244         | 0.00102           |
| 20       | mean value photometer signal [V]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      | 4.22128                                                                                     | 0.00040                                             | A     | 15                                      | 56.498         | 0.02260         | 0.000             |
| 21       | mean value photometer signal [V]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $y_{PS1}$                            | 0.25951                                                                                     | 0.000070                                            | A     | 15                                      | -919.008       | -0.06433        | -0.00027          |
| 22       | mean value current [V]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | y <sub>psr</sub>                     | 0.565030                                                                                    | 0.000026                                            | A     | 30                                      | -2833.72       | -0.07368        |                   |
| 22       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U <sub>JS1</sub>                     |                                                                                             | 0.000025                                            | A     | 30                                      | 3076.43        | 0.07691         | -0.000<br>0.00032 |
| -        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $U_{\rm JSR}$                        | 0.536020                                                                                    |                                                     |       |                                         |                |                 | 0.00032           |
| 24       | current intensity exponent [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mI <sub>s1</sub>                     | 6.70                                                                                        | 0.30                                                | В     | 00                                      | 0.0181         | 0.00543         | 0.000             |
| 25       | current intensity exponent REF [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mI <sub>SR</sub>                     | 6.90                                                                                        | 0.20                                                | В     | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | -0.0219        | -0.00437        | -0.00002          |
| 26       | current distrib. temp exponent [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | m T <sub>S1</sub>                    | 0.68                                                                                        | 0.10                                                | В     | 00                                      | 0.0004         | 0.00004         | 0.000             |
| 27       | current distrib. temp exp. REF [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $mT_{\rm SR}$                        | 0.72                                                                                        | 0.20                                                | В     | 00                                      | -0.0004        | -0.00009        | 0.00000           |
| 28       | distrib. temperature source [K]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $T_{dC1}$                            | 2800                                                                                        | 20                                                  | В     | 8                                       | -0.0017        | -0.03407        | -0.000            |
| 29       | distrib. temperature REF [K]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $T_{dCR}$                            | 2042                                                                                        | 10                                                  | В     | 00                                      | 0.0023         | 0.02336         | 0.00010           |
| 30       | shunt resistor current [ohm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R <sub>J</sub>                       | 0.1000129                                                                                   | 0.00003                                             | В     | 00                                      | -478.83        | -0.00144        | -0.00001          |
| 31       | cal. factor current DVM [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C <sub>J</sub>                       | 1.0000                                                                                      | 0.000048                                            | В     | 00                                      | 47.889         | 0.00230         | 0.00001           |
| 32       | mismatch index [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | m <sub>p</sub>                       | -0.020                                                                                      | 0.0025                                              | В     | 00                                      | 75.2929        | 0.18823         | 0.00079           |
| 33       | nominal current of source [A]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | J <sub>C1</sub>                      | 5.6500                                                                                      | 0                                                   |       |                                         |                |                 | ·                 |
| 34       | nominal current source REF [A]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | J <sub>CR</sub>                      | 5.3600                                                                                      | 0                                                   |       |                                         |                |                 | 0.00              |
| 35       | intensity at nom. Current [cd]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I <sub>CS1</sub>                     | 238.492                                                                                     |                                                     |       | 4232                                    |                | 0.43            | 0.00180           |
|          | tool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *CS1                                 |                                                                                             |                                                     |       |                                         |                |                 |                   |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      | 60.000 1 6000                                                                               | n review officer for more that is                   |       | 2.00                                    | 1              | 0.9             | 0.0036            |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      | found from ap                                                                               | proximation formula: k                              | =     | 2.00                                    |                | 0.3             | 0.0050            |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |                                                                                             |                                                     |       |                                         |                |                 |                   |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |                                                                                             |                                                     |       |                                         | variance       | $u_{dev}(y) =$  | 0.12              |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |                                                                                             |                                                     |       |                                         | variance       | $u_{inst}(y) =$ | 0.14%             |

#### Note:

The type A/B evaluation of uncertainties valid for the different quantities is stated above.

### **PTB-Answers**

### to the document CCPR-K3.2014\_PDA\_P2R1 from 2016-April-13

#### **General Comment 1:**

Straylight created by baffles in the light path depends strongly on their shapes and the construction of the edges and it is not corrected by background subtraction. This yields similarly for straylight back reflected from the light trap behind the lamp. The effect of this type of straylight is mostly compensated if luminous intensity lamps are used as reference standards for the transfer standards within the CCPR comparison as performed by the PTB. Provided this type of straylight contributes significantly to the combined uncertainty then it has to be mentioned in the model of evaluation and in the uncertainty budget. It should be mentioned that the baffles used at the PTB create a relative straylight  $< 5 \cdot 10^{-5}$ . In case the photometer is reference for the calibration of the luminous intensity standard lamps the uncertainty of the aperture has to be taken into account and only then the given reference [Metrologia **37**, 621 (2000)] is helpful.

#### **General Comment 2:**

Usually the photometer's aperture plane is aligned by help of a mirror and a back reflected laser beam and any deviation from the perpendicular direction has to be weighted by the cosine. The effect of this misalignment is mostly compensated if the mounting of the photometer was unchanged between its calibration as reference and the transfer to the transfer standards within the CCPR comparison. Provided this misalignment contributes significantly to the combined uncertainty then it has to be mentioned in the model of evaluation and in the uncertainty budget.

#### **General Comment 3:**

In the Technical Protocol for this CCPR comparison chapter 6.1.1 the GUM is explicitly claimed as reference for any statement of measurement uncertainty. Additionally, the chapter 6.1.2 refers to the document CIE 198 as example for modeling combination and presentation. The protocol itself gives in Appendix A.5 an example for an abbreviated presentation. Thus, the model of evaluation is an essential part in the documentation and has to be stated individually by each participant as well as the complete uncertainty budget from CIE 198 as an intermediate step for the summarized presentation recommended in Appendix A.5 to simplify the comparison of individual contributions.

#### **Questions to PTB:**

- a) According to the GUM all entries in Appendix A.5 are labeled in column 6 with "A" for "statistical" or "B" for any "other determination". These types of entries are combined and listed separately for each lamp. The list was send to the pilot for an additional explanation and mean values u(A) = 0.12% and u(B) = 0.13% are indicated. Thus, the combined standard uncertainty for the transfer by only one lamp is  $u(I) = \sqrt{u(A)^2 + u(B)^2} = 0.18\%$ .
- b) At the bottom of the table Appendix A.5 two values labeled  $u_{dev} = 0.12\%$  for random ("dev" for devise) and  $u_{inst} = 0.14\%$  for systematic contributions ("inst" for instrumentation) are included. These numbers, their meaning and the evaluation are explained in all details in the publication CIE 198-SP1.2:2011 (see chapter/example 2.13). The combination of these numbers to determine the uncertainty of the whole batch for the transferred value of intensity is explained in great detail in CIE 198-SP1.1:2011 example 1.11.

It turns out that the instrumentation for the two rounds at PTB was stable and the properties of the PTB-transfer-standards (WI41/G) are uniform. A separation in types A and B or "random" and "systematic" gives no real difference. So, the uncertainty u(PTB) associated with the luminous intensity value transferred by **the batch** with a number of 6 PTB-transfer standards will be determined by the pilot laboratory from

$$u(I)_{\text{PTB}} = \sqrt{u_{\text{inst}}^2 + \frac{u_{\text{dev}}^2}{6}} = 0.15\%$$

Braunschweig, 2016-April-28

2022-May-20

March 2014 / June 2015

Appendix A.6

# Initial & Return measurement at PTB Lamp-No.: 759



| Designation                                                               | Symbol                            | Initial measurement result<br>(as already reported in March 2014) |
|---------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------|
| Lamp current<br>nominal value                                             | $J_{ m L}$                        | 5.65000 A                                                         |
| Lamp voltage<br>value<br>relative <u>standard</u> uncertainty             | $U_{ m L} \ u_{ m rel}(U_{ m L})$ | 29.1225 V<br>0.011 %                                              |
| Distribution temperature<br>value<br>absolute <u>standard</u> uncertainty | $T_{ m d}$<br>$u(T_{ m d})$       | 2800 K<br>20 K                                                    |
| Luminous intensity<br>value<br>relative <u>standard</u> uncertainty       | I<br>u <sub>rel</sub> (I)         | 236.21 cd<br>0.18 %                                               |

# Measurement at Pilot-Laboratory, operating time: 55 min

| Designation                                                               | Symbol                            | Return measurement result<br>( <i>June 2015</i> ) |
|---------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------|
| Lamp current<br>nominal value                                             | $J_{ m L}$                        | 5.65000 A                                         |
| Lamp voltage<br>value<br>relative <u>standard</u> uncertainty             | $U_{ m L}$ $u_{ m rel}(U_{ m L})$ | 29.1225 V<br>0.011 %                              |
| Distribution temperature<br>value<br>absolute <u>standard</u> uncertainty | $T_{ m d}$<br>$u(T_{ m d})$       | 2800 K<br>20 K                                    |
| Luminous intensity<br>value<br>relative <u>standard</u> uncertainty       | I<br>u <sub>rel</sub> (I)         | 236.22 cd<br>0.18 %                               |

Operating time at PTB: 37 min

**Note:** The stated results of the return measurements at PTB include the aging corrections for the total operating time at the Pilot-Laboratory and at the PTB using the following averaged relative correction coefficients with associated standard uncertainties:

2022-May-20

March 2014 / June 2015

Appendix A.6

# Initial & Return measurement at PTB Lamp-No.: 791



- Final result -

| Designation                                                               | Symbol                            | Initial measurement result<br>(as already reported in March 2014) |
|---------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------|
| Lamp current<br>nominal value                                             | $J_{ m L}$                        | 5.65000 A                                                         |
| Lamp voltage<br>value<br>relative <u>standard</u> uncertainty             | $U_{ m L} \ u_{ m rel}(U_{ m L})$ | 29.5643 V<br>0.011 %                                              |
| Distribution temperature<br>value<br>absolute <u>standard</u> uncertainty | $T_{\rm d}$<br>$u(T_{\rm d})$     | 2800 K<br>20 K                                                    |
| Luminous intensity<br>value<br>relative <u>standard</u> uncertainty       | I<br>u <sub>rel</sub> (I)         | 247.55 cd<br>0.18 %                                               |

# Measurement at Pilot-Laboratory, operating time: 55 min

| Designation                                                               | Symbol                            | Return measurement result<br>( <i>June 2015</i> ) |
|---------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------|
| Lamp current<br>nominal value                                             | $J_{ m L}$                        | 5.65000 A                                         |
| Lamp voltage<br>value<br>relative <u>standard</u> uncertainty             | $U_{ m L}$ $u_{ m rel}(U_{ m L})$ | 29.5649 V<br>0.011 %                              |
| Distribution temperature<br>value<br>absolute <u>standard</u> uncertainty | $T_{ m d}$<br>$u(T_{ m d})$       | 2800 K<br>20 K                                    |
| Luminous intensity<br>value<br>relative <u>standard</u> uncertainty       | I<br>u <sub>rel</sub> (I)         | 247.53 cd<br>0.18 %                               |

Operating time at PTB: 38 min

**Note:** The stated results of the return measurements at PTB include the aging corrections for the total operating time at the Pilot-Laboratory and at the PTB using the following averaged relative correction coefficients with associated standard uncertainties:

2022-May-20

March 2014 / June 2015

Appendix A.6

# Initial & Return measurement at PTB Lamp-No.: 793



- Final result -

| Designation                                                               | Symbol                            | Initial measurement result (as already reported in March 2014) |
|---------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------|
| Lamp current<br>nominal value                                             | $J_{ m L}$                        | 5.65000 A                                                      |
| Lamp voltage<br>value<br>relative <u>standard</u> uncertainty             | $U_{ m L} \ u_{ m rel}(U_{ m L})$ | 29.3866 V<br>0.011 %                                           |
| Distribution temperature<br>value<br>absolute <u>standard</u> uncertainty | $T_{\rm d}$<br>$u(T_{\rm d})$     | 2800 K<br>20 K                                                 |
| Luminous intensity<br>value<br>relative <u>standard</u> uncertainty       | I<br>u <sub>rel</sub> (I)         | 245.97 cd<br>0.18 %                                            |

# Measurement at Pilot-Laboratory, operating time: 52 min

| Designation                                                               | Symbol                            | Return measurement result<br>( <i>June 2015</i> ) |
|---------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------|
| Lamp current<br>nominal value                                             | $J_{ m L}$                        | 5.65000 A                                         |
| Lamp voltage<br>value<br>relative <u>standard</u> uncertainty             | $U_{ m L} \ u_{ m rel}(U_{ m L})$ | 29.3867 V<br>0.011 %                              |
| Distribution temperature<br>value<br>absolute <u>standard</u> uncertainty | $T_{ m d}$<br>$u(T_{ m d})$       | 2800 K<br>20 K                                    |
| Luminous intensity<br>value<br>relative <u>standard</u> uncertainty       | I<br>u <sub>rel</sub> (I)         | 246.00 cd<br>0.18 %                               |

Operating time at PTB: 36 min

**Note:** The stated results of the return measurements at PTB include the aging corrections for the total operating time at the Pilot-Laboratory and at the PTB using the following averaged relative correction coefficients with associated standard uncertainties:

2022-May-20

March 2014 / June 2015

Appendix A.6

# Initial & Return measurement at PTB Lamp-No.: 848



| - F | Final | result - |  |
|-----|-------|----------|--|

| Designation                                                               | Symbol                            | Initial measurement result<br>(as already reported in March 2014) |
|---------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------|
| Lamp current<br>nominal value                                             | $J_{ m L}$                        | 5.70000 A                                                         |
| Lamp voltage<br>value<br>relative <u>standard</u> uncertainty             | $U_{ m L} \ u_{ m rel}(U_{ m L})$ | 28.5727 V<br>0.011 %                                              |
| Distribution temperature<br>value<br>absolute <u>standard</u> uncertainty | $T_{ m d}$<br>$u(T_{ m d})$       | 2810 K<br>20 K                                                    |
| Luminous intensity<br>value<br>relative <u>standard</u> uncertainty       | I<br>u <sub>rel</sub> (I)         | 228.53 cd<br>0.18 %                                               |

# Measurement at Pilot-Laboratory, operating time: 53 min

| Designation                                                               | Symbol                            | Return measurement result<br>( <i>June 2015</i> ) |
|---------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------|
| Lamp current<br>nominal value                                             | $J_{ m L}$                        | 5.70000 A                                         |
| Lamp voltage<br>value<br>relative <u>standard</u> uncertainty             | $U_{ m L} \ u_{ m rel}(U_{ m L})$ | 28.5712 V<br>0.011 %                              |
| Distribution temperature<br>value<br>absolute <u>standard</u> uncertainty | $T_{ m d}$<br>$u(T_{ m d})$       | 2810 K<br>20 K                                    |
| Luminous intensity<br>value<br>relative <u>standard</u> uncertainty       | I<br>u <sub>rel</sub> (I)         | 228.54 cd<br>0.18 %                               |

Operating time at PTB: 34 min

**Note:** The stated results of the return measurements at PTB include the aging corrections for the total operating time at the Pilot-Laboratory and at the PTB using the following averaged relative correction coefficients with associated standard uncertainties:

2022-May-20

March 2014 / June 2015

Appendix A.6

# Initial & Return measurement at PTB Lamp-No.: 851



- Final result -

| Designation                                                               | Symbol                            | Initial measurement result<br>(as already reported in March 2014) |
|---------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------|
| Lamp current<br>nominal value                                             | $J_{ m L}$                        | 5.70000 A                                                         |
| Lamp voltage<br>value<br>relative <u>standard</u> uncertainty             | $U_{ m L} \ u_{ m rel}(U_{ m L})$ | 28.9316 V<br>0.011 %                                              |
| Distribution temperature<br>value<br>absolute <u>standard</u> uncertainty | $T_{ m d}$<br>$u(T_{ m d})$       | 2815 K<br>20 K                                                    |
| Luminous intensity<br>value<br>relative <u>standard</u> uncertainty       | I<br>u <sub>rel</sub> (I)         | 233.49 cd<br>0.18 %                                               |

# Measurement at Pilot-Laboratory, operating time: 57 min

| Designation                                                               | Symbol                            | Return measurement result<br>( <i>June 2015</i> ) |
|---------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------|
| Lamp current<br>nominal value                                             | $J_{ m L}$                        | 5.70000 A                                         |
| Lamp voltage<br>value<br>relative <u>standard</u> uncertainty             | $U_{ m L}$ $u_{ m rel}(U_{ m L})$ | 28.9313 V<br>0.011 %                              |
| Distribution temperature<br>value<br>absolute <u>standard</u> uncertainty | $T_{ m d}$<br>$u(T_{ m d})$       | 2815 K<br>20 K                                    |
| Luminous intensity<br>value<br>relative <u>standard</u> uncertainty       | I<br>u <sub>rel</sub> (I)         | 233.54 cd<br>0.18 %                               |

Operating time at PTB: 34 min

**Note:** The stated results of the return measurements at PTB include the aging corrections for the total operating time at the Pilot-Laboratory and at the PTB using the following averaged relative correction coefficients with associated standard uncertainties:

2022-May-20

March 2014 / June 2015

Appendix A.6

# Initial & Return measurement at PTB Lamp-No.: 858



- Final result -

| Designation                                                               | Symbol                            | Initial measurement result<br>(as already reported in March 2014) |
|---------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------|
| Lamp current<br>nominal value                                             | $J_{ m L}$                        | 5.70000 A                                                         |
| Lamp voltage<br>value<br>relative <u>standard</u> uncertainty             | $U_{ m L} \ u_{ m rel}(U_{ m L})$ | 28.5610 V<br>0.011 %                                              |
| Distribution temperature<br>value<br>absolute <u>standard</u> uncertainty | $T_{\rm d}$<br>$u(T_{\rm d})$     | 2800 K<br>20 K                                                    |
| Luminous intensity<br>value<br>relative <u>standard</u> uncertainty       | I<br>u <sub>rel</sub> (I)         | 225.12 cd<br>0.18 %                                               |

# Measurement at Pilot-Laboratory, operating time: 54 min

| Designation                                                               | Symbol                            | Return measurement result<br>( <i>June 2015</i> ) |
|---------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------|
| Lamp current<br>nominal value                                             | $J_{ m L}$                        | 5.70000 A                                         |
| Lamp voltage<br>value<br>relative <u>standard</u> uncertainty             | $U_{ m L} \ u_{ m rel}(U_{ m L})$ | 28.5618 V<br>0.011 %                              |
| Distribution temperature<br>value<br>absolute <u>standard</u> uncertainty | $T_{ m d}$<br>$u(T_{ m d})$       | 2800 K<br>20 K                                    |
| Luminous intensity<br>value<br>relative <u>standard</u> uncertainty       | I<br>u <sub>rel</sub> (I)         | 225.01 cd<br>0.18 %                               |

Operating time at PTB: 35 min

**Note:** The stated results of the return measurements at PTB include the aging corrections for the total operating time at the Pilot-Laboratory and at the PTB using the following averaged relative correction coefficients with associated standard uncertainties:

## CCPR Key Comparison CCPR-K3.2014

# Luminous Intensity

**Final Report** 

Appendix A

# **VNIIOFI Report**

#### Appendix A.3 Description of the **<u>VNIIOFI</u>** measurement facility

The items listed on this form should be used as a guide. It is anticipated that many of the questions will require more information than the space allocated on this page. Please expand your reply document as necessary.

Description of measurement geometry (please include a diagram):

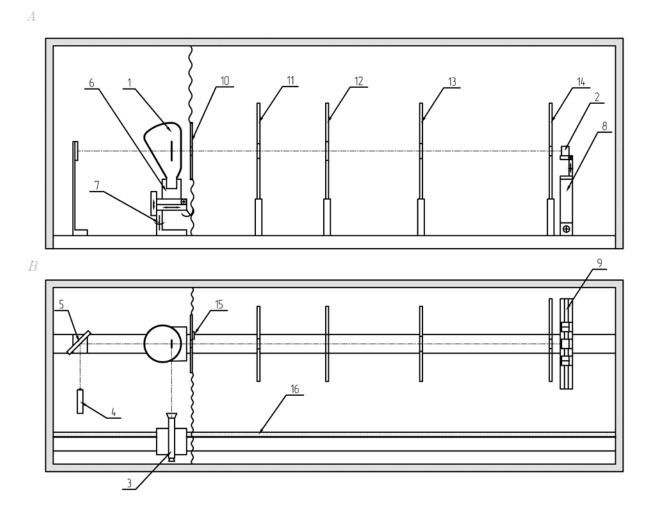



Fig.1. Diagram of VNIIOFI facility used for measuring luminous intensity of comparison lamps within the CCPR-K3.2014 comparison. A – side view; B – top view. 1 – lamp to be measured; 2 – photometer; 3 – telescope; 4 – alignment laser; 5 – mirror; 6 – lamp socket; lamp alignment mount; photometer alignment mount; translation stage; 10 - limiting baffle (aperture is 40x45 mm); 11 – baffle with shutter (aperture is 55x80 mm); 12 – baffle with aperture diameter of 100 mm; 13 – baffle with aperture diameter of 80 mm; 14 – baffle with aperture diameter of 50 mm; 16 – ruler.

- positions of lamp, detector, bench, shielding, baffles (number, distances and sizes) A lamp, photometers and baffles stand on a rail inside a light-tight box. On a parallel rail there is a telescope for aligning a lamp and measuring distance. All side walls of the box are covered with black velvet cloth. The ceiling and baffles are painted by diffuse black paint. Three photometers were used for the comparison. All three were located on a translation stage perpendicular to the rail. The photometers were pre-aligned before the measurements and then replaced each other without additional alignment during the measurement.

A laser beam, reflected by a mirror behind the lamp, is used for aligning the lamp and photometers. The distance from the lamp to the mirror is 550 mm. During measurements the laser and mirror are shielded by black velvet cloth.

The lamp area is separated from the other box volume by a black velvet curtain. In the plain of the curtain in front of the lamp filament there is a limiting baffle. The distance between the baffle and the lamp bulb is 50 mm. The aperture of the baffles is rectangular 40x45 mm (width x height).

There are four additional baffles between the lamp curtain and the photometers. The widths and heights of the baffles are 400 mm and 510 mm, respectively. Aperture of the baffle nearest to the curtain is rectangular of 55x80 mm. This baffle is equipped with a shutter. Apertures of other baffles are round with diameters of (if counted from the lamp to the photometer): 100 mm, 80 mm and 50 mm. The distances: from the curtain to the first baffle is 320 mm; from the first to the second is also 320 mm; from the second to the third is 500 mm; from the photometer to the fourth is 50 mm.

- alignment devices A laser and a telescope

- solid angle of luminous intensity measurements:

- distance of photometer from lamp Approximately 2100 mm

- size of photometer input aperture Round with diameter of 15 mm

- limiting aperture? 40x45 mm (width x height) at the distance of approximately 2050 mm from the photometer (about 50 mm from the lamp bulb).

Description of measurement procedures.

Four (at least) independent measurement were done for each lamp with total re-alignment of photometers and lamps. Each independent measurement comprised the following steps:

- 1) Aligning the photometers using a laser beam;
- 2) Screwing a lamp into a holder and aligning the lamp;
- 3) Measuring distance between the lamp and photometers;
- 4) Turning on the lamp, putting the set current; waiting for 15 minutes;
- 5) Checking the current, measuring the lamp voltage;
- 6) Measuring photocurrent of the first photometer, then closing the stutter and measuring the dark current. 25 reading were taken for both "light" current and dark current;
- 7) Replacing the photometer and in turn measuring photocurrent and dark of the second and third photometers;
- 8) Turning off the lamp. Replace the lamp. Repeat (2) 7) for all lamps.

Make and type of the photometer (or equivalent). LMP Photometerhead of the **P150T** type with LMT photocurrent meter of the **I1000** type

Operating conditions of the lamps:

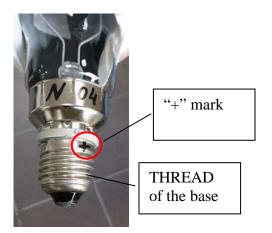
- geometrical alignment
  - definitions of defined point and reference plane at the lamp
    - for Osram lamps with center filament supports, which center filament

support type is used for the alignment (see Figure Two and Section 4.4.8.)

We used the type called "Center Filament Support #1"

- alignment procedure

- is the filament at room temperature or glowing for the alignment?


#### At room temperature

- alignment jig? If so, how is it used? No jig was used.

- size and position of limiting aperture

40x45 mm (width x height) at the distance of approximately 2050 mm from the photometer (about 50 mm from the lamp bulb). This aperture is smaller that the lamp window.

- electrical polarity, current, voltage for each traveling standard Positive polarity on the thread of the lamp base:



| Lamp # | Current, A | CCT, K | Voltage, V |
|--------|------------|--------|------------|
| N 01   | 5,880      | 2855,8 | 30.419     |
| N 02   | 5,900      | 2854,1 | 30.647     |
| N 03   | 5,920      | 2853,6 | 30.594     |
| N 04   | 5,870      | 2856,6 | 30.487     |
| 3281   | 5,880      | 2853,9 | 29.952     |
| 3282   | 5,800      | 2854,3 | 30.547     |

- length of warm-up time for each lamp before measurements are taken 15 minutes

- measured CCT (or Distribution Temperature or Colour Temperature, see Section 3.5). See the table above

- stray-light reduction No correction for stray-light was done

Description of calibration laboratory conditions: e.g. temperature, humidity etc.

Temperature varied from 21.8 °C to 23 °C during the first round and from 21.4 °C to 22.6 °C during the second round

Humidity was about 30% during the first round, but did not measured during the second one.

Laboratory transfer standards used:

- type of transfer standards and traceability to primary scale Three photometers of LMT **P150T** type, # 31, #32 and #131. Establishment or traceability route of primary scale including date of last realisation and uncertainty budget.

Primary scale was realized using a high-temperature blackbody. Luminous intensity of the blackbody calculated as

$$I_{\rm BB} = \varepsilon \cdot A \cdot K_{\rm cd} \cdot \int L_{\lambda,\rm BB} (\lambda, T_{\rm BB}) \cdot V(\lambda) d\lambda \qquad (1)$$

where

 $K_{\rm cd}$  is the luminous efficacy, equals to 683 cd·sr/W  $V(\lambda)$  is the photopic luminous efficiency function,  $L_{\lambda,\rm BB}(\lambda, T_{BB})$  is the ideal blackbody spectral radiance,  $T_{BB}$  is the blackbody temperature,  $\varepsilon$  is the blackbody emissivity and

A is an area of the blackbody aperture.

The temperature of the blackbody was approximately 2856 K. The exact temperature was measured by a radiation thermometer, which was calibrated against three high-temperature fixed points: Co-C (1597 K), Re-C (2748 K) and WC-C (3021 K). The fixed points were earlier measured by means of comparison with the copper fixed point (1357.77 K) in according with the ITS-90. The standard uncertainty of blackbody temperature measurement was 0.5 K.

The emissivity of the blackbody was estimated using the Monte-Carlo based software STEEP3. as 0.9995 with standard uncertainty of 0.0002.

A water-cooled bronze aperture was used with approximate diameter of 8 mm. The exact value of an average diameter measure with standard uncertainty of  $1.5 \mu m$ .

Responsivities of the photometers to the Type A source were measured against the blackbody and equals:

$$s_{\rm v,phot} = \frac{i_{\rm phot}}{g \cdot (I_{\rm BB}/l^2)} \cdot M$$
<sup>(2)</sup>

where

$$M = \frac{\int L_{\lambda,BB}(\lambda,T_{A}) \cdot s_{\text{rel,phot}}(\lambda) d\lambda}{\int L_{\lambda,BB}(\lambda,T_{A}) \cdot V(\lambda) d\lambda} \cdot \frac{\int L_{\lambda,BB}(\lambda,T_{BB}) \cdot V(\lambda) d\lambda}{\int L_{\lambda,BB}(\lambda,T_{BB}) \cdot s_{\text{rel,phot}}(\lambda) d\lambda}$$
(3)

M – Spectral mismatch correction factor;

 $s_{\text{rel.phot}}(\lambda)$  – Relative spectral responsivity of the photometer;

 $T_{\rm A} = 2856 \text{ K};$ 

l – Distance between the photometer and the blackbody aperture was about 720 mm;

g – Geometry correction depends on sizes of apertures and the distance.

Because the temperature of the blackbody agreed with  $T_A = 2856$  K within 2K only, the difference of M from the unit and its uncertainty were negligible (less than 0.005%).

| Source of uncertainty                                        | Luminous Intensity<br>standard uncertainty, % |
|--------------------------------------------------------------|-----------------------------------------------|
| Blackbody temperature (0.5 K)                                | 0.16                                          |
| Blackbody uniformity                                         | 0.03                                          |
| Blackbody stability (0.03 K)                                 | 0.01                                          |
| Emissivity                                                   | 0.02                                          |
| Aperture size (1.5 µm)                                       | 0.04                                          |
| Distance (0.1 mm)                                            | 0.03                                          |
| Stray light                                                  | 0.04                                          |
| Repeatability of measurement<br>(with independent alignment) | 0.08                                          |
| Combined Standard<br>Uncertainty                             | 0.19                                          |

Uncertainty budget of the photometer calibration:

The last realization and calibration of the photometers was done in December 2013 (one month before the first round measurements of the K3 lamps).

Contact person: Boris Khlevnoy

NMI:

Date:

25 November 2015

VNIIOFI

Signature:

## Lamp number: N 01

| Date     | Lamp<br>ON<br>time | Activity/Comments<br>(test. alignment.<br>measurement) | Lamp<br>OFF<br>time | Burn<br>time<br>(hrs) | Lamp<br>Current<br>(amperes) | Lamp<br>Voltage<br>(volts) | Operator<br>initials |
|----------|--------------------|--------------------------------------------------------|---------------------|-----------------------|------------------------------|----------------------------|----------------------|
|          |                    | Preliminary total burn tim                             | e of the la         | np was a              | about 2 hour                 |                            |                      |
| 26.12.13 | 12:15              | Annealing                                              | 18:05               | 5:50                  | 5.890                        | 30.613                     | ССК                  |
| 27.12.13 | 09:00              | Annealing                                              | 15:15               | 6:15                  | 5.890                        | 30.607                     | ССК                  |
| 13.01.14 | 11:00              | CCT measurement                                        | 13:55               | 2:55                  | 5.8520                       | 30.238                     | ССК                  |
| 14.01.14 | 11:00              | CCT measurement                                        | 13:20               | 2:20                  | 5.8700                       | 30.412                     | ССК                  |
| 29.01.14 | 11:10              | Measurement                                            | 11:50               | 0:40                  | 5.8800                       | 30.420                     | EBM                  |
| 30.01.14 | 15:50              | Measurement                                            | 16:30               | 0:40                  | 5.8800                       | 30.420                     | EBM                  |
| 04.02.14 | 14:12              | Measurement                                            | 14:52               | 0:40                  | 5.8800                       | 30.420                     | EBM                  |
| 07.02.14 | 10:43              | Measurement                                            | 11:18               | 0:35                  | 5.8800                       | 30.417                     | EBM                  |
| 17.02.14 | 15:22              | Measurement                                            | 15:46               | 0:24                  | 5.8800                       | 30.418                     | EBM                  |
|          |                    |                                                        |                     |                       |                              |                            |                      |
| 30.03.15 | 14:10              | Measurement                                            | 14:38               | 0:28                  | 5.8800                       |                            | EBM                  |
| 31.03.15 | 13:37              | Measurement                                            | 14:07               | 0:30                  | 5.8800                       |                            | EBM                  |
| 01.04.15 | 13:43              | Measurement                                            | 14:13               | 0:30                  | 5.8800                       | 30.413                     | EBM                  |
| 02.04.15 | 16:20              | Measurement                                            | 16:50               | 0:30                  | 5.8800                       | 30.414                     | EBM                  |
|          |                    |                                                        |                     |                       |                              |                            |                      |
|          |                    |                                                        |                     |                       |                              |                            |                      |

Participant: VNIIOFI (Russia)

## Lamp number: N 02

| Date     | Lamp<br>ON<br>time | Activity/Comments<br>(test. alignment.<br>measurement) | Lamp<br>OFF<br>time | Burn<br>time<br>(hrs) | Lamp<br>Current<br>(amperes) | Lamp<br>Voltage<br>(volts) | Operator<br>initials |
|----------|--------------------|--------------------------------------------------------|---------------------|-----------------------|------------------------------|----------------------------|----------------------|
|          |                    | Preliminary total burn tin                             | ne of the lar       | np was a              | bout 2 hour                  |                            |                      |
| 26.12.13 | 12:40              | Annealing                                              | 18:05               | 5:35                  | 5.900                        | 30.753                     | ССК                  |
| 27.12.13 | 09:15              | Annealing                                              | 15:15               | 6:00                  | 5.900                        | 30.737                     | ССК                  |
| 13.01.14 | 14:15              | CCT measurement                                        | 16:20               | 2:05                  | 5.8950                       | 30.686                     | ССК                  |
| 29.01.14 | 13:30              | Measurement                                            | 14:08               | 0:38                  | 5.9000                       | 30.650                     | EBM                  |
| 31.01.14 | 11:15              | Measurement                                            | 11:50               | 0:35                  | 5.9000                       | 30.646                     | EBM                  |
| 04.02.14 | 11:03              | Measurement                                            | 11:38               | 0:35                  | 5.9000                       | 30.645                     | EBM                  |
| 07.02.14 | 13:48              | Measurement                                            | 14:21               | 0:27                  | 5.9000                       | 30.646                     | EBM                  |
|          |                    |                                                        |                     |                       |                              |                            |                      |
| 30.03.15 | 14:50              | Measurement                                            | 15:20               | 0:30                  | 5.9000                       |                            | EBM                  |
| 31.03.15 | 14:20              | Measurement                                            | 14:52               | 0:32                  | 5.9000                       |                            | EBM                  |
| 01.04.15 | 14:25              | Measurement                                            | 14:55               | 0:30                  | 5.9000                       | 30.638                     | EBM                  |
| 03.04.15 | 10:07              | Measurement                                            | 10:37               | 0:30                  | 5.9000                       | 30.635                     | EBM                  |
|          |                    |                                                        |                     |                       |                              |                            |                      |
|          |                    |                                                        |                     |                       |                              |                            |                      |
|          |                    |                                                        |                     |                       |                              |                            |                      |

Participant: VNIIOFI (Russia)

## Lamp number: N 03

| Date     | Lamp<br>ON<br>time | Activity/Comments<br>(test. alignment.<br>measurement) | Lamp<br>OFF<br>time | Burn<br>time<br>(hrs) | Lamp<br>Current<br>(amperes) | Lamp<br>Voltage<br>(volts) | Operator<br>initials |
|----------|--------------------|--------------------------------------------------------|---------------------|-----------------------|------------------------------|----------------------------|----------------------|
|          |                    | Preliminary total burn tim                             | e of the lar        | np was a              | bout 2 hour                  |                            |                      |
| 30.12.13 | 10:00              | Annealing                                              | 15:45               | 5:45                  | 5.880                        | 30.321                     | ССК                  |
| 09.01.14 | 10:35              | Annealing                                              | 17:10               | 6:35                  | 5.880                        | 30.304                     | ССК                  |
| 14.01.14 | 13:55              | CCT measurement                                        | 17:00               | 3:05                  | 5.9140                       | 30.627                     | ССК                  |
| 29.01.14 | 14:30              | Measurement                                            | 15:08               | 0:38                  | 5.9200                       | 30.600                     | EBM                  |
| 31.01.14 | 13:23              | Measurement                                            | 14:00               | 0:37                  | 5.9200                       | 30.595                     | EBM                  |
| 03.02.14 | 16:20              | Measurement                                            | 16:55               | 0:35                  | 5.9200                       | 30.594                     | EBM                  |
| 04.02.14 | 15:10              | Measurement                                            | 15:50               | 0:40                  | 5.9200                       | 30.594                     | EBM                  |
| 06.02.14 | 11:15              | Measurement                                            | 11:55               | 0:40                  | 5.9200                       | 30.592                     | EBM                  |
| 17.02.14 | 13:57              | Measurement                                            | 14:40               | 0:43                  | 5.9200                       | 30.593                     | EBM                  |
| 30.03.15 | 15:22              | Measurement                                            | 15:57               | 0:35                  | 5.9200                       |                            | EBM                  |
| 31.03.15 | 15:40              | Measurement                                            | 16:12               | 0:33                  | 5.9200                       |                            | EBM                  |
| 01.04.15 | 15:12              | Measurement                                            | 15:42               | 0:32                  | 5.9200                       | 30.584                     | EBM                  |
| 03.04.15 | 10:48              | Measurement                                            | 11:16               | 0:28                  | 5.9200                       | 30.583                     | EBM                  |
|          |                    |                                                        |                     |                       |                              |                            |                      |
|          |                    |                                                        |                     |                       |                              |                            |                      |

Participant: VNIIOFI (Russia)

## Lamp number: N 04

| Date     | Lamp<br>ON<br>time | Activity/Comments<br>(test. alignment.<br>measurement) | Lamp<br>OFF<br>time | Burn<br>time<br>(hrs) | Lamp<br>Current<br>(amperes) | Lamp<br>Voltage<br>(volts) | Operator<br>initials |
|----------|--------------------|--------------------------------------------------------|---------------------|-----------------------|------------------------------|----------------------------|----------------------|
|          |                    | Preliminary total burn tin                             | ne of the lar       | np was a              | bout 2 hour                  | -                          |                      |
| 30.12.13 | 10:00              | Annealing                                              | 15:45               | 5:45                  | 5.880                        | 30.658                     | ССК                  |
| 09.01.14 | 10:35              | Annealing                                              | 17:10               | 6:35                  | 5.880                        | 30.668                     | ССК                  |
| 15.01.14 | 11:35              | CCT measurement                                        | 13:00               | 1:25                  | 5.8600                       | 30.477                     | ССК                  |
| 30.01.14 | 11:10              | Measurement                                            | 11:45               | 0:35                  | 5.8700                       | 30.487                     | EBM                  |
| 31.01.14 | 14:25              | Measurement                                            | 15:00               | 0:35                  | 5.8700                       | 30.486                     | EBM                  |
| 03.02.14 | 14:35              | Measurement                                            | 15:10               | 0:35                  | 5.8700                       | 30.490                     | EBM                  |
| 06.02.14 | 14:35              | Measurement                                            | 15:10               | 0:35                  | 5.8700                       | 30.487                     | EBM                  |
| 30.03.15 | 16:13              | Measurement                                            | 16:41               | 0:28                  | 5.8700                       |                            | EBM                  |
| 31.03.15 | 16:30              | Measurement                                            | 17:00               | 0:28                  | 5.8700                       |                            | EBM                  |
| 01.04.15 | 16:15              | Measurement                                            | 16:43               | 0:30                  | 5.8700                       | 30.485                     | EBM                  |
| 03.04.15 | 13:10              | Measurement                                            | 13:40               | 0:28                  | 5.8700                       | 30.485                     | EBM                  |
|          |                    |                                                        |                     |                       |                              |                            |                      |

Participant: VNIIOFI (Russia)

## Lamp number: 3281

| Date     | Lamp<br>ON<br>time | Activity/Comments<br>(test. alignment.<br>measurement) | Lamp<br>OFF<br>time | Burn<br>time<br>(hrs) | Lamp<br>Current<br>(amperes) | Lamp<br>Voltage<br>(volts) | Operator<br>initials |
|----------|--------------------|--------------------------------------------------------|---------------------|-----------------------|------------------------------|----------------------------|----------------------|
|          |                    | Preliminary total burn tin                             | ne of the la        | np was a              | bout 2 hour                  |                            |                      |
| 26.12.13 | 12:10              | Annealing                                              | 17:20               | 5:10                  | 5.880                        | 29.953                     | EBM                  |
| 27.12.13 | 07:55              | Annealing                                              | 13:00               | 5:05                  | 5.880                        | 29.946                     | EBM                  |
| 10.01.14 | 11:45              | CCT measurement                                        | 14:05               | 2:20                  | 5.8750                       | 29.996                     | ССК                  |
| 28.01.14 | 11:10              | Measurement                                            | 11:48               | 0:38                  | 5.8800                       | 29.952                     | EBM                  |
| 28.01.14 | 14:10              | Measurement                                            | 14:58               | 0:48                  | 5.8800                       | 29.951                     | EBM                  |
| 30.01.14 | 13:30              | Measurement                                            | 14:15               | 0:45                  | 5.8800                       | 29.951                     | EBM                  |
| 03.02.14 | 10:53              | Measurement                                            | 11:34               | 0:41                  | 5.8800                       | 29.953                     | EBM                  |
| 05.02.14 | 11:30              | Measurement                                            | 12:05               | 0:35                  | 5.8800                       | 29.951                     | EBM                  |
|          |                    |                                                        |                     |                       |                              |                            |                      |
| 30.03.15 | 10:45              | Measurement                                            | 11:15               | 0:30                  | 5.8800                       |                            | EBM                  |
| 31.03.15 | 10:20              | Measurement                                            | 10:54               | 0:34                  | 5.8800                       |                            | EBM                  |
| 01.04.15 | 11:28              | Measurement                                            | 11:58               | 0:30                  | 5.8800                       | 29.944                     | EBM                  |
| 02.04.15 | 13:52              | Measurement                                            | 14:22               | 0:30                  | 5.8800                       | 29.943                     | EBM                  |
|          |                    |                                                        |                     |                       |                              |                            |                      |
|          |                    |                                                        |                     |                       |                              |                            |                      |

Participant: VNIIOFI (Russia)

## Lamp number: 3282

| Date     | Lamp<br>ON<br>time | Activity/Comments<br>(test. alignment.<br>measurement) | Lamp<br>OFF<br>time | Burn<br>time<br>(hrs) | Lamp<br>Current<br>(amperes) | Lamp<br>Voltage<br>(volts) | Operator<br>initials |
|----------|--------------------|--------------------------------------------------------|---------------------|-----------------------|------------------------------|----------------------------|----------------------|
|          |                    | Preliminary total burn time                            | of the lar          | np was a              | bout 2 hour                  |                            |                      |
| 27.12.13 | 13:45              | Annealing                                              | 18:20               | 3:35                  | 5.800                        | 30.548                     | EBM                  |
| 09.01.14 | 10:40              | Annealing                                              | 16:40               | 6:00                  | 5.800                        | 30.540                     | EBM                  |
| 10.01.14 | 10:50              | Annealing                                              | 13:50               | 3:00                  | 5.800                        | 30.535                     | EBM                  |
| 10.01.14 | 14:25              | CCT measurement                                        | 16:20               | 1:55                  | 5.7900                       | 30.543                     | ССК                  |
| 28.01.14 | 16:10              | Measurement                                            | 16:45               | 0:35                  | 5.8000                       | 30.547                     | EBM                  |
| 30.01.14 | 14:35              | Measurement                                            | 15:12               | 0:37                  | 5.8000                       | 30.547                     | EBM                  |
| 03.02.14 | 13:45              | Measurement                                            | 14:20               | 0:35                  | 5.8000                       | 30.551                     | EBM                  |
| 06.02.14 | 15:30              | Measurement                                            | 16:00               | 0:30                  | 5.8000                       | 30.546                     | EBM                  |
|          |                    |                                                        |                     |                       |                              |                            |                      |
| 30.03.15 | 13:30              | Measurement                                            | 13:58               | 0:28                  | 5.8000                       |                            | EBM                  |
| 31.03.15 | 11:10              | Measurement                                            | 11:44               | 0:34                  | 5.8000                       |                            | EBM                  |
| 01.04.15 | 11:12              | Measurement                                            | 11:40               | 0:28                  | 5.8000                       | 30.541                     | EBM                  |
| 02.04.15 | 14:35              | Measurement                                            | 15:02               | 0:28                  | 5.8000                       | 30.542                     | EBM                  |
|          |                    |                                                        |                     |                       |                              |                            |                      |
|          |                    |                                                        |                     |                       |                              |                            |                      |

Participant: VNIIOFI (Russia)

| Measurement Parameter                                                 | Uncertainty<br>Type<br>(A or B) | Standard Uncertainty<br>in luminous intensity<br>(%) |
|-----------------------------------------------------------------------|---------------------------------|------------------------------------------------------|
| Systematic effects:                                                   |                                 |                                                      |
| Calibration of working standards                                      |                                 |                                                      |
| - Photometers of LMT P150T type                                       | В                               | 0.19                                                 |
| Electrical                                                            |                                 |                                                      |
| - standard resistor                                                   | В                               | 0.002                                                |
| - voltmeter                                                           | В                               | 0.07                                                 |
| Photometer                                                            |                                 |                                                      |
| - spectral mismatch                                                   | В                               | 0.001                                                |
| - linearity                                                           | В                               | 0.01                                                 |
| - distance                                                            | В                               | 0.05                                                 |
| Environment                                                           |                                 |                                                      |
| - stray light                                                         | В                               | 0.1                                                  |
| - temperature / humidity                                              | В                               | 0.02                                                 |
| Lamp alignment (systematic component)                                 | В                               | 0.03                                                 |
| Discrepancy between photometers (systematic)                          | В                               | 0.04                                                 |
| Stability of photometers*                                             | В                               | 0.07                                                 |
| RMS total systematic effects:                                         |                                 |                                                      |
| 1 <sup>st</sup> Round                                                 |                                 | 0.24                                                 |
| 2 <sup>st</sup> Round                                                 |                                 | 0.25                                                 |
| Random effects**:                                                     |                                 |                                                      |
| Electrical parameters:                                                |                                 |                                                      |
| - power supply fluctuations, $u_{psf}$                                | В                               | 0.02                                                 |
| Photometer noise (25 readings), $u_{\text{noise}}$                    | А                               | 0.001                                                |
| Discrepancy between three photometers (random), $u_{pd}$              | А                               | 0.05                                                 |
| Independent measurement reproducibility *** , <i>u</i> <sub>rep</sub> | А                               | 0.05                                                 |
| RMS total random effects****:                                         |                                 | 0.06                                                 |
| RMS total standard uncertainty:                                       |                                 |                                                      |
| 1 <sup>st</sup> Round                                                 |                                 | 0.25                                                 |
| 2 <sup>st</sup> Round                                                 | 0.26                            |                                                      |

#### Appendix A.5 Sample Measurement Uncertainty Budget

#### \* For the second round only

\*\* Standard deviations varied from set to set and from lamp to lamp. Typical values are presented in the table.

\*\*\* Each independent measurement was done with total re-alignment of a lamp and the photometers. Random effect associated with independent measurement reproducibility comprises several random effects: lamp alignment, photometer alignment, random error in distance measurement, lamp fluctuation.

\*\*\*\* Uncertainty associated with reproducibility  $(u_{rep})$  partly includes uncertainties associated with other random effects. Therefore, the Total random uncertainty is calculated as

$$u_{Total,Random} = \sqrt{u_{rep}^2 + (u_{pd}^2 + u_{noise}^2 + u_{psf}^2)/n}$$

where n = 4 – the typical number of independent measurements

Measurement parameters given in this table are suggested. Please modify and itemize according to your particular situation. See Section 6.2 for explanation of the various items.

Note that if lamps are used as the laboratory working standards, a group of uncertainties would need to be included in the above table to account for their behaviour.

The RMS total refers to the usual square root of the sum of the squares of all the individual uncertainty terms.

| Contact person: | Boris Khlevnoy   |
|-----------------|------------------|
| NMI:            | VNIIOFI          |
| Date:           | 25 November 2015 |
| Signature:      | 2                |

| amp#  |                                                     | Measurem                                                                      |                                                                                 | Date                                                                                                                                               | Lamp Electrical                                                                                                                                                                                                                                                                                                                                                     | Lamp CCT |                                                                                                  | 1                                                            | Intensity (cd)                                                       | -    |
|-------|-----------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|------|
|       | Round#                                              | Set#                                                                          | Meas#PerSet                                                                     |                                                                                                                                                    | Current(A) Voltage(V)                                                                                                                                                                                                                                                                                                                                               | К        | l(cd)                                                                                            | -                                                            | ard Uncertai                                                         |      |
|       |                                                     |                                                                               |                                                                                 |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                     |          |                                                                                                  | Random                                                       | Systematic                                                           | fina |
| 3281  | 1                                                   | 1                                                                             | 25                                                                              | 2014-Jan-28                                                                                                                                        | 5.8800 29.952                                                                                                                                                                                                                                                                                                                                                       | 2853.9   | 273.23                                                                                           | 0.05                                                         | 0.22                                                                 |      |
|       | 1                                                   | 2                                                                             | 25                                                                              | 2014-Jan-30                                                                                                                                        | 5.8800 29.951                                                                                                                                                                                                                                                                                                                                                       |          | 273.33                                                                                           | 0.05                                                         | 0.22                                                                 |      |
|       | 1                                                   | 3                                                                             | 25                                                                              | 2014-Feb-03                                                                                                                                        | 5.8800 29.953                                                                                                                                                                                                                                                                                                                                                       |          | 273.88                                                                                           | 0.05                                                         | 0.22                                                                 |      |
|       | 1                                                   | 4                                                                             | 25                                                                              | 2014-Feb-05                                                                                                                                        | 5.8800 29.951                                                                                                                                                                                                                                                                                                                                                       |          | 273.50                                                                                           | 0.05                                                         | 0.22                                                                 |      |
|       |                                                     | Average                                                                       |                                                                                 |                                                                                                                                                    | 5.8800 29.952                                                                                                                                                                                                                                                                                                                                                       |          | 273.48                                                                                           | 0.06                                                         | 0.24                                                                 | 0.25 |
|       | 2                                                   | 1                                                                             | 25                                                                              | 2015-Mar-30                                                                                                                                        | 5.8800                                                                                                                                                                                                                                                                                                                                                              |          | 275.76                                                                                           | 0.05                                                         | 0.23                                                                 |      |
|       | 2                                                   | 2                                                                             | 25                                                                              | 2015-Mar-30                                                                                                                                        | 5.8800                                                                                                                                                                                                                                                                                                                                                              |          | 273.70                                                                                           | 0.05                                                         | 0.23                                                                 |      |
|       | 2                                                   | 3                                                                             | 25                                                                              | 2015-Apr-01                                                                                                                                        | 5.8800 29.944                                                                                                                                                                                                                                                                                                                                                       |          | 274.87                                                                                           | 0.05                                                         | 0.23                                                                 |      |
|       | 2                                                   | 4                                                                             | 25                                                                              | 2015-Apr-02                                                                                                                                        | 5.8800 29.943                                                                                                                                                                                                                                                                                                                                                       |          | 274.82                                                                                           | 0.05                                                         | 0.23                                                                 |      |
|       |                                                     | Average                                                                       |                                                                                 |                                                                                                                                                    | 5.8800 29.943                                                                                                                                                                                                                                                                                                                                                       |          | 275.06                                                                                           | 0.06                                                         | 0.25                                                                 | 0.26 |
|       |                                                     |                                                                               |                                                                                 |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                     |          |                                                                                                  |                                                              |                                                                      |      |
| 3282  | 1                                                   | 1                                                                             | 25                                                                              | 2014-Jan-28                                                                                                                                        | 5.8000 30.547                                                                                                                                                                                                                                                                                                                                                       | 2854.3   | 276.97                                                                                           | 0.05                                                         | 0.22                                                                 |      |
| 202   | 1                                                   | 2                                                                             | 25                                                                              | 2014-Jan-28<br>2014-Jan-30                                                                                                                         | 5.8000 30.547                                                                                                                                                                                                                                                                                                                                                       | 2004.0   | 276.89                                                                                           | 0.05                                                         | 0.22                                                                 |      |
|       | 1                                                   | 3                                                                             | 25                                                                              | 2014-Feb-03                                                                                                                                        | 5.8000 30.550                                                                                                                                                                                                                                                                                                                                                       |          | 276.65                                                                                           | 0.05                                                         | 0.22                                                                 |      |
|       | 1                                                   | 4                                                                             | 25                                                                              | 2014-Feb-06                                                                                                                                        | 5.8000 30.546                                                                                                                                                                                                                                                                                                                                                       |          | 276.95                                                                                           | 0.05                                                         | 0.22                                                                 |      |
|       |                                                     | Average                                                                       |                                                                                 |                                                                                                                                                    | 5.8000 30.547                                                                                                                                                                                                                                                                                                                                                       |          | 276.87                                                                                           | 0.06                                                         | 0.24                                                                 | 0.25 |
|       | -                                                   |                                                                               |                                                                                 |                                                                                                                                                    | <b></b>                                                                                                                                                                                                                                                                                                                                                             |          |                                                                                                  |                                                              |                                                                      |      |
|       | 2                                                   | 1                                                                             | 25                                                                              | 2015-Mar-30                                                                                                                                        | 5.8000                                                                                                                                                                                                                                                                                                                                                              |          | 277.07                                                                                           | 0.05                                                         | 0.23                                                                 |      |
|       | 2                                                   | 2                                                                             | 25<br>25                                                                        | 2015-Mar-31                                                                                                                                        | 5.8000<br>5.8000 30.541                                                                                                                                                                                                                                                                                                                                             |          | 277.24<br>276.70                                                                                 | 0.05                                                         | 0.23                                                                 |      |
|       | 2                                                   | 3<br>4                                                                        | 25                                                                              | 2015-Apr-01<br>2015-Apr-02                                                                                                                         | 5.8000         30.541           5.8000         30.542                                                                                                                                                                                                                                                                                                               |          | 276.70                                                                                           | 0.05                                                         | 0.23                                                                 |      |
|       |                                                     | 4<br>Average                                                                  | 2.3                                                                             | 2010 API-02                                                                                                                                        | <b>5.8000 30.542 5.8000 30.541</b>                                                                                                                                                                                                                                                                                                                                  |          | <b>276.49</b>                                                                                    | 0.05                                                         | 0.25<br>0.25                                                         | 0.26 |
|       |                                                     |                                                                               |                                                                                 |                                                                                                                                                    | 50.51                                                                                                                                                                                                                                                                                                                                                               | 1        |                                                                                                  |                                                              |                                                                      |      |
|       |                                                     |                                                                               |                                                                                 |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                     |          |                                                                                                  |                                                              |                                                                      |      |
| N 01  | 1                                                   | 1                                                                             | 25                                                                              | 2014-Jan-29                                                                                                                                        | 5.8800 30.419                                                                                                                                                                                                                                                                                                                                                       | 2855.8   | 287.01                                                                                           | 0.05                                                         | 0.22                                                                 |      |
|       | 1                                                   | 2                                                                             | 25                                                                              | 2014-Jan-30                                                                                                                                        | 5.8800 30.420                                                                                                                                                                                                                                                                                                                                                       |          | 286.99                                                                                           | 0.05                                                         | 0.22                                                                 |      |
|       | 1                                                   | 3                                                                             | 25                                                                              | 2014-Feb-04                                                                                                                                        | 5.8800 30.420<br>5.8800 20.417                                                                                                                                                                                                                                                                                                                                      |          | 287.37                                                                                           | 0.05                                                         | 0.22                                                                 |      |
|       | 1                                                   | 4<br>Average                                                                  | 25                                                                              | 2014-Feb-07                                                                                                                                        | 5.8800 30.417<br>5.8800 30.419                                                                                                                                                                                                                                                                                                                                      |          | 287.37<br><b>287.19</b>                                                                          | 0.05                                                         | 0.22<br>0.24                                                         | 0.25 |
|       |                                                     | Average                                                                       |                                                                                 |                                                                                                                                                    | 3.0000 30.419                                                                                                                                                                                                                                                                                                                                                       |          | 201.13                                                                                           | 0.06                                                         | 0.24                                                                 | 0.25 |
|       | 2                                                   | 1                                                                             | 25                                                                              | 2015-Mar-30                                                                                                                                        | 5.8800                                                                                                                                                                                                                                                                                                                                                              |          | 286.77                                                                                           | 0.05                                                         | 0.23                                                                 |      |
|       | 2                                                   | 2                                                                             | 25                                                                              | 2015-Mar-31                                                                                                                                        | 5.8800                                                                                                                                                                                                                                                                                                                                                              |          | 286.26                                                                                           | 0.05                                                         | 0.23                                                                 |      |
|       | 2                                                   | 3                                                                             | 25                                                                              | 2015-Apr-01                                                                                                                                        | 5.8800 30.413                                                                                                                                                                                                                                                                                                                                                       |          | 286.75                                                                                           | 0.05                                                         | 0.23                                                                 |      |
|       | 2                                                   | 4                                                                             | 25                                                                              | 2015-Apr-02                                                                                                                                        | 5.8800 30.414                                                                                                                                                                                                                                                                                                                                                       |          | 286.38                                                                                           | 0.05                                                         | 0.23                                                                 |      |
|       |                                                     | Average                                                                       |                                                                                 |                                                                                                                                                    | 5.8800 30.413                                                                                                                                                                                                                                                                                                                                                       |          | 286.54                                                                                           | 0.06                                                         | 0.25                                                                 | 0.26 |
|       |                                                     |                                                                               |                                                                                 |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                     |          |                                                                                                  |                                                              |                                                                      |      |
| N 02  | 1                                                   | 1                                                                             | 25                                                                              | 2014-Jan-29                                                                                                                                        | 5.9000 30.650                                                                                                                                                                                                                                                                                                                                                       | 2854.1   | 286.07                                                                                           | 0.05                                                         | 0.22                                                                 |      |
| 11 02 | 1                                                   | 2                                                                             | 25                                                                              | 2014-Jan-29<br>2014-Jan-31                                                                                                                         | 5.9000 30.650                                                                                                                                                                                                                                                                                                                                                       | 2004.1   | 286.07                                                                                           | 0.05                                                         | 0.22                                                                 |      |
|       | 1                                                   | 3                                                                             | 25                                                                              | 2014-Jan-31<br>2014-Feb-04                                                                                                                         | 5.9000 30.645                                                                                                                                                                                                                                                                                                                                                       |          | 285.02                                                                                           | 0.05                                                         | 0.22                                                                 |      |
|       | 1                                                   | 4                                                                             | 25                                                                              | 2014-Feb-07                                                                                                                                        | 5.9000 30.646                                                                                                                                                                                                                                                                                                                                                       |          | 285.63                                                                                           | 0.05                                                         | 0.22                                                                 |      |
|       |                                                     | Average                                                                       |                                                                                 |                                                                                                                                                    | 5.9000 30.647                                                                                                                                                                                                                                                                                                                                                       |          | 285.88                                                                                           | 0.06                                                         | 0.24                                                                 | 0.25 |
|       |                                                     | -                                                                             | <b>a</b> –                                                                      | 2045.1                                                                                                                                             | <b>F</b> 0000                                                                                                                                                                                                                                                                                                                                                       |          |                                                                                                  |                                                              | 0.00                                                                 |      |
|       | 2                                                   | 1                                                                             | 25                                                                              | 2015-Mar-30                                                                                                                                        | 5.9000                                                                                                                                                                                                                                                                                                                                                              |          | 285.61                                                                                           | 0.05                                                         | 0.23                                                                 |      |
|       | 2                                                   | 2                                                                             | 25<br>25                                                                        | 2015-Mar-31<br>2015-Apr-01                                                                                                                         | 5.9000<br>5.9000 30.638                                                                                                                                                                                                                                                                                                                                             |          | 284.89<br>285.39                                                                                 | 0.05                                                         | 0.23                                                                 |      |
|       | 2                                                   | 3<br>4                                                                        | 25                                                                              | 2015-Apr-01<br>2015-Apr-03                                                                                                                         | 5.9000 30.638                                                                                                                                                                                                                                                                                                                                                       |          | 285.39                                                                                           | 0.05                                                         | 0.23                                                                 |      |
|       |                                                     | Average                                                                       | 25                                                                              | 2010 //pi 00                                                                                                                                       | <b>5.9000 30.637</b>                                                                                                                                                                                                                                                                                                                                                |          | <b>284.85</b>                                                                                    | 0.05                                                         | 0.23                                                                 | 0.26 |
|       |                                                     |                                                                               | •<br>                                                                           |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                     | •<br>    |                                                                                                  |                                                              |                                                                      |      |
|       |                                                     |                                                                               |                                                                                 |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                     |          |                                                                                                  |                                                              |                                                                      |      |
| N 03  | 1                                                   | 1                                                                             | 25                                                                              | 2014-Jan-29                                                                                                                                        | 5.9200 30.600                                                                                                                                                                                                                                                                                                                                                       | 2853.6   | 283.81                                                                                           | 0.05                                                         | 0.22                                                                 |      |
|       | 1                                                   | 2                                                                             | 25                                                                              | 2014-Jan-31                                                                                                                                        | 5.9200 30.595                                                                                                                                                                                                                                                                                                                                                       |          | 285.21                                                                                           | 0.05                                                         | 0.22                                                                 |      |
|       | 1                                                   | 3                                                                             | 25                                                                              | 2014-Feb-03                                                                                                                                        | 5.9200 30.594<br>5.9200 20.594                                                                                                                                                                                                                                                                                                                                      |          | 285.25                                                                                           | 0.05                                                         | 0.22                                                                 |      |
|       | 1                                                   | 4                                                                             | 25<br>25                                                                        | 2014-Feb-04<br>2014-Feb-06                                                                                                                         | 5.920030.5945.920030.592                                                                                                                                                                                                                                                                                                                                            |          | 284.10<br>284.77                                                                                 | 0.05                                                         | 0.22                                                                 |      |
|       |                                                     | 6                                                                             | 25                                                                              | 2014-Feb-08<br>2014-Feb-17                                                                                                                         | 5.9200 30.593                                                                                                                                                                                                                                                                                                                                                       |          | 284.77                                                                                           | 0.05                                                         | 0.22                                                                 | +    |
|       | 1                                                   | Average                                                                       |                                                                                 |                                                                                                                                                    | 5.9200 30.594                                                                                                                                                                                                                                                                                                                                                       |          | <b>284.51</b>                                                                                    | 0.05                                                         | 0.22                                                                 | 0.25 |
|       |                                                     | <u>J</u> -                                                                    |                                                                                 |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                     |          |                                                                                                  |                                                              |                                                                      |      |
|       |                                                     |                                                                               |                                                                                 | 2015-Mar-30                                                                                                                                        | 5.9200                                                                                                                                                                                                                                                                                                                                                              |          | 283.73                                                                                           | 0.05                                                         | 0.23                                                                 |      |
|       | 2                                                   | 1                                                                             | 25                                                                              |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                     |          | 284.04                                                                                           | 0.05                                                         | 0.23                                                                 |      |
|       | 2                                                   | 2                                                                             | 25                                                                              | 2015-Mar-31                                                                                                                                        | 5.9200                                                                                                                                                                                                                                                                                                                                                              |          | 1                                                                                                | 0.05                                                         | 0.23                                                                 |      |
|       | 2<br>2                                              | 2<br>3                                                                        | 25<br>25                                                                        | 2015-Mar-31<br>2015-Apr-01                                                                                                                         | 5.9200 30.584                                                                                                                                                                                                                                                                                                                                                       |          | 283.64                                                                                           |                                                              | A A A                                                                | 1    |
|       | 2<br>2<br>2                                         | 2<br>3<br>4                                                                   | 25                                                                              | 2015-Mar-31                                                                                                                                        | 5.920030.5845.920030.583                                                                                                                                                                                                                                                                                                                                            |          | 283.35                                                                                           | 0.05                                                         | 0.23                                                                 | 0.26 |
|       | 2<br>2<br>2                                         | 2<br>3                                                                        | 25<br>25                                                                        | 2015-Mar-31<br>2015-Apr-01                                                                                                                         | 5.9200 30.584                                                                                                                                                                                                                                                                                                                                                       |          |                                                                                                  |                                                              | 0.23<br>0.25                                                         | 0.26 |
|       | 2<br>2<br>2                                         | 2<br>3<br>4                                                                   | 25<br>25                                                                        | 2015-Mar-31<br>2015-Apr-01                                                                                                                         | 5.920030.5845.920030.583                                                                                                                                                                                                                                                                                                                                            |          | 283.35                                                                                           | 0.05                                                         |                                                                      | 0.26 |
| N 04  | 2<br>2<br>2                                         | 2<br>3<br>4                                                                   | 25<br>25                                                                        | 2015-Mar-31<br>2015-Apr-01                                                                                                                         | 5.920030.5845.920030.583                                                                                                                                                                                                                                                                                                                                            | 2856.6   | 283.35                                                                                           | 0.05                                                         |                                                                      | 0.26 |
| N 04  | 2<br>2<br>2                                         | 2<br>3<br>4<br>Average                                                        | 25<br>25<br>25                                                                  | 2015-Mar-31<br>2015-Apr-01<br>2015-Apr-03                                                                                                          | 5.9200       30.584         5.9200       30.583 <b>5.9200 30.583</b>                                                                                                                                                                                                                                                                                                | 2856.6   | 283.35<br>283.69                                                                                 | 0.05                                                         | 0.25                                                                 | 0.26 |
| N 04  | 2<br>2<br>2<br>1                                    | 2<br>3<br>4<br>Average                                                        | 25<br>25<br>25<br>                                                              | 2015-Mar-31<br>2015-Apr-01<br>2015-Apr-03<br>2014-Jan-28                                                                                           | 5.9200       30.584         5.9200       30.583 <b>5.9200 30.583 5.9200 30.583 5.9200 30.487</b>                                                                                                                                                                                                                                                                    | 2856.6   | 283.35<br>283.69<br>284.27                                                                       | 0.05<br>0.06<br>0.05                                         | 0.25                                                                 | 0.26 |
| N 04  | 2<br>2<br>2<br>1<br>1                               | 2<br>3<br>4<br>Average<br>1<br>2<br>3<br>4                                    | 25<br>25<br>25<br>25<br>25<br>25<br>25                                          | 2015-Mar-31<br>2015-Apr-01<br>2015-Apr-03<br>2014-Jan-28<br>2014-Jan-30                                                                            | 5.9200       30.584         5.9200       30.583         5.9200       30.583         5.9200       30.583         5.9200       30.487         5.8700       30.486         5.8700       30.490         5.8700       30.487                                                                                                                                             | 2856.6   | 283.35<br>283.69<br>284.27<br>284.32<br>283.76<br>283.79                                         | 0.05<br>0.06<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05         | 0.25<br>0.22<br>0.22<br>0.22<br>0.22                                 |      |
| N 04  | 2<br>2<br>2<br>1<br>1<br>1<br>1                     | 2<br>3<br>4<br><b>Average</b><br>1<br>2<br>3                                  | 25<br>25<br>25<br>25<br>25<br>25<br>25<br>25                                    | 2015-Mar-31<br>2015-Apr-01<br>2015-Apr-03<br>2014-Jan-28<br>2014-Jan-30<br>2014-Feb-03                                                             | 5.9200       30.584         5.9200       30.583 <b>5.9200 30.583 5.9200 30.487</b> 5.8700       30.486         5.8700       30.490                                                                                                                                                                                                                                  | 2856.6   | 283.35<br>283.69<br>284.27<br>284.32<br>283.76                                                   | 0.05<br>0.06<br>0.05<br>0.05<br>0.05                         | 0.25<br>0.22<br>0.22<br>0.22                                         | 0.26 |
| N 04  | 2<br>2<br>2<br>1<br>1<br>1<br>1<br>1                | 2<br>3<br>4<br><b>Average</b><br>1<br>2<br>3<br>4<br><b>Average</b>           | 25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25                              | 2015-Mar-31<br>2015-Apr-01<br>2015-Apr-03<br>2014-Jan-28<br>2014-Jan-28<br>2014-Feb-03<br>2014-Feb-05                                              | 5.9200       30.584         5.9200       30.583         5.9200       30.583         5.9200       30.583         5.9200       30.487         5.8700       30.487         5.8700       30.486         5.8700       30.487         5.8700       30.487         5.8700       30.487         5.8700       30.487         5.8700       30.487                             | 2856.6   | 283.35<br>283.69<br>284.27<br>284.32<br>283.76<br>283.79<br>284.04                               | 0.05<br>0.06<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05 | 0.25<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.24                 |      |
| N 04  | 2<br>2<br>2<br>1<br>1<br>1<br>1<br>1<br>2           | 2<br>3<br>4<br>Average<br>1<br>2<br>3<br>4<br>Average                         | 25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25                        | 2015-Mar-31<br>2015-Apr-01<br>2015-Apr-03<br>2014-Jan-28<br>2014-Jan-30<br>2014-Feb-03<br>2014-Feb-05<br>2014-Feb-05                               | 5.9200       30.584         5.9200       30.583         5.9200       30.583         5.9200       30.583         5.9200       30.487         5.8700       30.487         5.8700       30.486         5.8700       30.487         5.8700       30.487         5.8700       30.487         5.8700       30.487         5.8700       30.487         5.8700       30.487 | 2856.6   | 283.35<br>283.69<br>284.27<br>284.32<br>283.76<br>283.79<br>284.04<br>284.23                     | 0.05<br>0.06<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.06 | 0.25<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.23         |      |
| N 04  | 2<br>2<br>2<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2 | 2<br>3<br>4<br><b>Average</b><br>1<br>2<br>3<br>4<br><b>Average</b><br>1<br>2 | 25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>2 | 2015-Mar-31<br>2015-Apr-01<br>2015-Apr-03<br>2014-Jan-03<br>2014-Jan-28<br>2014-Feb-03<br>2014-Feb-03<br>2014-Feb-05<br>2015-Mar-30<br>2015-Mar-31 | 5.9200       30.584         5.9200       30.583 <b>5.9200 30.583 5.9200 30.487</b> 5.8700       30.487         5.8700       30.486         5.8700       30.487         5.8700       30.487         5.8700       30.487         5.8700       30.487 <b>5.8700</b> 30.487 <b>5.8700 30.487 5.8700 30.487 5.8700 30.487</b>                                            | 2856.6   | 283.35<br>283.69<br>284.27<br>284.32<br>283.76<br>283.79<br>284.04<br>284.23<br>284.23<br>284.11 | 0.05<br>0.06<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05 | 0.25<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.24<br>0.23<br>0.23 |      |
| N 04  | 2<br>2<br>2<br>1<br>1<br>1<br>1<br>1<br>2           | 2<br>3<br>4<br>Average<br>1<br>2<br>3<br>4<br>Average                         | 25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25                        | 2015-Mar-31<br>2015-Apr-01<br>2015-Apr-03<br>2014-Jan-28<br>2014-Jan-30<br>2014-Feb-03<br>2014-Feb-05<br>2014-Feb-05                               | 5.9200       30.584         5.9200       30.583         5.9200       30.583         5.9200       30.583         5.9200       30.487         5.8700       30.487         5.8700       30.486         5.8700       30.487         5.8700       30.487         5.8700       30.487         5.8700       30.487         5.8700       30.487         5.8700       30.487 | 2856.6   | 283.35<br>283.69<br>284.27<br>284.32<br>283.76<br>283.79<br>284.04<br>284.23                     | 0.05<br>0.06<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.06 | 0.25<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.23         |      |

| CCPR Key Comparison CCPR-K3.2014<br>Luminous Intensity |
|--------------------------------------------------------|
| Final Report                                           |
|                                                        |
| Appendix A                                             |
| <u>NIST Report</u>                                     |
|                                                        |
|                                                        |



2022-May-20 UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology Gaithersburg, Maryland 20899-

# **REPORT OF CALIBRATION**

Luminous Intensity and Color Temperature Standard Lamps

Six incandescent lamps model Wi41/G manufactured by Osram Inc. with the designations NIST20100, NIST20101, NIST20102, NIST20103, NIST20104, and NIST20105

Submitted to:

National Research Council of Canada Attn.: Dr. Arnold Gaertner Measurement Science and Standards 1200 Montreal Road, Building M36 Ottawa, Ontario, Canada K1A 0R6

#### 1. Calibration Item

Six incandescent lamps model Wi41/G manufactured by Osram Inc. were calibrated for correlated color temperature and for luminous intensity. The lamp designations NIST20100, NIST20101, NIST20102, NIST20103, NIST20104, and NIST20105 are marked on the lamp base.

#### 2. Description of the Calibration

The luminous intensity measurement is based on the NIST detector-based candela scale realized in 2013 and 2015 and therefore on the international definition of the candela in effect since 1979. The color temperature measurement is based on the international temperature scale of 1990 (ITS-90). The details of the NIST luminous intensity unit and the color temperature scale are described in Section 3.1 and 7.2 of reference [1].

All Wi41/G lamps are operated with base down orientation as described in the CCPR-K3-2014 protocol. The center contact of the lamp base must be connected to the negative output terminal of a DC power supply. The alignment reference for NIST Wi41i/G lamps is slightly different as that described in the CCPR-K3-2014 protocol. The procedure below must be used to align the NIST Wi41/G lamps for measurement of luminous intensity. This procedure refers to the coordinate system described in the CCPR-K3-2014 protocol (Figure 1).

(1) Focus the end telescope on the filament. Rotate the lamp about X axis and adjust the lamp position along Y axis and Z axis so that the lamp filament is vertical and centered on the optical axis (as shown in Figure 2, the same procedure as that in the protocol).

Calibration Date: August 14, 2015 NIST Test No.: 2015CCPR-K3-F

Page 1 of 6



### REPORT OF CALIBRATION

Luminous Intensity and Color Temperature Calibration National Research Council of Canada

Manufacturer: Osram re Calibration Model: Wi41/G Designation: NIST20100, NIST20101, NIST20102, NIST20103, NIST20104, and NIST20105

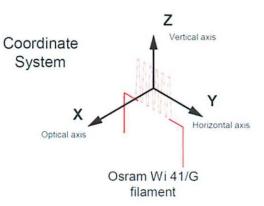



Figure 1 - Lamp filament and coordinate system, shown with the Osram Wi41/G filament

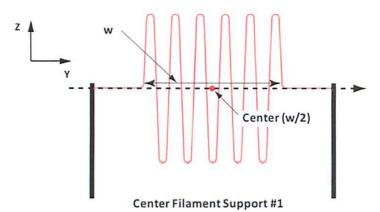



Figure 2 - Osram Wi41/G filament defined point: Center

(2) Focus the side telescope on the right filament post (viewing the lamp from the photometer). Rotate the lamp about Y axis and adjust the lamp position along X axis so that the right filament post is aligned exactly on the vertical fiducial line (the red line in Figure 3) in the side telescope.

(3) Focus the side telescope on the left filament post. Note the image of the left filament is not so clear but you can still tell when the telescope is focused on the left post by adjusting the focus back and forward near the left filament post. Rotate the lamp about Z axis and adjust the lamp position along X axis so that the left post is also on the vertical fiducial line in the side telescope.

(4) Repeat steps 2 and 3 until both right and left filament posts are aligned onto the vertical fiducial line in the side telescope.

(5) Double check if all alignments are good by repeating steps 1, 2, 3 and 4.

(6) Focus the side telescope on the right side lamp filament (viewing the lamp from the photometer). Adjust the lamp position along X axis so that the distance reference point (the intersection point between the right side filament and the right lamp post) is aligned onto the vertical fiducial line (the distance origin) as shown in Figure 4.

Calibration Date: August 14, 2015 NIST Test No.: 2015CCPR-K3-F

Page 2 of 6

CCPR-K3.2014: Luminous Intensity Final Report, Appendix A

#### **REPORT OF CALIBRATION**

National Research Council of Canada

Luminous Intensity and Color Temperature Calibration

Manufacturer: Osram re Calibration Model: Wi41/G Designation: NIST20100, NIST20101, NIST20102, NIST20103, NIST20104, and NIST20105

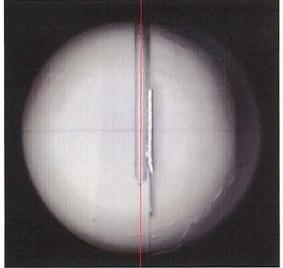



Figure 3 – Alignment of the right filament post onto the vertical fiducial line

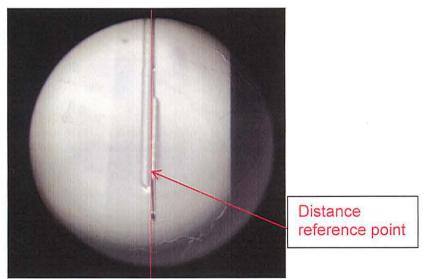



Figure 4 – Alignment of the distance reference point of the lamp onto the vertical fiducial line

The room temperature was 23 °C and relative humidity was approximately 47 % at the times of calibration. The equipment and the details of the calibration procedures of the luminous intensity and color temperature measurements are described in Section 3 and Section 7 of reference [1].

#### 3. Results of the Calibration

The results of the before and after calibrations are shown in Table 1 and Table 2. The relative expanded uncertainty (with coverage factor k=2) of the luminous intensity value is 0.50 %, which includes the reproducibility of the test lamp. The uncertainty budget is shown in Table 3. The

Calibration Date: August 14, 2015 NIST Test No.: 2015CCPR-K3-F

Page 3 of 6

CCPR-K3.2014: Luminous Intensity Final Report, Appendix A

## **REPORT OF CALIBRATION**

Luminous Intensity and Color Temperature Calibration National Research Council of Canada

Manufacturer: Osram re Calibration Model: Wi41/G Designation: NIST20100, NIST20101, NIST20102, NIST20103, NIST20104, and NIST20105

expanded uncertainty (k=2) of the color temperature value is 8 K as shown in Table 18 (page 60) of reference [1]. The NIST policy on uncertainty statements is described in reference [2].

| Lamp      | Current | Voltage* | Color       | Luminous  | Std  | Burning |
|-----------|---------|----------|-------------|-----------|------|---------|
| No.       | DC      | DC       | Temperature | Intensity | Dev  | Time    |
|           | [A]     | [V]      | [K]         | [cd]      | [%]  | [min]   |
| NIST20100 | 5.822   | 30.27    | 2855        | 283.0     | 0.10 | 90      |
| NIST20101 | 5.918   | 30.60    | 2856        | 287.3     | 0.14 | 89      |
| NIST20102 | 5.905   | 30.44    | 2855        | 288.5     | 0.08 | 91      |
| NIST20103 | 5.877   | 30.51    | 2858        | 286.6     | 0.08 | 93      |
| NIST20104 | 5.683   | 30.70    | 2858        | 272.7     | 0.08 | 91      |
| NIST20105 | 5.922   | 30.59    | 2859        | 291.4     | 0.12 | 87      |

Table 1. Results of Calibration for April 7th, 2014

\*Voltage is for reference only.

| Table 2. I | Results of | Calibration | for August | 14 <sup>th</sup> , 2015 |
|------------|------------|-------------|------------|-------------------------|
|------------|------------|-------------|------------|-------------------------|

| Lamp<br>No. | Current<br>DC | Voltage*<br>DC | Color<br>Temperature | Luminous<br>Intensity | Std<br>Dev | Burning<br>Time |
|-------------|---------------|----------------|----------------------|-----------------------|------------|-----------------|
|             | [A]           | [V]            | [K]                  | [cd]                  | [%]        | [min]           |
| NIST20100   | 5.822         | 30.26          | 2853                 | 282.6                 | 0.01       | 70              |
| NIST20101   | 5.918         | 30.60          | 2855                 | 287.5                 | 0.12       | 67              |
| NIST20102   | 5.905         | 30.43          | 2854                 | 288.3                 | 0.17       | 75              |
| NIST20103   | 5.877         | 30.50          | 2856                 | 285.9                 | 0.09       | 65              |
| NIST20104   | 5.683         | 30.70          | 2857                 | 272.2                 | 0.08       | 65              |
| NIST20105   | 5.922         | 30.59          | 2857                 | 290.8                 | 0.06       | 64              |

\*Voltage is for reference only.

### 4. General Information

The lamp should be carefully aligned in accordance with the procedures described above. The lamp should be operated on DC power at the reported current and at the prescribed polarity. Photometric measurements should be made at least 10 minutes after turning on. The uncertainty value is valid only for distances larger than 2 m.

Calibration Date: August 14, 2015 NIST Test No.: 2015CCPR-K3-F

Page 4 of 6

#### **REPORT OF CALIBRATION**

Luminous Intensity and Color Temperature Calibration

National Research Council of Canada

Manufacturer: Osram re Calibration Model: Wi41/G Designation: NIST20100, NIST20101, NIST20102, NIST20103, NIST20104, and NIST20105

The customer should take the uncertainty associated with the aging of the lamp and the calibration cycle into account.

The Calibration Report shall not be reproduced except in full, without the written approval of NIST.

Prepared by:

Yuqin Zong Sensor Science Division Physical Measurement Laboratory (301) 975-2332

Approved by:

am Mulk

C. Cameron Miller For the Director, National Institute of Standards and Technology (301) 975-4713

#### **References:**

- [1] Y. Ohno, NIST Special Publication 250-37 "Photometric Calibration" (1997)
- [2] B. N. Taylor and C. E. Kuyatt, "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results," NIST Technical Note 1297 (1994).

Calibration Date: August 14, 2015 NIST Test No.: 2015CCPR-K3-F Reviewed by:

Maria Nadal Sensor Science Division Physical Measurement Laboratory (301) 975-4632

Manufacturer: Osram Model: Wi41/G National Research Council of Canada Designation: NIST20100, NIST20101, NIST20102, NIST20103, NIST20104, and NIST20105

| Uncertainty factor                      | Туре | Relative<br>standard<br>uncertainty (%) |
|-----------------------------------------|------|-----------------------------------------|
| NIST illuminance unit realization       | B    | 0.20                                    |
| Long-term Drift of the NIST photometers | В    | 0.08                                    |
| Photometer temperature variation        | Α    | 0.02                                    |
| Distance measurement                    | В    | 0.01                                    |
| Alignment of the lamp distance          | А    | 0.10                                    |
| Determination of <i>smcf</i> *          | В    | 0.02                                    |
| Lamp current regulation and measurement | Α    | 0.01                                    |
| Stray Light                             | В    | 0.03                                    |
| Random noise                            | Α    | 0.05                                    |
| Deviation from inverse square law       | Α    | 0.05                                    |
| Combined uncertainty                    |      | 0.25                                    |
| Expanded uncertainty (k=2)              |      | 0.50                                    |
|                                         |      |                                         |

#### Table 3. Uncertainty budget for this luminous intensity calibration

Calibration Date: August 14, 2015 NIST Test No.: 2015CCPR-K3-F

| CCPR Key Comparison CCPR-K3.2014<br>Luminous Intensity<br>Final Report |  |
|------------------------------------------------------------------------|--|
| Appendix A                                                             |  |
| <u>NRC Report</u>                                                      |  |
|                                                                        |  |
|                                                                        |  |

## **NRC Report**

Six Osram Wi41/G lamps were used at the pilot (NRC) laboratory to represent the NRC luminous intensity scale for the comparison. These lamps are the six primary Osram Wi41/G lamps that were calibrated from room temperature absolute radiometers as described in our paper: L.P. Boivin, A.A. Gaertner, and D.S. Gignac Realization of the New Candela (1979) at NRC, Metrologia **24**, 139-152 (1987).

As described in this paper, the NRC Candela was most recently realised in 1986, using room temperature electrical-substitution absolute radiometers to calibrate secondary radiometers. The absolute spectral responsivities of the secondary radiometers were measured at laser wavelengths 476.2 nm, 530.9 nm, 568.2 nm, 647.1 nm, and 676.4 nm. Auxiliary measurements using a monochromator apparatus were used to obtain calibration points below 476.2 nm, to 380 nm, and above 676.4 nm, to 800 nm. Interpolation techniques were used to obtain complete calibration data from 380 nm to 800 nm at 5 nm intervals. These secondary radiometers, which incorporated diffusers, were then used with V( $\lambda$ )-correcting filters to calibrate the lamps. These photometers were not thermostated.

The equation for the luminous intensity of a lamp ( $I_v$ ), as measured by the output voltage ( $V_{out}$ ) of the photometer, is given by (see equation 1 of our above-mentioned paper):

$$I_{V} = \frac{683 \cdot V_{out} \cdot \left(d - \frac{t}{3}\right)^{2}}{R_{f} \cdot A} \cdot \frac{\int V(\lambda) \cdot I_{e}(\lambda) \cdot d\lambda}{\int S(\lambda) \cdot T(\lambda) \cdot I_{e}(\lambda) \cdot d\lambda}$$

where

 $R_f$  = feedback resistance of the detector amplifier,

- A = area of the radiometer aperture,
- D = distance between the lamp filament and the radiometer aperture,
- t = thickness of the V( $\lambda$ )-correcting filter,
- $I_e(\lambda)$  = relative spectral distribution of the lamp,
- $S(\lambda)$  = absolute spectral responsivity of the secondary radiometer, and

 $T(\lambda)$  = spectral transmittance of the filter.

The lamps are OSRAM type Wi41/G, operating at a colour temperature of 2800 K. The colour temperature of these luminous intensity lamps was set to 2800K when they were first calibrated in 1987.

These lamps have been used very little since that time, so the luminous intensity values assigned to these lamps is the same as at their calibration in 1986. These six lamps are also used as the primary standards to maintain the candela at NRC. An estimate of the aging of the lamps due to use since they were calibrated is included in the uncertainty budget as indicated below.

The lamp specifications are given below:

| NRC Luminous Intensity Standards |                          |                    |                                 |  |  |  |
|----------------------------------|--------------------------|--------------------|---------------------------------|--|--|--|
| Lamp                             | SET current<br>(amperes) | Voltage<br>(volts) | Luminous Intensity<br>(candela) |  |  |  |
| 021                              | 5.6610                   | 30.356             | 254.4                           |  |  |  |
| 022                              | 5.6195                   | 30.069             | 251.6                           |  |  |  |
| 023                              | 5.6346                   | 30.211             | 254.0                           |  |  |  |
| 026                              | 5.6499                   | 30.398             | 252.2                           |  |  |  |
| 027                              | 5.6654                   | 30.461             | 254.6                           |  |  |  |
| 030                              | 5.6329                   | 30.106             | 253.8                           |  |  |  |

The statement of the uncertainty in the calibration of these lamps is given in Table 2 of our abovementioned paper, and reproduced below.

| NRC Uncertainty Budget                |      |                                        |  |  |  |
|---------------------------------------|------|----------------------------------------|--|--|--|
| Source of Uncertainty                 | Туре | Relative Standard Uncertainty<br>(k=1) |  |  |  |
| Systematic (Type B) effects*          |      |                                        |  |  |  |
| Calibration of secondary radiometer:  |      |                                        |  |  |  |
| -calibration uncertainty:             | В    | 0.15%                                  |  |  |  |
| -non-uniformity:                      | В    | 0.25%                                  |  |  |  |
| -aperture area:                       | В    | 0.10%                                  |  |  |  |
| temperature variation:                | В    | 0.08%                                  |  |  |  |
| Filter effects:                       |      |                                        |  |  |  |
| -transmittance:                       | В    | 0.20%                                  |  |  |  |
| -wavelength shift:                    | В    | 0.20%                                  |  |  |  |
| -temperature variation:               | В    | 0.20%                                  |  |  |  |
| Measurement repeatability:            | В    | 0.15%                                  |  |  |  |
| Electrical Effects:                   | В    | 0.10%                                  |  |  |  |
| Imperfect V(λ):                       | В    | 0.15%                                  |  |  |  |
| Lamp Maintenance / aging <sup>1</sup> | В    | 0.30%                                  |  |  |  |
| Total Type B uncertainty (SumSq):     |      | 0.61%                                  |  |  |  |
| Random (Type A) effects               |      |                                        |  |  |  |
| Lamp reproducibility <sup>2</sup>     | А    | 0.10%                                  |  |  |  |

| Total (Type A+B) uncertainty (SumSq):                                                           |               |                               | 0.61% |
|-------------------------------------------------------------------------------------------------|---------------|-------------------------------|-------|
|                                                                                                 |               |                               |       |
| *L.P.Boivin, A.A.Gaertner, and D.S.Gignac, <b>Rea</b><br>-Metrologia <b>24</b> , 139-152 (1987) | lization of 1 | the New Candela (1979) at NRC |       |

- 1. The term 'Lamp Maintenance/aging' is added to the original uncertainties as an estimate of the uncertainty in the luminous intensity values of the lamps used for the comparison since the time that they were calibrated. This is predominantly an estimate of the aging of the lamps due to use since they were calibrated.
- 2. The lamp alignment component is included in the lamp reproducibility term.

CCPR Key Comparison CCPR-K3.2014

**Luminous Intensity** 

**Draft B Report** 

Appendix **B** 

**Review of Uncertainty Budgets** 

- replies to general comments

- replies to questions to specific NMIs

- attachments:

- VNIIOFI, NPL, NMIJ, NMISA

- We would like to clarify whether reflections off the inside edges of baffles or shutters have been included, either as corrections (with associated components in the uncertainty budget) or as uncertainty contributions. The most common geometry (circular opening) for baffles results in ray paths from the source, reflecting off the inside edge of the baffle back towards the detector. We believe that, even though the baffle material may only be a fraction of a millimetre thick, these ray paths can cause appreciable reflection of light into the detector which should not be included in the measurements. This is exacerbated by the grazing incidence geometry of these ray paths. We think that shutters used in determining the background level are likely to interrupt these ray paths so the effect is not eliminated by background subtraction. Rectangular openings suffer from the same issue, although to a reduced extent. We have observed contributions up to 0.08% per baffle, strongly dependent on the baffle geometry. A brief reference to this effect, although in a different context, has been made in the literature (Metrologia , 621 (2000)).
  - : Straylight created by baffles in the light path depends strongly on their shapes and the construction of the edges and it is not corrected by background subtraction. This yields similarly for straylight back reflected from the light trap behind the lamp. The effect of this type of straylight is mostly compensated if luminous intensity lamps are used as reference standards for the transfer standards within the CCPR comparison as performed by the PTB. Provided this type of straylight contributes significantly to the combined uncertainty then it has to be mentioned in the model of evaluation and in the uncertainty budget. It should be mentioned that the baffles used at the PTB create a relative straylight < $5 \cdot 10^{-5}$ . In case the photometer is reference for the calibration of the luminous intensity standard lamps the uncertainty of the aperture has to be taken into account and only then the given reference [Metrologia , 621 (2000)] is helpful.
  - : The reflections of baffles or shutters edge is a part of stray light, we estimated the stray light and made a correction to the measured photocurrent of lamp. The uncertainty budget of stray light is the imperfection of stray light correction.
  - : The lamps used for the comparison were calibrated directly against NPL's primary reference standard luminous intensity lamps, which are of exactly the same type as the comparison lamps. Any reflections from the inside edges of baffles or shutters are therefore common to both the reference and comparison lamps and the effects cancel; no correction is necessary. Extensive investigations into stray light effects (including light scattered, reflected or diffracted by apertures and baffles) were carried out during the realisation of the luminous intensity scale and assessed to be less than 0.01 % this is included in the uncertainty budget for NPL's realisation of the candela.

: Following the first General Comment of the pre-Draft A Process 2, we recently tried to estimate an uncertainty associated with scattering in inner edges of baffles, but suddenly realized that our measurements (both rounds) were mistakenly done without a thin edge aperture on a shutter. So, the thickness of the actual edge was too thick and gave quite strong reflectance. We have measured this effect and found that the luminous intensity values have to be reduced. Please find the corrected files attached. (See attached pages VNIIOFI response for the revised Appendix A.5 uncertainty budget.) Corrected values are marked red. All luminous intensity values are reduced. The uncertainty component associated with stray light is increased from 0.02% to 0.1%; the total uncertainty is increased up to 0.25% and 0.26% for the 1st and 2nd rounds, respectively.

- : There are two irises (used as baffles) and one electric shutter between the lamp and the photometer. The first and second irises are located at approximately 0.6 m and 1.85 m, respectively from the lamp. The thickness of the iris blades is 0.2 mm. The photometer is at 3.5 m away from the lamp. The measurement uncertainty resulting from the reflected light is analyzed using the optical ray tracing technique. The shutter does not cause any reflected light because its opening is larger enough so that it is completely hidden behind the second iris (i.e., it is in the dark). The first iris does not contribute to the measurement error because the angle of its reflected light is large enough so that the reflected light from the second iris is estimated to be less than 0.01 % and therefore no correction is applied. Instead it is rolled into our 0.05% stray light uncertainty component, which also includes the scatter light from the edge of iris, the interreflection between the photometer, photometer mount, irises, wall of the photometry bench, and light trap, etc.
- 2. Comment for all the laboratories that are using an aperture:

If the aperture plane is not perpendicular to the optical axis, the effective aperture area will be smaller than that at the normal position. This uncertainty component is not in the uncertainty list. (NMIA, LNE-CNAM, VNIIOFI, NRC).

- : Usually the photometer's aperture plane is aligned by help of a mirror and a back reflected laser beam and any deviation from the perpendicular direction has to be weighted by the cosine. The effect of this misalignment is mostly compensated if the mounting of the photometer was unchanged between its calibration as reference and the transfer to the transfer standards within the CCPR comparison. Provided this misalignment contributes significantly to the combined uncertainty then it has to be mentioned in the model of evaluation and in the uncertainty budget.
- : The alignment of the NPL photometer was not changed between the calibration using the reference lamps and the measurements of the comparison lamps; therefore it is not necessary to include an uncertainty component for misalignment of the photometer aperture.

This uncertainty component (tilt) is included in the derivation of the uncertainty in the aperture area, although those details were not included in our uncertainty budget. However, it is true that a component due to this effect when <u>using</u> the aperture has not been included. Using a retro-reflected laser, we have estimated the possible tilt in the aperture when it is mounted in our usual way. The tilt is estimated to be approximately 0.08 degrees, so the contribution to the uncertainty is negligible. For consistency with our comments below, we could submit a revised budget with this term included (and set to zero) if participants considered it would add value.

- : This uncertainty is included in the 'Measurement repeatability' component.
- : Using a mirror and retro laser along with mechanical alignment the aperture alignment off axis is very small. Less than 0.002% as captured in Table 5 of "Yuqin Zong, Maria E. Nadal, Benjamin K. Tsai, and C. Cameron Miller, "Photometric Calibrations," NIST Special Publication 250-95. (2018). <u>https://doi.org/10.6028/NIST.SP.250-95</u> "
- 3. It turns out that the variety of measurement budgets, and the components mentioned in there, is quite large. However, when I received the document to review the uncertainty budgets, I was really surprised that obviously only very few (3 of 11) participants have sent their model for evaluation which they used to establish their distinct associated uncertainty budget. According to GUM, the uncertainty budget of a measurement must be based on a measurement model which clearly connects input and output parameters by means of a physical equation to show the interdependencies and the sensitivities of the various uncertainty determination according to the Technical Report CIE 198:2011, where a clear GUM compliant example for the determination of the uncertainty of luminous intensity is given, but only IO-CSIC, METAS and PTB followed that route.

At least for me, it is not possible to judge about the legitimacy of a stated uncertainty contribution of the other participants, where no information about the model of evaluation and the measurement process is given.

If we take the first of the eleven budgets as an example:

NMISA simply copied your example of the measurement uncertainty from the Technical Protocol – which I supposed to be only an example to show the difference between what you call "Systematic" and "Random" effects. (BTW, I was not in favour of this chart because it is not strictly according to GUM). In case of NMISA the selection of possible uncertainty components from the (already) condensed Technical-Protocol-example might be good for a rough uncertainty estimation, but not for a meaningful demonstration of metrology at the high level of a CCPR comparison. May be that, e.g., stray-light is the most important environmental issue at NMISA but at least spectral mismatch of used photometer is always an issue and may not be neglected. May be that this contribution is hidden elsewhere, but without further information such a kind of uncertainty budget without model of evaluation is not sufficient. It is simply not possible to judge about the correctness of the stated uncertainties – and this is valid for all those participants showing only condensed budgets without models of evaluation.

Moreover, also the differentiation between "random" and "systematic" effects seems not to be generally understood in the same way. Different participants subsume different type of components under these classifications.

Therefore, at the current stage, and without further information, I can only agree with the uncertainty budgets from IO-CSIC, METAS and PTB.

- : In the Technical Protocol for this CCPR comparison chapter 6.1.1 the GUM is explicitly claimed as reference for any statement of measurement uncertainty. Additionally, the chapter 6.1.2 refers to the document CIE 198 as example for modeling combination and presentation. The protocol itself gives in Appendix A.5 an example for an abbreviated presentation. Thus, the model of evaluation is an essential part in the documentation and has to be stated individually by each participant as well as the complete uncertainty budget from CIE 198 as an intermediate step for the summarized presentation recommended in Appendix A.5 to simplify the comparison of individual contributions.
- : The uncertainty assessment should be carried out in accordance with GUM, as mentioned in 6.1.1 of the technical protocol of CCPR-K3.2014. Although CIE 198:2011 give us a good example of uncertainty assessment for luminous intensity, other approaches in accordance with GUM should also be accepted. Our uncertainty assessment is consistent with GUM. The protocol didn't require submission of mathematical models and analysis procedure. We only submit the uncertainty budget table which condenses the procedure of uncertainty assessment. Some insignificant uncertainty components are not listed, such as temperature effect, etc.
- : See attached pages (NPL response) for NPL answers.
  - : See attached pages (NMIJ response) for NMIJ answers.

:One of the more valuable aspects of comparisons is the diversity of uncertainty budgets, allowing a full range of components to be identified by the metrology community. If all participants were to use an identical methodology for constructing their budgets, the possibility of identifying effects that should be included would be reduced. We therefore believe that uniform use of CIE 198 would be a backward step.

The logic that we used in distinguishing between random and systematic components followed the requirements of the protocol. It described systematic components as producing their unknown values from one measurement to the next, adding that they will probably be the same for a complete round of measurement. Given that measurements on the comparison artefacts were performed by transfer from a set of working standard lamps over a short period of time using a common set of instrumentation, the majority of effects are labelled as systematic. The random components are those associated with the complete realignment of the comparison lamps between measurements, lamp reproducibility and noise.

: See Sections 1 and 3 of "Yuqin Zong, Maria E. Nadal, Benjamin K. Tsai, and C. Cameron Miller, "Photometric Calibrations," NIST Special Publication 250-95. (2018). https://doi.org/10.6028/NIST.SP.250-95

:

Model of evaluation:

See attached page (NMISA response) for NMISA Uncertainty Budget Matrix (UBM).

$$I = \frac{K_m d^2 F I_c}{SA}$$

where

- *I* is the luminous intensity
- $K_m$  is the luminous efficacy
- *D* is the distance from the lamp filament to the photometer
- F is the spectral mismatch factor
- $I_c$  is the current, determined for the gain of the amplifier and the voltage as measured for the LMT photometer
- *S* is the responsivity of the LMT photometer
- *A* is the area of the LMT photometer
- Spectral mismatch: We corrected for spectral mismatch and therefore did not include it in the model of evaluation.
- Lamp alignment: We allowed for 1° uncertainty in the alignment of the lamps, as you can see in the model of evaluation.

The lamp alignment uncertainty seems quite large, although it is listed as Type A uncertainty. Is there a specific effect that produces this large uncertainty?

We allowed for 1° uncertainty in the alignment of the lamps, as you can see in the model of evaluation.

The NMIA budget seems too complicated. It's a bit hard to understand it without the facility and measurement procedure description. I hope this description will appear in the Draft A report. We have attempted a comprehensive evaluation of all the effects that could influence our measurements, and their associated uncertainties. Quite a few of them have been evaluated as zero (to the number of significant digits in our budget) but we considered it worthwhile to leave them in the budget since they had been considered. It is true that the budget could also have been simplified by replacing groups of related components with single combined values, but we believe that it was better to provide a detailed breakdown.

We acknowledge that a description of the measurement facility and process is an important part of assessing the budget. We have written our report and will be very happy to modify or extend it as required to provide the information requested by other participants during the relevant part of the report preparation.

The random effects section includes a lamp ageing component which is quite large and dominates this part of the budget. Could you explain what this means? See attached pages (NMIJ response) for NMIJ answers.

It is not stated which components are considered as random and which are systematic in the context of the Appendix A6 table. Could, for example, an extra column be added to the Appendix A5 table giving that classification?

IO-CSIC has submitted a revised Appendix A.5 in which an extra column has been added. From column 3 of the original table, all Type A (2) have been labelled as Random and all Type B have been labelled as Systematic. See Appendix A of this comparison report.

The lamp alignment uncertainty seems quite large, although it is listed as Type A uncertainty. Is there a specific effect that produces this large uncertainty?

It is not stated which components are considered as random and which are systematic in the context of the Appendix A6 table. Could the components numbers in the Appendix A5 table be listed as random or systematic (or is that what the asterisks in that table indicate)? The answer is yes, the \* indicates the random effects.

- Is it possible that the 'stabiliser current control' contributes to the 'test lamp repeatability' component, meaning that there is some double counting in the random effects? Yes, it is impossible to isolate the effect of 'stabiliser current control' from 'test lamp repeatability' so there is potentially a small element of double counting in the random effects. However since the test lamp repeatability component is intended primarily to allow for lamp alignment variations and is treated as a worst case estimate, we have chosen to ignore this small element of double counting. The effect on the final uncertainty is insignificant.
- 2. If they know the ageing rate of the lamp, it is better to correct the luminous intensity according to the ageing rate. If they do the correction, the uncertainty will be smaller than 0.125%. We do not know the actual change in luminous intensity due to ageing for each individual reference lamp used. Each reference lamp has been used for a different length of time since the original calibration and will also age at a slightly different (unknown) rate. We therefore do not correct for ageing effects. The uncertainty estimate is a conservative allowance, which is based on measurements on other lamps of the same type operated at the same correlated colour temperature and under the same conditions coupled with knowledge of the maximum length of time for which the reference lamps have been used since the original calibration.
- 3. Some expressions are not consistent with the requirements of GUM "Evaluation of measurement data-Guide to the expression of uncertainty in measurement", such as "value ±", "ui", "Photocurrent measurement accuracy".
  - "ui"should be "*u*<sub>i</sub>"
  - "Photocurrent measurement accuracy" should be "Photocurrent measurement"

We apologise for these typing mistakes, which were due to importing the table from an Excel file. We have provided a corrected version of the report to the pilot laboratory.

4. The uncertainty of lamp alignment is not in the list. The uncertainty due to lamp alignment is included under 'Test lamp repeatability' as described in section 5.10 of our report.

Please clarify the two lines labelled "variance" at the end of the Appendix A5 table. Do they indicate the distinction between the random and systematic uncertainties in the context of the comparison? Similarly, could the components in the Appendix A5 table be labelled somehow (or a separate list be given) as contributing to the random and systematic uncertainties?

- a) According to the GUM all entries in Appendix A.5 are labeled in column 6 with "A" for "statistical" or "B" for any "other determination". These types of entries are combined and listed separately for each lamp. The list was send to the pilot for an additional explanation and mean values u(A) = 0.12% and u(B) = 0.13% are indicated. Thus, the combined standard uncertainty for the transfer by only one lamp is  $u(I) = \sqrt{u(A)^2 + u(B)^2} = 0.18\%$ .
- b) At the bottom of the table Appendix A.5 two values labeled  $u_{dev} = 0.12\%$  for random ("dev" for devise) and  $u_{inst} = 0.14\%$  for systematic contributions ("inst" for instrumentation) are included. These numbers, their meaning and the evaluation are explained in all details in the publication CIE 198-SP1.2:2011 (see chapter/example 2.13).

The combination of these numbers to determine the uncertainty of the whole batch for the transferred value of intensity is explained in great detail in CIE 198-SP1.1:2011 example 1.11.

It turns out that the instrumentation for the two rounds at PTB was stable and the properties of the PTB-transfer-standards (WI41/G) are uniform. A separation in types A and B or "random" and "systematic" gives no real difference. So, the uncertainty u(PTB) associated with the luminous intensity value transferred by with a number of 6 PTB-transfer standards will be determined by the pilot laboratory from

$$u(I)_{\text{PTB}} = \sqrt{u_{inst}^2 + \frac{u_{dev}^2}{6}} = 0.15\%.$$

The values for the systematic component given in the second table ( $\pm 0.20\%$ ) appear to derive only from the illuminance unit realisation. Should the long-term drift of the photometers be included in the systematic component?

As shown in Table 8 of "Yuqin Zong, Maria E. Nadal, Benjamin K. Tsai, and C. Cameron Miller, "Photometric Calibrations," NIST Special Publication 250-95. (2018). <u>https://doi.org/10.6028/NIST.SP.250-95</u>", we do have a longterm drift component but these measurements were done within 1 month of the scale realization so there is no longterm drift.

There is no lamp alignment component – is it included in the lamp reproducibility term? Please also clarify the meaning of the term labelled as "Lamp Maintenance / aging".

The lamp alignment component is included in the lamp reproducibility term.

The term 'Lamp Maintenance/aging' is an estimate of the uncertainty in the luminous intensity values of the lamps used for the comparison since the time that they were calibrated. This is predominantly an estimate of the aging of the lamps due to use since they were calibrated.

| Measurement Parameter                                                | Uncertainty<br>Type<br>(A or B) | Standard Uncertainty<br>in luminous intensity<br>(%) |
|----------------------------------------------------------------------|---------------------------------|------------------------------------------------------|
| Systematic effects:                                                  |                                 |                                                      |
| Calibration of working standards                                     |                                 |                                                      |
| - Photometers of LMT P150T type                                      | В                               | 0.19                                                 |
| Electrical                                                           |                                 |                                                      |
| - standard resistor                                                  | В                               | 0.002                                                |
| - voltmeter                                                          | В                               | 0.07                                                 |
| Photometer                                                           |                                 |                                                      |
| - spectral mismatch                                                  | В                               | 0.001                                                |
| - linearity                                                          | В                               | 0.01                                                 |
| - distance                                                           | В                               | 0.05                                                 |
| Environment                                                          |                                 |                                                      |
| - stray light                                                        | В                               | 0.1                                                  |
| - temperature / humidity                                             | В                               | 0.02                                                 |
| Lamp alignment (systematic component)                                | В                               | 0.03                                                 |
| Discrepancy between photometers (systematic)                         | В                               | 0.04                                                 |
| Stability of photometers*                                            | В                               | 0.07                                                 |
| RMS total systematic effects:                                        |                                 |                                                      |
| 1 <sup>st</sup> Round                                                |                                 | 0.24                                                 |
| 2 <sup>st</sup> Round                                                |                                 | 0.25                                                 |
| Random effects**:                                                    |                                 |                                                      |
| Electrical parameters:                                               |                                 |                                                      |
| - power supply fluctuations, $u_{psf}$                               | В                               | 0.02                                                 |
| Photometer noise (25 readings), $u_{\text{noise}}$                   | A                               | 0.001                                                |
| Discrepancy between three photometers (random), $u_{\rm pd}$         | A                               | 0.05                                                 |
| Independent measurement reproducibility ***, <i>u</i> <sub>rep</sub> | A                               | 0.05                                                 |
|                                                                      |                                 |                                                      |
| RMS total random effects****:                                        |                                 | 0.06                                                 |
|                                                                      |                                 |                                                      |
| RMS total standard uncertainty:                                      |                                 |                                                      |
| 1 <sup>st</sup> Round                                                |                                 | 0.25                                                 |

# Appendix A.5 Sample Measurement Uncertainty Budget (VNIIOFI response)

## \* For the second round only

**\*\*** Standard deviations varied from set to set and from lamp to lamp. Typical values are presented in the table.

\*\*\* Each independent measurement was done with total re-alignment of a lamp and the photometers. Random effect associated with independent measurement reproducibility comprises several random effects: lamp alignment, photometer alignment, random error in distance measurement, lamp fluctuation.

\*\*\*\* Uncertainty associated with reproducibility  $(u_{rep})$  partly includes uncertainties associated with other random effects. Therefore, the Total random uncertainty is calculated as

$$u_{Total,Random} = \sqrt{u_{rep}^2 + (u_{pd}^2 + u_{noise}^2 + u_{psf}^2)/n}$$

where n = 4 – the typical number of independent measurements

Measurement parameters given in this table are suggested. Please modify and itemize according to your particular situation. See Section 6.2 for explanation of the various items.

Note that if lamps are used as the laboratory working standards, a group of uncertainties would need to be included in the above table to account for their behaviour.

The RMS total refers to the usual square root of the sum of the squares of all the individual uncertainty terms.

| Contact person: | Boris Khlevnoy   |
|-----------------|------------------|
| NMI:            | VNIIOFI          |
| Date:           | 25 November 2015 |
| Signature:      | 2                |

### NPL response to questions relating to uncertainty budgets for CCPR-K3.2014

#### General comments / questions

- The lamps used for the comparison were calibrated directly against NPL's primary reference standard luminous intensity lamps, which are of exactly the same type as the comparison lamps. Any reflections from the inside edges of baffles or shutters are therefore common to both the reference and comparison lamps and the effects cancel; no correction is necessary. Extensive investigations into stray light effects (including light scattered, reflected or diffracted by apertures and baffles) were carried out during the realisation of the luminous intensity scale and assessed to be less than 0.01 % - this is included in the uncertainty budget for NPL's realisation of the candela.
- The alignment of the NPL photometer was not changed between the calibration using the reference lamps and the measurements of the comparison lamps; therefore it is not necessary to include an uncertainty component for misalignment of the photometer aperture.
- 3. NPL did not follow the model given in CIE 198:2011 since this is not how we usually structure our uncertainty budget. We did, however, provide a detailed description of each of the uncertainty contributions included in our uncertainty budget, which we believe gives the information necessary to judge the legitimacy of each of these. For completeness, our measurement equation is given below (this has also been added to our measurement report):

$$I_{v,t} = C_{cal}V_t(1 + C_{d,t})(1 + C_{J,t})(1 + C_{p,t})F_{SM,t}(1 - C_{stray,t})(1 + C_{align,t})$$
(1)

where

$$C_{\rm cal} = \frac{(I_{\rm v,r} + C_{\rm age,r})}{V_r} \tag{2}$$

and

 $I_{\mathrm{v},t}$  is the luminous intensity of test (comparison) lamp t

 $C_{\rm cal}$  is the mean photometer calibration factor, calculated using Equation 2 and averaged across all the reference lamps used

 $I_{\mathbf{v},r}$  is the luminous intensity of reference lamp r

 $C_{\text{age},r}$  is the change in luminous intensity of reference lamp r since its original calibration due to ageing

 $V_r$  is the mean reading from the photometer for reference lamp r

 $V_t$  is the mean reading from the photometer for test lamp t

 $C_{d,t}$  is the error in luminous intensity for test lamp t due to error in setting the filaments of the reference and test lamps in the same vertical plane

 $C_{J,t}$  is the error in luminous intensity for test lamp t due to error in setting the current for the test lamp to the specified value (the uncertainty due to error in setting the

current for the reference lamp to the specified value is included in the uncertainty budget for the luminous intensity of the reference lamp)

 $C_{p,t}$  is the error in luminous intensity for test lamp *t* due to differences in amplifier gain and DVM sensitivity between measurement of the photocurrent produced by the reference lamp and that produced by the test lamp

 $F_{\text{SM},t}$  is the spectral mismatch correction factor for test lamp t

 $C_{\text{stray},t}$  is the error in luminous intensity for test lamp t due to differences in stray light between the reference and test lamps

 $C_{\text{align},t}$  is the error in luminous intensity for test lamp *t* due to misalignment of the lamp (the uncertainty due to misalignment of the reference lamp is included in the uncertainty budget for the luminous intensity of the reference lamp)

Note all of the *C* terms listed above have an expected value of zero and an associated uncertainty that has been estimated as described in our measurement report.

## Specific comments / questions

- 1. Yes, it is impossible to isolate the effect of 'stabiliser current control' from 'test lamp repeatability' so there is potentially a small element of double counting in the random effects. However since the test lamp repeatability component is intended primarily to allow for lamp alignment variations and is treated as a worst case estimate, we have chosen to ignore this small element of double counting. The effect on the final uncertainty is insignificant.
- 2. We do not know the actual change in luminous intensity due to ageing for each individual reference lamp used. Each reference lamp has been used for a different length of time since the original calibration and will also age at a slightly different (unknown) rate. We therefore do not correct for ageing effects. The uncertainty estimate is a conservative allowance, which is based on measurements on other lamps of the same type operated at the same correlated colour temperature and under the same conditions coupled with knowledge of the maximum length of time for which the reference lamps have been used since the original calibration.
- 3. We apologise for these typing mistakes, which were due to importing the table from an Excel file. We have provided a corrected version of the report to the pilot laboratory.
- 4. The uncertainty due to lamp alignment is included under 'Test lamp repeatability' as described in section 5.10 of our report.

Dear Dr. Gaertner,

The following equations are the physical model of uncertainty of luminous intensity at NMIJ.

$$I_{1} = \frac{K_{\rm m} (d_{1} + \Delta d_{1})^{2}}{A} \frac{V_{0}}{G} \frac{\int_{\lambda_{1}}^{\lambda_{2}} \Phi_{\rm e,\lambda}(\lambda) V(\lambda) d\lambda}{\int_{\lambda_{1}}^{\lambda_{2}} \Phi_{\rm e,\lambda}(\lambda) s_{\rm e}(\lambda) d\lambda} (1 + c_{t}) (1 + c_{1})$$
(1)

$$I_{2} = I_{1} k_{c} \frac{V_{2}}{V_{1}} \frac{(d_{2} + \Delta d_{2})^{2}}{d_{2}^{2}} (1 + c_{i}) (1 + c_{a}) (1 + c_{2}) (1 + c_{3})$$
(2)

Equation (1) is the model to determine the luminous intensity of the standard lamp. Equation (2) is the model to transfer luminous intensity from the standard lamp to the transfer lamp. The meanings of each variable are listed below.

 $I_1$ : Luminous intensity of a standard lamp.

 $K_{\rm m}$  : Maximum luminous efficiency constant. No uncertainty.

 $d_1$ : Distance between the standard lamp and the standard photometer. Constant. No uncertainty.

 $\Delta d_1$ : Deviation of distance setting.

A : Aperture area of the standard photometer.

 $V_0\colon {\rm Voltage\ measured\ by\ the\ multimeter.}$  Uncertainty negligible.

G : Conversion ratio of the current-voltage converter. Uncertainty negligible.

 $\Phi_{e,\lambda}(\lambda)$ : Relative spectral distribution of the standard lamp. Uncertainty to luminous intensity

negligible.

 $V(\lambda)$ : Luminous efficiency function. No uncertainty.

 $s_{e}(\lambda)$ : Spectral responsivity of the standard photometer. Uncertainty of this factor consists of two parts

in the budget. One is "Spectral responsivity of the silicon photodiode measured with the cryogenic radiometer", and another is "Illuminance responsivity of the standard photometer with respect to the spectral responsivity of the silicon photodiode".

 $c_t$ : Deviation of the standard photometer responsivity by the room temperature.

 $c_1$ : Deviation of the luminous intensity measurement for the standard lamp set on and removed from the lamp mount in many times. Accumulated data.

 $I_2$ : Luminous intensity of the transfer lamp.

 $k_c$  : Colour correction factor between the standard lamp and the transfer lamp. Uncertainty negligible.

 $V_2$ : Voltage output measured for the transfer lamp.

 $V_{\rm L}\,$  : Voltage output measured for the standard lamp.

#### NMIJ response

Page 1 of 3

 $d_{\rm 2}\,$  : Distance between the lamp and the comparison photometer.

 $\Delta d_2$  : Deviation of distance setting.

 $c_i$ : Effect of the lamp current uncertainty.

 $c_{\scriptscriptstyle a}\,$  : Deviation of luminous intensity through the period of recalibraion-limit burning time. We take this

effect into the uncertainty without correction. So it is listed in "Random effects" because we cannot predict what value a lamp will take at each burning.

 $c_2$ : Deviation of the luminous intensity measurement for the transfer lamp set on and removed from the

lamp mount in many times. Accumulated data.

 $c_3$  : Fluctuation of lamp signal.

|                      | Measurement Parameter                                                                                                           | Uncertainty<br>Type<br>(A or B) | Standard Uncertainty<br>in luminous intensity<br>(%) |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------|
|                      | Systematic effects:                                                                                                             |                                 |                                                      |
|                      | Calibration of working standards                                                                                                |                                 |                                                      |
| $s_{\rm e}(\lambda)$ | - Spectral responsivity of the silicon photodiode measured with the cryogenic radiometer                                        | В                               | 0.05                                                 |
| $s_{\rm e}(\lambda)$ | - Illuminance responsivity of the standard<br>photometer with respect to the spectral responsivity<br>of the silicon photodiode | В                               | 0.20                                                 |
| $\Delta d_1$         | - Measurement of the distance between the primary standard lamp and the transfer detector                                       | В                               | 0.05                                                 |
| C <sub>t</sub>       | - Responsivity change of the transfer detector by room temperature fluctuation                                                  | В                               | 0.10                                                 |
| $c_1$                | - Setting of the luminous intensity primary standard lamp                                                                       | В                               | 0.10                                                 |
| Α                    | - Aperture area                                                                                                                 | В                               | 0.015                                                |
|                      | Electrical                                                                                                                      |                                 |                                                      |
|                      | - standard resistor                                                                                                             |                                 | negligible                                           |
| $c_i$                | -digital multimeter                                                                                                             | В                               | 0.01                                                 |
|                      | Photometer                                                                                                                      |                                 |                                                      |
|                      | - spectral mismatch                                                                                                             |                                 | negligible                                           |
|                      | - linearity                                                                                                                     |                                 | negligible                                           |
| $\Delta d_2$         | - distance                                                                                                                      | В                               | 0.02                                                 |
|                      | Environment                                                                                                                     |                                 |                                                      |
|                      | - stray light                                                                                                                   |                                 | negligible                                           |
|                      | - temperature / humidity ?                                                                                                      |                                 | included in (*)                                      |
|                      | RMS total systematic effects:                                                                                                   | l                               | 0.256                                                |
|                      |                                                                                                                                 |                                 |                                                      |

NMIJ response

|                       | Random effects:                              |   |                 |
|-----------------------|----------------------------------------------|---|-----------------|
|                       | Lamp parameters:                             |   |                 |
| C <sub>a</sub>        | - lamp ageing                                | В | 0.11            |
| <i>C</i> <sub>2</sub> | - lamp alignment (*)                         | В | 0.06            |
|                       | - lamp reproducibility                       |   | included in (*) |
| <i>C</i> <sub>3</sub> | - lamp output fluctuations                   | В | 0.02            |
|                       | Electrical parameters:                       |   |                 |
|                       | - power supply fluctuations                  |   | included in (*) |
|                       | Photometer noise                             |   | included in (*) |
|                       | (Measurement Set standard deviation of mean) |   |                 |
|                       | RMS total random effects:                    |   | 0.127           |
|                       |                                              |   |                 |
|                       | RMS total standard uncertainty:              |   | 0.29            |

The effect of baffles is regarded as negligibly small. We expect that that effect can be as small as 0.007 %, which is negligible in the NMIJ's uncertainty budget.

|                                                                                           | NMISA response page 1 of 1 UNCERTAINTY BUDGET MATRIX (UBM)                                          |                                                     |                       |                                                       |                                             |             |                   |                                         |                                                                                |             |                                                          |                  | cate No                  |                                                           |
|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------|-------------------------------------------------------|---------------------------------------------|-------------|-------------------|-----------------------------------------|--------------------------------------------------------------------------------|-------------|----------------------------------------------------------|------------------|--------------------------|-----------------------------------------------------------|
| NMIS                                                                                      | A response, page 1 of 1 UN                                                                          | JERTAIN                                             |                       | 521                                                   |                                             | ычi)        |                   |                                         |                                                                                |             |                                                          | Proced           | dure No                  |                                                           |
|                                                                                           |                                                                                                     | Refer                                               | rence: Guide to the E | xpression of                                          | of Uncertainty in Measurer                  | nent, issue | d by BIPM, IEC    | , IFCC, ISO, IUPAC                      | , IUPAP, OIML - IS                                                             | 60 1995 (IS | BN 92-67-10188-9)                                        |                  |                          |                                                           |
|                                                                                           |                                                                                                     |                                                     | Type & Serial         |                                                       |                                             |             |                   |                                         | _                                                                              |             |                                                          |                  |                          | Metrologist                                               |
| Description:                                                                              | CCPR-K3 Luminous Intensity Intercompari                                                             | son                                                 | Number                |                                                       |                                             |             |                   |                                         | Range:                                                                         |             |                                                          |                  |                          |                                                           |
|                                                                                           | Mathematical Model:                                                                                 |                                                     |                       |                                                       |                                             |             |                   |                                         | L                                                                              |             |                                                          |                  |                          |                                                           |
| Symbol                                                                                    | Input Quantity<br>(Source of Uncertainty)<br>(X <sub>1</sub> )                                      | Estimated<br>Input<br>Quantity<br>(x <sub>i</sub> ) | Estimate<br>Uncertai  |                                                       | Probability<br>Distribution<br>(N, R, T, U) | k=<br>▼     | Divisor<br>factor | Standard<br>Uncertainty<br><i>U(Xi)</i> | Sensitiv<br>Coefficio<br><i>Ci</i>                                             |             | Standard<br>Uncertainty<br>Contribution<br><i>Ui (y)</i> | Reliability<br>% | Degrees<br>of<br>Freedom | Remarks                                                   |
|                                                                                           | ▼ Standards and Reference Equipment (U                                                              |                                                     | ▼                     |                                                       |                                             |             |                   |                                         |                                                                                |             | Unit                                                     |                  |                          |                                                           |
| Std                                                                                       | Photometer (LMT)                                                                                    |                                                     | 1.300000              | %                                                     | Normal k = 2                                |             | 2.00              | 6.500E-01                               | 1.000E+00                                                                      |             | 6.500E-01                                                | 100.00           | infinite                 | From certificate OR\SR-5082                               |
| Old                                                                                       | Spatial uniformity                                                                                  |                                                     | 0.100000              | %                                                     | Rectangular √3                              |             | 1.73              | 5.774E-02                               | 1.000E+00                                                                      |             | 5.774E-02                                                | 95.00            | 200.00                   | Literature Type B                                         |
|                                                                                           |                                                                                                     |                                                     |                       |                                                       |                                             |             |                   |                                         |                                                                                |             |                                                          |                  |                          |                                                           |
|                                                                                           | Distance uncertainty                                                                                |                                                     | 0.018170              | %                                                     | Normal k = 2                                |             | 2.00              | 9.085E-03                               | 1.000E+00                                                                      |             | 9.085E-03                                                | 100.00           | infinite                 | Optical bench certificate DM\DIM-4016 type B              |
|                                                                                           | Lamp fluctuations during operation (lamp stability                                                  |                                                     | 0.003100              | %                                                     | Normal k = 1                                |             | 1.00              | 3.100E-03                               | 1.000E+00                                                                      | 0//         | 3.100E-03                                                | 100.00           | infinite                 | Empirical test Type A, I:\Laboratories\Optical Radiomet   |
|                                                                                           | Lamp alignment                                                                                      |                                                     | 1.000000              | deg                                                   | Rectangular √3                              |             | 1.73              | 5.774E-01                               | 2.467E-01                                                                      | %/deg       | 1.424E-01                                                | 100.00           | infinite                 | Empirical test PH-03, sens coef unit is %/deg type A      |
|                                                                                           | Electrical noise on photometer signal                                                               |                                                     | 0.000100              | %                                                     | Normal k = 1                                |             | 1.00              | 1.000E-04                               | 1.000E+00                                                                      |             | 1.000E-04                                                | 100.00           | infinite                 | Empirical test Type A, I:\Laboratories\Optical Radiomet   |
|                                                                                           | Lamp power setting (lamp current)                                                                   |                                                     | 0.000450              | %                                                     | Normal k = 1                                |             | 1.00              | 4.500E-04                               | 1.000E+00                                                                      |             | 4.500E-04                                                | 100.00           | infinite                 | Empirical test Type A, I:\Laboratories\Optical Radiometr  |
|                                                                                           | Drift/ageing of lamps                                                                               |                                                     | 0.063100              | %                                                     | Normal k = 1                                |             | 1.00              | 6.310E-02                               | 1.000E+00                                                                      |             | 6.310E-02                                                | 100.00           | infinite                 | Type A I:\Laboratories\Optical Radiometry\Irma\Intercor   |
|                                                                                           | electrical - std resistor                                                                           |                                                     | 0.007410              | %                                                     | Normal k = 2                                |             | 2.00              | 3.705E-03                               | 1.000E+00                                                                      |             | 3.705E-03                                                | 100.00           | infinite                 | Certificates, type B, I:\Laboratories\Optical Radiometry\ |
|                                                                                           | electrical - voltmeters                                                                             |                                                     | 0.001760              | %                                                     | Normal k = 2                                |             | 2.00              | 8.800E-04                               | 1.000E+00                                                                      |             | 8.800E-04                                                | 100.00           | infinite                 | Certificates, type B, I:\Laboratories\Optical Radiometry\ |
|                                                                                           | Stray light                                                                                         |                                                     | 0.030000              | %                                                     | Normal k = 1                                |             | 1.00              | 3.000E-02                               | 1.000E+00                                                                      |             | 3.000E-02                                                | 100.00           | infinite                 | Empirical test Type A, I:\Laboratories\Optical Radiomet   |
|                                                                                           |                                                                                                     |                                                     |                       |                                                       |                                             |             |                   |                                         |                                                                                |             |                                                          |                  |                          |                                                           |
| Res                                                                                       | Resolution of Standard / Equipment (If applicable)                                                  |                                                     |                       |                                                       |                                             |             |                   |                                         |                                                                                |             |                                                          | 100              |                          |                                                           |
|                                                                                           | ▼ Standards and Reference Equipment (                                                               | Correlated)                                         | 7                     |                                                       |                                             |             |                   | NOTE!                                   | ONLY CH                                                                        | ANGE        | BLUE CELLS -                                             | All OTHE         | R CELLS                  | (WHITE) ARE PROTECTED                                     |
|                                                                                           |                                                                                                     |                                                     |                       |                                                       |                                             |             |                   |                                         |                                                                                |             |                                                          |                  |                          |                                                           |
|                                                                                           |                                                                                                     |                                                     |                       |                                                       |                                             |             |                   |                                         |                                                                                |             |                                                          |                  |                          |                                                           |
|                                                                                           |                                                                                                     |                                                     |                       |                                                       |                                             |             |                   |                                         |                                                                                |             |                                                          |                  |                          |                                                           |
|                                                                                           |                                                                                                     |                                                     |                       |                                                       |                                             |             |                   |                                         |                                                                                |             |                                                          |                  |                          |                                                           |
|                                                                                           | ▼ Unit Under Test / Calibration (Uncor                                                              | related) ▼                                          |                       |                                                       |                                             |             |                   | NOTEL                                   |                                                                                | ANGE        |                                                          |                  | RCEUS                    | (WHITE) ARE PROTECTED                                     |
|                                                                                           |                                                                                                     |                                                     |                       |                                                       |                                             |             |                   | NOTE:                                   |                                                                                |             |                                                          |                  |                          |                                                           |
|                                                                                           |                                                                                                     |                                                     |                       |                                                       |                                             |             |                   |                                         |                                                                                |             |                                                          |                  |                          |                                                           |
| Pre                                                                                       |                                                                                                     |                                                     |                       |                                                       |                                             |             |                   |                                         |                                                                                |             |                                                          | 100              |                          |                                                           |
| Res                                                                                       | Resolution of UUT (If applicable)                                                                   |                                                     |                       |                                                       |                                             |             |                   |                                         |                                                                                |             |                                                          | 100              |                          |                                                           |
| Data                                                                                      | Type "B" Evaluation Range of the results (Rectangular)                                              |                                                     |                       |                                                       |                                             |             |                   |                                         |                                                                                |             |                                                          | 100              |                          | ··· ·- ·· ·                                               |
|                                                                                           | Type "A" Evaluation Exp Std Dev of the Mean (ESDM)                                                  |                                                     | 0.003                 | %                                                     | Normal K = 1                                |             | 1.00              | 3.300E-03                               | 1.000E+00                                                                      |             | 3.300E-03                                                |                  | 4                        | No of Readings 5                                          |
|                                                                                           | ▼ Unit Under Test / Calibration (Corr                                                               | elated) ▼                                           |                       |                                                       |                                             |             |                   | NOTE!                                   | ONLY CH                                                                        | ANGE I      | BLUE CELLS -                                             | All OTHE         | R CELLS                  | (WHITE) ARE PROTECTED                                     |
|                                                                                           |                                                                                                     |                                                     |                       |                                                       |                                             |             |                   |                                         |                                                                                |             |                                                          |                  |                          |                                                           |
|                                                                                           |                                                                                                     |                                                     |                       |                                                       |                                             |             |                   |                                         |                                                                                |             |                                                          |                  |                          |                                                           |
|                                                                                           |                                                                                                     |                                                     |                       |                                                       |                                             |             |                   |                                         |                                                                                |             |                                                          |                  |                          |                                                           |
| <u>A</u> bout UBM                                                                         |                                                                                                     | TOTAL                                               | COMBINED              | UNCEF                                                 | RTAINTY                                     |             |                   |                                         |                                                                                |             | Unit                                                     | 1                |                          |                                                           |
|                                                                                           |                                                                                                     |                                                     |                       | Co                                                    | ombined Uncertai                            | nty (No     | rmal)             | ▼ Level                                 | of Confidence                                                                  | •           | 6.716E-01                                                | V <sub>eff</sub> | 3662867                  | Checked and Approved By:                                  |
| Bes                                                                                       | st Measurement Capability ( <u>Excluding</u> UU                                                     | T contribut                                         | tion)                 | Combined Uncertainty (Normal)<br>Expanded Uncertainty |                                             |             |                   |                                         | <ul> <li>▼ Level of Confidence ▼</li> <li>68,27 % K = 1</li> <li>6.</li> </ul> |             |                                                          | k =              | 1.00                     |                                                           |
| Combined Uncertainty (Normal) ▼ Level of Confidence ▼ 6.716E-01 V <sub>eff</sub> infinite |                                                                                                     |                                                     |                       |                                                       |                                             |             |                   |                                         |                                                                                |             |                                                          |                  |                          |                                                           |
|                                                                                           | Uncertainty of Measurement (Including UUT contribution) Expanded Uncertainty 68,27 % K = 1 6.72E-01 |                                                     |                       |                                                       |                                             |             |                   |                                         |                                                                                |             |                                                          | k =              | 1.00                     |                                                           |
| Ľ                                                                                         |                                                                                                     |                                                     |                       |                                                       |                                             |             |                   |                                         |                                                                                |             |                                                          |                  |                          | Appendix B Page 17 of 17                                  |

CCPR-K3.2014: Luminous Intensity Final Report, Appendix B

Appendix B Page 17 of 17

| Final Report, Ap        | opendices C,D   | ,E,F          |               |               | Infor         | mation        |                         |                |               |               |           |
|-------------------------|-----------------|---------------|---------------|---------------|---------------|---------------|-------------------------|----------------|---------------|---------------|-----------|
| CCPR-K3.2014: Lumi      |                 |               |               |               |               |               |                         |                |               |               |           |
| Draft B Report          |                 |               |               |               |               |               |                         |                |               |               |           |
| 2020-October-15         |                 |               |               |               |               |               |                         |                |               |               |           |
| Information for Appe    | endices C-F     |               |               |               |               |               |                         |                |               |               |           |
| Summary of Measur       | ement Data a    | and Analysi   | s             |               |               |               |                         |                |               | -             |           |
| <mark>(k=1) valı</mark> | ies are used    | for all calcu | lations       |               |               |               |                         |                |               |               |           |
| Appendix C              |                 |               |               |               |               |               |                         |                |               |               |           |
| Summary of Particip     | ant Lamp Lui    | minous Inte   | nsity Value   | S             |               |               |                         |                |               |               |           |
| This work               | sheet contai    | ns the Lumi   | nous Intens   | ity values fo | or all the pa | rticipant lan | nps                     |                |               |               |           |
| The value               | s for Round#    | 1, Round#2    | , and the fir | nal values h  | ave been de   | termined a    | s discussed in the Drat | ft B report Se | ection 4.2 "P | articipant La | amp Data" |
| The work                | sheet shows     | the calculat  | ions for the  | average NI    | MI Luminou    | s Intensity r | elative standard unce   | rtainty        |               |               |           |
| The lamp                | final data is l | linked to sul | bsequent w    | orksheets a   | nd calculati  | ons           |                         |                |               |               |           |
|                         |                 |               |               |               |               |               |                         |                |               |               |           |
|                         |                 |               |               |               |               |               |                         |                |               |               |           |
|                         |                 |               |               |               |               |               |                         |                |               |               |           |
|                         |                 |               |               |               |               |               |                         |                |               | -             |           |
| Appendix D              |                 |               |               |               |               |               |                         |                |               |               |           |
| Summary of Pilot Me     | asurements      | of Participa  | ant Lamps     |               |               |               |                         |                |               |               |           |
| This work               | sheet combi     | nes the 'fina | al' NMI lumi  | nous intens   | ity values (f | rom Appen     | dix C) with the Pilot m | easurement     | s of each lan | np            |           |
| The final               | NMI value fo    | r the compa   | arison photo  | ometer resp   | onsivity (cd  | /V) is calcul | ated from all the NMI   | lamps and P    | ilot measure  | ements        |           |
| Uncertair               | ties are calcu  | ulated as dis | scussed in th | ne Draft B r  | eport Sectio  | ns 4.1 to 4.  | 3                       |                |               |               |           |
|                         |                 |               |               |               |               |               |                         |                |               |               |           |
|                         |                 |               |               |               |               |               |                         |                |               |               |           |
| Appendix E              |                 |               |               |               |               |               |                         |                |               |               |           |
| Calculation of the KC   | RV and the D    | DoE           |               |               |               |               |                         |                |               |               |           |
| The data                | from worksh     | eet Append    | ices C and D  | ) is gathered | d for the cal | culation of   | the KCRV and Unilater   | al DOE         |               |               |           |
| The calcu               | lations are di  | scussed in t  | he Draft B r  | eport Section | on 4.4        |               |                         |                |               |               |           |
| If any cha              | nges are mad    | de, such as t | to the Mand   | del-Paule fa  | ctor s,       |               |                         |                |               |               |           |
|                         | -the Chi-sq     | uare values   | , KCRV valu   | e, DOE valu   | es and unce   | rtainties wi  | ll all change.          |                |               |               |           |
|                         |                 |               |               |               |               |               |                         |                |               |               |           |
| Worksheet "DOE.plt"     |                 |               |               |               |               |               |                         |                |               |               |           |
| Plot of th              | e DOE values    | , uncertaint  | ies, and KCI  | RV uncertai   | nty, data fr  | om Append     | ix E                    |                |               |               |           |
| This is sin             | nilar to Figure | e Two of the  | e Draft B rep | ort           |               |               |                         |                |               |               |           |
|                         |                 |               |               |               |               |               |                         |                |               |               |           |
| Appendix F              |                 |               |               |               |               |               |                         |                |               |               |           |
| Calculation of the Bil  | ateral DoE      |               |               |               |               |               |                         |                |               |               |           |
| The data                | from Append     | lix E is used | to calculate  | the bilater   | al DOE as de  | escribed in t | the Draft B report Sect | ion 4.4.3      |               |               |           |
|                         |                 |               |               |               |               |               |                         |                |               |               |           |

|                                                                                                                                                                                                                                                                                                                                   | •                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6                                                                                                                                                                                                                                                                                  |                                                                                                                  | -                                                                                                                                            | -                                                                                                                                                                                                           | 6                                                                                                                                                                  |                                                                                                                                                                    |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                              |   |                                                      |                                                                                               |                                                                                    | 2                                                                                                                   | _                                                                                                                                                                                                                                                | 0  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                                                                                                                                                                                                                                                                                                                   | A                                                                                            | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | С                                                                                                                                                                                                                                                                                  | D                                                                                                                | E                                                                                                                                            | F                                                                                                                                                                                                           | G                                                                                                                                                                  | H                                                                                                                                                                  | I                                                                                                                                                                                                                                         | J                                                                                                                                                                                                                            | K | L                                                    | М                                                                                             | N                                                                                  | 0                                                                                                                   | Р                                                                                                                                                                                                                                                | Q  |
|                                                                                                                                                                                                                                                                                                                                   | CCPR-K3.2014: Lumino                                                                         | us Intensity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                    |                                                                                                                  |                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                    |                                                                                                                                                                    |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                              |   |                                                      |                                                                                               |                                                                                    | Fractional S                                                                                                        |                                                                                                                                                                                                                                                  |    |
| 2                                                                                                                                                                                                                                                                                                                                 | Draft B Report                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                    |                                                                                                                  |                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                    |                                                                                                                                                                    |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                              |   |                                                      |                                                                                               |                                                                                    | random und                                                                                                          | certainties                                                                                                                                                                                                                                      |    |
| 3                                                                                                                                                                                                                                                                                                                                 | 2020-October-15                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                    |                                                                                                                  |                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                    |                                                                                                                                                                    |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                              |   |                                                      |                                                                                               |                                                                                    | into uncorre                                                                                                        | elated and                                                                                                                                                                                                                                       |    |
| 4                                                                                                                                                                                                                                                                                                                                 | Appendix Cv2.1                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                    |                                                                                                                  |                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                    |                                                                                                                                                                    |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                              |   |                                                      |                                                                                               |                                                                                    | correlated co                                                                                                       | omponents                                                                                                                                                                                                                                        |    |
|                                                                                                                                                                                                                                                                                                                                   | Summary of Participan                                                                        | t Lamp Lumi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nous Intensity Values                                                                                                                                                                                                                                                              |                                                                                                                  |                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                    |                                                                                                                                                                    |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                              |   |                                                      |                                                                                               |                                                                                    | for combini                                                                                                         | -                                                                                                                                                                                                                                                |    |
| 6                                                                                                                                                                                                                                                                                                                                 |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                              |                                                                                                                  |                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                    |                                                                                                                                                                    |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                              |   |                                                      |                                                                                               |                                                                                    |                                                                                                                     | SQRT(1-f^2)                                                                                                                                                                                                                                      |    |
| 7                                                                                                                                                                                                                                                                                                                                 |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                    |                                                                                                                  |                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                    |                                                                                                                                                                    |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                              |   |                                                      |                                                                                               |                                                                                    | 0.5                                                                                                                 | 0.866                                                                                                                                                                                                                                            |    |
| /                                                                                                                                                                                                                                                                                                                                 |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                    |                                                                                                                  |                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                    |                                                                                                                                                                    |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                              |   |                                                      |                                                                                               |                                                                                    | 0.5                                                                                                                 | 0.800                                                                                                                                                                                                                                            |    |
| 8                                                                                                                                                                                                                                                                                                                                 |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                    |                                                                                                                  |                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                    |                                                                                                                                                                    |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                              |   |                                                      |                                                                                               |                                                                                    |                                                                                                                     |                                                                                                                                                                                                                                                  |    |
| 9                                                                                                                                                                                                                                                                                                                                 |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                    |                                                                                                                  |                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                    |                                                                                                                                                                    |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                              |   |                                                      |                                                                                               |                                                                                    |                                                                                                                     |                                                                                                                                                                                                                                                  |    |
| 10                                                                                                                                                                                                                                                                                                                                | NMI:                                                                                         | NMISA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                    |                                                                                                                  |                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                    |                                                                                                                                                                    |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                              |   |                                                      |                                                                                               |                                                                                    |                                                                                                                     |                                                                                                                                                                                                                                                  |    |
| 11                                                                                                                                                                                                                                                                                                                                |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                    |                                                                                                                  |                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                    |                                                                                                                                                                    |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                              |   |                                                      |                                                                                               |                                                                                    |                                                                                                                     |                                                                                                                                                                                                                                                  |    |
| 12                                                                                                                                                                                                                                                                                                                                | Lamp#                                                                                        | Round#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Data ID                                                                                                                                                                                                                                                                            | Lamp E                                                                                                           | Electrical                                                                                                                                   | Lamp CCT                                                                                                                                                                                                    |                                                                                                                                                                    | NMISA L                                                                                                                                                            | amp Luminous                                                                                                                                                                                                                              | Intensity (cd)                                                                                                                                                                                                               |   |                                                      | Calculations                                                                                  | for NMISA we                                                                       | eighted mean                                                                                                        |                                                                                                                                                                                                                                                  |    |
| 13                                                                                                                                                                                                                                                                                                                                |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                    | Current(A)                                                                                                       | Voltage(V)                                                                                                                                   | к                                                                                                                                                                                                           | l(cd)                                                                                                                                                              |                                                                                                                                                                    | <b>Relative Stan</b>                                                                                                                                                                                                                      | dard Uncertainty                                                                                                                                                                                                             |   |                                                      | Weights                                                                                       |                                                                                    | <b>Relative Und</b>                                                                                                 | certainties                                                                                                                                                                                                                                      |    |
| 14                                                                                                                                                                                                                                                                                                                                |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                    |                                                                                                                  |                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                    | random                                                                                                                                                             | systematic                                                                                                                                                                                                                                | final lamp (uf)                                                                                                                                                                                                              |   | uf                                                   | 1/(uf)^2                                                                                      | wi                                                                                 | uncorrelated                                                                                                        | correlated                                                                                                                                                                                                                                       |    |
| 15                                                                                                                                                                                                                                                                                                                                |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                    |                                                                                                                  |                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                    | u-uncorr                                                                                                                                                           | u-corr                                                                                                                                                                                                                                    | SQRT(u-uncorr^2 + u-corr^2)                                                                                                                                                                                                  |   | fractional                                           |                                                                                               | normalised                                                                         | for combini                                                                                                         | ing lamps                                                                                                                                                                                                                                        |    |
| 16                                                                                                                                                                                                                                                                                                                                |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                    |                                                                                                                  |                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                    |                                                                                                                                                                    |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                              |   |                                                      |                                                                                               |                                                                                    |                                                                                                                     | 0 1                                                                                                                                                                                                                                              |    |
|                                                                                                                                                                                                                                                                                                                                   | "24" 4595 PTB 09                                                                             | R#1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | "24" 4595 PTB 09R#1                                                                                                                                                                                                                                                                | 5.824                                                                                                            | 30.242                                                                                                                                       | 2841.0                                                                                                                                                                                                      | 269.000                                                                                                                                                            | 0.156%                                                                                                                                                             | 0.653%                                                                                                                                                                                                                                    | 0.680%                                                                                                                                                                                                                       |   |                                                      |                                                                                               |                                                                                    |                                                                                                                     |                                                                                                                                                                                                                                                  |    |
|                                                                                                                                                                                                                                                                                                                                   |                                                                                              | R#1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                    |                                                                                                                  | 30.242                                                                                                                                       |                                                                                                                                                                                                             |                                                                                                                                                                    |                                                                                                                                                                    |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                              |   |                                                      |                                                                                               |                                                                                    |                                                                                                                     |                                                                                                                                                                                                                                                  |    |
| 18                                                                                                                                                                                                                                                                                                                                |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | "24" 4595 PTB 09R#2                                                                                                                                                                                                                                                                | 5.824                                                                                                            |                                                                                                                                              | 2838.0                                                                                                                                                                                                      | 268.700                                                                                                                                                            | 0.156%                                                                                                                                                             | 0.653%                                                                                                                                                                                                                                    | 0.680%                                                                                                                                                                                                                       |   | 0.0000005                                            | 22202 27500                                                                                   | 0.350000                                                                           | 0.000120                                                                                                            | 0.004.054                                                                                                                                                                                                                                        |    |
| 19                                                                                                                                                                                                                                                                                                                                |                                                                                              | final                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | "24" 4595 PTB 09final                                                                                                                                                                                                                                                              | 5.824                                                                                                            | 30.248                                                                                                                                       | 2839.5                                                                                                                                                                                                      | 268.850                                                                                                                                                            | 0.110%                                                                                                                                                             | 0.653%                                                                                                                                                                                                                                    | 0.663%                                                                                                                                                                                                                       |   | 0.006625                                             | 22782.27568                                                                                   | 0.250000                                                                           | 0.000138                                                                                                            | 0.001651                                                                                                                                                                                                                                         |    |
| 20                                                                                                                                                                                                                                                                                                                                | <i>и</i>                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                    |                                                                                                                  |                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                    |                                                                                                                                                                    |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                              |   |                                                      |                                                                                               |                                                                                    |                                                                                                                     |                                                                                                                                                                                                                                                  |    |
| 21                                                                                                                                                                                                                                                                                                                                |                                                                                              | R#1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | "39" 4596 PTB 09R#1                                                                                                                                                                                                                                                                | 5.892                                                                                                            | 30.816                                                                                                                                       | 2853.0                                                                                                                                                                                                      | 283.900                                                                                                                                                            | 0.156%                                                                                                                                                             | 0.653%                                                                                                                                                                                                                                    | 0.680%                                                                                                                                                                                                                       |   |                                                      |                                                                                               |                                                                                    |                                                                                                                     |                                                                                                                                                                                                                                                  |    |
| 22                                                                                                                                                                                                                                                                                                                                |                                                                                              | R#2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | "39" 4596 PTB 09R#2                                                                                                                                                                                                                                                                | 5.892                                                                                                            | 30.826                                                                                                                                       | 2849.0                                                                                                                                                                                                      | 284.400                                                                                                                                                            | 0.156%                                                                                                                                                             | 0.653%                                                                                                                                                                                                                                    | 0.680%                                                                                                                                                                                                                       |   |                                                      |                                                                                               |                                                                                    |                                                                                                                     |                                                                                                                                                                                                                                                  |    |
| 23                                                                                                                                                                                                                                                                                                                                |                                                                                              | final                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | "39" 4596 PTB 09final                                                                                                                                                                                                                                                              | 5.892                                                                                                            | 30.821                                                                                                                                       | 2851.0                                                                                                                                                                                                      | 284.150                                                                                                                                                            | 0.110%                                                                                                                                                             | 0.653%                                                                                                                                                                                                                                    | 0.663%                                                                                                                                                                                                                       |   | 0.006625                                             | 22782.27538                                                                                   | 0.250000                                                                           | 0.000138                                                                                                            | 0.001651                                                                                                                                                                                                                                         |    |
| 24                                                                                                                                                                                                                                                                                                                                |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                    |                                                                                                                  |                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                    |                                                                                                                                                                    |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                              |   |                                                      |                                                                                               |                                                                                    |                                                                                                                     |                                                                                                                                                                                                                                                  |    |
|                                                                                                                                                                                                                                                                                                                                   | "42" 4597 PTB 09                                                                             | R#1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | "42" 4597 PTB 09R#1                                                                                                                                                                                                                                                                | 5.880                                                                                                            | 30.713                                                                                                                                       | 2848.0                                                                                                                                                                                                      | 274.600                                                                                                                                                            | 0.156%                                                                                                                                                             | 0.653%                                                                                                                                                                                                                                    | 0.680%                                                                                                                                                                                                                       |   |                                                      |                                                                                               |                                                                                    |                                                                                                                     |                                                                                                                                                                                                                                                  |    |
| 26                                                                                                                                                                                                                                                                                                                                |                                                                                              | R#2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | "42" 4597 PTB 09R#2                                                                                                                                                                                                                                                                | 5.880                                                                                                            | 30.725                                                                                                                                       | 2844.0                                                                                                                                                                                                      | 277.100                                                                                                                                                            | 0.156%                                                                                                                                                             | 0.653%                                                                                                                                                                                                                                    | 0.680%                                                                                                                                                                                                                       |   |                                                      |                                                                                               |                                                                                    |                                                                                                                     |                                                                                                                                                                                                                                                  |    |
| 27                                                                                                                                                                                                                                                                                                                                |                                                                                              | final                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | "42" 4597 PTB 09final                                                                                                                                                                                                                                                              | 5.880                                                                                                            | 30.719                                                                                                                                       | 2846.0                                                                                                                                                                                                      | 275.839                                                                                                                                                            | 0.130%                                                                                                                                                             | 0.653%                                                                                                                                                                                                                                    | 0.663%                                                                                                                                                                                                                       |   | 0.006625                                             | 22782.26294                                                                                   | 0.250000                                                                           | 0.000138                                                                                                            | 0.001651                                                                                                                                                                                                                                         |    |
|                                                                                                                                                                                                                                                                                                                                   |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 42 4557 FTB 0511181                                                                                                                                                                                                                                                                | 5.880                                                                                                            | 50.715                                                                                                                                       | 2840.0                                                                                                                                                                                                      | 275.855                                                                                                                                                            | 0.11076                                                                                                                                                            | 0.03376                                                                                                                                                                                                                                   | 0.00378                                                                                                                                                                                                                      |   | 0.000023                                             | 22782.20294                                                                                   | 0.230000                                                                           | 0.000138                                                                                                            | 0.001031                                                                                                                                                                                                                                         |    |
| 28                                                                                                                                                                                                                                                                                                                                |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                    |                                                                                                                  |                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                    | 0.45004                                                                                                                                                            | 0.0701/                                                                                                                                                                                                                                   | 0.0001/                                                                                                                                                                                                                      |   |                                                      |                                                                                               |                                                                                    |                                                                                                                     |                                                                                                                                                                                                                                                  |    |
|                                                                                                                                                                                                                                                                                                                                   |                                                                                              | R#1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NSI 10R#1                                                                                                                                                                                                                                                                          | 5.890                                                                                                            | 31.962                                                                                                                                       | 2854.0                                                                                                                                                                                                      | 314.400                                                                                                                                                            | 0.156%                                                                                                                                                             | 0.653%                                                                                                                                                                                                                                    | 0.680%                                                                                                                                                                                                                       |   |                                                      |                                                                                               |                                                                                    |                                                                                                                     |                                                                                                                                                                                                                                                  |    |
| 30                                                                                                                                                                                                                                                                                                                                |                                                                                              | R#2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NSI 10R#2                                                                                                                                                                                                                                                                          | 5.890                                                                                                            | 31.944                                                                                                                                       | 2869.0                                                                                                                                                                                                      | 317.200                                                                                                                                                            | 0.156%                                                                                                                                                             | 0.653%                                                                                                                                                                                                                                    | 0.680%                                                                                                                                                                                                                       |   |                                                      |                                                                                               |                                                                                    |                                                                                                                     |                                                                                                                                                                                                                                                  |    |
| 31                                                                                                                                                                                                                                                                                                                                |                                                                                              | final                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NSI 10final                                                                                                                                                                                                                                                                        | 5.890                                                                                                            | 31.953                                                                                                                                       | 2861.5                                                                                                                                                                                                      | 315.788                                                                                                                                                            | 0.110%                                                                                                                                                             | 0.653%                                                                                                                                                                                                                                    | 0.663%                                                                                                                                                                                                                       |   | 0.006625                                             | 22782.26349                                                                                   | 0.250000                                                                           | 0.000138                                                                                                            | 0.001651                                                                                                                                                                                                                                         |    |
|                                                                                                                                                                                                                                                                                                                                   |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                    |                                                                                                                  |                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                    |                                                                                                                                                                    |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                              |   |                                                      |                                                                                               |                                                                                    |                                                                                                                     |                                                                                                                                                                                                                                                  |    |
| 32                                                                                                                                                                                                                                                                                                                                |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                    |                                                                                                                  |                                                                                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                    |                                                                                                                                                                    |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                              |   |                                                      |                                                                                               |                                                                                    |                                                                                                                     |                                                                                                                                                                                                                                                  |    |
| 32<br>33                                                                                                                                                                                                                                                                                                                          |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                    |                                                                                                                  |                                                                                                                                              | Av                                                                                                                                                                                                          |                                                                                                                                                                    |                                                                                                                                                                    |                                                                                                                                                                                                                                           | standard uncertainty                                                                                                                                                                                                         |   | sum:                                                 | 91129.07749                                                                                   | 1.00000                                                                            |                                                                                                                     |                                                                                                                                                                                                                                                  |    |
| 33                                                                                                                                                                                                                                                                                                                                |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                    |                                                                                                                  |                                                                                                                                              | Av                                                                                                                                                                                                          |                                                                                                                                                                    | Luminous Int                                                                                                                                                       | ensity relative                                                                                                                                                                                                                           | standard uncertainty                                                                                                                                                                                                         |   | sum:                                                 | 91129.07749                                                                                   | 1.00000                                                                            |                                                                                                                     |                                                                                                                                                                                                                                                  |    |
| 33<br>34                                                                                                                                                                                                                                                                                                                          |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                    |                                                                                                                  |                                                                                                                                              | Av                                                                                                                                                                                                          | verage NMISA                                                                                                                                                       |                                                                                                                                                                    |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                              |   | sum:                                                 |                                                                                               |                                                                                    | e relative standa                                                                                                   | ard uncertainty                                                                                                                                                                                                                                  |    |
| 33<br>34<br>35                                                                                                                                                                                                                                                                                                                    |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                    |                                                                                                                  |                                                                                                                                              | Αν                                                                                                                                                                                                          | verage NMISA                                                                                                                                                       | Luminous Int                                                                                                                                                       | ensity relative                                                                                                                                                                                                                           | standard uncertainty                                                                                                                                                                                                         |   | sum:                                                 |                                                                                               |                                                                                    |                                                                                                                     | ard uncertainty                                                                                                                                                                                                                                  |    |
| 33<br>34<br>35<br>36                                                                                                                                                                                                                                                                                                              |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                    |                                                                                                                  |                                                                                                                                              | Αν                                                                                                                                                                                                          | verage NMISA                                                                                                                                                       | Luminous Int                                                                                                                                                       | ensity relative                                                                                                                                                                                                                           | standard uncertainty                                                                                                                                                                                                         |   | sum:                                                 |                                                                                               | MISA average                                                                       | u-uncorr                                                                                                            | u-corr                                                                                                                                                                                                                                           | uf |
| 33<br>34<br>35<br>36<br>37                                                                                                                                                                                                                                                                                                        |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                    |                                                                                                                  |                                                                                                                                              | Av                                                                                                                                                                                                          | verage NMISA                                                                                                                                                       | Luminous Int                                                                                                                                                       | ensity relative                                                                                                                                                                                                                           | standard uncertainty                                                                                                                                                                                                         |   | sum:                                                 |                                                                                               |                                                                                    |                                                                                                                     | u-corr                                                                                                                                                                                                                                           |    |
| 33<br>34<br>35<br>36<br>37<br>38                                                                                                                                                                                                                                                                                                  |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                    |                                                                                                                  |                                                                                                                                              | Αν                                                                                                                                                                                                          | verage NMISA                                                                                                                                                       | Luminous Int                                                                                                                                                       | ensity relative                                                                                                                                                                                                                           | standard uncertainty                                                                                                                                                                                                         |   | sum:                                                 |                                                                                               | MISA average                                                                       | u-uncorr                                                                                                            | u-corr                                                                                                                                                                                                                                           | uf |
| 33<br>34<br>35<br>36<br>37<br>38<br>39                                                                                                                                                                                                                                                                                            |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                    |                                                                                                                  |                                                                                                                                              | <u>Αν</u>                                                                                                                                                                                                   | verage NMISA                                                                                                                                                       | Luminous Int                                                                                                                                                       | ensity relative                                                                                                                                                                                                                           | standard uncertainty                                                                                                                                                                                                         |   | sum:                                                 |                                                                                               | MISA average                                                                       | u-uncorr                                                                                                            | u-corr                                                                                                                                                                                                                                           | uf |
| 33<br>34<br>35<br>36<br>37<br>38<br>39<br>40                                                                                                                                                                                                                                                                                      | NMI:                                                                                         | NIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                    |                                                                                                                  |                                                                                                                                              | <u>Αν</u>                                                                                                                                                                                                   | verage NMISA                                                                                                                                                       | Luminous Int                                                                                                                                                       | ensity relative                                                                                                                                                                                                                           | standard uncertainty                                                                                                                                                                                                         |   | sum:                                                 |                                                                                               | MISA average                                                                       | u-uncorr                                                                                                            | u-corr                                                                                                                                                                                                                                           | uf |
| 33<br>34<br>35<br>36<br>37<br>38<br>39                                                                                                                                                                                                                                                                                            | NMI:                                                                                         | NIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                    |                                                                                                                  |                                                                                                                                              | <u>Αν</u>                                                                                                                                                                                                   | verage NMISA                                                                                                                                                       | Luminous Int                                                                                                                                                       | ensity relative                                                                                                                                                                                                                           | standard uncertainty                                                                                                                                                                                                         |   | sum:                                                 |                                                                                               | MISA average                                                                       | u-uncorr                                                                                                            | u-corr                                                                                                                                                                                                                                           | uf |
| 33<br>34<br>35<br>36<br>37<br>38<br>39<br>40                                                                                                                                                                                                                                                                                      | NMI:<br>Lamp#                                                                                | NIM<br>Round#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Data ID                                                                                                                                                                                                                                                                            | Lamp E                                                                                                           | Electrical                                                                                                                                   | Av                                                                                                                                                                                                          | verage NMISA                                                                                                                                                       | Luminous Int                                                                                                                                                       | ensity relative                                                                                                                                                                                                                           | standard uncertainty<br>0.661%                                                                                                                                                                                               |   | sum:                                                 | Final N                                                                                       | MISA average                                                                       | u-uncorr<br>0.0275%                                                                                                 | u-corr                                                                                                                                                                                                                                           | uf |
| 33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41                                                                                                                                                                                                                                                                                |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Data ID                                                                                                                                                                                                                                                                            | Lamp E<br>Current(A)                                                                                             | Electrical<br>Voltage(V)                                                                                                                     |                                                                                                                                                                                                             | verage NMISA                                                                                                                                                       | Luminous Int                                                                                                                                                       | ensity relative<br>0.660%                                                                                                                                                                                                                 | standard uncertainty<br>0.661%                                                                                                                                                                                               |   | sum:                                                 | Final N                                                                                       | MISA average<br>NMISA                                                              | u-uncorr<br>0.0275%                                                                                                 | u-corr 0.6602% C                                                                                                                                                                                                                                 | uf |
| 33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42                                                                                                                                                                                                                                                                          |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Data ID                                                                                                                                                                                                                                                                            |                                                                                                                  |                                                                                                                                              | Lamp CCT                                                                                                                                                                                                    | verage NMISA<br>NMISA                                                                                                                                              | Luminous Int                                                                                                                                                       | ensity relative<br>0.660%                                                                                                                                                                                                                 | standard uncertainty<br>0.661%<br>ntensity (cd)                                                                                                                                                                              |   | sum:                                                 | Final N                                                                                       | MISA average<br>NMISA                                                              | u-uncorr<br>0.0275%<br>ghted mean                                                                                   | u-corr<br>0.6602% C                                                                                                                                                                                                                              | uf |
| 33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43                                                                                                                                                                                                                                                                    |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Data ID                                                                                                                                                                                                                                                                            |                                                                                                                  |                                                                                                                                              | Lamp CCT                                                                                                                                                                                                    | verage NMISA<br>NMISA                                                                                                                                              | Luminous Int<br>0.028%                                                                                                                                             | ensity relative<br>0.660%<br>mp Luminous I<br>Relative Stan                                                                                                                                                                               | standard uncertainty<br>0.661%<br>ntensity (cd)<br>dard Uncertainty                                                                                                                                                          |   |                                                      | Final N<br>Calculation<br>Weights                                                             | MISA average<br>NMISA<br>s for NIM wei                                             | u-uncorr<br>0.0275%<br>ghted mean<br>Relative Uno                                                                   | u-corr<br>0.6602% C<br>certainties<br>correlated                                                                                                                                                                                                 | uf |
| 33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44                                                                                                                                                                                                                                                              |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Data ID                                                                                                                                                                                                                                                                            |                                                                                                                  |                                                                                                                                              | Lamp CCT                                                                                                                                                                                                    | verage NMISA<br>NMISA                                                                                                                                              | Luminous Int<br>0.028%                                                                                                                                             | ensity relative<br>0.660%<br>mp Luminous I<br>Relative Stan<br>systematic                                                                                                                                                                 | standard uncertainty<br>0.661%<br>ntensity (cd)<br>dard Uncertainty<br>final lamp (uf)                                                                                                                                       |   | uf                                                   | Final N<br>Calculation<br>Weights                                                             | MISA average<br>NMISA<br>s for NIM wei<br>wi                                       | u-uncorr<br>0.0275%<br>ghted mean<br>Relative Unc<br>uncorrelated                                                   | u-corr<br>0.6602% C<br>certainties<br>correlated                                                                                                                                                                                                 | uf |
| <ul> <li>33</li> <li>34</li> <li>35</li> <li>36</li> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> </ul>                                                                                                                                                | Lamp#                                                                                        | Round#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                    | Current(A)                                                                                                       | Voltage(V)                                                                                                                                   | Lamp CCT<br>K                                                                                                                                                                                               | verage NMISA<br>NMISA                                                                                                                                              | Luminous Int<br>0.028%                                                                                                                                             | ensity relative<br>0.660%<br>mp Luminous I<br>Relative Stan<br>systematic<br>u-corr                                                                                                                                                       | standard uncertainty<br>0.661%<br>ntensity (cd)<br>dard Uncertainty<br>final lamp (uf)<br>SQRT(u-uncorr^2 + u-corr^2)                                                                                                        |   | uf                                                   | Final N<br>Calculation<br>Weights                                                             | MISA average<br>NMISA<br>s for NIM wei<br>wi                                       | u-uncorr<br>0.0275%<br>ghted mean<br>Relative Unc<br>uncorrelated                                                   | u-corr<br>0.6602% C<br>certainties<br>correlated                                                                                                                                                                                                 | uf |
| 33         34         35         36         37         38         39         40         41         42         43         44         45         46         47                                                                                                                                                                      | Lamp#<br>NIM-01(Wi41/G-96)                                                                   | Round#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NIM-01(Wi41/G-96)R#1                                                                                                                                                                                                                                                               | Current(A)                                                                                                       | Voltage(V) 29.846                                                                                                                            | Lamp CCT<br>K<br>2837.0                                                                                                                                                                                     | verage NMISA<br>NMISA                                                                                                                                              | Luminous Int<br>0.028%<br>NIM La<br>random<br>u-uncorr                                                                                                             | ensity relative<br>0.660%<br>mp Luminous I<br>Relative Stan<br>systematic<br>u-corr<br>0.167%                                                                                                                                             | standard uncertainty<br>0.661%<br>ntensity (cd)<br>dard Uncertainty<br>final lamp (uf)<br>SQRT(u-uncorr^2 + u-corr^2)<br>0.171%                                                                                              |   | uf                                                   | Final N<br>Calculation<br>Weights                                                             | MISA average<br>NMISA<br>s for NIM wei<br>wi                                       | u-uncorr<br>0.0275%<br>ghted mean<br>Relative Unc<br>uncorrelated                                                   | u-corr<br>0.6602% C<br>certainties<br>correlated                                                                                                                                                                                                 | uf |
| 33         34         35         36         37         38         39         40         41         42         43         44         45         46         47         48                                                                                                                                                           | Lamp#<br>NIM-01(Wi41/G-96)                                                                   | Round#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NIM-01(Wi41/G-96)R#1<br>NIM-01(Wi41/G-96)R#2                                                                                                                                                                                                                                       | Current(A)<br>5.794<br>5.794                                                                                     | Voltage(V)<br>29.846<br>29.828                                                                                                               | Lamp CCT<br>K<br>2837.0<br>2837.0                                                                                                                                                                           | verage NMISA<br>NMISA                                                                                                                                              | Luminous Int<br>0.028%<br>NIM La<br>random<br>u-uncorr<br>0.035%<br>0.057%                                                                                         | ensity relative<br>0.660%<br>mp Luminous I<br>Relative Stan<br>systematic<br>u-corr<br>0.167%<br>0.167%                                                                                                                                   | standard uncertainty<br>0.661%<br>ntensity (cd)<br>dard Uncertainty<br>final lamp (uf)<br>SQRT(u-uncorr^2 + u-corr^2)<br>0.171%<br>0.176%                                                                                    |   | uf                                                   | Final N<br>Calculation<br>Weights<br>1/(uf)^2                                                 | MISA average<br>NMISA<br>s for NIM wei<br>wi<br>normalised                         | u-uncorr<br>0.0275%<br>ghted mean<br>Relative Unc<br>uncorrelated<br>for combini                                    | u-corr<br>0.6602% C<br>certainties<br>correlated<br>ing lamps                                                                                                                                                                                    | uf |
| 33         34         35         36         37         38         39         40         41         42         43         44         45         46         47         48         49                                                                                                                                                | Lamp#<br>NIM-01(Wi41/G-96)                                                                   | Round#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NIM-01(Wi41/G-96)R#1                                                                                                                                                                                                                                                               | Current(A)                                                                                                       | Voltage(V) 29.846                                                                                                                            | Lamp CCT<br>K<br>2837.0                                                                                                                                                                                     | verage NMISA<br>NMISA                                                                                                                                              | Luminous Int<br>0.028%<br>NIM La<br>random<br>u-uncorr                                                                                                             | ensity relative<br>0.660%<br>mp Luminous I<br>Relative Stan<br>systematic<br>u-corr<br>0.167%                                                                                                                                             | standard uncertainty<br>0.661%<br>ntensity (cd)<br>dard Uncertainty<br>final lamp (uf)<br>SQRT(u-uncorr^2 + u-corr^2)<br>0.171%                                                                                              |   | uf                                                   | Final N<br>Calculation<br>Weights                                                             | MISA average<br>NMISA<br>s for NIM wei<br>wi                                       | u-uncorr<br>0.0275%<br>ghted mean<br>Relative Uno<br>uncorrelated                                                   | u-corr<br>0.6602% C<br>certainties<br>correlated                                                                                                                                                                                                 | uf |
| 33         34         35         36         37         38         39         40         41         42         43         44         45         46         47         48         49         50                                                                                                                                     | Lamp#<br>NIM-01(Wi41/G-96)                                                                   | Round#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NIM-01(Wi41/G-96)R#1<br>NIM-01(Wi41/G-96)R#2<br>NIM-01(Wi41/G-96)final                                                                                                                                                                                                             | Current(A)                                                                                                       | Voltage(V)<br>29.846<br>29.828<br>29.837                                                                                                     | Lamp CCT<br>K<br>2837.0<br>2837.0<br>2837.0                                                                                                                                                                 | verage NMISA<br>NMISA                                                                                                                                              | Luminous Int<br>0.028%<br>NIM La<br>nandom<br>u-uncorr<br>0.035%<br>0.057%<br>0.030%                                                                               | ensity relative<br>0.660%<br>mp Luminous I<br>Relative Stan<br>systematic<br>u-corr<br>0.167%<br>0.167%<br>0.167%                                                                                                                         | standard uncertainty<br>0.661%<br>0.661%<br>ntensity (cd)<br>dard Uncertainty<br>final lamp (uf)<br>SQRT(u-uncorr^2 + u-corr^2)<br>0.171%<br>0.176%<br>0.170%                                                                |   | uf                                                   | Final N<br>Calculation<br>Weights<br>1/(uf)^2                                                 | MISA average<br>NMISA<br>s for NIM wei<br>wi<br>normalised                         | u-uncorr<br>0.0275%<br>ghted mean<br>Relative Unc<br>uncorrelated<br>for combini                                    | u-corr<br>0.6602% C<br>certainties<br>correlated<br>ing lamps                                                                                                                                                                                    | uf |
| 33         34         35         36         37         38         39         40         41         42         43         44         45         46         47         48         49         50         51                                                                                                                          | Lamp#<br>NIM-01(Wi41/G-96)<br>NIM-02(Wi41/G-152)                                             | Round#<br>R#1<br>R#2<br>final<br>R#1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NIM-01(Wi41/G-96)R#1<br>NIM-01(Wi41/G-96)R#2<br>NIM-01(Wi41/G-96)final<br>NIM-02(Wi41/G-152)R#1                                                                                                                                                                                    | Current(A)<br>5.794<br>5.794<br>5.794<br>5.794<br>5.818                                                          | Voltage(V)<br>29.846<br>29.828<br>29.837<br>30.013                                                                                           | Lamp CCT<br>K<br>2837.0<br>2837.0<br>2837.0<br>2837.0<br>2837.0                                                                                                                                             | verage NMISA<br>NMISA                                                                                                                                              | Luminous Int<br>0.028%<br>NIM La<br>nandom<br>u-uncorr<br>0.035%<br>0.057%<br>0.030%                                                                               | ensity relative<br>0.660%<br>mp Luminous I<br>Relative Stan<br>systematic<br>u-corr<br>0.167%<br>0.167%<br>0.167%                                                                                                                         | standard uncertainty<br>0.661%<br>0.661%<br>0.661%<br>0.661%<br>0.170%<br>0.171%<br>0.170%                                                                                                                                   |   | uf                                                   | Final N<br>Calculation<br>Weights<br>1/(uf)^2                                                 | MISA average<br>NMISA<br>s for NIM wei<br>wi<br>normalised                         | u-uncorr<br>0.0275%<br>ghted mean<br>Relative Unc<br>uncorrelated<br>for combini                                    | u-corr<br>0.6602% C<br>certainties<br>correlated<br>ing lamps                                                                                                                                                                                    | uf |
| 33         34         35         36         37         38         39         40         41         42         43         44         45         46         47         48         49         50         51         52                                                                                                               | Lamp#<br>NIM-01(Wi41/G-96)<br>NIM-02(Wi41/G-152)                                             | Round# R#1 R#2 final R#1 R#2 R#1 R#2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NIM-01(Wi41/G-96)R#1<br>NIM-01(Wi41/G-96)R#2<br>NIM-01(Wi41/G-96)final<br>NIM-02(Wi41/G-152)R#1<br>NIM-02(Wi41/G-152)R#2                                                                                                                                                           | Current(A)<br>5.794<br>5.794<br>5.794<br>5.794<br>5.818<br>5.818                                                 | Voltage(V)<br>29.846<br>29.828<br>29.837<br>30.013<br>30.020                                                                                 | Lamp CCT<br>K<br>2837.0<br>2837.0<br>2837.0<br>2837.0<br>2829.0<br>2829.0                                                                                                                                   | /erage NMISA<br>NMISA<br>I(cd)<br>253.145<br>252.660<br>253.012<br>263.580<br>263.925                                                                              | Luminous Int<br>0.028%<br>NIM La<br>NIM La<br>0.035%<br>0.035%<br>0.032%<br>0.032%<br>0.057%                                                                       | ensity relative<br>0.660%<br>mp Luminous I<br>Relative Stan<br>systematic<br>u-corr<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%                                                                                                     | standard uncertainty<br>0.661%<br>0.661%<br>0.661%<br>0.661%<br>0.661%<br>0.170<br>0.170%<br>0.170%<br>0.170%<br>0.170%<br>0.177%                                                                                            |   | uf<br>fractional<br>0.001696                         | Final N<br>Calculation<br>Weights<br>1/(uf)^2<br>347681.05909                                 | MISA average NMISA s for NIM wei wi normalised 0.197256                            | u-uncorr<br>0.0275%<br>ghted mean<br>Relative Unc<br>uncorrelated<br>for combini<br>0.000029                        | u-corr<br>0.6602% C<br>certainties<br>correlated<br>ing lamps<br>0.000333                                                                                                                                                                        | uf |
| 33         34         35         36         37         38         39         40         41         42         43         44         45         46         47         48         49         50         51         52         53                                                                                                    | Lamp#<br>NIM-01(Wi41/G-96)<br>NIM-02(Wi41/G-152)                                             | Round#<br>R#1<br>R#2<br>final<br>R#1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NIM-01(Wi41/G-96)R#1<br>NIM-01(Wi41/G-96)R#2<br>NIM-01(Wi41/G-96)final<br>NIM-02(Wi41/G-152)R#1                                                                                                                                                                                    | Current(A)<br>5.794<br>5.794<br>5.794<br>5.794<br>5.818                                                          | Voltage(V)<br>29.846<br>29.828<br>29.837<br>30.013                                                                                           | Lamp CCT<br>K<br>2837.0<br>2837.0<br>2837.0<br>2837.0<br>2837.0                                                                                                                                             | verage NMISA<br>NMISA                                                                                                                                              | Luminous Int<br>0.028%<br>NIM La<br>nandom<br>u-uncorr<br>0.035%<br>0.057%<br>0.030%                                                                               | ensity relative<br>0.660%<br>mp Luminous I<br>Relative Stan<br>systematic<br>u-corr<br>0.167%<br>0.167%<br>0.167%                                                                                                                         | standard uncertainty<br>0.661%<br>0.661%<br>0.661%<br>0.661%<br>0.170%<br>0.171%<br>0.170%                                                                                                                                   |   | uf                                                   | Final N<br>Calculation<br>Weights<br>1/(uf)^2                                                 | MISA average<br>NMISA<br>s for NIM wei<br>wi<br>normalised                         | u-uncorr<br>0.0275%<br>ghted mean<br>Relative Unc<br>uncorrelated<br>for combini                                    | u-corr<br>0.6602% C<br>certainties<br>correlated<br>ing lamps                                                                                                                                                                                    | uf |
| 33         34         35         36         37         38         39         40         41         42         43         44         45         46         47         48         49         50         51         52                                                                                                               | Lamp#<br>NIM-01(Wi41/G-96)<br>NIM-02(Wi41/G-152)                                             | Round# R#1 R#2 final R#1 R#2 R#1 R#2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NIM-01(Wi41/G-96)R#1<br>NIM-01(Wi41/G-96)R#2<br>NIM-01(Wi41/G-96)final<br>NIM-02(Wi41/G-152)R#1<br>NIM-02(Wi41/G-152)R#2                                                                                                                                                           | Current(A)<br>5.794<br>5.794<br>5.794<br>5.794<br>5.818<br>5.818                                                 | Voltage(V)<br>29.846<br>29.828<br>29.837<br>30.013<br>30.020                                                                                 | Lamp CCT<br>K<br>2837.0<br>2837.0<br>2837.0<br>2837.0<br>2829.0<br>2829.0                                                                                                                                   | /erage NMISA<br>NMISA<br>I(cd)<br>253.145<br>252.660<br>253.012<br>263.580<br>263.925                                                                              | Luminous Int<br>0.028%<br>NIM La<br>NIM La<br>0.035%<br>0.035%<br>0.032%<br>0.032%<br>0.057%                                                                       | ensity relative<br>0.660%<br>mp Luminous I<br>Relative Stan<br>systematic<br>u-corr<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%                                                                                                     | standard uncertainty<br>0.661%<br>0.661%<br>0.661%<br>0.661%<br>0.661%<br>0.170<br>0.170%<br>0.170%<br>0.170%<br>0.170%<br>0.177%                                                                                            |   | uf<br>fractional<br>0.001696                         | Final N<br>Calculation<br>Weights<br>1/(uf)^2<br>347681.05909                                 | MISA average NMISA s for NIM wei wi normalised 0.197256                            | u-uncorr<br>0.0275%<br>ghted mean<br>Relative Unc<br>uncorrelated<br>for combini<br>0.000029                        | u-corr<br>0.6602% C<br>certainties<br>correlated<br>ing lamps<br>0.000333                                                                                                                                                                        | uf |
| 33         34         35         36         37         38         39         40         41         42         43         44         45         46         47         48         49         50         51         52         53                                                                                                    | Lamp#<br>NIM-01(Wi41/G-96)<br>NIM-02(Wi41/G-152)                                             | Round# R#1 R#2 final R#1 R#2 R#1 R#2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NIM-01(Wi41/G-96)R#1<br>NIM-01(Wi41/G-96)R#2<br>NIM-01(Wi41/G-96)final<br>NIM-02(Wi41/G-152)R#1<br>NIM-02(Wi41/G-152)R#2                                                                                                                                                           | Current(A)<br>5.794<br>5.794<br>5.794<br>5.794<br>5.818<br>5.818                                                 | Voltage(V)<br>29.846<br>29.828<br>29.837<br>30.013<br>30.020                                                                                 | Lamp CCT<br>K<br>2837.0<br>2837.0<br>2837.0<br>2837.0<br>2829.0<br>2829.0                                                                                                                                   | /erage NMISA<br>NMISA<br>I(cd)<br>253.145<br>252.660<br>253.012<br>263.580<br>263.925                                                                              | Luminous Int<br>0.028%<br>NIM La<br>NIM La<br>0.035%<br>0.035%<br>0.032%<br>0.032%<br>0.057%                                                                       | ensity relative<br>0.660%<br>mp Luminous I<br>Relative Stan<br>systematic<br>u-corr<br>0.167%<br>0.167%<br>0.167%<br>0.167%                                                                                                               | standard uncertainty<br>0.661%<br>0.661%<br>0.661%<br>0.661%<br>0.661%<br>0.170<br>0.170%<br>0.170%<br>0.170%<br>0.170%<br>0.177%                                                                                            |   | uf<br>fractional<br>0.001696                         | Final N<br>Calculation<br>Weights<br>1/(uf)^2<br>347681.05909                                 | MISA average NMISA s for NIM wei wi normalised 0.197256                            | u-uncorr<br>0.0275%<br>ghted mean<br>Relative Unc<br>uncorrelated<br>for combini<br>0.000029                        | u-corr<br>0.6602% C<br>certainties<br>correlated<br>ing lamps<br>0.000333                                                                                                                                                                        | uf |
| 33         34         35         36         37         38         39         40         41         42         43         44         45         46         47         48         49         50         51         52         53         54                                                                                         | Lamp#<br>NIM-01(Wi41/G-96)<br>NIM-02(Wi41/G-152)<br>NIM-03(Wi41/G-164)                       | Round# R#1 R#2 final R#1 R#2 final                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NIM-01(Wi41/G-96)R#1<br>NIM-01(Wi41/G-96)R#2<br>NIM-01(Wi41/G-96)final<br>NIM-02(Wi41/G-152)R#1<br>NIM-02(Wi41/G-152)R#2<br>NIM-02(Wi41/G-152)final<br>NIM-03(Wi41/G-164)R#1                                                                                                       | Current(A) 5.794 5.794 5.794 5.818 5.818 5.818 5.818 5.818                                                       | Voltage(V)<br>29.846<br>29.828<br>29.837<br>30.013<br>30.020<br>30.016                                                                       | Lamp CCT<br>K<br>2837.0<br>2837.0<br>2837.0<br>2837.0<br>2829.0<br>2829.0<br>2829.0<br>2829.0                                                                                                               | verage NMISA<br>NMISA                                                                                                                                              | Luminous Int<br>0.028%<br>NIM La<br>nandom<br>u-uncorr<br>0.035%<br>0.057%<br>0.030%<br>0.057%<br>0.032%<br>0.057%                                                 | ensity relative<br>0.660%<br>mp Luminous I<br>Relative Stan<br>systematic<br>u-corr<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%                                                                                           | standard uncertainty<br>0.661%<br>0.661%<br>0.661%<br>0.170%<br>0.171%<br>0.171%<br>0.176%<br>0.170%<br>0.170%<br>0.170%<br>0.177%<br>0.177%<br>0.169%                                                                       |   | uf<br>fractional<br>0.001696                         | Final N<br>Calculation<br>Weights<br>1/(uf)^2<br>347681.05909                                 | MISA average NMISA s for NIM wei wi normalised 0.197256                            | u-uncorr<br>0.0275%<br>ghted mean<br>Relative Unc<br>uncorrelated<br>for combini<br>0.000029                        | u-corr<br>0.6602% C<br>certainties<br>correlated<br>ing lamps<br>0.000333                                                                                                                                                                        | uf |
| 33         34         35         36         37         38         39         40         41         42         43         44         45         46         47         48         49         50         51         52         53         54         55         56                                                                   | Lamp#<br>NIM-01(Wi41/G-96)<br>NIM-02(Wi41/G-152)<br>NIM-03(Wi41/G-164)                       | Round# Real I I I I I I I I I I I I I I I I I I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NIM-01(Wi41/G-96)R#1<br>NIM-01(Wi41/G-96)R#2<br>NIM-01(Wi41/G-96)final<br>NIM-02(Wi41/G-152)R#1<br>NIM-02(Wi41/G-152)R#2<br>NIM-02(Wi41/G-152)final<br>NIM-03(Wi41/G-164)R#1<br>NIM-03(Wi41/G-164)R#2                                                                              | Current(A) 5.794 5.794 5.794 5.818 5.818 5.818 5.818 5.818 5.818                                                 | Voltage(V)<br>29.846<br>29.828<br>29.837<br>30.013<br>30.020<br>30.016<br>29.781<br>29.773                                                   | Lamp CCT<br>K<br>2837.0<br>2837.0<br>2837.0<br>2837.0<br>2829.0<br>2829.0<br>2829.0<br>2829.0<br>2829.0<br>2829.0                                                                                           | verage NMISA<br>NMISA<br>I(cd)<br>I(cd)<br>253.145<br>252.660<br>253.012<br>263.580<br>263.925<br>263.660<br>275.150<br>275.150                                    | Luminous Int<br>0.028%<br>NIM La<br>NIM La<br>0.035%<br>0.035%<br>0.057%<br>0.032%<br>0.032%<br>0.057%<br>0.028%                                                   | ensity relative<br>0.660%<br>mp Luminous I<br>Relative Stan<br>systematic<br>u-corr<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%                                                                       | standard uncertainty<br>0.661%<br>0.661%<br>0.661%<br>0.661%<br>0.170%<br>0.170%<br>0.171%<br>0.176%<br>0.170%<br>0.170%<br>0.170%<br>0.170%<br>0.177%<br>0.169%<br>0.167%<br>0.174%                                         |   | uf<br>fractional<br>0.001696<br>0.001693             | Final N<br>Calculation<br>Weights<br>1/(uf)^2<br>347681.05909<br>349030.11258                 | MISA average<br>NMISA                                                              | u-uncorr<br>0.0275%<br>ghted mean<br>Relative Unc<br>uncorrelated<br>for combini<br>0.000029<br>0.000027            | u-corr<br>0.6602% C<br>certainties<br>correlated<br>ing lamps<br>0.000333<br>0.000334                                                                                                                                                            | uf |
| 33         34         35         36         37         38         39         40         41         42         43         44         45         46         47         48         49         50         51         52         53         54         55         56         57                                                        | Lamp#<br>NIM-01(Wi41/G-96)<br>NIM-02(Wi41/G-152)<br>NIM-03(Wi41/G-164)                       | Round# Real I I I I I I I I I I I I I I I I I I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NIM-01(Wi41/G-96)R#1<br>NIM-01(Wi41/G-96)R#2<br>NIM-01(Wi41/G-96)final<br>NIM-02(Wi41/G-152)R#1<br>NIM-02(Wi41/G-152)R#2<br>NIM-02(Wi41/G-152)final<br>NIM-03(Wi41/G-164)R#1                                                                                                       | Current(A) 5.794 5.794 5.794 5.818 5.818 5.818 5.818 5.818                                                       | Voltage(V)<br>29.846<br>29.828<br>29.837<br>30.013<br>30.020<br>30.016<br>29.781                                                             | Lamp CCT<br>K<br>2837.0<br>2837.0<br>2837.0<br>2837.0<br>2829.0<br>2829.0<br>2829.0<br>2829.0<br>2829.0                                                                                                     | verage NMISA<br>NMISA<br>I(cd)<br>253.145<br>252.660<br>253.012<br>263.580<br>263.925<br>263.660                                                                   | Luminous Int<br>0.028%<br>NIM La<br>NIM La<br>0.035%<br>0.035%<br>0.057%<br>0.032%<br>0.057%<br>0.032%<br>0.057%<br>0.028%                                         | ensity relative<br>0.660%<br>mp Luminous I<br>Relative Stan<br>systematic<br>u-corr<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%                                                                                 | standard uncertainty<br>0.661%<br>0.661%<br>0.661%<br>0.170%<br>0.171%<br>0.171%<br>0.176%<br>0.170%<br>0.170%<br>0.170%<br>0.177%<br>0.177%<br>0.169%                                                                       |   | uf<br>fractional<br>0.001696                         | Final N<br>Calculation<br>Weights<br>1/(uf)^2<br>347681.05909                                 | MISA average NMISA s for NIM wei wi normalised 0.197256                            | u-uncorr<br>0.0275%<br>ghted mean<br>Relative Unc<br>uncorrelated<br>for combini<br>0.000029                        | u-corr<br>0.6602% C<br>certainties<br>correlated<br>ing lamps<br>0.000333                                                                                                                                                                        | uf |
| 33         34         35         36         37         38         39         40         41         42         43         44         45         46         47         48         49         50         51         52         53         54         55         56         57         58                                             | Lamp#<br>NIM-01(Wi41/G-96)<br>NIM-02(Wi41/G-152)<br>NIM-03(Wi41/G-164)                       | Round# Round# R#1 R#2 final R#1 R#2 final R#1 R#2 final R#1 R#2 final                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NIM-01(Wi41/G-96)R#1<br>NIM-01(Wi41/G-96)R#2<br>NIM-01(Wi41/G-96)final<br>NIM-02(Wi41/G-152)R#1<br>NIM-02(Wi41/G-152)R#2<br>NIM-02(Wi41/G-152)final<br>NIM-03(Wi41/G-164)R#1<br>NIM-03(Wi41/G-164)R#2<br>NIM-03(Wi41/G-164)final                                                   | Current(A) 5.794 5.794 5.794 5.794 5.818 5.818 5.818 5.818 5.807 5.807 5.807                                     | Voltage(V)<br>29.846<br>29.828<br>29.837<br>30.013<br>30.020<br>30.016<br>29.781<br>29.773<br>29.773<br>29.777                               | Lamp CCT<br>K<br>2837.0<br>2837.0<br>2837.0<br>2837.0<br>2829.0<br>2829.0<br>2829.0<br>2829.0<br>2829.0<br>2829.0<br>2841.0<br>2841.0<br>2841.0                                                             | verage NMISA<br>NMISA<br>I(cd)<br>253.145<br>253.145<br>252.660<br>253.012<br>263.580<br>263.925<br>263.660<br>275.150<br>275.150<br>275.164                       | Luminous Int<br>0.028%<br>NIM La<br>NIM La<br>0.035%<br>0.035%<br>0.057%<br>0.030%<br>0.032%<br>0.032%<br>0.032%<br>0.032%<br>0.032%<br>0.032%<br>0.032%           | ensity relative<br>0.660%<br>0.660%<br>mp Luminous I<br>Relative Stan<br>systematic<br>u-corr<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%                                         | standard uncertainty<br>0.661%<br>0.661%<br>0.661%<br>0.661%<br>0.661%<br>0.170%<br>0.170%<br>0.171%<br>0.171%<br>0.176%<br>0.176%<br>0.170%<br>0.170%<br>0.170%<br>0.170%<br>0.177%<br>0.169%<br>0.167%<br>0.167%           |   | uf<br>fractional<br>0.001696<br>0.001693             | Final N<br>Calculation<br>Weights<br>1/(uf)^2<br>347681.05909<br>349030.11258                 | MISA average<br>NMISA                                                              | u-uncorr<br>0.0275%<br>ghted mean<br>Relative Unc<br>uncorrelated<br>for combini<br>0.000029<br>0.000027            | u-corr<br>0.6602% C<br>certainties<br>correlated<br>ing lamps<br>0.000333<br>0.000334                                                                                                                                                            | uf |
| 33         34         35         36         37         38         39         40         41         42         43         44         45         46         47         48         49         50         51         52         53         54         55         56         57         58                                             | Lamp#<br>NIM-01(Wi41/G-96)<br>NIM-02(Wi41/G-152)<br>NIM-03(Wi41/G-164)<br>NIM-04(Wi41/G-180) | Round#  R#1  R#2 final  R#1 R#2 final R#1 R#2 R#1                                                                                                                                                    | NIM-01(Wi41/G-96)R#1<br>NIM-01(Wi41/G-96)R#2<br>NIM-01(Wi41/G-96)final<br>NIM-02(Wi41/G-152)R#1<br>NIM-02(Wi41/G-152)R#2<br>NIM-02(Wi41/G-152)final<br>NIM-03(Wi41/G-164)R#1<br>NIM-03(Wi41/G-164)final<br>NIM-04(Wi41/G-180)R#1                                                   | Current(A) 5.794 5.794 5.794 5.794 5.818 5.818 5.818 5.818 5.807 5.807 5.807 5.807 5.807                         | Voltage(V)<br>29.846<br>29.828<br>29.837<br>30.013<br>30.013<br>30.020<br>30.016<br>29.781<br>29.773<br>29.777<br>29.954                     | Lamp CCT<br>K<br>2837.0<br>2837.0<br>2837.0<br>2837.0<br>2829.0<br>2829.0<br>2829.0<br>2829.0<br>2829.0<br>2829.0<br>2829.0<br>2829.0<br>2841.0<br>2841.0<br>2841.0<br>2841.0                               | verage NMISA<br>NMISA<br>I(cd)<br>I(cd)<br>253.145<br>252.660<br>253.012<br>263.580<br>263.925<br>263.660<br>275.150<br>275.150<br>275.164<br>265.172              | Luminous Int<br>0.028%<br>NIM La<br>NIM La<br>0.035%<br>0.035%<br>0.057%<br>0.032%<br>0.032%<br>0.057%<br>0.032%<br>0.057%<br>0.028%                               | ensity relative<br>0.660%<br>0.660%<br>mp Luminous I<br>Relative Stan<br>systematic<br>u-corr<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%                                         | standard uncertainty<br>0.661%<br>0.661%<br>0.661%<br>0.170%<br>0.171%<br>0.171%<br>0.171%<br>0.176%<br>0.176%<br>0.170%<br>0.170%<br>0.170%<br>0.170%<br>0.177%<br>0.169%<br>0.167%<br>0.167%<br>0.168%                     |   | uf<br>fractional<br>0.001696<br>0.001693             | Final N<br>Calculation<br>Weights<br>1/(uf)^2<br>347681.05909<br>349030.11258                 | MISA average<br>NMISA                                                              | u-uncorr<br>0.0275%<br>ghted mean<br>Relative Unc<br>uncorrelated<br>for combini<br>0.000029<br>0.000027            | u-corr<br>0.6602% C<br>certainties<br>correlated<br>ing lamps<br>0.000333<br>0.000334                                                                                                                                                            | uf |
| 33         34         35         36         37         38         39         40         41         42         43         44         45         46         47         48         49         50         51         52         53         54         55         56         57         58         59         60                       | Lamp#                                                                                        | Round#  Reaction R#1 R#2 final R#1 R#2 final R#1 R#2 final R#1 R#2 final R#1 R#2 R#1 | NIM-01(Wi41/G-96)R#1<br>NIM-01(Wi41/G-96)R#2<br>NIM-01(Wi41/G-96)final<br>NIM-02(Wi41/G-152)R#1<br>NIM-02(Wi41/G-152)R#2<br>NIM-02(Wi41/G-152)final<br>NIM-03(Wi41/G-164)R#1<br>NIM-03(Wi41/G-164)final<br>NIM-04(Wi41/G-180)R#1<br>NIM-04(Wi41/G-180)R#2                          | Current(A) 5.794 5.794 5.794 5.794 5.818 5.818 5.818 5.818 5.818 5.807 5.807 5.807 5.807 5.807 5.804 5.804       | Voltage(V)<br>29.846<br>29.828<br>29.837<br>30.013<br>30.020<br>30.016<br>29.781<br>29.773<br>29.777<br>29.954<br>29.947                     | Lamp CCT<br>K<br>2837.0<br>2837.0<br>2837.0<br>2837.0<br>2829.0<br>2829.0<br>2829.0<br>2829.0<br>2829.0<br>2829.0<br>2829.0<br>2829.0<br>2841.0<br>2841.0<br>2841.0<br>2841.0<br>2841.0<br>2839.0<br>2839.0 | <pre>/erage NMISA //erage NMISA NMISA ////////////////////////////////////</pre>                                                                                   | Luminous Int<br>0.028%<br>NIM La<br>NIM La<br>0.035%<br>0.035%<br>0.035%<br>0.057%<br>0.032%<br>0.032%<br>0.057%<br>0.032%<br>0.057%<br>0.028%<br>0.028%<br>0.028% | ensity relative<br>0.660%<br>0.660%<br>mp Luminous I<br>Relative Stan<br>systematic<br>u-corr<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%                     | standard uncertainty<br>0.661%<br>0.661%<br>0.661%<br>0.661%<br>0.170%<br>0.170%<br>0.171%<br>0.171%<br>0.176%<br>0.176%<br>0.176%<br>0.170%<br>0.170%<br>0.170%<br>0.177%<br>0.169%<br>0.167%<br>0.167%<br>0.168%<br>0.172% |   | uf<br>fractional<br>0.001693<br>0.001672<br>0.001672 | Final N<br>Calculation<br>Weights<br>1/(uf)^2<br>347681.05909<br>349030.11258<br>349030.11258 | MISA average<br>NMISA<br>s for NIM wei<br>wi<br>normalised<br>0.197256<br>0.198021 | u-uncorr<br>0.0275%<br>ghted mean<br>Relative Unc<br>uncorrelated<br>for combin<br>0.000029<br>0.000027<br>0.000027 | u-corr         0.6602%         0           0.6602%         0           certainties         1           correlated         1           ing lamps         1           0.000333         1           0.000334         1           0.000339         1 | uf |
| 33         34         35         36         37         38         39         40         41         42         43         44         45         46         47         48         49         50         51         52         53         54         55         56         57         58         59         60         61            | Lamp#                                                                                        | Round#  R#1  R#2 final  R#1 R#2 final R#1 R#2 R#1                                                                                                                                                    | NIM-01(Wi41/G-96)R#1<br>NIM-01(Wi41/G-96)R#2<br>NIM-01(Wi41/G-96)final<br>NIM-02(Wi41/G-152)R#1<br>NIM-02(Wi41/G-152)R#2<br>NIM-02(Wi41/G-152)final<br>NIM-03(Wi41/G-164)R#1<br>NIM-03(Wi41/G-164)final<br>NIM-04(Wi41/G-180)R#1                                                   | Current(A) 5.794 5.794 5.794 5.794 5.818 5.818 5.818 5.818 5.807 5.807 5.807 5.807 5.807                         | Voltage(V)<br>29.846<br>29.828<br>29.837<br>30.013<br>30.013<br>30.020<br>30.016<br>29.781<br>29.773<br>29.777<br>29.954                     | Lamp CCT<br>K<br>2837.0<br>2837.0<br>2837.0<br>2837.0<br>2829.0<br>2829.0<br>2829.0<br>2829.0<br>2829.0<br>2829.0<br>2829.0<br>2829.0<br>2841.0<br>2841.0<br>2841.0<br>2841.0                               | verage NMISA<br>NMISA<br>I(cd)<br>I(cd)<br>253.145<br>252.660<br>253.012<br>263.580<br>263.925<br>263.660<br>275.150<br>275.150<br>275.164<br>265.172              | Luminous Int<br>0.028%<br>NIM La<br>NIM La<br>0.035%<br>0.035%<br>0.057%<br>0.032%<br>0.032%<br>0.057%<br>0.032%<br>0.057%<br>0.028%                               | ensity relative<br>0.660%<br>0.660%<br>mp Luminous I<br>Relative Stan<br>systematic<br>u-corr<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%                                         | standard uncertainty<br>0.661%<br>0.661%<br>0.661%<br>0.661%<br>0.170%<br>0.170%<br>0.171%<br>0.171%<br>0.176%<br>0.176%<br>0.176%<br>0.170%<br>0.170%<br>0.177%<br>0.169%<br>0.167%<br>0.167%<br>0.168%                     |   | uf<br>fractional<br>0.001696<br>0.001693             | Final N<br>Calculation<br>Weights<br>1/(uf)^2<br>347681.05909<br>349030.11258                 | MISA average<br>NMISA                                                              | u-uncorr<br>0.0275%<br>ghted mean<br>Relative Unc<br>uncorrelated<br>for combini<br>0.000029<br>0.000027            | u-corr<br>0.6602% C<br>certainties<br>correlated<br>ing lamps<br>0.000333<br>0.000334                                                                                                                                                            | uf |
| 33         34         35         36         37         38         39         40         41         42         43         44         45         46         47         48         49         50         51         52         53         54         55         56         57         58         59         60         61            | Lamp#                                                                                        | Round#         Reduct         R#1         R#2         final         R#2         final         R#2         final         R#1         R#2         final                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NIM-01(Wi41/G-96)R#1<br>NIM-01(Wi41/G-96)R#2<br>NIM-01(Wi41/G-96)final<br>NIM-02(Wi41/G-152)R#1<br>NIM-02(Wi41/G-152)R#2<br>NIM-02(Wi41/G-152)final<br>NIM-03(Wi41/G-164)R#1<br>NIM-03(Wi41/G-164)R#2<br>NIM-04(Wi41/G-180)R#1<br>NIM-04(Wi41/G-180)R#1<br>NIM-04(Wi41/G-180)final | Current(A) 5.794 5.794 5.794 5.794 5.818 5.818 5.818 5.818 5.818 5.807 5.807 5.807 5.807 5.807 5.804 5.804 5.804 | Voltage(V)<br>29.846<br>29.828<br>29.837<br>30.013<br>30.020<br>30.016<br>29.781<br>29.773<br>29.773<br>29.777<br>29.954<br>29.954<br>29.950 | Lamp CCT<br>K<br>2837.0<br>2837.0<br>2837.0<br>2837.0<br>2829.0<br>2829.0<br>2829.0<br>2829.0<br>2829.0<br>2829.0<br>2829.0<br>2829.0<br>2841.0<br>2841.0<br>2841.0<br>2841.0<br>2841.0<br>2839.0<br>2839.0 | verage NMISA<br>NMISA<br>I(cd)<br>253.145<br>252.660<br>253.012<br>263.580<br>263.925<br>263.660<br>275.150<br>275.150<br>275.164<br>265.172<br>265.620<br>265.251 | Luminous Int<br>0.028%<br>NIM La<br>NIM La<br>0.035%<br>0.035%<br>0.035%<br>0.057%<br>0.032%<br>0.032%<br>0.057%<br>0.032%<br>0.057%<br>0.028%<br>0.028%<br>0.028% | ensity relative<br>0.660%<br>0.660%<br>mp Luminous I<br>Relative Stan<br>systematic<br>u-corr<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167% | standard uncertainty<br>0.661%<br>0.661%<br>0.661%<br>0.170%<br>0.171%<br>0.171%<br>0.171%<br>0.176%<br>0.176%<br>0.176%<br>0.176%<br>0.170%<br>0.170%<br>0.170%<br>0.177%<br>0.169%<br>0.169%<br>0.168%<br>0.172%<br>0.168% |   | uf<br>fractional<br>0.001693<br>0.001672<br>0.001672 | Final N<br>Calculation<br>Weights<br>1/(uf)^2<br>347681.05909<br>349030.11258<br>349030.11258 | MISA average<br>NMISA<br>s for NIM wei<br>wi<br>normalised<br>0.197256<br>0.198021 | u-uncorr<br>0.0275%<br>ghted mean<br>Relative Unc<br>uncorrelated<br>for combin<br>0.000029<br>0.000027<br>0.000027 | u-corr         0.6602%         0           0.6602%         0           certainties         1           correlated         1           ing lamps         1           0.000333         1           0.000334         1           0.000339         1 | uf |
| 33         34         35         36         37         38         39         40         41         42         43         44         45         46         47         48         49         50         51         52         53         54         55         56         57         58         59         60         61         62 | Lamp#                                                                                        | Round#         Reduct         R#1         R#2         final         R#2         final         R#2         final         R#1         R#2         final                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NIM-01(Wi41/G-96)R#1<br>NIM-01(Wi41/G-96)R#2<br>NIM-01(Wi41/G-96)final<br>NIM-02(Wi41/G-152)R#1<br>NIM-02(Wi41/G-152)R#2<br>NIM-02(Wi41/G-152)final<br>NIM-03(Wi41/G-164)R#1<br>NIM-03(Wi41/G-164)R#2<br>NIM-04(Wi41/G-180)R#1<br>NIM-04(Wi41/G-180)R#1                            | Current(A) 5.794 5.794 5.794 5.794 5.818 5.818 5.818 5.818 5.818 5.807 5.807 5.807 5.807 5.807 5.804 5.804       | Voltage(V)<br>29.846<br>29.828<br>29.837<br>30.013<br>30.020<br>30.016<br>29.781<br>29.773<br>29.777<br>29.954<br>29.947                     | Lamp CCT<br>K<br>2837.0<br>2837.0<br>2837.0<br>2837.0<br>2829.0<br>2829.0<br>2829.0<br>2829.0<br>2829.0<br>2829.0<br>2829.0<br>2829.0<br>2841.0<br>2841.0<br>2841.0<br>2841.0<br>2841.0<br>2839.0<br>2839.0 | <pre>/erage NMISA //erage NMISA NMISA ////////////////////////////////////</pre>                                                                                   | Luminous Int<br>0.028%<br>NIM La<br>NIM La<br>0.035%<br>0.035%<br>0.035%<br>0.057%<br>0.032%<br>0.032%<br>0.057%<br>0.032%<br>0.057%<br>0.028%<br>0.028%<br>0.028% | ensity relative<br>0.660%<br>0.660%<br>mp Luminous I<br>Relative Stan<br>systematic<br>u-corr<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%<br>0.167%                     | standard uncertainty<br>0.661%<br>0.661%<br>0.661%<br>0.661%<br>0.170%<br>0.170%<br>0.171%<br>0.171%<br>0.176%<br>0.176%<br>0.176%<br>0.170%<br>0.170%<br>0.170%<br>0.177%<br>0.169%<br>0.167%<br>0.167%<br>0.168%<br>0.172% |   | uf<br>fractional<br>0.001693<br>0.001672<br>0.001672 | Final N<br>Calculation<br>Weights<br>1/(uf)^2<br>347681.05909<br>349030.11258<br>349030.11258 | MISA average<br>NMISA<br>s for NIM wei<br>wi<br>normalised<br>0.197256<br>0.198021 | u-uncorr<br>0.0275%<br>ghted mean<br>Relative Unc<br>uncorrelated<br>for combin<br>0.000029<br>0.000027<br>0.000027 | u-corr         0.6602%         0           0.6602%         0           certainties         1           correlated         1           ing lamps         1           0.000333         1           0.000334         1           0.000339         1 | uf |

|            |         | _      | _                       | _          | _          | _        |               |               | 1 -              |                             |            |               |               |                  | _               |          |
|------------|---------|--------|-------------------------|------------|------------|----------|---------------|---------------|------------------|-----------------------------|------------|---------------|---------------|------------------|-----------------|----------|
|            | A       | В      | С                       | D          | E          | F        | G             | Н             | l                | J                           | K L        | M             | N             | 0                | Р               | Q        |
| 64         |         | R#2    | NIM-05(Wi41/G-189)R#2   | 5.780      | 29.711     | 2840.0   | 269.415       | 0.034%        | 0.167%           | 0.170%                      |            |               |               |                  |                 |          |
| 65         |         | final  | NIM-05(Wi41/G-189)final | 5.780      | 29.721     | 2840.0   | 269.520       | 0.019%        | 0.167%           | 0.168%                      | 0.001681   | 353828.27608  | 0.200743      | 0.000019         | 0.000337        |          |
| 66         |         |        |                         |            |            |          |               |               |                  |                             |            |               |               |                  |                 |          |
| 67         |         |        |                         |            |            | l l      | Average NIM I | Luminous Inte | nsity relative s | tandard uncertainty         | sum:       | 1762589.23378 | 1.00000       |                  |                 |          |
| 68         |         |        |                         |            |            |          | NIM           | 0.005%        | 0.168%           | 0.168%                      |            |               |               |                  |                 |          |
| 69         |         |        |                         |            |            |          |               |               |                  |                             |            | Final         | NIM average   | relative standar | d uncertainty:  |          |
| 70         |         |        |                         |            |            |          |               |               |                  |                             |            |               |               | u-uncorr         | u-corr          | uf       |
| 71         |         |        |                         |            |            |          |               |               |                  |                             |            |               | NIM           | 0.0049%          | 0.1681%         | 0.1681%  |
| 72         |         |        |                         |            |            |          |               |               |                  |                             |            |               |               |                  |                 |          |
| 73         |         |        |                         |            |            |          |               |               |                  |                             |            |               |               |                  |                 |          |
|            | NMI:    | NMIA   |                         |            |            |          |               |               |                  |                             |            |               |               |                  |                 |          |
| 75         |         |        |                         |            |            |          |               |               |                  |                             |            |               |               |                  |                 |          |
| 76         | Lamp#   | Round# | Data ID                 | Lamp E     | lectrical  | Lamp CCT |               | NMIA La       | amp Luminous     | Intensity (cd)              |            | Calculation   | s for NMIA we | eighted mean     |                 |          |
| 77         | · ·     |        |                         | Current(A) | Voltage(V) | ĸ        | l(cd)         |               | Relative Stan    | dard Uncertainty            |            | Weights       |               | Relative Un      | certainties     |          |
| 78         |         |        |                         |            |            |          |               | random        | systematic       | final lamp (uf)             | uf         | 1/(uf)^2      | wi            | uncorrelated     | correlated      |          |
| 79         |         |        |                         |            |            |          |               | u-uncorr      | u-corr           | SQRT(u-uncorr^2 + u-corr^2) | fractional |               | normalised    | for combin       |                 |          |
| 80         |         |        |                         |            |            |          |               |               |                  |                             |            |               |               |                  | <u> </u>        |          |
| 81         | S7      | R#1    | S7R#1                   | 5.780      | 31.724     | 2856.0   | 298.759       | 0.009%        | 0.153%           | 0.153%                      |            |               |               |                  |                 |          |
| 82         |         | R#2    | S7R#2                   | 5.780      | 31.736     | 2856.0   | 298.716       | 0.008%        | 0.151%           | 0.151%                      |            |               |               |                  |                 |          |
| 83         |         | final  | S7final                 | 5.780      | 31.730     | 2856.0   | 298.735       | 0.006%        | 0.152%           | 0.152%                      | 0.001520   | 432773.37472  | 0.202861      | 0.000006         | 0.000308        |          |
| 84         |         |        |                         |            |            |          |               |               |                  |                             |            |               |               |                  |                 |          |
|            | 350 LI3 | R#1    | 350 LI3R#1              | 5.794      | 31.741     | 2856.0   | 298.447       | 0.016%        | 0.153%           | 0.154%                      |            |               |               |                  |                 |          |
| 86         |         | R#2    | 350 LI3R#2              | 5.794      | 31.751     | 2856.0   | 298.684       | 0.019%        | 0.151%           | 0.152%                      |            |               |               |                  |                 |          |
| 87         |         | final  | 350 LI3final            | 5.794      | 31.746     | 2856.0   | 298.551       | 0.012%        | 0.152%           | 0.153%                      | 0.001526   | 429240.69680  | 0.201205      | 0.000012         | 0.000307        |          |
| 88         |         |        |                         | _          |            |          |               |               |                  |                             |            |               |               |                  |                 |          |
|            | 318 SI2 | R#1    | 318 SI2R#1              | 5.781      | 31.722     | 2856.0   | 305.807       | 0.021%        | 0.153%           | 0.154%                      |            |               |               |                  |                 |          |
| 90         |         | R#2    | 318 SI2R#2              | 5.781      | 31.736     | 2856.0   | 305.845       | 0.018%        | 0.151%           | 0.152%                      |            |               |               |                  |                 |          |
| 91         |         | final  | 318 SI2final            | 5.781      | 31.729     | 2856.0   | 305.829       | 0.014%        | 0.152%           | 0.152%                      | 0.001524   | 430298.79892  | 0.201701      | 0.000014         | 0.000307        |          |
| 92         |         |        |                         |            |            |          |               |               |                  |                             |            |               |               |                  |                 |          |
|            | 306 S15 | R#1    | 306 S15R#1              | 5.858      | 32.078     | 2856.0   | 308.499       | 0.017%        | 0.153%           | 0.154%                      |            |               |               |                  |                 |          |
| 94         |         | R#2    | 306 S15R#2              | 5.858      | 32.096     | 2856.0   | 308.601       | 0.016%        | 0.151%           | 0.152%                      |            |               |               |                  |                 |          |
| 95         |         | final  | 306 S15final            | 5.858      | 32.087     | 2856.0   | 308.551       | 0.012%        | 0.152%           | 0.152%                      | 0.001524   | 430540.03093  | 0.201814      | 0.000012         | 0.000307        |          |
| 96         |         |        |                         |            |            |          |               |               |                  |                             |            |               |               |                  |                 |          |
|            | 288 SI4 | R#1    | 288 SI4R#1              | 5.786      | 31.672     | 2856.0   | 301.606       | 0.053%        | 0.153%           | 0.162%                      |            |               |               |                  |                 |          |
| 98         | 200 0.1 | R#2    | 288 SI4R#2              | 5.786      | 31.668     | 2856.0   | 301.514       | 0.048%        | 0.151%           | 0.159%                      |            |               |               |                  |                 |          |
| 99         |         | final  | 288 SI4final            | 5.786      | 31.670     | 2856.0   | 301.555       | 0.036%        | 0.152%           | 0.156%                      | 0.001561   | 410497.16280  | 0.192419      | 0.000034         | 0.000298        |          |
| 100        |         |        |                         |            |            |          |               |               |                  |                             |            |               |               |                  |                 |          |
| 101        |         |        |                         |            |            | А        | verage NMIA   | Luminous Inte | ensity relative  | standard uncertainty        | sum:       | 2133350.06417 | 1.00000       |                  |                 |          |
| 102        |         |        |                         |            |            |          | NMIA          | 0.004%        | 0.153%           | 0.153%                      |            |               |               |                  |                 |          |
| 103        |         |        |                         |            |            |          |               | 0.001/0       | 0120070          | 0120070                     |            | Final N       | MIA average   | relative standa  | rd uncertainty: |          |
| 104        |         |        |                         |            |            |          |               |               |                  |                             |            |               |               | u-uncorr         | u-corr          | uf       |
| 105        |         |        |                         |            |            |          |               |               |                  |                             |            |               | NMIA          | 0.0041%          |                 | 0.1529%  |
| 106        |         |        |                         |            |            |          |               |               |                  |                             |            |               |               | 0.000.1270       | 0.1010//        | 0.1010/0 |
| 107        |         |        |                         |            |            |          |               |               |                  |                             |            |               |               |                  |                 |          |
|            | NMI:    | NMIJ   |                         |            |            |          |               |               |                  |                             |            |               |               |                  |                 |          |
| 109        |         |        |                         |            |            |          |               |               |                  |                             |            |               |               |                  |                 |          |
| 110        |         | Round# | Data ID                 | Lamp E     | lectrical  | Lamp CCT |               | NMIJ La       | mp Luminous      | Intensity (cd)              |            | Calculation   | s for NMIJ we | ighted mean      |                 |          |
| 111        | •       |        |                         | Current(A) | Voltage(V) | K        | l(cd)         |               | -                | dard Uncertainty            |            | Weights       |               | Relative Un      | certainties     |          |
| 112        |         |        |                         |            |            |          |               | random        | systematic       | -                           | uf         | 1/(uf)^2      | wi            | uncorrelated     |                 |          |
| 113        |         |        |                         |            |            |          |               | u-uncorr      | u-corr           | SQRT(u-uncorr^2 + u-corr^2) | fractional |               | normalised    | for combin       |                 |          |
| 114        |         |        |                         |            |            |          |               |               |                  |                             |            |               |               |                  |                 |          |
|            | #37     | R#1    | #37R#1                  | 5.756      | 29.069     | 2800.0   | 242.145       | 0.090%        | 0.256%           | 0.271%                      |            |               |               |                  |                 |          |
| 116        |         | R#2    | #37R#2                  | 5.756      | 29.064     | 2800.0   | 242.155       | 0.090%        | 0.256%           | 0.271%                      |            |               |               |                  |                 |          |
| 117        |         | final  | #37final                | 5.756      | 29.067     | 2800.0   | 242.150       | 0.064%        | 0.256%           | 0.264%                      | 0.002638   | 143743.73352  | 0.200000      | 0.000064         | 0.000524        |          |
| 118        |         |        |                         |            |            |          |               |               |                  |                             |            |               |               |                  |                 |          |
|            | #40     | R#1    | #40R#1                  | 5.794      | 29.550     | 2800.0   | 250.505       | 0.090%        | 0.256%           | 0.271%                      |            |               |               |                  |                 |          |
| 120        |         | R#2    | #40R#2                  | 5.794      | 29.544     | 2800.0   | 250.285       | 0.090%        | 0.256%           | 0.271%                      |            |               |               |                  |                 |          |
| 121        |         | final  | #40final                | 5.794      | 29.547     | 2800.0   | 250.395       | 0.064%        | 0.256%           | 0.264%                      | 0.002638   | 143743.73173  | 0.200000      | 0.000064         | 0.000524        |          |
| 122        |         |        |                         |            |            |          |               |               |                  |                             |            |               |               |                  |                 |          |
| 123        |         | R#1    | #51R#1                  | 5.736      | 29.264     | 2800.0   | 240.850       | 0.090%        | 0.256%           | 0.271%                      |            |               |               |                  |                 |          |
|            |         | R#2    | #51R#2                  | 5.736      | 29.262     | 2800.0   | 240.565       | 0.090%        | 0.256%           | 0.271%                      |            |               |               |                  |                 |          |
| 124<br>125 |         | final  | #51final                | 5.736      | 29.263     | 2800.0   | 240.707       | 0.064%        | 0.256%           | 0.264%                      | 0.002638   | 143743.73045  | 0.200000      | 0.000064         | 0.000524        |          |
| 126        |         | -      |                         |            |            |          |               |               |                  |                             |            |               |               |                  |                 |          |
| -20        | 1       |        | 1                       | 1          | 1          | 1        | 1             | 1             | 1                | 1                           |            |               |               |                  |                 |          |

|                |       |         |                    |            |                  |                  | 1       |           |                      | []                            |            |                  | r             |                              |             |         |
|----------------|-------|---------|--------------------|------------|------------------|------------------|---------|-----------|----------------------|-------------------------------|------------|------------------|---------------|------------------------------|-------------|---------|
|                | A     | В       | С                  | D          | E                | F                | G       | Н         | I                    | J                             | K L        | М                | N             | 0                            | Р           | Q       |
| 127 <b>#52</b> | R     | #1      | #52R#1             | 5.765      | 29.167           | 2800.0           | 241.500 | 0.090%    | 0.256%               | 0.271%                        |            |                  |               |                              |             |         |
| 128            | R     | #2      | #52R#2             | 5.765      | 29.160           | 2800.0           | 241.490 | 0.090%    | 0.256%               | 0.271%                        |            |                  |               |                              |             |         |
| 129            | fi    | nal     | #52final           | 5.765      | 29.163           | 2800.0           | 241.495 | 0.064%    | 0.256%               | 0.264%                        | 0.002638   | 143743.73365     | 0.200000      | 0.000064                     | 0.000524    | +       |
| 130            |       |         |                    |            |                  |                  |         |           |                      |                               |            |                  |               |                              |             |         |
| 131 #58        | R     | #1      | #58R#1             | 5.610      | 29.970           | 2800.0           | 244.280 | 0.090%    | 0.256%               | 0.271%                        |            |                  |               |                              |             |         |
| 132            |       | #2      | #58R#2             | 5.610      | 29.965           | 2800.0           | 244.505 | 0.090%    | 0.256%               | 0.271%                        |            |                  |               |                              |             |         |
| 133            |       | nal     | #58final           | 5.610      | 29.967           | 2800.0           | 244.392 | 0.050%    | 0.256%               | 0.264%                        | 0.002638   | 143743.73190     | 0.200000      | 0.000064                     | 0.000524    |         |
|                |       | IIdi    | #Joilia            | 5.010      | 29.907           | 2800.0           | 244.592 | 0.004%    | 0.250%               | 0.204%                        | 0.002038   | 145745.75190     | 0.200000      | 0.00004                      | 0.000524    | ·       |
| 134            |       |         |                    |            |                  |                  |         |           |                      |                               |            | 740740 66405     | 4 00000       |                              |             |         |
| 135            |       |         |                    |            |                  | A                |         | 1         | -                    | standard uncertainty          | sum:       | 718718.66125     | 1.00000       |                              |             |         |
| 136            |       |         |                    |            |                  |                  | NMIJ    | 0.014%    | 0.262%               | 0.262%                        |            |                  |               |                              |             |         |
| 137            |       |         |                    |            |                  |                  |         |           |                      |                               |            | Final N          | MMIJ average  | <mark>relative standa</mark> |             |         |
| 138            |       |         |                    |            |                  |                  |         |           |                      |                               |            |                  |               | u-uncorr                     | u-corr      | uf      |
| 139            |       |         |                    |            |                  |                  |         |           |                      |                               |            |                  | NMIJ          | 0.0142%                      | 0.2618%     | 0.2622% |
| 140            |       |         |                    |            |                  |                  |         |           |                      |                               |            |                  |               |                              |             |         |
| 141            |       |         |                    |            |                  |                  |         |           |                      |                               |            |                  |               |                              |             |         |
| 142 NMI:       | IC    | D-CSIC  |                    |            |                  |                  |         |           |                      |                               |            |                  |               |                              |             |         |
| 143            |       |         |                    |            |                  |                  |         |           |                      |                               |            |                  |               |                              |             |         |
| 144            | Lamp# | Round#  | Data ID            | Lamp E     | lectrical        | Lamp CCT         |         | IO-CSIC L | amp Luminous         | Intensity (cd)                |            | Calculations     | for IO-CSIC w | eighted mean                 |             |         |
| 145            | •     |         |                    | Current(A) | Voltage(V)       | <u>к</u>         | l(cd)   |           | •                    | dard Uncertainty              |            | Weights          |               | Relative Un                  | certainties |         |
| 146            |       |         |                    |            |                  |                  |         | random    | systematic           | final lamp (uf)               | uf         | 1/(uf)^2         | wi            | uncorrelated                 |             |         |
| 147            |       |         |                    |            |                  |                  |         | u-uncorr  | u-corr               | SQRT(u-uncorr^2 + u-corr^2)   | fractional | _/(/ _           | normalised    | for combin                   |             |         |
| 148            |       |         |                    |            |                  |                  |         | u-uncorr  | u-com                | 5QKT(u-uncon 2 + u-con 2)     | Tactional  |                  | normanseu     |                              |             |         |
| 149 Wi95A      |       | #1      | Wi95AR#1           | 5.836      | 30.807           | 2869.0           | 278.405 | 0.007%    | 0.310%               | 0.310%                        |            |                  |               |                              |             |         |
|                |       |         |                    |            |                  |                  |         |           |                      |                               |            |                  |               |                              |             |         |
| 150            |       | #2      | Wi95AR#2           | 5.836      | 30.930           | 2869.0           | 278.184 | 0.007%    | 0.310%               | 0.310%                        | 0.0004.00  | 404000 60007     | 0.00005       | 0.00005                      | 0.000620    |         |
| 151            | ŤI    | nal     | Wi95Afinal         | 5.836      | 30.868           | 2869.0           | 278.294 | 0.005%    | 0.310%               | 0.310%                        | 0.003100   | 104032.63337     | 0.200005      | 0.000005                     | 0.000620    | 1       |
| 152            |       |         |                    |            |                  |                  |         |           |                      |                               |            |                  |               |                              |             |         |
| 153 Wi95B      |       | #1      | Wi95BR#1           | 5.836      | 31.083           | 2868.0           | 285.515 | 0.004%    | 0.310%               | 0.310%                        |            |                  |               |                              |             |         |
| 154            |       | #2      | Wi95BR#2           | 5.837      | 31.127           | 2868.0           | 284.322 | 0.007%    | 0.310%               | 0.310%                        |            |                  |               |                              |             |         |
| 155            | fi    | nal     | Wi95Bfinal         | 5.836      | 31.105           | 2868.0           | 285.188 | 0.003%    | 0.310%               | 0.310%                        | 0.003100   | 104045.14922     | 0.200029      | 0.000003                     | 0.000620    | )       |
| 156            |       |         |                    |            |                  |                  |         |           |                      |                               |            |                  |               |                              |             |         |
| 157 Wi95C      | R     | #1      | Wi95CR#1           | 5.832      | 30.790           | 2862.0           | 286.693 | 0.003%    | 0.310%               | 0.310%                        |            |                  |               |                              |             |         |
| 158            | R     | #2      | Wi95CR#2           | 5.832      | 30.860           | 2862.0           | 286.268 | 0.007%    | 0.310%               | 0.310%                        |            |                  |               |                              |             |         |
| 159            | fi    | nal     | Wi95Cfinal         | 5.832      | 30.825           | 2862.0           | 286.637 | 0.002%    | 0.310%               | 0.310%                        | 0.003100   | 104051.55216     | 0.200042      | 0.000002                     | 0.000620    |         |
| 160            |       |         |                    |            |                  |                  |         |           |                      |                               |            |                  |               |                              |             |         |
| 161 Wi95D      | R     | #1      | Wi95DR#1           | 5.836      | 30.587           | 2868.0           | 271.761 | 0.004%    | 0.310%               | 0.310%                        |            |                  |               |                              |             |         |
| 162            |       | #2      | Wi95DR#2           | 5.836      | 30.633           | 2868.0           | 270.688 | 0.004%    | 0.310%               | 0.310%                        |            |                  |               |                              |             |         |
| 163            |       | nal     | Wi95Dfinal         | 5.836      | 30.610           | 2868.0           | 271.222 | 0.003%    | 0.310%               | 0.310%                        | 0.003100   | 104050.01451     | 0.200039      | 0.000003                     | 0.000620    | )       |
| 164            |       |         |                    | 51000      | 501010           | 2000.0           |         | 0.00070   | 0.010/0              | 0.010/0                       | 0.000100   | 101000101101     | 01200000      | 0.000000                     | 0.000020    |         |
| 165 A454       | B     | #1      | A454R#1            | 25.500     | 12.247           | 2844.0           | 433.167 | 0.013%    | 0.310%               | 0.310%                        |            |                  |               |                              |             |         |
| 166            |       | #2      | A454R#2            | 25.501     | 12.247           | 2844.0           | 434.636 | 0.013%    | 0.310%               | 0.310%                        |            |                  |               |                              |             |         |
| 167            |       | nal     | A454final          | 25.501     | 12.257           | 2844.0           | 433.899 | 0.013%    | 0.310%               | 0.310%                        | 0.003101   | 103969.75394     | 0.199885      | 0.000009                     | 0.000620    | \       |
| 168            |       | IIdi    | A4J4IIIa           | 23.300     | 12.237           | 2044.0           | 455.699 | 0.00976   | 0.310%               | 0.310%                        | 0.005101   | 103909.73394     | 0.199883      | 0.000009                     | 0.000020    | ,       |
|                |       |         |                    |            |                  | <b>A</b>         |         |           |                      | at an elevel con a subativity |            | 520149.10320     | 1 00000       |                              |             |         |
| 169            |       |         |                    |            |                  | AV               | -       |           | -                    | standard uncertainty          | sum:       | 520149.10320     | 1.00000       |                              |             |         |
| 170            |       |         |                    |            |                  |                  | IO-CSIC | 0.001%    | 0.310%               | 0.310%                        |            |                  |               |                              |             |         |
| 171            |       |         |                    |            |                  |                  |         |           |                      |                               |            | Final IC         | -CSIC average | e relative stand             |             |         |
| 172            |       |         |                    |            |                  |                  |         |           |                      |                               |            |                  |               | u-uncorr                     | u-corr      | uf      |
| 173            |       |         |                    |            |                  |                  |         |           |                      |                               |            |                  | IO-CSIC       | 0.0011%                      | 0.3100%     | 0.3100% |
| 174            |       |         |                    |            |                  |                  |         |           |                      |                               |            |                  |               |                              |             |         |
| 175            |       |         |                    |            |                  |                  |         |           |                      |                               |            |                  |               |                              |             |         |
| 176 NMI:       | L     | NE-CNAM |                    |            |                  |                  |         |           |                      |                               |            |                  |               |                              |             |         |
| 177            |       |         |                    |            |                  |                  |         |           |                      |                               |            |                  |               |                              |             |         |
| 178            | Lamp# | Round#  | Data ID            | Lamp E     | lectrical        | Lamp CCT         |         | LNE-CNAM  | Lamp Lumino          | us Intensity (cd)             |            | Calculations for | or LNE-CNAM   | weighted mear                | ı           |         |
| 179            |       |         |                    | Current(A) | Voltage(V)       | K                | l(cd)   |           | <b>Relative Stan</b> | dard Uncertainty              |            | Weights          |               | Relative Un                  | certainties |         |
| 180            |       |         |                    |            |                  |                  |         | random    | systematic           | final lamp (uf)               | uf         | 1/(uf)^2         | wi            | uncorrelated                 | correlated  |         |
| 181            |       |         |                    |            |                  |                  |         | u-uncorr  | u-corr               | SQRT(u-uncorr^2 + u-corr^2)   | fractional | -                | normalised    | for combin                   |             |         |
| 182            |       |         |                    |            |                  |                  |         |           |                      |                               |            |                  |               |                              |             |         |
| 183 926        | R     | #1      | 926R#1             | 5.690      | 29.010           | 2796.0           | 234.400 | 0.220%    | 0.220%               | 0.311%                        |            |                  |               |                              |             |         |
| 184            |       | #2      | 926R#2             | 5.690      | 28.970           | 2796.0           | 233.800 | 0.220%    | 0.220%               | 0.326%                        |            |                  |               |                              |             |         |
| 185            |       | nal     | 926final           | 5.690      | 28.990           | 2796.0           | 233.000 | 0.162%    | 0.220%               | 0.273%                        | 0.002733   | 133868.05548     | 0.342036      | 0.000277                     | 0.000893    | 1       |
| 185            |       |         | Jeonnai            | 5.050      | 20.330           | 2750.0           | 237.123 | 0.102/0   | 0.220/0              | 0.273/0                       | 0.002735   | 1000.00040       | 0.342030      | 0.000277                     | 0.00033     |         |
|                |       | #1      | 0260#1             | E 600      | 20.150           | 2700 0           | 2/1 000 | 0.2200/   | 0.2200/              | 0.2199/                       |            |                  |               |                              |             |         |
| 187 936        |       | #1      | 936R#1             | 5.690      | 29.150           | 2799.0           | 241.800 | 0.230%    | 0.220%               | 0.318%                        |            |                  |               |                              |             |         |
| 188<br>189     |       | mal     | 936R#2<br>936final | 5.690      | 29.100<br>29.125 | 2799.0<br>2799.0 | 241.200 | 0.290%    | 0.220%               | 0.364%                        |            |                  | 0.315928      | 0.000285                     | 0.000852    |         |
| 100            |       |         |                    |            |                  |                  | 241.568 | 0.180%    | 0.220%               | 0.284%                        |            | 123649.59621     | 1 0 01E000    |                              |             |         |

CCPR-K3.2014: Luminous Intensity Final Report, Appendices C,D,E,F

|                        |              |                    |                  |            |          |             | 1             | 1                    |                                                |            |               |                | <del></del>                           | <del></del>                 |            |
|------------------------|--------------|--------------------|------------------|------------|----------|-------------|---------------|----------------------|------------------------------------------------|------------|---------------|----------------|---------------------------------------|-----------------------------|------------|
|                        | A B          | С                  | D                | E          | F        | G           | Н             | Ι                    | J                                              | K L        | М             | N              | 0                                     | Р                           | Q          |
| 190                    |              |                    |                  |            |          |             |               |                      |                                                |            |               |                |                                       |                             |            |
| 191 A430               | R#1          | A430R#1            | 25.000           | 11.950     | 2815.0   | 397.300     | 0.220%        | 0.220%               | 0.311%                                         |            |               |                |                                       |                             |            |
| 192                    | R#2          | A430R#2            | 25.000           | 11.960     | 2815.0   | 397.400     | 0.240%        | 0.220%               | 0.326%                                         |            |               |                |                                       |                             |            |
| 193                    | final        | A430final          | 25.000           | 11.955     | 2815.0   | 397.346     | 0.162%        | 0.220%               | 0.273%                                         | 0.002733   | 133868.13157  | 0.342036       | 0.000277                              | 0.000893                    | 8          |
| 194                    |              |                    |                  |            |          |             |               |                      |                                                |            |               |                |                                       |                             |            |
| 195                    |              |                    |                  |            | Aver     |             | 1             | -                    | ve standard uncertainty                        | sum:       | 391385.78326  | 5 1.00000      |                                       |                             |            |
| 196                    |              |                    |                  |            |          | LNE-CNAM    | 0.048%        | 0.264%               | 0.268%                                         |            |               | <u> </u>       |                                       |                             |            |
| 197                    |              |                    |                  |            |          |             |               |                      |                                                |            | Final LNE     | -CNAM avera    | age relative stan                     | <mark>idard uncertai</mark> | 1          |
| 198                    |              |                    |                  |            |          |             |               |                      |                                                |            |               |                | u-uncorr                              | u-corr                      | uf         |
| 199                    |              |                    |                  |            |          |             |               |                      |                                                |            |               | LNE-CNAM       | 0.0485%                               | 0.2638%                     | 0.2682%    |
| 200                    |              |                    |                  |            |          |             |               |                      |                                                |            |               |                |                                       |                             |            |
| 201                    |              |                    |                  |            |          |             |               |                      |                                                |            |               |                |                                       |                             |            |
| 202 NMI:               | METAS        |                    |                  |            |          |             |               |                      |                                                |            |               |                |                                       |                             |            |
| 203                    |              |                    |                  |            |          |             |               |                      |                                                |            |               |                |                                       |                             |            |
|                        | Lamp# Round# | Data ID            | Lamp E           | Electrical | Lamp CCT |             | METAS La      |                      | s Intensity (cd)                               |            |               | for METAS w    | eighted mean                          |                             |            |
| 205                    |              |                    | Current(A)       | Voltage(V) | к        | l(cd)       |               | <b>Relative Stan</b> | ndard Uncertainty                              |            | Weights       |                | Relative Un                           | certainties                 |            |
| 206                    |              |                    |                  |            |          |             | random        | systematic           |                                                | uf         | 1/(uf)^2      | wi             | uncorrelated                          |                             |            |
| 207                    |              |                    |                  |            |          |             | u-uncorr      | u-corr               | SQRT(u-uncorr^2 + u-corr^2)                    | fractional |               | normalised     | for combin                            | ing lamps                   |            |
| 208                    |              |                    |                  |            |          |             |               |                      |                                                |            |               |                |                                       |                             |            |
| 209 506                | R#1          | 506R#1             | 5.760            | 30.559     | 2855.7   | 276.229     | 0.038%        | 0.312%               | 0.315%                                         |            |               |                |                                       |                             |            |
| 210                    | R#2          | 506R#2             | 5.760            | 30.558     | 2855.7   | 276.193     | 0.038%        | 0.312%               | 0.315%                                         |            |               |                |                                       |                             |            |
| 211<br>212             | final        | 506final           | 5.760            | 30.558     | 2855.7   | 276.211     | 0.027%        | 0.312%               | 0.314%                                         | 0.003135   | 101728.56832  | 0.166724       | 0.000022                              | 0.000522                    | 2          |
| 212                    |              |                    |                  |            |          |             |               |                      |                                                |            |               |                |                                       |                             |            |
| 213 684                | R#1          | 684R#1             | 5.680            | 30.687     | 2854.4   | 277.966     | 0.048%        | 0.312%               | 0.316%                                         |            |               |                |                                       |                             |            |
| 214                    | R#2          | 684R#2             | 5.680            | 30.686     | 2854.4   | 277.881     | 0.038%        | 0.312%               | 0.315%                                         |            |               |                |                                       |                             |            |
| 215<br>216             | final        | 684final           | 5.680            | 30.686     | 2854.4   | 277.914     | 0.030%        | 0.312%               | 0.314%                                         | 0.003138   | 101525.34990  | 0.166390       | 0.000025                              | 0.000522                    | 2          |
| 216                    |              |                    |                  |            |          |             |               |                      |                                                |            |               |                |                                       |                             |            |
| 217 841                | R#1          | 841R#1             | 5.860            | 30.341     | 2858.3   | 280.875     | 0.038%        | 0.312%               | 0.315%                                         |            |               |                |                                       |                             |            |
| 218                    | R#2          | 841R#2             | 5.860            | 30.336     | 2858.3   | 280.311     | 0.037%        | 0.312%               | 0.315%                                         |            |               |                |                                       |                             |            |
| 218<br>219             | final        | 841final           | 5.860            | 30.339     | 2858.3   | 280.587     | 0.027%        | 0.312%               | 0.314%                                         | 0.003135   | 101726.38529  | 0.166720       | 0.000022                              | 0.000522                    | 2          |
| 220                    |              |                    |                  |            |          |             |               |                      |                                                |            |               |                |                                       |                             |            |
| 221 1060               | R#1          | 1060R#1            | 5.850            | 30.325     | 2841.0   | 272.256     | 0.038%        | 0.312%               | 0.315%                                         |            |               |                | <u> </u>                              |                             |            |
| 222                    | R#2          | 1060R#2            | 5.850            | 30.338     | 2841.0   | 272.986     | 0.038%        | 0.312%               | 0.315%                                         |            |               |                |                                       |                             |            |
| 222<br>223<br>224      | final        | 1060final          | 5.850            | 30.332     | 2841.0   | 272.627     | 0.027%        | 0.312%               | 0.314%                                         | 0.003136   | 101713.53497  | 0.166699       | 0.000022                              | 0.000522                    | 2          |
| 224                    |              | 200011101          |                  | 00.001     | 201110   |             | 0.02770       | 0.012/0              |                                                | 0.000100   | 101/10/00 10/ |                |                                       | 0.000022                    | •          |
| 225 1063               | R#1          | 1063R#1            | 5.900            | 30.557     | 2854.5   | 283.982     | 0.038%        | 0.312%               | 0.315%                                         |            |               | +              |                                       |                             |            |
| 226                    | R#2          | 1063R#2            | 5.900            | 30.568     | 2854.5   | 284.402     | 0.038%        | 0.312%               | 0.315%                                         |            |               | +              |                                       |                             |            |
| 220                    | final        | 1063final          | 5.900            | 30.562     | 2854.5   | 284.197     | 0.027%        | 0.312%               | 0.314%                                         | 0.003136   | 101714.96298  | 0.166701       | 0.000022                              | 0.000522                    | )          |
| 227<br>228             |              | 100511101          | 5.500            | 50.502     | 2034.5   | 204.157     | 0.02770       | 0.512/0              | 0.514/0                                        | 0.003130   | 101714.50250  | 0.100701       | 0.000022                              | 0.000322                    | •          |
| 229 1064               | R#1          | 1064R#1            | 5.900            | 30.679     | 2854.8   | 287.908     | 0.037%        | 0.312%               | 0.315%                                         |            |               |                |                                       |                             |            |
| 230                    | R#2          | 1064R#2            | 5.900            | 30.692     | 2854.8   | 288.563     | 0.037%        | 0.312%               | 0.315%                                         |            |               |                |                                       |                             |            |
| 230                    | final        | 1064final          | 5.900            | 30.686     | 2854.8   | 288.232     | 0.026%        | 0.312%               | 0.313%                                         | 0.003135   | 101754.35247  | 0.166766       | 0.000022                              | 0.000522                    | )          |
| 232                    |              | 100411101          | 5.500            | 50.000     | 2034.0   | 200.252     | 0.020/0       | 0.512/0              | 0.515/0                                        | 0.003133   | 101/34.3324/  | 0.100700       | 0.000022                              | 0.000322                    | •          |
| 231<br>232<br>233      |              |                    |                  |            | Δν       | orago METAS | Luminous Inte | ansity relative      | e standard uncertainty                         | sum:       | 610163.15394  | 1.00000        | '                                     |                             |            |
| 233                    |              |                    |                  |            | AV       | METAS       | 0.006%        | 0.313%               | 0.313%                                         | Suill.     | 010103.13394  | 1.00000        |                                       |                             |            |
| 235                    |              |                    |                  |            |          | WILIAJ      | 0.000/0       | 0.512/0              | 0.513/0                                        |            | Einal M       | AFTAS average  | e relative standa                     | ard uncortaint              | tv:        |
| 235<br>236<br>237      |              |                    |                  |            |          |             |               |                      |                                                |            |               |                | u-uncorr                              | u-corr                      | uf         |
| 237                    |              |                    |                  |            |          |             |               |                      |                                                |            |               | METAS          | 0.0056%                               | 0.3133%                     |            |
| 238                    |              |                    |                  |            |          |             |               |                      |                                                |            |               |                | 0.003076                              | 0.313570                    | , 0.313370 |
| 238<br>239             |              |                    |                  |            |          |             |               |                      |                                                |            |               | +              | +                                     | <u> </u>                    |            |
| 239<br>240 NMI:        | NPL          |                    |                  |            |          |             |               |                      |                                                |            |               | +              | +                                     | <u> </u>                    |            |
| 240 NIVII:<br>241      | INFL         |                    |                  |            |          |             |               |                      |                                                |            |               | +              | ·                                     | <u> </u> ]                  |            |
|                        | Lamp# Round# | Data ID            | l amor f         | Electrical | Lamp CCT |             |               | np Luminous I        | Intensity (cd)                                 |            | Calculation   | ns for NPL wei | ighted mean                           | <u> </u>                    |            |
| 242                    | Lamp# Kounu# |                    | Current(A)       |            |          | l(cd)       |               | •                    | ndard Uncertainty                              |            | Weights       | IS IOL INPL WE | Relative Un                           | cortaintics                 |            |
| 243<br>244             |              |                    |                  | Voltage(V) | Ň        | (((a)       | randara       |                      |                                                | uf         | -             | :              | uncorrelated                          |                             |            |
| 244 245                |              |                    |                  |            |          |             | random        | systematic           | final lamp (uf)<br>SQRT(u-uncorr^2 + u-corr^2) |            | 1/(uf)^2      | wi             |                                       |                             |            |
| 245                    |              |                    |                  |            |          |             | u-uncorr      | u-corr               | SQNT(u-uncorr^2 + u-corr^2)                    | fractional |               | normalised     | for combin                            | ing lamps                   |            |
|                        | D.1/4        |                    | 25.000           |            | 2050.0   | 454 30      | 0.0000        | 0.4500               |                                                |            |               | +              |                                       | ļ!                          |            |
| 247 A644               | R#1          | A644R#1            | 25.360           |            | 2850.0   | 451.78      |               |                      |                                                |            |               |                |                                       | ļ                           |            |
| 248                    | R#2          | A644R#2            | 25.360           |            |          |             |               |                      |                                                |            |               |                | 0.000000                              |                             |            |
| 249<br>250             | final        | A644final          | 25.360           | 12.503     | 2850.0   | 451.87      | 0.058%        | 0.158%               | 0.168%                                         | 0.001683   | 353032.54775  | 0.208864       | 0.000061                              | 0.000346                    |            |
| 11 / 11                |              |                    |                  |            |          |             |               |                      |                                                |            |               |                | · · · · · · · · · · · · · · · · · · · | 1                           |            |
| 250                    |              |                    |                  |            |          |             |               |                      |                                                |            |               |                |                                       | 1                           |            |
| 250<br>251 A647<br>252 | R#1<br>R#2   | A647R#1<br>A647R#2 | 25.310<br>25.310 |            |          |             |               |                      |                                                |            |               |                |                                       |                             |            |

|                        |          |            |            | I I        |          |              |                |                 |                             |            |               |                 |                  |                         |          |
|------------------------|----------|------------|------------|------------|----------|--------------|----------------|-----------------|-----------------------------|------------|---------------|-----------------|------------------|-------------------------|----------|
| A                      | В        | C          | D          | E          | F        | G            | Н              | I               | J                           | K L        | M             | N               | 0                | Р                       | Q        |
| 253                    | final    | A647final  | 25.310     | 12.522     | 2850.0   | 459.53       | 0.058%         | 0.158%          | 0.168%                      | 0.001683   | 353032.54762  | 0.208864        | 0.000061         | 0.000346                |          |
| 254                    |          |            |            |            |          |              |                |                 |                             |            |               |                 |                  |                         |          |
|                        | D#4      | DA750D#4   | 25.220     | 12 742     | 2050.0   | 460.22       | 0.0000/        | 0.4500/         | 0.1700/                     |            |               |                 |                  |                         |          |
| 255 PA758              | R#1      | PA758R#1   | 25.220     |            | 2850.0   | 460.33       |                | 0.158%          |                             |            |               |                 |                  |                         |          |
| 256                    | R#2      | PA758R#2   | 25.220     | 12.751     | 2850.0   | 460.70       | 0.082%         | 0.158%          | 0.178%                      |            |               |                 |                  |                         |          |
| 257                    | final    | PA758final | 25.220     | 12.747     | 2850.0   | 460.51       | 0.058%         | 0.158%          | 0.168%                      | 0.001683   | 353032.54284  | 0.208864        | 0.000061         | 0.000346                |          |
| 258                    |          |            |            |            |          |              |                |                 |                             |            |               |                 |                  |                         |          |
| 259 877                | D#1      | 877R#1     | <u> </u>   | 20.012     | 2853.0   | 276.34       | 0.0020/        | 0.158%          | 0.1700/                     |            |               |                 |                  |                         |          |
|                        | R#1      |            | 5.818      |            |          |              |                |                 |                             |            |               |                 |                  |                         |          |
| 260                    | final    | 877final   | 5.818      | 30.013     | 2853.0   | 276.34       | 0.082%         | 0.158%          | 0.178%                      | 0.001780   | 315576.87453  | 0.186704        | 0.000077         | 0.000323                |          |
| 261                    |          |            |            |            |          |              |                |                 |                             |            |               |                 |                  |                         |          |
| 262 890                | R#1      | 890R#1     | 5.804      | 29.871     | 2853.0   | 273.93       | 0.082%         | 0.158%          | 0.178%                      |            |               |                 |                  |                         |          |
|                        |          |            |            |            |          |              |                |                 |                             | 0.001700   |               | 0.406704        | 0.000077         | 0.0000000               |          |
| 263                    | final    | 890final   | 5.804      | 29.871     | 2853.0   | 273.93       | 0.082%         | 0.158%          | 0.178%                      | 0.001780   | 315576.87453  | 0.186704        | 0.000077         | 0.000323                |          |
| 264                    |          |            |            |            |          |              |                |                 |                             |            |               |                 |                  |                         |          |
| 265                    |          |            |            |            | А        | verage NPL L | Luminous Inter | sity relative s | tandard uncertainty         | sum:       | 1690251.38726 | 1.00000         |                  |                         |          |
| 266                    |          |            |            |            |          | NPL          | 0.015%         | 0.169%          | 0.169%                      |            |               |                 |                  |                         |          |
|                        |          |            |            |            |          |              | 0.01378        | 0.10576         | 0.10578                     |            | <b>P1</b>     |                 |                  |                         |          |
| 267                    |          |            |            |            |          |              |                |                 |                             |            | Final         | NPL average     | relative standaı | d uncertainty:          |          |
| 268                    |          |            |            |            |          |              |                |                 |                             |            |               |                 | u-uncorr         | u-corr                  | uf       |
| 269                    |          |            |            |            |          |              |                |                 |                             |            |               | NPL             | 0.0151%          | 0.1686%                 | 0.1692%  |
| 270                    |          |            |            |            |          |              |                |                 |                             |            |               |                 | 0.0101/0         | 0.1000/0                | 0.1002/0 |
|                        |          |            |            |            |          |              |                |                 |                             |            |               |                 |                  |                         |          |
| 271                    |          |            |            |            |          |              |                |                 |                             |            |               |                 |                  |                         |          |
| 272 NMI:               | РТВ      |            |            |            |          |              |                |                 |                             |            |               |                 |                  |                         |          |
| 273                    |          |            |            |            |          |              |                |                 |                             |            |               |                 |                  |                         |          |
|                        | Round#   | Data ID    | Lamp F     | lastrical  |          |              | DTP Lan        |                 | ntoncity (cd)               |            | Colculation   | na for DTP wai  | ighted mean      |                         |          |
|                        | Kound#   | Data ID    | ·          | lectrical  | Lamp CCT |              | PIBLAN         | np Luminous     |                             |            |               | ns for PTB we   | <u> </u>         |                         |          |
| 275                    |          |            | Current(A) | Voltage(V) | К        | l(cd)        |                | Relative Star   | dard Uncertainty            |            | Weights       |                 | Relative Un      | certainties             |          |
| 276                    |          |            |            |            |          |              | random         | systematic      | final lamp (uf)             | uf         | 1/(uf)^2      | wi              | uncorrelated     | correlated              |          |
| 277                    |          |            |            |            |          |              | u-uncorr       | u-corr          | SQRT(u-uncorr^2 + u-corr^2) | fractional |               | normalised      | for combin       | ing lamps               |          |
| 278                    |          |            |            |            |          |              | u uncorr       | 4 6611          |                             |            |               | normansea       |                  |                         |          |
|                        |          |            |            |            |          |              |                |                 |                             |            |               |                 |                  |                         |          |
| 279 759                | R#1      | 759R#1     | 5.650      | 29.123     | 2800.0   | 236.210      | 0.120%         | 0.130%          | 0.180%                      |            |               |                 |                  |                         |          |
| 280                    | R#2      | 759R#2     | 5.650      | 29.123     | 2800.0   | 236.220      | 0.130%         | 0.130%          | 0.180%                      |            |               |                 |                  |                         |          |
| 280<br>281<br>282      | final    | 759final   | 5.650      | 29.123     | 2800.0   | 236.215      | 0.088%         | 0.130%          | 0.157%                      | 0.001571   | 405267.17848  | 0.164702        | 0.000073         | 0.000248                |          |
| 201                    |          | /3511141   | 5.050      | 25.125     | 2000.0   | 230.213      | 0.00070        | 0.13070         | 0.15778                     | 0.001371   | +05207.170+0  | 0.104702        | 0.000073         | 0.000240                |          |
|                        |          |            |            |            |          |              |                |                 |                             |            |               |                 |                  |                         |          |
| 283 791                | R#1      | 791R#1     | 5.650      | 29.564     | 2800.0   | 247.550      | 0.120%         | 0.130%          | 0.180%                      |            |               |                 |                  |                         |          |
| 284<br>285             | R#2      | 791R#2     | 5.650      | 29.565     | 2800.0   | 247.530      | 0.120%         | 0.130%          | 0.180%                      |            |               |                 |                  |                         |          |
| 295                    | final    | 791final   | 5.650      | 29.565     | 2800.0   | 247.540      | 0.085%         | 0.130%          | 0.155%                      | 0.001552   | 414937.75913  | 0.168632        | 0.000072         | 0.000252                |          |
| 285                    | IIIai    | 79111181   | 5.050      | 29.303     | 2800.0   | 247.340      | 0.08376        | 0.130%          | 0.155%                      | 0.001332   | 414957.75915  | 0.108032        | 0.000072         | 0.000232                |          |
| 286<br>287 <b>7</b> 93 |          |            |            |            |          |              |                |                 |                             |            |               |                 |                  |                         |          |
| 287 793                | R#1      | 793R#1     | 5.650      | 29.387     | 2800.0   | 245.970      | 0.120%         | 0.130%          | 0.180%                      |            |               |                 |                  |                         |          |
| 288                    | R#2      | 793R#2     | 5.650      | 29.387     | 2800.0   | 246.000      | 0.130%         | 0.130%          | 0.180%                      |            |               |                 |                  |                         |          |
| 280                    | final    | 793final   | 5.650      | 29.387     | 2800.0   | 245.984      | 0.088%         | 0.130%          | 0.157%                      | 0.001571   | 405267.17807  | 0.164702        | 0.000073         | 0.000248                |          |
| 289<br>290             | IIIdi    | 79511181   | 5.050      | 29.307     | 2800.0   | 245.964      | 0.088%         | 0.150%          | 0.157%                      | 0.001571   | 405207.17807  | 0.104702        | 0.000075         | 0.000246                |          |
|                        |          |            |            |            |          |              |                |                 |                             |            |               |                 |                  |                         |          |
| 291 848                | R#1      | 848R#1     | 5.700      | 28.573     | 2810.0   | 228.530      | 0.120%         | 0.130%          | 0.180%                      |            |               |                 |                  |                         |          |
| 292                    | R#2      | 848R#2     | 5.700      | 28.571     | 2810.0   | 228.540      | 0.120%         | 0.130%          | 0.180%                      |            |               |                 |                  |                         |          |
| 202                    |          |            |            |            |          |              |                |                 |                             | 0.001552   | 414027 75029  | 0 169622        | 0.000072         | 0.000252                |          |
| 292<br>293<br>294      | final    | 848final   | 5.700      | 28.572     | 2810.0   | 228.535      | 0.085%         | 0.130%          | 0.155%                      | 0.001552   | 414937.75928  | 0.168632        | 0.000072         | 0.000252                |          |
| 294                    |          |            |            |            |          |              |                |                 |                             |            |               |                 |                  |                         |          |
| 295 851                | R#1      | 851R#1     | 5.700      | 28.932     | 2815.0   | 233.490      | 0.120%         | 0.130%          | 0.180%                      |            |               |                 |                  |                         |          |
| 296                    | R#2      | 851R#2     | 5.700      | 28.931     | 2815.0   | 233.540      | 0.120%         | 0.130%          | 0.180%                      |            |               |                 |                  |                         |          |
| 296<br>297<br>298      | final    |            |            |            |          |              |                |                 |                             | 0.001552   | 414937.75792  | 0.168632        | 0.000072         | 0.000252                |          |
| 237                    | IIIdi    | 851final   | 5.700      | 28.931     | 2815.0   | 233.515      | 0.085%         | 0.130%          | 0.155%                      | 0.001552   | 414937.75792  | . 0.108032      | 0.000072         | 0.000252                |          |
| 298                    |          |            |            |            |          |              |                |                 |                             |            |               |                 |                  |                         |          |
| 299 858                | R#1      | 858R#1     | 5.700      | 28.561     | 2800.0   | 225.120      | 0.120%         | 0.130%          | 0.180%                      |            |               |                 |                  |                         |          |
| 300                    | R#2      | 858R#2     | 5.700      | 28.562     | 2800.0   | 225.010      | 0.130%         | 0.130%          | 0.180%                      |            |               |                 |                  |                         |          |
| 301                    |          |            |            |            |          |              |                |                 |                             | 0.001571   | 105267 17000  | 0 164702        | 0.000073         | 0.000249                |          |
| 202                    | final    | 858final   | 5.700      | 28.561     | 2800.0   | 225.069      | 0.088%         | 0.130%          | 0.157%                      | 0.001571   | 405267.17096  | 0.164702        | 0.000073         | 0.000248                |          |
| 302<br>303             |          |            |            |            |          |              |                |                 |                             |            |               |                 |                  |                         |          |
| 303                    |          |            |            |            | A        | verage PTB L | Luminous Inter | sity relative s | tandard uncertainty         | sum:       | 2460614.80383 | 1.00000         |                  |                         |          |
| 304                    |          |            |            |            |          | РТВ          | 0.018%         | 0.150%          | 0.151%                      |            |               |                 |                  |                         |          |
| 305                    |          |            |            |            |          | . 10         | 0.010/0        | 0.10070         | 0.101/0                     |            | Et av t       | DTP average     | alativa stavela  |                         |          |
| 202                    |          |            |            |            |          |              |                |                 |                             |            | Final         | r i b average i | relative standaı |                         |          |
| 306                    |          |            |            |            |          |              |                |                 |                             |            |               |                 | u-uncorr         | u-corr                  | uf       |
| 307                    |          |            |            |            |          |              |                |                 |                             |            |               | РТВ             | 0.0177%          | 0.1500%                 | 0.1511%  |
| 308                    |          |            |            |            |          |              |                |                 |                             |            |               |                 |                  |                         |          |
| 309                    |          |            |            |            |          |              |                |                 |                             |            |               |                 |                  |                         |          |
| 309                    |          |            |            |            |          |              |                |                 |                             |            |               |                 |                  |                         |          |
| 310 NMI:               | VNIIOFI  |            |            |            |          |              |                |                 |                             |            |               |                 |                  |                         |          |
| 311                    |          |            |            |            |          |              |                |                 |                             |            |               |                 |                  |                         |          |
| 312 Lamp#              | Round#   | Data ID    | lamn 🛙     | lectrical  | Lamp CCT |              |                | ampluminou      | s Intensity (cd)            | İ          | Calculations  | for VNIIOEL     | eighted mean     | <u> </u>                |          |
| 313 <b>Lamp</b>        |          |            |            |            | -        | 1/11         |                | •               |                             |            |               |                 |                  | eerteintig-             |          |
| 212                    | <b>_</b> |            | Current(A) | Voltage(V) | К        | l(cd)        |                |                 | idard Uncertainty           |            | Weights       | -               | Relative Un      |                         |          |
| 314<br>315             |          |            |            |            |          |              | random         | systematic      |                             | uf         | 1/(uf)^2      |                 | uncorrelated     |                         |          |
| 315                    |          |            |            |            |          |              | u-uncorr       | u-corr          | SQRT(u-uncorr^2 + u-corr^2) | fractional |               | normalised      |                  |                         |          |
|                        |          |            |            |            |          |              |                |                 |                             |            |               |                 |                  | · · · · · · · · · · · · |          |

|                                                                                                                                        | ۸                                   | P                                                                                                                      | <u> </u>                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                  |                                                                                                                                                                        | F                                                                                                                                                            | C                                                                                                                                                      |                                                                                                                                                    | T T                                                                                                                                      | 1 1                                                                                                                                                              | IZ              |                                     | N 4                                                          |                                              |                                | D                                   | 0       |
|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------------|--------------------------------------------------------------|----------------------------------------------|--------------------------------|-------------------------------------|---------|
| 210                                                                                                                                    | Α                                   | В                                                                                                                      | L                                                                                                                                                                                                                                                                                                                                                                           | D                                                                                                                                                                                | E                                                                                                                                                                      | F                                                                                                                                                            | G                                                                                                                                                      | Н                                                                                                                                                  | 1                                                                                                                                        | J                                                                                                                                                                | К               | L                                   | М                                                            | N                                            | 0                              | P                                   | Q       |
| 316                                                                                                                                    | 201                                 | D#4                                                                                                                    | 2201 D#1                                                                                                                                                                                                                                                                                                                                                                    | F 0000                                                                                                                                                                           | 20.052                                                                                                                                                                 | 2052.0                                                                                                                                                       | 272.400                                                                                                                                                | 0.000/                                                                                                                                             | 0.240%                                                                                                                                   | 0.250%                                                                                                                                                           |                 |                                     |                                                              | <u> </u>                                     |                                |                                     |         |
| 317 3                                                                                                                                  | 281                                 | R#1                                                                                                                    | 3281R#1                                                                                                                                                                                                                                                                                                                                                                     | 5.8800                                                                                                                                                                           | 29.952                                                                                                                                                                 | 2853.9                                                                                                                                                       | 273.480                                                                                                                                                | 0.060%                                                                                                                                             | 0.240%                                                                                                                                   | 0.250%                                                                                                                                                           |                 |                                     |                                                              |                                              |                                |                                     |         |
| 318                                                                                                                                    |                                     | R#2                                                                                                                    | 3281R#2                                                                                                                                                                                                                                                                                                                                                                     | 5.8800                                                                                                                                                                           | 29.943                                                                                                                                                                 | 2853.9                                                                                                                                                       | 275.060                                                                                                                                                | 0.060%                                                                                                                                             | 0.250%                                                                                                                                   | 0.260%                                                                                                                                                           |                 | 0.000.000                           | 464765 20000                                                 | 0.466607                                     |                                |                                     |         |
| 319                                                                                                                                    |                                     | final                                                                                                                  | 3281final                                                                                                                                                                                                                                                                                                                                                                   | 5.8800                                                                                                                                                                           | 29.948                                                                                                                                                                 | 2853.9                                                                                                                                                       | 274.265                                                                                                                                                | 0.042%                                                                                                                                             | 0.245%                                                                                                                                   | 0.249%                                                                                                                                                           | (               | 0.002486                            | 161765.29098                                                 | 0.166687                                     | 0.000035                       | 0.000413                            |         |
| 320                                                                                                                                    |                                     |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                  |                                                                                                                                                                        |                                                                                                                                                              |                                                                                                                                                        |                                                                                                                                                    |                                                                                                                                          |                                                                                                                                                                  |                 |                                     |                                                              | l                                            |                                |                                     |         |
| 321 3                                                                                                                                  | 282                                 | R#1                                                                                                                    | 3282R#1                                                                                                                                                                                                                                                                                                                                                                     | 5.8000                                                                                                                                                                           | 30.547                                                                                                                                                                 | 2854.3                                                                                                                                                       | 276.870                                                                                                                                                | 0.060%                                                                                                                                             | 0.240%                                                                                                                                   | 0.250%                                                                                                                                                           |                 |                                     |                                                              | <u> </u>                                     |                                |                                     |         |
| 322                                                                                                                                    |                                     | R#2                                                                                                                    | 3282R#2                                                                                                                                                                                                                                                                                                                                                                     | 5.8000                                                                                                                                                                           | 30.541                                                                                                                                                                 | 2854.3                                                                                                                                                       | 276.880                                                                                                                                                | 0.060%                                                                                                                                             | 0.250%                                                                                                                                   | 0.260%                                                                                                                                                           |                 |                                     |                                                              | l                                            |                                |                                     |         |
| 323                                                                                                                                    |                                     | final                                                                                                                  | 3282final                                                                                                                                                                                                                                                                                                                                                                   | 5.8000                                                                                                                                                                           | 30.544                                                                                                                                                                 | 2854.3                                                                                                                                                       | 276.875                                                                                                                                                | 0.042%                                                                                                                                             | 0.245%                                                                                                                                   | 0.249%                                                                                                                                                           |                 | 0.002486                            | 161746.98190                                                 | 0.166668                                     | 0.000035                       | 0.000413                            |         |
| 324                                                                                                                                    |                                     |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                  |                                                                                                                                                                        |                                                                                                                                                              |                                                                                                                                                        |                                                                                                                                                    |                                                                                                                                          |                                                                                                                                                                  |                 |                                     |                                                              | ļ                                            |                                |                                     |         |
| 325 N                                                                                                                                  | 01                                  | R#1                                                                                                                    | N 01R#1                                                                                                                                                                                                                                                                                                                                                                     | 5.8800                                                                                                                                                                           | 30.419                                                                                                                                                                 | 2855.8                                                                                                                                                       | 287.190                                                                                                                                                | 0.060%                                                                                                                                             | 0.240%                                                                                                                                   | 0.250%                                                                                                                                                           |                 |                                     |                                                              | <u> </u>                                     |                                |                                     |         |
| 326                                                                                                                                    |                                     | R#2                                                                                                                    | N 01R#2                                                                                                                                                                                                                                                                                                                                                                     | 5.8800                                                                                                                                                                           | 30.413                                                                                                                                                                 | 2855.8                                                                                                                                                       | 286.540                                                                                                                                                | 0.060%                                                                                                                                             | 0.250%                                                                                                                                   | 0.260%                                                                                                                                                           |                 |                                     |                                                              |                                              |                                |                                     |         |
| 327                                                                                                                                    |                                     | final                                                                                                                  | N 01final                                                                                                                                                                                                                                                                                                                                                                   | 5.8800                                                                                                                                                                           | 30.416                                                                                                                                                                 | 2855.8                                                                                                                                                       | 286.864                                                                                                                                                | 0.042%                                                                                                                                             | 0.245%                                                                                                                                   | 0.249%                                                                                                                                                           | (               | 0.002487                            | 161739.59856                                                 | 0.166660                                     | 0.000035                       | 0.000413                            |         |
| 328                                                                                                                                    |                                     |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                  |                                                                                                                                                                        |                                                                                                                                                              |                                                                                                                                                        |                                                                                                                                                    |                                                                                                                                          |                                                                                                                                                                  |                 |                                     |                                                              |                                              |                                |                                     |         |
| 329 N                                                                                                                                  | 1 02                                | R#1                                                                                                                    | N 02R#1                                                                                                                                                                                                                                                                                                                                                                     | 5.9000                                                                                                                                                                           | 30.647                                                                                                                                                                 | 2854.1                                                                                                                                                       | 285.880                                                                                                                                                | 0.060%                                                                                                                                             | 0.240%                                                                                                                                   | 0.250%                                                                                                                                                           |                 |                                     |                                                              |                                              |                                |                                     |         |
| 330                                                                                                                                    |                                     | R#2                                                                                                                    | N 02R#2                                                                                                                                                                                                                                                                                                                                                                     | 5.9000                                                                                                                                                                           | 30.637                                                                                                                                                                 | 2854.1                                                                                                                                                       | 285.180                                                                                                                                                | 0.060%                                                                                                                                             | 0.250%                                                                                                                                   | 0.260%                                                                                                                                                           |                 |                                     |                                                              |                                              |                                |                                     |         |
| 331                                                                                                                                    |                                     | final                                                                                                                  | N 02final                                                                                                                                                                                                                                                                                                                                                                   | 5.9000                                                                                                                                                                           | 30.642                                                                                                                                                                 | 2854.1                                                                                                                                                       | 285.529                                                                                                                                                | 0.042%                                                                                                                                             | 0.245%                                                                                                                                   | 0.249%                                                                                                                                                           | (               | 0.002487                            | 161739.00241                                                 | 0.166660                                     | 0.000035                       | 0.000413                            |         |
| 332                                                                                                                                    |                                     |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                  |                                                                                                                                                                        |                                                                                                                                                              |                                                                                                                                                        |                                                                                                                                                    |                                                                                                                                          |                                                                                                                                                                  |                 |                                     |                                                              |                                              |                                |                                     |         |
| 333 N                                                                                                                                  | 1 03                                | R#1                                                                                                                    | N 03R#1                                                                                                                                                                                                                                                                                                                                                                     | 5.9200                                                                                                                                                                           | 30.594                                                                                                                                                                 | 2853.6                                                                                                                                                       | 284.510                                                                                                                                                | 0.060%                                                                                                                                             | 0.240%                                                                                                                                   | 0.250%                                                                                                                                                           |                 |                                     |                                                              |                                              |                                |                                     |         |
| 334                                                                                                                                    |                                     | R#2                                                                                                                    | N 03R#2                                                                                                                                                                                                                                                                                                                                                                     | 5.9200                                                                                                                                                                           | 30.583                                                                                                                                                                 | 2853.6                                                                                                                                                       | 283.690                                                                                                                                                | 0.060%                                                                                                                                             | 0.250%                                                                                                                                   | 0.260%                                                                                                                                                           |                 |                                     |                                                              | 1                                            |                                |                                     |         |
| 335                                                                                                                                    |                                     | final                                                                                                                  | N 03final                                                                                                                                                                                                                                                                                                                                                                   | 5.9200                                                                                                                                                                           | 30.589                                                                                                                                                                 | 2853.6                                                                                                                                                       | 284.099                                                                                                                                                | 0.042%                                                                                                                                             | 0.245%                                                                                                                                   | 0.249%                                                                                                                                                           |                 | 0.002487                            | 161737.60655                                                 | 0.166658                                     | 0.000035                       | 0.000413                            |         |
| 336                                                                                                                                    |                                     |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                  |                                                                                                                                                                        |                                                                                                                                                              |                                                                                                                                                        |                                                                                                                                                    |                                                                                                                                          |                                                                                                                                                                  |                 |                                     |                                                              |                                              |                                |                                     |         |
| 337 N                                                                                                                                  | 104                                 | R#1                                                                                                                    | N 04R#1                                                                                                                                                                                                                                                                                                                                                                     | 5.8700                                                                                                                                                                           | 30.487                                                                                                                                                                 | 2856.6                                                                                                                                                       | 284.040                                                                                                                                                | 0.060%                                                                                                                                             | 0.240%                                                                                                                                   | 0.250%                                                                                                                                                           |                 |                                     |                                                              | ŧ                                            |                                |                                     |         |
| 338                                                                                                                                    |                                     | R#2                                                                                                                    | N 04R#1                                                                                                                                                                                                                                                                                                                                                                     | 5.8700                                                                                                                                                                           | 30.485                                                                                                                                                                 | 2856.6                                                                                                                                                       | 284.050                                                                                                                                                | 0.060%                                                                                                                                             | 0.240%                                                                                                                                   | 0.260%                                                                                                                                                           |                 |                                     |                                                              | ł                                            |                                |                                     |         |
| 339                                                                                                                                    |                                     | final                                                                                                                  | N 04final                                                                                                                                                                                                                                                                                                                                                                   | 5.8700                                                                                                                                                                           | 30.485                                                                                                                                                                 | 2856.6                                                                                                                                                       | 284.030                                                                                                                                                | 0.042%                                                                                                                                             | 0.230%                                                                                                                                   | 0.249%                                                                                                                                                           |                 | 0.002486                            | 161746.97898                                                 | 0.166668                                     | 0.000035                       | 0.000413                            |         |
| 340                                                                                                                                    |                                     |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                             | 5.8700                                                                                                                                                                           | 50.400                                                                                                                                                                 | 2030.0                                                                                                                                                       | 204.043                                                                                                                                                | 0.042/0                                                                                                                                            | 0.243/0                                                                                                                                  | 0.2+3/0                                                                                                                                                          |                 | 0.002400                            | 101/40.9/030                                                 | 0.100008                                     | 0.000000                       | 0.000413                            |         |
| 341                                                                                                                                    |                                     |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                  |                                                                                                                                                                        | Δ                                                                                                                                                            |                                                                                                                                                        | Luminous Int                                                                                                                                       | oncity rolativ                                                                                                                           | e standard uncertainty                                                                                                                                           |                 | cum:                                | 970475.45939                                                 | 1.00000                                      |                                |                                     |         |
|                                                                                                                                        |                                     |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                  |                                                                                                                                                                        | AV                                                                                                                                                           | -                                                                                                                                                      | 1                                                                                                                                                  | 0.248%                                                                                                                                   |                                                                                                                                                                  |                 | sum:                                | 970475.45959                                                 | 1.00000                                      |                                |                                     |         |
| 342                                                                                                                                    |                                     |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                  |                                                                                                                                                                        |                                                                                                                                                              | VNIIOFI                                                                                                                                                | 0.009%                                                                                                                                             | 0.248%                                                                                                                                   | 0.248%                                                                                                                                                           |                 |                                     |                                                              |                                              |                                |                                     |         |
| 343                                                                                                                                    |                                     |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                  |                                                                                                                                                                        |                                                                                                                                                              |                                                                                                                                                        |                                                                                                                                                    |                                                                                                                                          |                                                                                                                                                                  |                 |                                     | Final VI                                                     | IIIOFI average                               | <mark>e relative standa</mark> |                                     |         |
| 344                                                                                                                                    |                                     |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                  |                                                                                                                                                                        |                                                                                                                                                              |                                                                                                                                                        |                                                                                                                                                    |                                                                                                                                          |                                                                                                                                                                  |                 |                                     |                                                              | <u> </u>                                     | u-uncorr                       | u-corr                              | uf      |
| 345                                                                                                                                    |                                     |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                  |                                                                                                                                                                        |                                                                                                                                                              |                                                                                                                                                        |                                                                                                                                                    |                                                                                                                                          |                                                                                                                                                                  |                 |                                     |                                                              | VNIIOFI                                      | 0.0087%                        | 0.2477%                             | 0.2479% |
| 346                                                                                                                                    |                                     |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                  |                                                                                                                                                                        |                                                                                                                                                              |                                                                                                                                                        |                                                                                                                                                    |                                                                                                                                          |                                                                                                                                                                  |                 |                                     |                                                              | l                                            |                                |                                     |         |
| 347                                                                                                                                    |                                     |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                  |                                                                                                                                                                        |                                                                                                                                                              |                                                                                                                                                        |                                                                                                                                                    |                                                                                                                                          |                                                                                                                                                                  |                 |                                     |                                                              | <u> </u>                                     |                                |                                     |         |
| 348 N                                                                                                                                  | IMI:                                | NIST                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                  |                                                                                                                                                                        |                                                                                                                                                              |                                                                                                                                                        |                                                                                                                                                    |                                                                                                                                          |                                                                                                                                                                  |                 |                                     |                                                              | ļ                                            |                                |                                     |         |
| 349                                                                                                                                    |                                     |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                  |                                                                                                                                                                        |                                                                                                                                                              |                                                                                                                                                        | <u> </u>                                                                                                                                           |                                                                                                                                          |                                                                                                                                                                  |                 |                                     |                                                              |                                              |                                |                                     |         |
| 350                                                                                                                                    | Lamp#                               | Round#                                                                                                                 | Data ID                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                  | Electrical                                                                                                                                                             | Lamp CCT                                                                                                                                                     |                                                                                                                                                        | NIST La                                                                                                                                            | •                                                                                                                                        | Intensity (cd)                                                                                                                                                   |                 |                                     |                                                              | s for NIST wei                               | <u> </u>                       |                                     |         |
| 351                                                                                                                                    |                                     |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                             | Current(A)                                                                                                                                                                       | Voltage(V)                                                                                                                                                             | К                                                                                                                                                            | l(cd)                                                                                                                                                  | <b></b>                                                                                                                                            | 1                                                                                                                                        | ndard Uncertainty                                                                                                                                                |                 | -                                   | Weights                                                      |                                              | Relative Unc                   |                                     |         |
| 352                                                                                                                                    |                                     |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                  |                                                                                                                                                                        |                                                                                                                                                              |                                                                                                                                                        | random                                                                                                                                             | systematic                                                                                                                               | ,                                                                                                                                                                |                 | uf                                  | 1/(uf)^2                                                     |                                              | uncorrelated                   |                                     |         |
| 353                                                                                                                                    |                                     |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                  |                                                                                                                                                                        |                                                                                                                                                              |                                                                                                                                                        | u-uncorr                                                                                                                                           | u-corr                                                                                                                                   | SQRT(u-uncorr^2 + u-corr^2)                                                                                                                                      | <mark>fr</mark> | ractional                           |                                                              | normalised                                   | for combini                    | ng lamps                            |         |
| 354                                                                                                                                    |                                     |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                  |                                                                                                                                                                        |                                                                                                                                                              |                                                                                                                                                        |                                                                                                                                                    |                                                                                                                                          |                                                                                                                                                                  |                 |                                     |                                                              |                                              |                                |                                     |         |
| 355 N                                                                                                                                  | IIST20100                           | R#1                                                                                                                    | NIST20100R#1                                                                                                                                                                                                                                                                                                                                                                | 5.822                                                                                                                                                                            | 30.270                                                                                                                                                                 | 2855.0                                                                                                                                                       | 283.000                                                                                                                                                | 0.149%                                                                                                                                             | 0.200%                                                                                                                                   | 0.249%                                                                                                                                                           |                 |                                     |                                                              |                                              |                                |                                     |         |
| 356                                                                                                                                    |                                     | R#2                                                                                                                    | NIST20100R#2                                                                                                                                                                                                                                                                                                                                                                | 5.822                                                                                                                                                                            | 30.260                                                                                                                                                                 | 2853.0                                                                                                                                                       |                                                                                                                                                        |                                                                                                                                                    |                                                                                                                                          |                                                                                                                                                                  |                 |                                     |                                                              |                                              |                                |                                     |         |
| 357                                                                                                                                    |                                     | final                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                  |                                                                                                                                                                        | 2055.0                                                                                                                                                       | 282.600                                                                                                                                                | 0.110%                                                                                                                                             | 0.200%                                                                                                                                   | 0.228%                                                                                                                                                           |                 |                                     |                                                              |                                              |                                |                                     |         |
| 358                                                                                                                                    |                                     |                                                                                                                        | NIST20100final                                                                                                                                                                                                                                                                                                                                                              | 5.822                                                                                                                                                                            | 30.265                                                                                                                                                                 | 2853.0                                                                                                                                                       | 282.600<br>282.742                                                                                                                                     | 0.110%<br>0.089%                                                                                                                                   | 0.200%<br>0.200%                                                                                                                         | 0.228%                                                                                                                                                           |                 | 0.002188                            | 208939.93383                                                 | 0.175990                                     | 0.000078                       | 0.000377                            |         |
|                                                                                                                                        |                                     |                                                                                                                        | NIST20100final                                                                                                                                                                                                                                                                                                                                                              | 5.822                                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                                              |                                                                                                                                                        |                                                                                                                                                    |                                                                                                                                          |                                                                                                                                                                  | (               | 0.002188                            | 208939.93383                                                 | 0.175990                                     | 0.000078                       | 0.000377                            |         |
| 359 N                                                                                                                                  | IIST20101                           | R#1                                                                                                                    | NIST20100final NIST20101R#1                                                                                                                                                                                                                                                                                                                                                 | 5.822                                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                                              |                                                                                                                                                        |                                                                                                                                                    |                                                                                                                                          |                                                                                                                                                                  |                 | 0.002188                            | 208939.93383                                                 | 0.175990                                     | 0.000078                       | 0.000377                            |         |
| 359 N<br>360                                                                                                                           | IIST20101                           | R#1<br>R#2                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                  | 30.265                                                                                                                                                                 | 2854.0                                                                                                                                                       | 282.742                                                                                                                                                | 0.089%                                                                                                                                             | 0.200%                                                                                                                                   | 0.219%                                                                                                                                                           |                 | 0.002188                            | 208939.93383                                                 | 0.175990                                     | 0.000078                       | 0.000377                            |         |
| 360                                                                                                                                    | IIST20101                           |                                                                                                                        | NIST20101R#1                                                                                                                                                                                                                                                                                                                                                                | 5.918                                                                                                                                                                            | 30.265<br>30.600                                                                                                                                                       | 2854.0<br>2856.0                                                                                                                                             | 282.742<br>287.300                                                                                                                                     | 0.089%                                                                                                                                             | 0.200%                                                                                                                                   | 0.219%                                                                                                                                                           |                 | 0.002188                            | 208939.93383                                                 | 0.175990                                     | 0.000078                       | 0.000377                            |         |
|                                                                                                                                        | IIST20101                           | R#2                                                                                                                    | NIST20101R#1<br>NIST20101R#2                                                                                                                                                                                                                                                                                                                                                | 5.918<br>5.918                                                                                                                                                                   | 30.265<br>30.600<br>30.600                                                                                                                                             | 2854.0<br>2856.0<br>2855.0                                                                                                                                   | 282.742<br>287.300<br>287.500                                                                                                                          | 0.089%<br>0.178%<br>0.163%                                                                                                                         | 0.200%<br>0.200%<br>0.200%                                                                                                               | 0.219%<br>0.268%<br>0.258%                                                                                                                                       |                 |                                     |                                                              |                                              |                                |                                     |         |
| 360<br>361<br>362                                                                                                                      |                                     | R#2                                                                                                                    | NIST20101R#1<br>NIST20101R#2                                                                                                                                                                                                                                                                                                                                                | 5.918<br>5.918                                                                                                                                                                   | 30.265<br>30.600<br>30.600                                                                                                                                             | 2854.0<br>2856.0<br>2855.0<br>2855.5                                                                                                                         | 282.742<br>287.300<br>287.500                                                                                                                          | 0.089%<br>0.178%<br>0.163%                                                                                                                         | 0.200%<br>0.200%<br>0.200%                                                                                                               | 0.219%<br>0.268%<br>0.258%                                                                                                                                       |                 |                                     |                                                              |                                              |                                |                                     |         |
| 360<br>361<br>362<br>363 N                                                                                                             | IIST20101<br>IIST20102              | R#2<br>final<br>R#1                                                                                                    | NIST20101R#1<br>NIST20101R#2<br>NIST20101final<br>NIST20102R#1                                                                                                                                                                                                                                                                                                              | 5.918<br>5.918<br>5.918<br>5.918<br>5.905                                                                                                                                        | 30.265<br>30.600<br>30.600<br>30.600<br>30.440                                                                                                                         | 2854.0<br>2856.0<br>2855.0<br>2855.5<br>2855.0                                                                                                               | 282.742<br>287.300<br>287.500<br>287.409<br>288.500                                                                                                    | 0.089%<br>0.178%<br>0.163%<br>0.120%<br>0.136%                                                                                                     | 0.200%<br>0.200%<br>0.200%<br>0.200%                                                                                                     | 0.219%<br>0.268%<br>0.258%<br>0.233%<br>0.242%                                                                                                                   |                 |                                     |                                                              |                                              |                                |                                     |         |
| 360<br>361<br>362<br>363 N<br>364                                                                                                      |                                     | R#2<br>final<br>R#1<br>R#2                                                                                             | NIST20101R#1<br>NIST20101R#2<br>NIST20101final<br>NIST20102R#1<br>NIST20102R#2                                                                                                                                                                                                                                                                                              | 5.918<br>5.918<br>5.918<br>5.918<br>5.905<br>5.905                                                                                                                               | 30.265<br>30.600<br>30.600<br>30.600<br>30.440<br>30.430                                                                                                               | 2854.0<br>2856.0<br>2855.0<br>2855.5<br>2855.0<br>2855.0<br>2854.0                                                                                           | 282.742<br>287.300<br>287.500<br>287.409<br>288.500<br>288.300                                                                                         | 0.089%<br>0.178%<br>0.163%<br>0.120%<br>0.136%<br>0.202%                                                                                           | 0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%                                                                                           | 0.219%<br>0.268%<br>0.258%<br>0.233%<br>0.242%<br>0.242%<br>0.285%                                                                                               |                 | 0.002333                            | 183709.21591                                                 | 0.154738                                     | 0.000093                       | 0.000349                            |         |
| 360<br>361<br>362<br>363 N<br>364<br>365                                                                                               |                                     | R#2<br>final<br>R#1                                                                                                    | NIST20101R#1<br>NIST20101R#2<br>NIST20101final<br>NIST20102R#1                                                                                                                                                                                                                                                                                                              | 5.918<br>5.918<br>5.918<br>5.918<br>5.905                                                                                                                                        | 30.265<br>30.600<br>30.600<br>30.600<br>30.440                                                                                                                         | 2854.0<br>2856.0<br>2855.0<br>2855.5<br>2855.0                                                                                                               | 282.742<br>287.300<br>287.500<br>287.409<br>288.500                                                                                                    | 0.089%<br>0.178%<br>0.163%<br>0.120%<br>0.136%                                                                                                     | 0.200%<br>0.200%<br>0.200%<br>0.200%                                                                                                     | 0.219%<br>0.268%<br>0.258%<br>0.233%<br>0.242%                                                                                                                   |                 |                                     |                                                              |                                              |                                |                                     |         |
| 360<br>361<br>362<br>363 N<br>364<br>365<br>366                                                                                        | IIST20102                           | R#2<br>final<br>R#1<br>R#2<br>final                                                                                    | NIST20101R#1<br>NIST20101R#2<br>NIST20101final<br>NIST20102R#1<br>NIST20102R#2<br>NIST20102final                                                                                                                                                                                                                                                                            | 5.918<br>5.918<br>5.918<br>5.905<br>5.905<br>5.905<br>5.905                                                                                                                      | 30.265<br>30.600<br>30.600<br>30.600<br>30.440<br>30.430<br>30.435                                                                                                     | 2854.0<br>2856.0<br>2855.0<br>2855.5<br>2855.0<br>2855.0<br>2854.0<br>2854.5                                                                                 | 282.742<br>287.300<br>287.500<br>287.409<br>288.500<br>288.300<br>288.438                                                                              | 0.089%<br>0.178%<br>0.163%<br>0.120%<br>0.136%<br>0.202%<br>0.113%                                                                                 | 0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%                                                                                 | 0.219%<br>0.268%<br>0.258%<br>0.233%<br>0.242%<br>0.242%<br>0.285%<br>0.230%                                                                                     |                 | 0.002333                            | 183709.21591                                                 | 0.154738                                     | 0.000093                       | 0.000349                            |         |
| 360<br>361<br>362<br>363 N<br>364<br>365<br>366<br>366 N                                                                               |                                     | R#2<br>final<br>R#1<br>R#2<br>final<br>R#1                                                                             | NIST20101R#1<br>NIST20101R#2<br>NIST20101final<br>NIST20102R#1<br>NIST20102R#2<br>NIST20102final<br>NIST20103R#1                                                                                                                                                                                                                                                            | 5.918<br>5.918<br>5.918<br>5.905<br>5.905<br>5.905<br>5.905<br>5.877                                                                                                             | 30.265<br>30.600<br>30.600<br>30.600<br>30.440<br>30.430<br>30.435<br>30.510                                                                                           | 2854.0<br>2856.0<br>2855.0<br>2855.5<br>2855.0<br>2855.0<br>2854.0<br>2854.5<br>2854.5                                                                       | 282.742<br>287.300<br>287.500<br>287.409<br>288.500<br>288.300<br>288.438<br>286.600                                                                   | 0.089%<br>0.178%<br>0.163%<br>0.120%<br>0.136%<br>0.202%<br>0.113%<br>0.136%                                                                       | 0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%                                                                       | 0.219%<br>0.268%<br>0.258%<br>0.233%<br>0.233%<br>0.242%<br>0.285%<br>0.230%                                                                                     |                 | 0.002333                            | 183709.21591                                                 | 0.154738                                     | 0.000093                       | 0.000349                            |         |
| 360<br>361<br>362<br>363 N<br>364<br>365<br>366<br>367 N<br>368                                                                        | IIST20102                           | R#2<br>final<br>R#1<br>R#2<br>final<br>R#1<br>R#2                                                                      | NIST20101R#1<br>NIST20101R#2<br>NIST20101final<br>NIST20102R#1<br>NIST20102R#2<br>NIST20102final<br>NIST20103R#1<br>NIST20103R#1                                                                                                                                                                                                                                            | 5.918<br>5.918<br>5.918<br>5.905<br>5.905<br>5.905<br>5.905<br>5.905<br>5.877<br>5.877                                                                                           | 30.265<br>30.600<br>30.600<br>30.600<br>30.440<br>30.430<br>30.435<br>30.510<br>30.510                                                                                 | 2854.0<br>2855.0<br>2855.5<br>2855.0<br>2855.0<br>2854.0<br>2854.5<br>2854.5<br>2858.0<br>2858.0<br>2856.0                                                   | 282.742<br>287.300<br>287.500<br>287.409<br>288.500<br>288.300<br>288.438<br>286.600<br>285.900                                                        | 0.089%<br>0.178%<br>0.163%<br>0.120%<br>0.136%<br>0.202%<br>0.113%<br>0.136%<br>0.136%<br>0.142%                                                   | 0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%                                                             | 0.219% 0.268% 0.258% 0.233% 0.242% 0.285% 0.230% 0.242% 0.242% 0.245%                                                                                            |                 | 0.002333                            | 183709.21591<br>189581.00531                                 | 0.154738                                     | 0.000093                       | 0.000349                            |         |
| 360<br>361<br>362<br>363<br>N<br>364<br>365<br>366<br>367<br>N<br>368<br>369                                                           | IIST20102                           | R#2<br>final<br>R#1<br>R#2<br>final<br>R#1                                                                             | NIST20101R#1<br>NIST20101R#2<br>NIST20101final<br>NIST20102R#1<br>NIST20102R#2<br>NIST20102final<br>NIST20103R#1                                                                                                                                                                                                                                                            | 5.918<br>5.918<br>5.918<br>5.905<br>5.905<br>5.905<br>5.905<br>5.877                                                                                                             | 30.265<br>30.600<br>30.600<br>30.600<br>30.440<br>30.430<br>30.435<br>30.510                                                                                           | 2854.0<br>2856.0<br>2855.0<br>2855.5<br>2855.0<br>2855.0<br>2854.0<br>2854.5<br>2854.5                                                                       | 282.742<br>287.300<br>287.500<br>287.409<br>288.500<br>288.300<br>288.438<br>286.600                                                                   | 0.089%<br>0.178%<br>0.163%<br>0.120%<br>0.136%<br>0.202%<br>0.113%<br>0.136%                                                                       | 0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%                                                                       | 0.219%<br>0.268%<br>0.258%<br>0.233%<br>0.233%<br>0.242%<br>0.285%<br>0.230%                                                                                     |                 | 0.002333                            | 183709.21591                                                 | 0.154738                                     | 0.000093                       | 0.000349                            |         |
| 360<br>361<br>362<br>363<br>N<br>364<br>365<br>366<br>367<br>N<br>368<br>369<br>369                                                    | IIST20102<br>IIST20103              | R#2<br>final<br>R#1<br>R#2<br>final<br>R#1<br>R#2<br>final                                                             | NIST20101R#1<br>NIST20101R#2<br>NIST20101final<br>NIST20102R#1<br>NIST20102R#2<br>NIST20102final<br>NIST20103R#1<br>NIST20103R#2<br>NIST20103final                                                                                                                                                                                                                          | 5.918<br>5.918<br>5.918<br>5.905<br>5.905<br>5.905<br>5.905<br>5.905<br>5.877<br>5.877<br>5.877                                                                                  | 30.265<br>30.600<br>30.600<br>30.600<br>30.440<br>30.430<br>30.435<br>30.510<br>30.510<br>30.505                                                                       | 2854.0<br>2855.0<br>2855.5<br>2855.0<br>2855.0<br>2854.0<br>2854.0<br>2854.5<br>2858.0<br>2856.0<br>2856.0                                                   | 282.742<br>287.300<br>287.500<br>287.409<br>288.500<br>288.300<br>288.438<br>286.600<br>285.900<br>286.265                                             | 0.089%<br>0.178%<br>0.163%<br>0.120%<br>0.136%<br>0.202%<br>0.113%<br>0.136%<br>0.136%<br>0.142%<br>0.098%                                         | 0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%                                                   | 0.219% 0.268% 0.258% 0.233% 0.242% 0.285% 0.230% 0.242% 0.242% 0.245% 0.223%                                                                                     |                 | 0.002333                            | 183709.21591<br>189581.00531                                 | 0.154738                                     | 0.000093                       | 0.000349                            |         |
| 360<br>361<br>362<br>363 N<br>364<br>365<br>366<br>367 N<br>368<br>369<br>370<br>370 N                                                 | IIST20102                           | R#2<br>final<br>R#1<br>R#2<br>final<br>R#1<br>R#2<br>final<br>R#1<br>R#1                                               | NIST20101R#1<br>NIST20101R#2<br>NIST20101final<br>NIST20102R#1<br>NIST20102R#2<br>NIST20102final<br>NIST20103R#1<br>NIST20103R#2<br>NIST20103final<br>NIST20104R#1                                                                                                                                                                                                          | 5.918<br>5.918<br>5.918<br>5.905<br>5.905<br>5.905<br>5.905<br>5.905<br>5.877<br>5.877<br>5.877<br>5.877                                                                         | 30.265<br>30.600<br>30.600<br>30.600<br>30.440<br>30.430<br>30.435<br>30.510<br>30.500<br>30.505<br>30.700                                                             | 2854.0<br>2855.0<br>2855.0<br>2855.5<br>2855.0<br>2854.0<br>2854.5<br>2858.0<br>2856.0<br>2856.0<br>2857.0                                                   | 282.742<br>287.300<br>287.500<br>287.409<br>288.500<br>288.300<br>288.438<br>286.600<br>285.900<br>286.265<br>272.700                                  | 0.089%<br>0.178%<br>0.163%<br>0.120%<br>0.136%<br>0.202%<br>0.113%<br>0.136%<br>0.142%<br>0.098%                                                   | 0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%                                         | 0.219% 0.268% 0.258% 0.233% 0.242% 0.242% 0.230% 0.242% 0.245% 0.223% 0.242%                                                                                     |                 | 0.002333                            | 183709.21591<br>189581.00531                                 | 0.154738                                     | 0.000093                       | 0.000349                            |         |
| 360<br>361<br>362<br>363 N<br>364<br>365<br>366<br>367 N<br>368<br>369<br>370<br>371 N<br>372                                          | IIST20102<br>IIST20103              | R#2<br>final<br>R#1<br>R#2<br>final<br>R#1<br>R#2<br>final<br>R#1<br>R#1<br>R#2                                        | NIST20101R#1<br>NIST20101R#2<br>NIST20101final<br>NIST20102R#1<br>NIST20102R#2<br>NIST20102final<br>NIST20103R#1<br>NIST20103R#2<br>NIST20103R#2<br>NIST20104R#1<br>NIST20104R#1<br>NIST20104R#2                                                                                                                                                                            | 5.918<br>5.918<br>5.918<br>5.918<br>5.905<br>5.905<br>5.905<br>5.905<br>5.877<br>5.877<br>5.877<br>5.877                                                                         | 30.265<br>30.600<br>30.600<br>30.600<br>30.440<br>30.430<br>30.435<br>30.510<br>30.510<br>30.505<br>30.505<br>30.700<br>30.700                                         | 2854.0<br>2856.0<br>2855.0<br>2855.5<br>2855.0<br>2854.0<br>2854.0<br>2854.5<br>2858.0<br>2856.0<br>2857.0<br>2857.0                                         | 282.742<br>287.300<br>287.500<br>287.409<br>288.500<br>288.300<br>288.438<br>286.600<br>285.900<br>286.265<br>272.700<br>272.200                       | 0.089%<br>0.178%<br>0.163%<br>0.120%<br>0.136%<br>0.202%<br>0.113%<br>0.136%<br>0.142%<br>0.098%<br>0.136%<br>0.136%                               | 0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%                                         | 0.219% 0.268% 0.258% 0.233% 0.242% 0.285% 0.230% 0.242% 0.245% 0.223% 0.223% 0.242% 0.242%                                                                       |                 | 0.002333                            | 183709.21591<br>189581.00531<br>201384.13264                 | 0.154738<br>0.159684<br>0.169626             | 0.000093                       | 0.000349                            |         |
| 360<br>361<br>362<br>363<br>364<br>365<br>366<br>367<br>368<br>369<br>370<br>370<br>371<br>N<br>372<br>373                             | IIST20102<br>IIST20103              | R#2<br>final<br>R#1<br>R#2<br>final<br>R#1<br>R#2<br>final<br>R#1<br>R#1                                               | NIST20101R#1<br>NIST20101R#2<br>NIST20101final<br>NIST20102R#1<br>NIST20102R#2<br>NIST20102final<br>NIST20103R#1<br>NIST20103R#2<br>NIST20103final<br>NIST20104R#1                                                                                                                                                                                                          | 5.918<br>5.918<br>5.918<br>5.905<br>5.905<br>5.905<br>5.905<br>5.905<br>5.877<br>5.877<br>5.877<br>5.877                                                                         | 30.265<br>30.600<br>30.600<br>30.600<br>30.440<br>30.430<br>30.435<br>30.510<br>30.500<br>30.505<br>30.700                                                             | 2854.0<br>2855.0<br>2855.0<br>2855.5<br>2855.0<br>2854.0<br>2854.5<br>2858.0<br>2856.0<br>2856.0<br>2857.0                                                   | 282.742<br>287.300<br>287.500<br>287.409<br>288.500<br>288.300<br>288.438<br>286.600<br>285.900<br>286.265<br>272.700                                  | 0.089%<br>0.178%<br>0.163%<br>0.120%<br>0.136%<br>0.202%<br>0.113%<br>0.136%<br>0.142%<br>0.098%                                                   | 0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%                                         | 0.219% 0.268% 0.258% 0.233% 0.242% 0.242% 0.230% 0.242% 0.245% 0.223% 0.242%                                                                                     |                 | 0.002333                            | 183709.21591<br>189581.00531                                 | 0.154738                                     | 0.000093                       | 0.000349                            |         |
| 360<br>361<br>362<br>363<br>N<br>364<br>365<br>366<br>367<br>N<br>368<br>369<br>370<br>371<br>N<br>372<br>373<br>373                   | IIST20102<br>IIST20103<br>IIST20104 | R#2<br>final<br>R#1<br>R#2<br>final<br>R#1<br>R#2<br>final<br>R#1<br>R#2<br>final<br>R#2<br>final                      | NIST20101R#1           NIST20101R#2           NIST20101final           NIST20102R#1           NIST20102R#2           NIST20103R#1           NIST20103R#2           NIST20103final           NIST20104R#1           NIST20104R#2           NIST20104R#1                                                                                                                      | 5.918<br>5.918<br>5.918<br>5.905<br>5.905<br>5.905<br>5.905<br>5.905<br>5.877<br>5.877<br>5.877<br>5.877<br>5.877                                                                | 30.265<br>30.600<br>30.600<br>30.600<br>30.440<br>30.430<br>30.435<br>30.510<br>30.500<br>30.500<br>30.505<br>30.700<br>30.700<br>30.700                               | 2854.0<br>2855.0<br>2855.0<br>2855.5<br>2855.0<br>2854.0<br>2854.5<br>2858.0<br>2856.0<br>2856.0<br>2857.0<br>2857.0<br>2857.5                               | 282.742<br>287.300<br>287.500<br>287.409<br>288.500<br>288.300<br>288.438<br>286.600<br>285.900<br>286.265<br>272.700<br>272.200<br>272.450            | 0.089%<br>0.178%<br>0.163%<br>0.120%<br>0.136%<br>0.202%<br>0.113%<br>0.136%<br>0.142%<br>0.098%<br>0.136%<br>0.136%<br>0.136%                     | 0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%                     | 0.219% 0.268% 0.258% 0.233% 0.242% 0.242% 0.230% 0.242% 0.245% 0.245% 0.223% 0.242% 0.242% 0.242% 0.242% 0.242% 0.242% 0.222%                                    |                 | 0.002333                            | 183709.21591<br>189581.00531<br>201384.13264                 | 0.154738 0.159684 0.169626                   | 0.000093                       | 0.000349                            |         |
| 360<br>361<br>362<br>363<br>364<br>365<br>366<br>367<br>368<br>368<br>369<br>370<br>371<br>8<br>372<br>373<br>373<br>374<br>375<br>N   | IIST20102<br>IIST20103              | R#2<br>final<br>R#1<br>R#2<br>final<br>R#1<br>R#2<br>final<br>R#1<br>R#2<br>final<br>R#1<br>R#2<br>final<br>R#1<br>R#2 | NIST20101R#1           NIST20101R#2           NIST20101final           NIST20102R#1           NIST20102R#2           NIST20102final           NIST20103R#1           NIST20103R#2           NIST20103final           NIST20104R#1           NIST20104R#1           NIST20104R#1           NIST20104R#1           NIST20104R#1           NIST20104F#1           NIST20104F#1 | 5.918<br>5.918<br>5.918<br>5.918<br>5.905<br>5.905<br>5.905<br>5.905<br>5.905<br>5.877<br>5.877<br>5.877<br>5.877<br>5.877<br>5.877<br>5.877<br>5.873<br>5.683<br>5.683<br>5.683 | 30.265<br>30.600<br>30.600<br>30.600<br>30.440<br>30.430<br>30.430<br>30.435<br>30.510<br>30.500<br>30.505<br>30.505<br>30.700<br>30.700<br>30.700<br>30.700<br>30.700 | 2854.0<br>2856.0<br>2855.0<br>2855.5<br>2855.0<br>2855.0<br>2854.0<br>2854.0<br>2854.5<br>2858.0<br>2856.0<br>2857.0<br>2857.0<br>2857.0<br>2857.0<br>2857.5 | 282.742<br>287.300<br>287.500<br>287.409<br>288.500<br>288.300<br>288.438<br>286.600<br>285.900<br>286.265<br>272.700<br>272.200<br>272.200<br>272.450 | 0.089%<br>0.178%<br>0.163%<br>0.120%<br>0.136%<br>0.202%<br>0.113%<br>0.136%<br>0.142%<br>0.098%<br>0.136%<br>0.136%<br>0.136%<br>0.136%<br>0.136% | 0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200% | 0.219% 0.268% 0.258% 0.233% 0.242% 0.242% 0.285% 0.230% 0.242% 0.245% 0.223% 0.242% 0.242% 0.242% 0.242% 0.242% 0.242% 0.242% 0.242% 0.242% 0.242% 0.242% 0.242% |                 | 0.002333                            | 183709.21591<br>189581.00531<br>201384.13264                 | 0.154738 0.159684 0.169626                   | 0.000093                       | 0.000349                            |         |
| 360<br>361<br>362<br>363<br>364<br>365<br>366<br>367<br>368<br>368<br>370<br>370<br>371<br>371<br>372<br>373<br>374<br>375<br>N<br>376 | IIST20102<br>IIST20103<br>IIST20104 | R#2<br>final<br>R#1<br>R#2<br>final<br>R#1<br>R#2<br>final<br>R#1<br>R#2<br>final<br>R#1<br>R#2<br>final<br>R#1<br>R#2 | NIST20101R#1           NIST20101R#2           NIST20101final           NIST20102R#1           NIST20102R#2           NIST20103R#1           NIST20103R#2           NIST20103final           NIST20104R#1           NIST20104R#2           NIST20104R#1                                                                                                                      | 5.918<br>5.918<br>5.918<br>5.918<br>5.905<br>5.905<br>5.905<br>5.905<br>5.905<br>5.877<br>5.877<br>5.877<br>5.877<br>5.877<br>5.877<br>5.873<br>5.683<br>5.683<br>5.683<br>5.683 | 30.265<br>30.600<br>30.600<br>30.600<br>30.440<br>30.430<br>30.435<br>30.510<br>30.500<br>30.500<br>30.505<br>30.700<br>30.700<br>30.700                               | 2854.0<br>2855.0<br>2855.0<br>2855.5<br>2855.0<br>2854.0<br>2854.5<br>2858.0<br>2856.0<br>2856.0<br>2857.0<br>2857.0<br>2857.5                               | 282.742<br>287.300<br>287.500<br>287.409<br>288.500<br>288.300<br>288.438<br>286.600<br>285.900<br>286.265<br>272.700<br>272.200<br>272.450            | 0.089%<br>0.178%<br>0.163%<br>0.120%<br>0.136%<br>0.202%<br>0.113%<br>0.136%<br>0.142%<br>0.098%<br>0.136%<br>0.136%<br>0.136%                     | 0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%                     | 0.219% 0.268% 0.258% 0.233% 0.242% 0.242% 0.230% 0.242% 0.245% 0.245% 0.223% 0.242% 0.242% 0.242% 0.242% 0.242% 0.242% 0.222%                                    |                 | 0.002333 0.002297 0.002228 0.002219 | 183709.21591<br>189581.00531<br>201384.13264<br>203045.65317 | 0.154738<br>0.159684<br>0.169626<br>0.171025 | 0.000093                       | 0.000349 0.000355 0.000369 0.000371 |         |
| 360<br>361<br>362<br>363<br>364<br>365<br>366<br>367<br>368<br>368<br>369<br>370<br>371<br>8<br>372<br>373<br>373<br>374<br>375<br>N   | IIST20102<br>IIST20103<br>IIST20104 | R#2<br>final<br>R#1<br>R#2<br>final<br>R#1<br>R#2<br>final<br>R#1<br>R#2<br>final<br>R#1<br>R#2<br>final<br>R#1<br>R#2 | NIST20101R#1           NIST20101R#2           NIST20101final           NIST20102R#1           NIST20102R#2           NIST20102final           NIST20103R#1           NIST20103R#2           NIST20103final           NIST20104R#1           NIST20104R#1           NIST20104R#1           NIST20104R#1           NIST20104R#1           NIST20104F#1           NIST20104F#1 | 5.918<br>5.918<br>5.918<br>5.918<br>5.905<br>5.905<br>5.905<br>5.905<br>5.905<br>5.877<br>5.877<br>5.877<br>5.877<br>5.877<br>5.877<br>5.877<br>5.873<br>5.683<br>5.683<br>5.683 | 30.265<br>30.600<br>30.600<br>30.600<br>30.440<br>30.430<br>30.430<br>30.435<br>30.510<br>30.500<br>30.505<br>30.505<br>30.700<br>30.700<br>30.700<br>30.700<br>30.700 | 2854.0<br>2856.0<br>2855.0<br>2855.5<br>2855.0<br>2855.0<br>2854.0<br>2854.0<br>2854.5<br>2858.0<br>2856.0<br>2857.0<br>2857.0<br>2857.0<br>2857.0<br>2857.5 | 282.742<br>287.300<br>287.500<br>287.409<br>288.500<br>288.300<br>288.438<br>286.600<br>285.900<br>286.265<br>272.700<br>272.200<br>272.200<br>272.450 | 0.089%<br>0.178%<br>0.163%<br>0.120%<br>0.136%<br>0.202%<br>0.113%<br>0.136%<br>0.142%<br>0.098%<br>0.136%<br>0.136%<br>0.136%<br>0.136%<br>0.136% | 0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200% | 0.219% 0.268% 0.258% 0.233% 0.242% 0.242% 0.285% 0.230% 0.242% 0.245% 0.223% 0.242% 0.242% 0.242% 0.242% 0.242% 0.242% 0.242% 0.242% 0.242% 0.242% 0.242% 0.242% |                 | 0.002333 0.002297 0.002228 0.002219 | 183709.21591<br>189581.00531<br>201384.13264                 | 0.154738 0.159684 0.169626 0.171025          | 0.000093                       | 0.000349                            |         |

|              |            | A                                                                                                                                                                                                                                                                        | verage NIST L<br>NIST                                                                                                                                                                                                                                                                                                                                                                                                       | Luminous Inte<br>0.021%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nsity relative s<br>0.219%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tandard uncertainty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | sum:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1187225.47744                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |            |                                                                                                                                                                                                                                                                          | NIST                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.021%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.219%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |            |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                             | Ì                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.220%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |            |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Final N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IIST average r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <mark>elative standar</mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <mark>d uncertainty</mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              |            |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | u-uncorr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | u-corr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | uf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              |            |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NIST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0209%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2188%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2198%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              |            |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |            |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              |            |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              |            |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| •            |            | Lamp CCT                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                             | NRC Lar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | s for NRC wei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Current(A)   | Voltage(V) | К                                                                                                                                                                                                                                                                        | l(cd)                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              |            |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1/(uf)^2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              |            |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                             | u-uncorr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | u-corr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SQRT(u-uncorr^2 + u-corr^2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ractional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | normalised                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | for combini                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ing lamps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Į                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              |            |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1final 5.661 | 30.356     | 2800.0                                                                                                                                                                                                                                                                   | 254.400                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.605%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.614%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.006135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26568.73431                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.166667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.001019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |            |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2final 5.620 | 30.069     | 2800.0                                                                                                                                                                                                                                                                   | 251.600                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.605%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.614%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.006135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26568.73431                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.166667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.001019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |            |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sfinal 5.635 | 30.211     | 2800.0                                                                                                                                                                                                                                                                   | 254.000                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.605%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.614%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.006135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26568.73431                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.166667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.001019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              | 20.000     | 2000.0                                                                                                                                                                                                                                                                   | 252.200                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.4000/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0050(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.61.00/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.000405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.550 70 404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.466667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.001010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ofinal 5.650 | 30.398     | 2800.0                                                                                                                                                                                                                                                                   | 252.200                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.605%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.614%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.006135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26568.73431                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.166667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.001019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              | 20.464     | 2000.0                                                                                                                                                                                                                                                                   | 254.000                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.05%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.6149/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.000125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26569 72424                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.466667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.001010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| /final 5.665 | 30.461     | 2800.0                                                                                                                                                                                                                                                                   | 254.600                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.605%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.614%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.006135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26568.73431                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.166667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.001019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Dfinal E 622 | 20.106     | 2800.0                                                                                                                                                                                                                                                                   | 252 800                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.605%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.614%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.006125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26569 72/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 16667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 000093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.001010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Jiliai 5.033 | 50.100     | 2800.0                                                                                                                                                                                                                                                                   | 255.600                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.005%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.014%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.000132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20308.73431                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.100007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.001019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              |            |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                             | uminous Into                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nsity relative e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tandard uncertainty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | sum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 159/12 /0597                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |            | P                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | sum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 133412.40387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |            |                                                                                                                                                                                                                                                                          | NIC                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.02078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.011/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.012/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Final N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IRC average r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | elative standar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d uncertainty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |            |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | uf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              |            |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NRC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2:           |            | Current(A)         Voltage(V)           21final         5.661         30.356           22final         5.620         30.069           23final         5.635         30.211           26final         5.650         30.398           27final         5.665         30.461 | Current(A)         Voltage(V)         K           21final         5.661         30.356         2800.0           22final         5.620         30.069         2800.0           22final         5.635         30.211         2800.0           23final         5.650         30.398         2800.0           22final         5.655         30.461         2800.0           30final         5.633         30.106         2800.0 | Current(A)         Voltage(V)         K         I(cd)           Image: Current(A)         Voltage(V)         K         I(cd)           Image: Current(A)         Voltage(V)         K         I(cd)           Image: Current(A)         Image: Current(A)         Image: Current(A)         Image: Current(A)           Image: Current(A)         Image: Current(A)         Image: Current(A)         Image: Current(A)         Image: Current(A)           Image: Current(A)         Image: Current(A)         Image: Current(A)         Image: Current(A)         Image: Current(A)           Image: Current(A)         Image: Current(A)         Image: Current(A)         Image: Current(A)         Image: Current(A) | Current(A)         Voltage(V)         K         I(cd)           Image: Current(A)         Voltage(V)         K         I(cd)           Image: Current(A)         Voltage(V)         K         I(cd)           Image: Current(A)         Image: Current(A)         Image: Current(A)         Image: Current(A)           Image: Current(A)         Image: Current(A)         Image: Current(A)         Image: Current(A)         Image: Current(A)           21final         5.661         30.356         2800.0         254.400         0.100%           22final         5.620         30.069         2800.0         251.600         0.100%           22final         5.635         30.211         2800.0         254.000         0.100%           Image: Current Ima | Current(A)         Voltage(V)         K         I(cd)         Relative Stan           Image: Stand St | Current(A)         Voltage(V)         K         I(cd)         Relative Standard Uncertainty           Image: Current(A)         Voltage(V)         K         I(cd)         Relative Standard Uncertainty           Image: Current(A)         Voltage(V)         K         I(cd)         Relative Standard Uncertainty           Image: Current(A)         Image: Current(A)         Image: Current(A)         Systematic         final lamp (uf)           Image: Current(A)         Image: Current(A)         Image: Current(A)         Image: Current(A)         Systematic         final lamp (uf)           Image: Current(A)         Image: Current(A)         Image: Current(A)         Image: Current(A)         SQRT(u-uncorr^2 + u-corr^2)           Image: Current(A)         Sold:         2800.0         254.400         0.100%         0.605%         0.614%           Image: Current(A)         Image: Current(A)         Image: Current(A)         Image: Current(A)         Image: Current(A)         Image: Current(A)           Image: Current(A)         Image: Current(A)         Image: Current(A)         Image: Current(A)         Image: Current(A)         Image: Current(A)           Image: Current(A)         Image: Current(A)         Image: Current(A)         Image: Current(A)         Image: Current(A)         Image: Current(A)           Image: Current(A) | Current(A)         Voltage(V)         K         I(cd)         Relative Standard Uncertainty           Image: Constraint of the standard o | Current(A)         Voltage(V)         K         I(cd)         Relative Standard Uncertainty           Image: Current(A)         Voltage(V)         K         I(cd)         random         systematic         final lamp (uf)         uf           Image: Current(A)         Image: Current(A) <td>Current(A)         Voltage(V)         K         I(cd)         Relative Standard Uncertainty         Weights           Image: Constraint of the standard of the s</td> <td>Current(A)         Voltage(V)         K         I(cd)         Relative Standard Uncertainty         uf         I/(uf)^2         wi           Image: Constraint of the standard Uncertaint of the standard Unce</td> <td>Current(A)Voltage(V)KI(cd)Relative Standard UncertaintyUWeightsRelative UncorrelatedImage: Constraint (A)Image: Constraint (A)Imag</td> <td>Current(A)       Voltage(V)       K       I(cd)       Relative Standard Uncertainty       uf       I/(uf)/2       wi       Relative Uncertainties         Image: Construction of the construction of</td> | Current(A)         Voltage(V)         K         I(cd)         Relative Standard Uncertainty         Weights           Image: Constraint of the standard of the s | Current(A)         Voltage(V)         K         I(cd)         Relative Standard Uncertainty         uf         I/(uf)^2         wi           Image: Constraint of the standard Uncertaint of the standard Unce | Current(A)Voltage(V)KI(cd)Relative Standard UncertaintyUWeightsRelative UncorrelatedImage: Constraint (A)Image: Constraint (A)Imag | Current(A)       Voltage(V)       K       I(cd)       Relative Standard Uncertainty       uf       I/(uf)/2       wi       Relative Uncertainties         Image: Construction of the construction of |

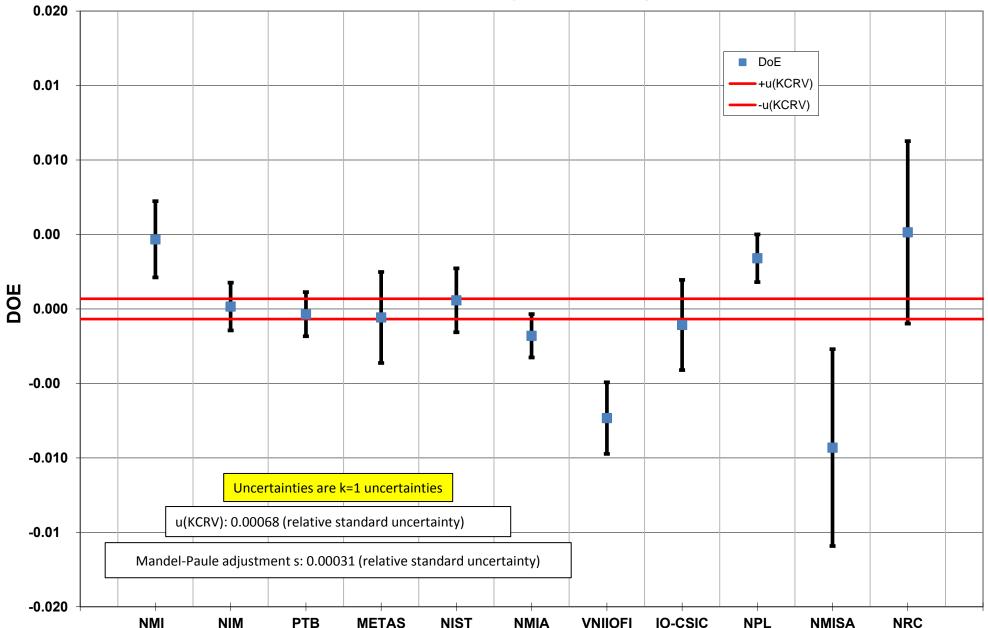
|                             |                    | 6                                     |         |          |             |                                                |                          | Ţ         | 1            | K              | 1            |                                 |                                     |         |           |                        | C                |                |             |
|-----------------------------|--------------------|---------------------------------------|---------|----------|-------------|------------------------------------------------|--------------------------|-----------|--------------|----------------|--------------|---------------------------------|-------------------------------------|---------|-----------|------------------------|------------------|----------------|-------------|
| A<br>1 CCPR-K3.2014: Lumino | B<br>Bus Intensity | L                                     | D       | E        | F           | G                                              | H                        | 1         | J            | K              | L            | IM                              | N O                                 | Р       | Q         | ĸ                      | 5                | I              | 0           |
| 2 Draft B Report            |                    |                                       |         |          |             |                                                |                          |           |              |                |              |                                 |                                     |         |           |                        |                  |                |             |
| 3 2020-October-15           |                    |                                       |         |          |             |                                                |                          |           |              |                |              |                                 |                                     |         |           |                        |                  |                |             |
| 4 Appendix Dv2.1            |                    |                                       |         |          |             |                                                |                          |           |              |                |              |                                 |                                     |         |           |                        |                  |                |             |
| 5 Summary of Pilot Mea      | surements of F     | Participant Lamps                     |         |          |             |                                                |                          |           |              |                |              |                                 |                                     |         |           |                        |                  |                |             |
| 6                           |                    | · · · · · · · · · · · · · · · · · · · |         |          |             |                                                |                          |           |              |                |              |                                 |                                     |         |           |                        |                  |                |             |
| 7                           |                    |                                       |         |          |             |                                                |                          |           |              |                |              |                                 |                                     |         |           |                        |                  |                |             |
| 8                           |                    |                                       |         | L        | amp uncerta | inties are for combining                       |                          |           |              |                |              |                                 |                                     |         |           |                        |                  |                |             |
| 9                           |                    |                                       |         |          | individual  | lamp measurements                              |                          |           |              |                | Lamp uncer   | tainties are fo                 | or combining                        |         |           |                        |                  |                |             |
| 10 NMI:                     | NMISA              |                                       |         |          |             |                                                |                          |           |              |                | all NMIS     | A lamp measu                    | urements                            |         |           |                        |                  |                |             |
| 11                          |                    |                                       |         |          |             |                                                |                          |           |              |                |              |                                 |                                     |         |           |                        |                  |                |             |
| 12 Lamp#                    | Round#             | Data ID                               |         | NMI      | •           | ninous Intensity                               |                          |           | surements    |                |              | ed Uncertaint                   |                                     |         |           | ons for NMISA+Pilot    |                  |                |             |
| 13                          |                    |                                       | l(cd)   |          |             | andard Uncertainty                             | R(i,j)                   |           | e Standard L | 1              |              | Standard Un                     |                                     |         | Weigh     |                        | Relative Ur      |                |             |
| 14                          |                    |                                       |         |          | systematic  | final lamp (uf)                                | <cd v=""></cd>           | u-uncorr  | u-corr       | u-uncorr(lamp) | uncorrelated | correlated                      | combined uT                         | uT      | 1/(uT)^2  | wi                     | uncorrelated     | correlated     |             |
| 15                          |                    |                                       |         | u-uncorr | u-corr      | SQRT(u-uncorr^2 + u-corr^2)                    |                          |           |              |                |              |                                 |                                     | cd/V    |           | normalised             |                  |                |             |
| 17 "24" 4595 PTB 09         | final              | "24" 4595 PTB 09final                 | 268.850 | 0.110%   | 0.653%      | 0.663%                                         | 85.224989                | 0.000429  | 0.000122     | 0.000889       | 0.099%       | 0.663%                          | 0.670%                              | 0.57096 | 3.067497  | 0.248890932            | 0.000246         | 0.001649       |             |
|                             | final              | "39" 4596 PTB 09final                 | 284.150 |          | 0.653%      | 0.663%                                         | 85.421999                |           | 0.000122     | 0.000752       | 0.099%       | 0.663%                          | 0.668%                              | 0.57090 | 3.068722  | 0.248990335            | 0.000240         | 0.001650       |             |
|                             | final              | "42" 4597 PTB 09final                 | 275.839 |          | 0.653%      | 0.663%                                         | 85.339987                |           | 0.000122     | 0.000143       | 0.045%       | 0.663%                          | 0.664%                              | 0.56681 |           | 0.252553309            | 0.000114         | 0.001674       |             |
|                             | final              | NSI 10final                           | 315.788 |          | 0.653%      | 0.663%                                         | 85.824098                |           | 0.000122     | 0.000215       | 0.048%       | 0.663%                          | 0.664%                              | 0.57019 |           | 0.249565424            | 0.000120         | 0.001654       |             |
| 21                          |                    |                                       | 2_0.700 |          | 2.22370     |                                                |                          |           |              |                | 0.010/0      | 0.00070                         |                                     | 5.57015 |           |                        | 5.000120         | 0.001001       |             |
| 22                          |                    | NMISA Summary                         |         |          |             |                                                |                          |           |              |                |              |                                 |                                     | sum:    | 12.32466  | 1.00000                |                  |                |             |
| 23                          |                    | NMISA-weighted mean:                  | 1       |          |             | R(i)=                                          | 85.452603                |           |              |                |              |                                 |                                     |         |           |                        |                  |                |             |
| 24                          |                    | Uncertainties                         |         |          |             |                                                |                          |           |              |                |              |                                 |                                     |         |           | Final NMISA + Pilot    | relative standar | d uncertainty: |             |
| 25                          |                    | NMISA                                 |         | 0.0275%  | 0.6602%     | 0.6608%                                        |                          |           |              |                |              |                                 |                                     |         |           |                        | u-uncorr         | u-corr         | uf          |
| 26                          |                    | NMISA + Pilot (u(Ri))                 |         | 0.0366%  | 0.6626%     | 0.6636%                                        |                          |           |              |                |              |                                 |                                     |         |           | NMISA + Pilot          | 0.0366%          | 0.6626% 0.6    | 5636%       |
| 27                          |                    | NMISA_transfer                        |         |          |             | 0.0614%                                        |                          |           |              |                |              |                                 |                                     |         |           |                        |                  |                |             |
| 28                          |                    |                                       |         |          |             |                                                |                          |           |              |                | -            | tainties are fo                 | -                                   |         |           |                        |                  |                |             |
| 29 NMI:                     | NIM                |                                       |         |          |             |                                                |                          |           |              |                | all NIM      | lamp measur                     | rements                             |         |           |                        |                  |                |             |
| 30                          | <b>D</b>           | <b>D</b> . 1 . 10                     |         |          |             |                                                |                          |           |              |                |              |                                 |                                     |         |           |                        |                  |                |             |
| 31 Lamp#                    | Round#             | Data ID                               | 1(04)   |          | •           | nous Intensity                                 | D(i i)                   | [         | surements    | Incontainty    |              | ed Uncertaint                   |                                     |         |           | tions for NIM+Pilot v  | veighted means   |                |             |
| 32                          |                    |                                       | l(cd)   | randama  |             | andard Uncertainty                             | R(i,j)<br><cd v=""></cd> |           | e Standard L |                |              | Standard Un                     |                                     | υт      | Weigh     |                        | wi*u-uncorr      | wi*u-corr      |             |
| 33                          |                    |                                       |         |          | systematic  | final lamp (uf)<br>SQRT(u-uncorr^2 + u-corr^2) | <ca v=""></ca>           | u-uncorr  | u-corr       | u-uncorr(lamp) | u-uncorr     | u-corr                          | combined uT                         | cd/V    | 1/(uT)^2  | wi<br>normalised       | wi*u-uncorr      | wi*u-corr      |             |
| 25                          |                    |                                       |         | u-uncorr | u-corr      | SQRT(u-uncorr^2 + u-corr^2)                    |                          |           |              |                |              |                                 |                                     | Cd/ V   |           | normalised             |                  |                |             |
| 36 NIM-01(Wi41/G-96)        | final              | NIM-01(Wi41/G-96)final                | 253.012 | 0.030%   | 0.167%      | 0.170%                                         | 86.340464                | 0.000429  | 0.000122     | 0.000887       | 0.099%       | 0.170%                          | 0.197%                              | 0.16966 | 34.74019  | 0.218689827            | 0.000215         | 0.000372       |             |
| ,                           | final              | NIM-02(Wi41/G-152)final               | 263.660 | 0.028%   | 0.167%      | 0.169%                                         | 86.225685                |           | 0.000122     | 0.002458       | 0.249%       | 0.170%                          | 0.302%                              | 0.26016 |           | 0.093005545            | 0.000232         | 0.000158       |             |
|                             | final              | NIM-03(Wi41/G-164)final               | 275.164 |          | 0.167%      | 0.167%                                         | 86.202028                |           | 0.000122     | 0.001285       | 0.136%       | 0.168%                          | 0.216%                              | 0.18582 |           | 0.182307413            | 0.000247         | 0.000306       |             |
| 39 NIM-04(Wi41/G-180)       | final              | NIM-04(Wi41/G-180)final               | 265.251 | 0.018%   | 0.167%      | 0.168%                                         | 86.090246                |           | 0.000122     | 0.000221       | 0.048%       | 0.168%                          | 0.175%                              | 0.15083 |           | 0.276709193            | 0.000133         | 0.000466       |             |
| 40 NIM-05(Wi41/G-189)       | final              | NIM-05(Wi41/G-189)final               | 269.520 | 0.019%   | 0.167%      | 0.168%                                         | 86.490125                |           | 0.000122     | 0.000803       | 0.091%       | 0.169%                          | 0.192%                              | 0.16569 |           | 0.229288022            | 0.000209         | 0.000386       |             |
| 41                          |                    |                                       |         |          |             |                                                |                          |           |              |                |              |                                 |                                     |         |           |                        |                  |                |             |
| 42                          |                    | NIM Summary                           |         |          |             |                                                |                          |           |              |                |              |                                 |                                     | sum:    | 158.85598 | 1.00000                |                  |                |             |
| 43                          |                    | NIM-weighted mean:                    |         |          |             | R(i)=                                          | 86.269629                |           |              |                |              |                                 |                                     |         |           |                        |                  |                |             |
| 14                          |                    | Uncertainties                         |         |          |             |                                                |                          |           |              |                |              |                                 |                                     |         |           | Final NIM + Pilot r    | elative standard | uncertainty:   |             |
| 45                          |                    | NIM                                   |         | 0.0049%  | 0.1681%     | 0.1681%                                        |                          |           |              |                |              |                                 |                                     |         |           |                        | u-uncorr         |                | uf          |
| 46                          |                    | NIM + Pilot (u(Ri))                   |         | 0.0472%  | 0.1688%     | 0.1753%                                        |                          |           |              |                |              |                                 |                                     |         |           | NIM + Pilot            | 0.0472%          | 0.1688% 0.1    | 1753%       |
| 47<br>48                    |                    | NIM_transfer                          |         |          |             | 0.0494%                                        |                          |           |              |                |              | tainting and fo                 | r combining                         |         |           |                        |                  |                |             |
|                             | NMIA               |                                       |         |          |             |                                                |                          |           |              |                | •            | tainties are fo<br>A lamp measu |                                     |         |           |                        |                  |                |             |
| 50                          |                    |                                       |         |          |             |                                                |                          |           |              |                |              | a iainp measu                   | Tements                             |         |           |                        |                  |                |             |
| 51 <b>Lamp#</b>             | Round#             | Data ID                               |         | NM       | A Lamp Lum  | inous Intensity                                |                          | Pilot Mea | surements    |                | Combine      | d Uncertaint                    | <b>v u(</b> <i>R(i,i</i> ) <b>)</b> |         | Calculat  | ions for NMIA+Pilot    | weighted mean    | :              |             |
| 52                          |                    |                                       | l(cd)   |          | •           | andard Uncertainty                             | R(i,j)                   | 1         | e Standard l | Jncertainty    |              | Standard Un                     |                                     |         | Weigh     |                        | - 0              |                |             |
| 53                          |                    |                                       |         | random   | systematic  | final lamp (uf)                                | <cd v=""></cd>           | u-uncorr  | u-corr       | u-uncorr(lamp) | u-uncorr     | u-corr                          | combined uT                         | uT      | 1/(uT)^2  | wi                     | wi*u-uncorr      | wi*u-corr      |             |
| 54                          |                    |                                       |         | u-uncorr | u-corr      | SQRT(u-uncorr^2 + u-corr^2)                    |                          |           |              |                |              |                                 |                                     | cd/V    |           | normalised             |                  |                |             |
| 55                          |                    |                                       |         |          |             |                                                |                          |           |              |                |              |                                 |                                     |         |           |                        |                  |                |             |
|                             | final              | S7final                               | 298.735 | 0.006%   | 0.152%      | 0.152%                                         | 85.962034                |           | 0.000122     | 0.001042       | 0.113%       | 0.152%                          | 0.190%                              | 0.16298 |           | 0.16301544             | 0.000184         | 0.000249       |             |
|                             | final              | 350 LI3final                          | 298.551 | 0.012%   | 0.152%      | 0.153%                                         | 86.046121                | 0.000429  | 0.000122     | 0.000256       | 0.050%       | 0.153%                          | 0.161%                              | 0.13859 | 52.06672  | 0.225462458            | 0.000113         | 0.000345       |             |
|                             | final              | 318 SI2final                          | 305.829 | 0.014%   | 0.152%      | 0.152%                                         | 86.140581                | 0.000429  | 0.000122     | 0.000835       | 0.094%       | 0.153%                          | 0.179%                              | 0.15455 |           | 0.181280261            | 0.000170         | 0.000277       |             |
|                             | final              | 306 S15final                          | 308.551 | 0.012%   | 0.152%      | 0.152%                                         | 86.125138                |           | 0.000122     | 0.000505       | 0.066%       | 0.153%                          | 0.167%                              | 0.14350 |           | 0.210276009            | 0.000139         | 0.000321       |             |
| 50 288 SI4                  | final              | 288 SI4final                          | 301.555 | 0.036%   | 0.152%      | 0.156%                                         | 86.200848                | 0.000429  | 0.000122     | 0.000120       | 0.045%       | 0.157%                          | 0.163%                              | 0.14031 | 50.79737  | 0.219965832            | 0.000098         | 0.000344       |             |
| 51<br>52                    |                    | NMIA Summary                          |         |          |             |                                                |                          |           |              |                |              |                                 |                                     |         | 230.93300 | 1.00000                |                  |                |             |
| 53                          |                    | NMIA Summary<br>NMIA-weighted mean:   |         |          |             | R(i)=                                          | 86.100187                |           |              |                |              |                                 |                                     | sum:    | 230.93300 | 1.00000                |                  |                |             |
| 54                          |                    | Uncertainties                         |         |          |             | Δ( <i>I)</i> =                                 | 00.100187                |           |              |                |              |                                 |                                     |         |           | Final NMIA + Pilot ı   | elative standar  | uncertainty:   |             |
| 65                          |                    | NMIA                                  |         | 0.0041%  | 0.1528%     | 0.1529%                                        |                          |           |              |                |              |                                 |                                     |         |           |                        | u-uncorr         | /              | uf          |
| 56                          |                    | NMIA + Pilot (u(Ri))                  |         | 0.0323%  | 0.1537%     | 0.1571%                                        |                          |           |              |                |              |                                 |                                     |         |           | NMIA + Pilot           | 0.0323%          |                | u.<br>1571% |
| 57                          |                    | NMIA_transfer                         |         |          |             | 0.0360%                                        |                          |           |              |                |              |                                 |                                     |         |           | -                      |                  |                |             |
| 68                          |                    |                                       |         |          |             |                                                |                          |           |              |                | Lamp uncer   | tainties are fo                 | or combining                        |         |           |                        |                  |                |             |
| 59 NMI:                     | NMIJ               |                                       |         |          |             |                                                |                          |           |              |                | all NMI.     | J lamp measu                    | rements                             |         |           |                        |                  |                |             |
| 70                          |                    |                                       |         |          |             |                                                |                          |           |              |                |              |                                 |                                     |         |           |                        |                  |                |             |
| 71 Lamp#                    | Round#             | Data ID                               | _       | NM       | •           | inous Intensity                                |                          |           | surements    |                |              | d Uncertaint                    |                                     |         |           | tions for NMIJ+Pilot v | weighted means   |                |             |
| 72                          | <b>↓</b>           |                                       | l(cd)   | ·        |             | andard Uncertainty                             | R(i,j)                   |           | e Standard L | -              |              | Standard Un                     |                                     |         | Weigh     |                        |                  |                |             |
| 73                          | <u> </u>           |                                       |         |          | systematic  | final lamp (uf)                                | <cd v=""></cd>           | u-uncorr  | u-corr       | u-uncorr(lamp) | u-uncorr     | u-corr                          | combined uT                         | uT      | 1/(uT)^2  | wi                     | wi*u-uncorr      | wi*u-corr      |             |
| 74                          | ļ                  |                                       |         | u-uncorr | u-corr      | SQRT(u-uncorr^2 + u-corr^2)                    |                          |           |              |                |              |                                 |                                     | cd/V    | ļ         | normalised             |                  |                |             |
| 75<br>76 <b>#37</b>         | final              | #37final                              | 242.150 | 0.00404  | 0.2500      | 0.2040/                                        | 00 000044                | 0.000250  | 0.0004.22    | 0.001100       | 0.1100/      | 0.20404                         | 0.2000/                             | 0.24004 | 16.00752  | 0.476760272            | 0.000205         | 0.000467       |             |
|                             | final              | #37final<br>#40final                  |         | 0.064%   | 0.256%      | 0.264%                                         | 86.638944<br>86.682269   |           | 0.000122     | 0.001108       | 0.116%       | 0.264%                          | 0.288%                              | 0.24994 |           | 0.176760272            | 0.000205         | 0.000467       |             |
|                             | IIIIai             | #40IIIIdl                             | 200.090 | 0.004%   | 0.230%      | 0.20470                                        | 00.002209                | 0.000550  | 0.000122     | 0.000056       | 0.033%       | 0.20470                         | 0.200/0                             | 0.20093 | 10./314/  | 0.20/059/35            | 0.000073         | 0.000347       | I           |

CCPR-K3.2014: Luminous Intensity Draft B

| Dim       Nom       Dim       D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |       |          |                      |         | -        |             |                             |                | -             |               |                |            |                |                                     |         |               |                     | -                        |                  |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------|----------|----------------------|---------|----------|-------------|-----------------------------|----------------|---------------|---------------|----------------|------------|----------------|-------------------------------------|---------|---------------|---------------------|--------------------------|------------------|----------|
| No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70 #51               | A     | B        | C<br>#Elfinal        | D       | E        | F           | G                           | H<br>96 701027 | I<br>0.000250 | J<br>0.000122 | K              | L          | M              |                                     |         | Q<br>19 51144 | R                   | S<br>0.000005            | T<br>0.000540    | U        |
| Phy     Phy </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |       |          |                      |         |          |             |                             |                |               |               |                |            |                |                                     |         |               |                     |                          |                  |          |
| P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P     P        0     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 80 #58<br>81         |       |          |                      |         |          |             |                             |                |               |               |                |            |                |                                     |         |               |                     |                          |                  | ,        |
| Image: state       Image: state <t< td=""><td>82</td><td></td><td></td><td>NMIJ Summary</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>sum</td><td>: 90.56070</td><td>1.00000</td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                             | 82                   |       |          | NMIJ Summary         |         |          |             |                             |                |               |               |                |            |                |                                     | sum     | : 90.56070    | 1.00000             |                          |                  |          |
| Product                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 83<br>84             |       |          | 0                    |         |          |             | R(i)=                       | 86.659060      |               |               |                |            |                |                                     |         |               |                     | alative standard         |                  |          |
| D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D     D </th <th>85</th> <th></th> <th></th> <th></th> <th></th> <th>0.0142%</th> <th>0.2618%</th> <th>0.2622%</th> <th></th> <th>uf</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 85                   |       |          |                      |         | 0.0142%  | 0.2618%     | 0.2622%                     |                |               |               |                |            |                |                                     |         |               |                     |                          |                  | uf       |
| No.     No.C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 86                   |       |          | NMIJ + Pilot (u(Ri)) |         |          |             |                             |                |               |               |                |            |                |                                     |         |               | NMIJ + Pilot        |                          |                  | 0.2654%  |
| Image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 87<br>88             |       |          | NMIJ_transfer        |         |          |             | 0.0408%                     |                |               |               |                |            | taintios are f | for combining                       |         |               |                     |                          |                  |          |
| Image         Particip         Particip         Control workshow         Particip         articip        Particip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 89 NMI:              |       | IO-CSIC  |                      |         |          |             |                             |                |               |               |                |            |                |                                     |         |               |                     |                          |                  |          |
| Image: marrier base                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      | Lamp# | Round#   | Data ID              |         | 10-0     |             | •                           |                |               |               |                |            |                |                                     |         |               |                     | weighted mean            | S                |          |
| Image: marrow marro | 92<br>93             |       |          |                      | l(cd)   | random   |             | 1                           | 1.191          |               |               |                |            | 1              |                                     | т       |               |                     | wi*u_upcorr              | wi*u_corr        |          |
| Bit       MIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 94                   |       |          |                      |         | -        |             | ,                           |                | u-uncon       | u-con         |                | u-uncon    | u-com          | combined ut                         | •••     | 1/(01) 2      |                     | wi d-difcori             | wi u-con         |          |
| Sector         Ind         Sector         Ind         Sector         Ind         Sector         Ind         Sector         Ind         Sector         Sector <t< td=""><td>95</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 95                   |       |          |                      |         |          |             |                             |                |               |               |                |            |                |                                     |         |               |                     |                          |                  |          |
| No.1         No.2         No.2 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |       |          |                      |         |          |             |                             |                |               |               |                |            |                |                                     |         |               |                     |                          |                  |          |
| Note:         Note: <th< td=""><td>97 W1956<br/>98 Wi95C</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 97 W1956<br>98 Wi95C |       |          |                      |         |          |             |                             |                |               |               |                |            |                |                                     |         |               |                     |                          |                  |          |
| 3       3       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 99 Wi95D             |       | final    | Wi95Dfinal           |         |          |             |                             | 85.980405      |               |               | 0.000633       |            |                |                                     |         |               |                     | 0.000154                 |                  |          |
| Image: constraint of the section of the sectin of the section of the section o | LOO A454<br>LO1      |       | final    | A454final            | 433.899 | 0.009%   | 0.310%      | 0.310%                      | 86.239028      | 0.000459      | 0.000122      | 0.000123       | 0.048%     | 0.310%         | 0.314%                              | 0.27078 | 3 13.63858    | 0.207048428         | 0.000098                 | 0.000643         |          |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L02                  |       |          |                      |         |          |             |                             | 06.460-00-     |               |               |                |            |                |                                     | sum     | : 65.87145    | 1.00000             |                          |                  |          |
| B         B         B         CCCC         CCCCCC         SARDON         ARDON        SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | L03<br>L04           |       | <b> </b> |                      |         |          |             | R(i)=                       | 86.162792      |               |               |                |            |                |                                     |         |               |                     | relative standar         | d uncertainty:   |          |
| A         Display         A         Display         A         Display         A         Display         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L04<br>L05           |       |          |                      |         | 0.0011%  | 0.3100%     | 0.3100%                     |                |               |               |                |            |                |                                     |         |               |                     |                          |                  | uf       |
| Normal         Normal<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L06                  |       |          |                      |         | 0.0343%  |             |                             |                |               |               |                |            |                |                                     |         |               | IO-CSIC + Pilot     | 0.0343%                  | 0.3103%          | 0.3122%  |
| Bit         Bit <td>L07</td> <td></td> <td></td> <td>IO-CSIC_transfer</td> <td></td> <td></td> <td></td> <td>0.0365%</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>for combining</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L07                  |       |          | IO-CSIC_transfer     |         |          |             | 0.0365%                     |                |               |               |                |            |                | for combining                       |         |               |                     |                          |                  |          |
| Imp         Rund         Duts         Dist         Dist<         Dist         Dist         Dist         Dist         Dist         Dist         Dist         Dist         Dist<         Dist         Dist<         Dist<         Dist<         Dist<         Dist         Dist         Dist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L08<br>L09 NMI:      |       | LNE-CNAM |                      |         |          |             |                             |                |               |               |                | - · ·      |                |                                     |         |               |                     |                          |                  |          |
| Image: state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L10                  | lamn# | Bound#   | Data ID              |         |          |             | uminous Intonsity           |                | Bilot Mo      | acuramanta    |                | Combine    | dUncortain     | +v u(P(i i))                        |         | Calculation   | c for LNE CNAM+Dil  | at weighted mag          |                  | 1        |
| S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S     S </td <td>L11<br/>L12</td> <td>Lamp#</td> <td>Kouriu#</td> <td>Data ID</td> <td>l(cd)</td> <td></td> <td></td> <td>-</td> <td>R(i,j)</td> <td></td> <td></td> <td>Uncertainty</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>or weighted mea</td> <td>115</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | L11<br>L12           | Lamp# | Kouriu#  | Data ID              | l(cd)   |          |             | -                           | R(i,j)         |               |               | Uncertainty    |            |                |                                     |         |               | 1                   | or weighted mea          | 115              |          |
| Since         Image         Solution         Image         Solution         Image         Solution         Solutio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L13                  |       |          |                      |         | random   | systematic  | final lamp (uf)             | 1.191          | u-uncorr      | u-corr        | u-uncorr(lamp) | u-uncorr   | u-corr         | combined uT                         | uT      | 1/(uT)^2      | wi                  | wi*u-uncorr              | wi*u-corr        |          |
| Order       Final       State       State <t< td=""><td>114</td><td></td><td></td><td></td><td></td><td>u-uncorr</td><td>u-corr</td><td>SQRT(u-uncorr^2 + u-corr^2)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>cd/V</td><td></td><td>normalised</td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 114                  |       |          |                      |         | u-uncorr | u-corr      | SQRT(u-uncorr^2 + u-corr^2) |                |               |               |                |            |                |                                     | cd/V    |               | normalised          |                          |                  |          |
| Bit         Bit <td></td> <td></td> <td>final</td> <td>926final</td> <td>234 125</td> <td>0 162%</td> <td>0 220%</td> <td>0.273%</td> <td>87 151593</td> <td>0.000350</td> <td>0 000122</td> <td>0 000890</td> <td>0.096%</td> <td>0 274%</td> <td>0.290%</td> <td>0 25258</td> <td>3 15 67491</td> <td>0 373165218</td> <td>0.000357</td> <td>0 001021</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |       | final    | 926final             | 234 125 | 0 162%   | 0 220%      | 0.273%                      | 87 151593      | 0.000350      | 0 000122      | 0 000890       | 0.096%     | 0 274%         | 0.290%                              | 0 25258 | 3 15 67491    | 0 373165218         | 0.000357                 | 0 001021         |          |
| N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L17 936              |       |          |                      |         |          |             |                             |                |               |               |                |            |                |                                     |         |               |                     |                          |                  |          |
| B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L18 A430             |       | final    | A430final            | 397.346 | 0.162%   | 0.220%      | 0.273%                      | 87.423860      | 0.000459      | 0.000122      | 0.000171       | 0.049%     | 0.274%         | 0.278%                              | 0.24298 | 3 16.93759    | 0.403225148         | 0.000197                 | 0.001103         | ,        |
| Product                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L20                  |       |          | Summary              |         |          |             |                             |                |               |               |                |            |                |                                     | sum     | : 42.00529    | 1.00000             |                          |                  |          |
| Image     Image   <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L21<br>L22           |       |          |                      |         |          |             | R(i)=                       | 87.457723      |               |               |                |            |                |                                     |         |               | nal INE-CNAM + Dil  | ot relative stand        | ard uncertainty: | •        |
| S     DECOM     UNE COM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L23                  |       |          |                      |         | 0.0485%  | 0.2638%     | 0.2682%                     |                |               |               |                |            |                |                                     |         |               |                     |                          |                  |          |
| Mit AS         Mit AS<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L24                  |       |          |                      |         | 0.0669%  | 0.2761%     |                             |                |               |               |                |            |                |                                     |         |               | LNE-CNAM + Pilot    | 0.0669%                  | 0.2761%          | 0.2841%  |
| B       Image       Imag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L25<br>L26           |       |          |                      |         |          |             | 0.0936%                     |                |               |               |                | Lamp uncer | tainties are f | for combining                       |         |               |                     |                          |                  |          |
| B       Lamp#       Detail D       WTX LampLumious Intensity       Pilet Massummethin       Sign 1       Pilet Massummethin       Relative Stand Uncertainty       Relative Stand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L27 NMI:<br>L28      |       | METAS    |                      |         |          |             |                             |                |               |               |                | all META   | S lamp mea     | surements                           |         |               |                     |                          |                  |          |
| Image: space in the spac                | L29 I                | Lamp# | Round#   | Data ID              |         | MET      | AS Lamp Lun | ninous Intensity            |                | Pilot Mea     | asurements    |                | Combine    | ed Uncertain   | <b>ty u(</b> <i>R(i,j)</i> <b>)</b> |         | Calculatio    | ons for METAS+Pilot | weighted mean            | S                |          |
| 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L30                  |       |          |                      | l(cd)   |          |             | · · · · · ·                 |                |               |               |                |            | 1              |                                     |         |               |                     | ****                     |                  |          |
| if sole       final       Sofe/and       Z7:14       0.027%       0.312%       0.0314%       86.259517       0.00022       0.000212       0.043%       0.313%       0.127378       13.3815       0.195279887       0.000073       0.00033         5644       final       684final       277.916       0.312%       0.314%       86.38199       0.00022       0.00012       0.00031       0.043%       0.313%       0.313%       0.27587       13.3815       0.169279887       0.000073       0.00033         71060       final       0.006final       27.277       0.312%       0.314%       86.38199       0.00022       0.00012       0.00043       0.043%       0.313%       0.313%       0.27587       13.385       0.169279887       0.00003       0.00052         81063       final       0.006final       28.437       0.314%       86.29931       0.000429       0.00122       0.0072       0.314%       0.314%       0.317%       0.27587       13.385       0.16837837       0.00003       0.00053         91064       final       0.064final       28.49       0.000178       0.000429       0.00012       0.00012       0.00763       0.312%       0.16837877       0.00038       0.000056       0.00056       0.00056 <th>L31<br/>L32</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>u-uncorr</th> <th>u-corr</th> <th>u-uncorr(iamp)</th> <th>u-uncorr</th> <th>u-corr</th> <th></th> <th></th> <th>±/(u1)^2</th> <th></th> <th>wi<sup>-</sup>u-uncorr</th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L31<br>L32           |       |          |                      |         |          |             |                             |                | u-uncorr      | u-corr        | u-uncorr(iamp) | u-uncorr   | u-corr         |                                     |         | ±/(u1)^2      |                     | wi <sup>-</sup> u-uncorr |                  |          |
| Sige       final       684/min       279.94       0.037%       0.312%       0.043%       0.314%       0.314%       0.312%       0.16276821       0.000073       0.000033         6 841       final       841fmal       280.877       0.027%       0.312%       0.314%       86.38991       0.000429       0.00012       0.00043       0.00445       0.314%       0.312%       0.16276821       0.000099       0.000091         6 841       final       0.066/min       272.67       0.027%       0.312%       0.314%       86.3998       0.00042       0.00012       0.00043       0.0014%       0.314%       0.325%       0.2758       1.3136       0.16385077       0.00012       0.00012       0.00012       0.00012       0.00012       0.00073       0.314%       0.315%       0.2758       1.2852       0.16101303       0.00013       0.00003       0.00013       0.00013       0.00013       0.00013       0.00013       0.00013       0.00013       0.00013       0.00013       0.00013       0.00013       0.00013       0.00013       0.00013       0.00013       0.00013       0.00013       0.00013       0.00013       0.00013       0.00013       0.00013       0.00013       0.00013       0.00013       0.00013       0.00013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L33                  |       |          |                      |         | 0.05     | 0.0155      |                             | 00.0555        | 0.000         | 0.000-7-5     |                | 0.01=      |                |                                     | 0.000   |               |                     |                          | 0.000            |          |
| bis       Mainal       841mal       280.587       0.027       0.312%       0.314%       85.381991       0.000429       0.000429       0.000439       0.000439       0.000439       0.314%       0.319%       0.2786       1.3.396       0.16621887       0.000031       0.000050         71060       final       1063final       284.37       0.312%       0.312%       0.314%       86.98002       0.000429       0.000429       0.000420       0.000402       0.00040       0.314%       0.325%       0.2803       1.2863       0.16613030       0.00013       0.000050         91064       final       1063final       283.22       0.26       0.312%       0.314%       68.68002       0.000429       0.000122       0.00053       0.314%       0.315%       0.2803       1.2833       0.1603303       0.00078       0.00053         91064       final       1064final       28.323       0.026       0.300429       0.000122       0.00012       0.00163       0.314%       0.317%       0.2833       0.1603303       0.00078       0.00053         10       METAS weighted mean:        METAS weighted mean:        METAS       0.314%       0.314%       0.314%       0.314%       0.314%       0.314% <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |       |          |                      |         |          |             |                             |                |               |               |                |            |                |                                     |         |               |                     |                          |                  |          |
| Virilion       final       1060final       27.2 cz       0.027       0.12 ////////////////////////////////////                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L36 841              |       |          |                      |         |          |             |                             |                |               |               |                |            |                |                                     |         | -             |                     |                          |                  |          |
| 100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L37 1060             |       | final    | 1060final            | 272.627 | 0.027%   | 0.312%      | 0.314%                      | 86.190786      | 0.000429      | 0.000122      | 0.000602       | 0.074%     | 0.314%         | 0.322%                              | 0.27786 | 5 12.9524     | 0.163850777         | 0.000121                 | 0.000514         |          |
| 100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 138 1063             |       |          |                      |         |          |             |                             |                |               |               |                |            |                |                                     |         |               |                     |                          |                  |          |
| 3       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L40                  |       | IIIdl    | 1004IIIIal           | 200.232 | 0.026%   | 0.312%      | 0.513%                      | 00.008002      | 0.000429      | 0.000122      | 0.000163       | 0.040%     | 0.314%         | 0.31/%                              | 0.27285 | 15.42833      | 0.1098/1300         | 0.000078                 | 0.000533         |          |
| 3       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 141                  |       |          | -                    |         |          |             |                             | 86.306353      |               |               |                |            |                |                                     | sum     | : 79.04999    | 1.00000             |                          |                  |          |
| M4         METAS         METAS $0.0056$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$ $0.3133$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L42<br>L43           |       |          | 0                    |         |          |             | R(I)=                       | 86.206253      |               |               |                |            |                |                                     |         |               | Final MFTAS + Pilot | relative standar         | d uncertainty:   |          |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L44                  |       |          |                      |         | 0.0056%  | 0.3133%     | 0.3133%                     |                |               |               |                |            |                |                                     |         |               |                     |                          |                  | uf       |
| $ \frac{1}{1}  1  1  1  1  1  1  1  1  1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | L45                  |       |          |                      |         | 0.0245%  | 0.3138%     |                             |                |               |               |                |            |                |                                     |         |               | METAS + Pilot       | 0.0245%                  | 0.3138%          | 0.3148%  |
| NPL       OPL       Image: NPL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L46<br>L47           |       |          | METAS_transfer       |         |          |             | 0.0301%                     |                |               |               |                |            | tainties are f | for combining                       |         |               |                     |                          |                  |          |
| 19       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10 <t< td=""><td>L47<br/>L48 NMI:</td><td></td><td>NPL</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L47<br>L48 NMI:      |       | NPL      |                      |         |          |             |                             |                |               |               |                |            |                |                                     |         |               |                     |                          |                  |          |
| $\frac{1}{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L49                  |       |          |                      |         |          |             |                             |                |               |               |                |            |                |                                     |         |               |                     |                          |                  |          |
| $\frac{1}{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | Lamp# | Round#   | Data ID              | 1/1)    | NP       | •           | •                           | D/: :)         |               |               |                |            |                |                                     |         |               |                     | veighted means           |                  |          |
| 3 u-uncorr u-corr SQRT(u-uncorr^2 + u-corr^2) u-corr^2 (cd/V) normalised                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L51<br>L52           |       |          |                      | i(ca)   | random   |             |                             |                |               |               | · · ·          |            |                |                                     | uT      |               |                     | wi*u-uncorr              | wi*u-corr        |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L53                  |       |          |                      |         |          | -           | ••••                        |                |               |               | (wiiik)        |            |                |                                     | •••     | ·, (          |                     |                          |                  | <b>•</b> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L54                  |       |          |                      |         |          |             |                             |                |               |               |                |            |                |                                     |         |               |                     |                          |                  |          |

| A                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                           |                                                                                                                                                                      |                                                                                                                                                                       |                                                                                                                                                       |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                            | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D                                                       | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F                                                                                                                                                                                                                                        | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H                                                                                                                                                                                                                         | I                                                                                                                                                                    | J                                                                                                                                                                     | K                                                                                                                                                     | L                                                                                                                                                                                 | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 P                                                                                                                                                              | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R                                                                                                                                                                                                                                                                                                              | S                                                                                                                                                                                                                                                                                              | <u>T</u>                                                                                                                                                                                                                                    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| A644                                                                                                                                       | final                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A644final                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 451.875                                                 | 0.058%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.158%                                                                                                                                                                                                                                   | 0.168%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 86.471175                                                                                                                                                                                                                 |                                                                                                                                                                      | 0.000122                                                                                                                                                              |                                                                                                                                                       | 0.073%                                                                                                                                                                            | 0.169%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.184%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.15895                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.198756516                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                | 0.000335                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| A647                                                                                                                                       | final                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A647final                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 459.530                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.158%                                                                                                                                                                                                                                   | 0.168%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 86.503670                                                                                                                                                                                                                 |                                                                                                                                                                      | 0.000122                                                                                                                                                              | 0.000293                                                                                                                                              | 0.054%                                                                                                                                                                            | 0.169%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.177%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.15338                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.213463522                                                                                                                                                                                                                                                                                                    | 0.000116                                                                                                                                                                                                                                                                                       | 0.000360                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PA758<br>877                                                                                                                               | final                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PA758final                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 460.515                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.158%                                                                                                                                                                                                                                   | 0.168%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 86.629919                                                                                                                                                                                                                 |                                                                                                                                                                      | 0.000122                                                                                                                                                              | 0.000516                                                                                                                                              | 0.069%                                                                                                                                                                            | 0.169%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.182%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.15795                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.201287989                                                                                                                                                                                                                                                                                                    | 0.000139                                                                                                                                                                                                                                                                                       | 0.000340                                                                                                                                                                                                                                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 877<br>890                                                                                                                                 | final<br>final                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 877final<br>890final                                                                                                                                                                                                                                                                                                                                                                                                                                              | 276.340                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.158%                                                                                                                                                                                                                                   | 0.178%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 86.585864                                                                                                                                                                                                                 |                                                                                                                                                                      | 0.000122                                                                                                                                                              | 0.000376                                                                                                                                              | 0.057%                                                                                                                                                                            | 0.178%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.187%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.16219                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.190891815                                                                                                                                                                                                                                                                                                    | 0.000109                                                                                                                                                                                                                                                                                       | 0.000341                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 890                                                                                                                                        | Tinai                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 890final                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 273.930                                                 | 0.082%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.158%                                                                                                                                                                                                                                   | 0.178%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 86.559634                                                                                                                                                                                                                 | 0.000429                                                                                                                                                             | 0.000122                                                                                                                                                              | 0.000243                                                                                                                                              | 0.049%                                                                                                                                                                            | 0.178%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.185%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.16023                                                                                                                                                          | 38.95173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.195600158                                                                                                                                                                                                                                                                                                    | 0.000096                                                                                                                                                                                                                                                                                       | 0.000349                                                                                                                                                                                                                                    | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NPL Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                           |                                                                                                                                                                      |                                                                                                                                                                       |                                                                                                                                                       |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                  | : 199.13957                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00000                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NPL Summary<br>NPL-weighted mean:                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                          | <i>R(i)=</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 86.549260                                                                                                                                                                                                                 |                                                                                                                                                                      |                                                                                                                                                                       |                                                                                                                                                       |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | sum:                                                                                                                                                             | . 199.13937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00000                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Uncertainties                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                          | N(1)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 80.349200                                                                                                                                                                                                                 |                                                                                                                                                                      |                                                                                                                                                                       |                                                                                                                                                       |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Final NPL + Pilot ı                                                                                                                                                                                                                                                                                            | relative standard                                                                                                                                                                                                                                                                              | uncertainty:                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NPL                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         | 0.0151%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.1686%                                                                                                                                                                                                                                  | 0.1692%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                           |                                                                                                                                                                      |                                                                                                                                                                       |                                                                                                                                                       |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                | u-uncorr                                                                                                                                                                                                                                                                                       | u-corr                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NPL + Pilot (u(Ri))                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         | 0.0131%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                          | 0.1746%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                           |                                                                                                                                                                      |                                                                                                                                                                       |                                                                                                                                                       |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NPL + Pilot                                                                                                                                                                                                                                                                                                    | 0.0274%                                                                                                                                                                                                                                                                                        | 0.1725%                                                                                                                                                                                                                                     | 5 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NPL transfer                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                         | 0.027 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 011/20/0                                                                                                                                                                                                                                 | 0.0431%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                           |                                                                                                                                                                      |                                                                                                                                                                       |                                                                                                                                                       |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                | 0.027 170                                                                                                                                                                                                                                                                                      | 0.17,2070                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                           |                                                                                                                                                                      |                                                                                                                                                                       |                                                                                                                                                       | Lamp uncer                                                                                                                                                                        | tainties are f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | or combining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| NMI:                                                                                                                                       | РТВ                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                           |                                                                                                                                                                      |                                                                                                                                                                       |                                                                                                                                                       |                                                                                                                                                                                   | lamp measu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                           |                                                                                                                                                                      |                                                                                                                                                                       |                                                                                                                                                       |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Lamp#                                                                                                                                      | Round#                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Data ID                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                         | PTI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B Lamp Lum                                                                                                                                                                                                                               | inous Intensity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                           | Pilot Mea                                                                                                                                                            | surements                                                                                                                                                             |                                                                                                                                                       | Combine                                                                                                                                                                           | ed Uncertaint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | : <b>y u(</b> R(i,j) <b>)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                  | Calcula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tions for PTB+Pilot                                                                                                                                                                                                                                                                                            | weighted means                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | l(cd)                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Relative S                                                                                                                                                                                                                               | Standard Uncertainty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R(i,j)                                                                                                                                                                                                                    | Relativ                                                                                                                                                              | e Standard                                                                                                                                                            | Uncertainty                                                                                                                                           | Relative                                                                                                                                                                          | Standard Un                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | certainty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                  | Weigh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ts                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         | random                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | systematio                                                                                                                                                                                                                               | final lamp (uf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <cd v=""></cd>                                                                                                                                                                                                            | u-uncorr                                                                                                                                                             | u-corr                                                                                                                                                                | u-uncorr(lamp)                                                                                                                                        | u-uncorr                                                                                                                                                                          | u-corr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | combined uT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | uT                                                                                                                                                               | 1/(uT)^2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | wi                                                                                                                                                                                                                                                                                                             | wi*u-uncorr                                                                                                                                                                                                                                                                                    | wi*u-corr                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         | u-uncorr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | u-corr                                                                                                                                                                                                                                   | SQRT(u-uncorr^2 + u-corr^2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                           |                                                                                                                                                                      |                                                                                                                                                                       |                                                                                                                                                       |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | cd/V                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | normalised                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                           |                                                                                                                                                                      |                                                                                                                                                                       |                                                                                                                                                       |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 759                                                                                                                                        | final                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 759final                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 236.215                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.130%                                                                                                                                                                                                                                   | 0.157%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 86.234506                                                                                                                                                                                                                 |                                                                                                                                                                      | 0.000122                                                                                                                                                              | 0.000609                                                                                                                                              | 0.075%                                                                                                                                                                            | 0.158%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.174%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.15030                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.158817616                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                | 0.000250                                                                                                                                                                                                                                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 791                                                                                                                                        | final                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 791final                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 247.540                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.130%                                                                                                                                                                                                                                   | 0.155%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 86.189513                                                                                                                                                                                                                 |                                                                                                                                                                      | 0.000122                                                                                                                                                              | 0.000138                                                                                                                                              | 0.045%                                                                                                                                                                            | 0.156%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.162%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.13972                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.183763219                                                                                                                                                                                                                                                                                                    | 0.000083                                                                                                                                                                                                                                                                                       | 0.000286                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 793                                                                                                                                        | final                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 793final                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 245.984                                                 | 0.088%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.130%                                                                                                                                                                                                                                   | 0.157%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 86.260429                                                                                                                                                                                                                 |                                                                                                                                                                      | 0.000122                                                                                                                                                              | 0.000818                                                                                                                                              | 0.092%                                                                                                                                                                            | 0.158%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.183%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.15755                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.144527687                                                                                                                                                                                                                                                                                                    | 0.000134                                                                                                                                                                                                                                                                                       | 0.000228                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 348                                                                                                                                        | final                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 848final                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 228.535                                                 | 0.085%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.130%                                                                                                                                                                                                                                   | 0.155%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 86.239953                                                                                                                                                                                                                 |                                                                                                                                                                      | 0.000122                                                                                                                                                              | 0.000435                                                                                                                                              | 0.061%                                                                                                                                                                            | 0.156%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.167%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.14425                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.172416019                                                                                                                                                                                                                                                                                                    | 0.000105                                                                                                                                                                                                                                                                                       | 0.000268                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 51                                                                                                                                         | final                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 851final                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 233.515                                                 | 0.085%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.130%                                                                                                                                                                                                                                   | 0.155%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 86.233833                                                                                                                                                                                                                 |                                                                                                                                                                      | 0.000122                                                                                                                                                              | 0.000637                                                                                                                                              | 0.077%                                                                                                                                                                            | 0.156%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.174%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.14972                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.160044535                                                                                                                                                                                                                                                                                                    | 0.000123                                                                                                                                                                                                                                                                                       | 0.000249                                                                                                                                                                                                                                    | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 358                                                                                                                                        | final                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 858final                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 225.069                                                 | 0.088%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.130%                                                                                                                                                                                                                                   | 0.157%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 86.204822                                                                                                                                                                                                                 | 0.000429                                                                                                                                                             | 0.000122                                                                                                                                                              | 0.000096                                                                                                                                              | 0.044%                                                                                                                                                                            | 0.158%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.164%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.14101                                                                                                                                                          | 50.29429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.180430924                                                                                                                                                                                                                                                                                                    | 0.000079                                                                                                                                                                                                                                                                                       | 0.000284                                                                                                                                                                                                                                    | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                           |                                                                                                                                                                      |                                                                                                                                                                       |                                                                                                                                                       |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                           |                                                                                                                                                                      |                                                                                                                                                                       |                                                                                                                                                       |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | sum:                                                                                                                                                             | 278.74541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00000                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PTB-weighted mean:                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                          | R(i)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 86.225460                                                                                                                                                                                                                 |                                                                                                                                                                      |                                                                                                                                                                       |                                                                                                                                                       |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Uncertainties                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                           |                                                                                                                                                                      |                                                                                                                                                                       |                                                                                                                                                       |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Final PTB + Pilot I                                                                                                                                                                                                                                                                                            | <u>г т</u>                                                                                                                                                                                                                                                                                     | uncertainty:                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | РТВ                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         | 0.0177%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.1500%                                                                                                                                                                                                                                  | 0.1511%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                           |                                                                                                                                                                      |                                                                                                                                                                       |                                                                                                                                                       |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                | u-uncorr                                                                                                                                                                                                                                                                                       | u-corr                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PTB + Pilot (u(Ri))                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         | 0.0267%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.1566%                                                                                                                                                                                                                                  | 0.1589%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                           |                                                                                                                                                                      |                                                                                                                                                                       |                                                                                                                                                       |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PTB + Pilot                                                                                                                                                                                                                                                                                                    | 0.0267%                                                                                                                                                                                                                                                                                        | 0.1566%                                                                                                                                                                                                                                     | 5 <b>0</b> .1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PTB_transfer                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                          | 0.0491%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                           |                                                                                                                                                                      |                                                                                                                                                                       |                                                                                                                                                       |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                           |                                                                                                                                                                      |                                                                                                                                                                       |                                                                                                                                                       |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | or combining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| NMI:                                                                                                                                       | VNIIOFI                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                           |                                                                                                                                                                      |                                                                                                                                                                       |                                                                                                                                                       | all VNIIO                                                                                                                                                                         | FI lamp meas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | surements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                           |                                                                                                                                                                      |                                                                                                                                                                       |                                                                                                                                                       |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Lamp#                                                                                                                                      | Round#                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Data ID                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1(1)                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                          | minous Intensity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D(: :)                                                                                                                                                                                                                    | 1                                                                                                                                                                    | surements                                                                                                                                                             |                                                                                                                                                       |                                                                                                                                                                                   | ed Uncertaint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ons for VNIIOFI+Pilo                                                                                                                                                                                                                                                                                           | ot weighted mean                                                                                                                                                                                                                                                                               | S                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | l(cd)                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                          | Standard Uncertainty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R(i,j)                                                                                                                                                                                                                    |                                                                                                                                                                      |                                                                                                                                                                       | Uncertainty                                                                                                                                           |                                                                                                                                                                                   | Standard Un                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                  | Weigh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                | • •                                                                                                                                                                                                                                                                                            | •₩                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         | random                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | systematio                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <cd v=""></cd>                                                                                                                                                                                                            | u-uncorr                                                                                                                                                             | u-corr                                                                                                                                                                | u-uncorr(lamp)                                                                                                                                        | u-uncorr                                                                                                                                                                          | u-corr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | combined uT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | uT                                                                                                                                                               | 1/(uT)^2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | wi                                                                                                                                                                                                                                                                                                             | wi*u-uncorr                                                                                                                                                                                                                                                                                    | wi*u-corr                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                          | CODT/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                           |                                                                                                                                                                      |                                                                                                                                                                       |                                                                                                                                                       | 1                                                                                                                                                                                 | Î                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 1 / 1 /                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         | u-uncorr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | u-corr                                                                                                                                                                                                                                   | SQRT(u-uncorr^2 + u-corr^2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                           |                                                                                                                                                                      |                                                                                                                                                                       |                                                                                                                                                       |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | cd/V                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | normalised                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2204                                                                                                                                       | final                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 220461                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 274.205                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                           | 0.000420                                                                                                                                                             | 0.000122                                                                                                                                                              | 0.001200                                                                                                                                              | 0.120%                                                                                                                                                                            | 0.240%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.205%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                  | 10.00100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                | 0.000220                                                                                                                                                                                                                                                                                       | 0.000007                                                                                                                                                                                                                                    | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3281                                                                                                                                       | final                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3281final                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 274.265                                                 | 0.042%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.245%                                                                                                                                                                                                                                   | 0.249%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 85.590866                                                                                                                                                                                                                 |                                                                                                                                                                      | 0.000122                                                                                                                                                              | 0.001309                                                                                                                                              | 0.138%                                                                                                                                                                            | 0.249%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.285%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.24353                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.15936868                                                                                                                                                                                                                                                                                                     | 0.000220                                                                                                                                                                                                                                                                                       | 0.000397                                                                                                                                                                                                                                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3282                                                                                                                                       | final                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3282final                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 276.875                                                 | 0.042%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.245%<br>0.245%                                                                                                                                                                                                                         | 0.249%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 85.734964                                                                                                                                                                                                                 | 0.000429                                                                                                                                                             | 0.000122                                                                                                                                                              | 0.001173                                                                                                                                              | 0.125%                                                                                                                                                                            | 0.249%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.279%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.24353                                                                                                                                                          | 17.53544                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.15936868<br>0.16573364                                                                                                                                                                                                                                                                                       | 0.000207                                                                                                                                                                                                                                                                                       | 0.000413                                                                                                                                                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3282<br>N 01                                                                                                                               | final<br>final                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3282final<br>N 01final                                                                                                                                                                                                                                                                                                                                                                                                                                            | 276.875<br>286.864                                      | 0.042%<br>0.042%<br>0.042%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.245%<br>0.245%<br>0.245%                                                                                                                                                                                                               | 0.249%<br>0.249%<br>0.249%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 85.734964<br>85.588783                                                                                                                                                                                                    | 0.000429<br>0.000429                                                                                                                                                 | 0.000122                                                                                                                                                              | 0.001173<br>0.000448                                                                                                                                  | 0.125%<br>0.062%                                                                                                                                                                  | 0.249%<br>0.249%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.279%<br>0.257%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.24353<br>0.23880<br>0.21959                                                                                                                                    | 0 17.53544<br>0 20.73790                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.15936868<br>0.16573364<br>0.19600125                                                                                                                                                                                                                                                                         | 0.000207<br>0.000122                                                                                                                                                                                                                                                                           | 0.000413<br>0.000488                                                                                                                                                                                                                        | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3282<br>N 01<br>N 02                                                                                                                       | final<br>final<br>final                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3282final<br>N 01final<br>N 02final                                                                                                                                                                                                                                                                                                                                                                                                                               | 276.875<br>286.864<br>285.529                           | 0.042%<br>0.042%<br>0.042%<br>0.042%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.245%<br>0.245%<br>0.245%<br>0.245%                                                                                                                                                                                                     | 0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 85.734964<br>85.588783<br>85.709032                                                                                                                                                                                       | 0.000429<br>0.000429<br>0.000429                                                                                                                                     | 0.000122<br>0.000122<br>0.000122                                                                                                                                      | 0.001173<br>0.000448<br>0.001196                                                                                                                      | 0.125%<br>0.062%<br>0.127%                                                                                                                                                        | 0.249%<br>0.249%<br>0.249%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.279%<br>0.257%<br>0.279%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.24353<br>0.23880<br>0.21959<br>0.23955                                                                                                                         | 17.53544         20.73790         17.42616                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.15936868<br>0.16573364<br>0.19600125<br>0.16470088                                                                                                                                                                                                                                                           | 0.000207<br>0.000122<br>0.000209                                                                                                                                                                                                                                                               | 0.000413<br>0.000488<br>0.000410                                                                                                                                                                                                            | 3<br>3<br>)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3282<br>N 01<br>N 02<br>N 03                                                                                                               | final<br>final<br>final<br>final                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3282final<br>N 01final<br>N 02final<br>N 03final                                                                                                                                                                                                                                                                                                                                                                                                                  | 276.875<br>286.864<br>285.529<br>284.099                | 0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%                                                                                                                                                                                           | 0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85.734964<br>85.588783<br>85.709032<br>85.502599                                                                                                                                                                          | 0.000429<br>0.000429<br>0.000429<br>0.000429                                                                                                                         | 0.000122<br>0.000122<br>0.000122<br>0.000122                                                                                                                          | 0.001173<br>0.000448<br>0.001196<br>0.002160                                                                                                          | 0.125%<br>0.062%<br>0.127%<br>0.220%                                                                                                                                              | 0.249%<br>0.249%<br>0.249%<br>0.249%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.279%<br>0.257%<br>0.279%<br>0.332%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.24353<br>0.23880<br>0.21959<br>0.23955<br>0.28421                                                                                                              | 17.53544         20.73790         17.42616         12.37983                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.15936868<br>0.16573364<br>0.19600125<br>0.16470088<br>0.11700620                                                                                                                                                                                                                                             | 0.000207<br>0.000122<br>0.000209<br>0.000258                                                                                                                                                                                                                                                   | 0.000413<br>0.000488<br>0.000410<br>0.000291                                                                                                                                                                                                | 3<br>3<br>)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3282<br>N 01<br>N 02<br>N 03                                                                                                               | final<br>final<br>final                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3282final<br>N 01final<br>N 02final                                                                                                                                                                                                                                                                                                                                                                                                                               | 276.875<br>286.864<br>285.529                           | 0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.245%<br>0.245%<br>0.245%<br>0.245%                                                                                                                                                                                                     | 0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 85.734964<br>85.588783<br>85.709032                                                                                                                                                                                       | 0.000429<br>0.000429<br>0.000429<br>0.000429                                                                                                                         | 0.000122<br>0.000122<br>0.000122                                                                                                                                      | 0.001173<br>0.000448<br>0.001196                                                                                                                      | 0.125%<br>0.062%<br>0.127%                                                                                                                                                        | 0.249%<br>0.249%<br>0.249%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.279%<br>0.257%<br>0.279%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.24353<br>0.23880<br>0.21959<br>0.23955<br>0.28421                                                                                                              | 17.53544         20.73790         17.42616                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.15936868<br>0.16573364<br>0.19600125<br>0.16470088                                                                                                                                                                                                                                                           | 0.000207<br>0.000122<br>0.000209                                                                                                                                                                                                                                                               | 0.000413<br>0.000488<br>0.000410                                                                                                                                                                                                            | 3<br>3<br>)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3282<br>N 01<br>N 02<br>N 03                                                                                                               | final<br>final<br>final<br>final                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3282final<br>N 01final<br>N 02final<br>N 03final<br>N 04final                                                                                                                                                                                                                                                                                                                                                                                                     | 276.875<br>286.864<br>285.529<br>284.099                | 0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%                                                                                                                                                                                           | 0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85.734964<br>85.588783<br>85.709032<br>85.502599                                                                                                                                                                          | 0.000429<br>0.000429<br>0.000429<br>0.000429                                                                                                                         | 0.000122<br>0.000122<br>0.000122<br>0.000122                                                                                                                          | 0.001173<br>0.000448<br>0.001196<br>0.002160                                                                                                          | 0.125%<br>0.062%<br>0.127%<br>0.220%                                                                                                                                              | 0.249%<br>0.249%<br>0.249%<br>0.249%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.279%<br>0.257%<br>0.279%<br>0.332%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.24353<br>0.23880<br>0.21959<br>0.23955<br>0.28421<br>0.21893                                                                                                   | 17.53544         20.73790         17.42616         12.37983         20.86361                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.15936868<br>0.16573364<br>0.19600125<br>0.16470088<br>0.11700620<br>0.19718936                                                                                                                                                                                                                               | 0.000207<br>0.000122<br>0.000209<br>0.000258                                                                                                                                                                                                                                                   | 0.000413<br>0.000488<br>0.000410<br>0.000291                                                                                                                                                                                                | 3<br>3<br>)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3282<br>N 01<br>N 02<br>N 03                                                                                                               | final<br>final<br>final<br>final                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3282final<br>N 01final<br>N 02final<br>N 03final<br>N 04final<br>Summary                                                                                                                                                                                                                                                                                                                                                                                          | 276.875<br>286.864<br>285.529<br>284.099<br>284.045     | 0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%                                                                                                                                                                                           | 0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 85.734964<br>85.588783<br>85.709032<br>85.502599<br>85.591162                                                                                                                                                             | 0.000429<br>0.000429<br>0.000429<br>0.000429                                                                                                                         | 0.000122<br>0.000122<br>0.000122<br>0.000122                                                                                                                          | 0.001173<br>0.000448<br>0.001196<br>0.002160                                                                                                          | 0.125%<br>0.062%<br>0.127%<br>0.220%                                                                                                                                              | 0.249%<br>0.249%<br>0.249%<br>0.249%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.279%<br>0.257%<br>0.279%<br>0.332%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.24353<br>0.23880<br>0.21959<br>0.23955<br>0.28421                                                                                                              | 17.53544         20.73790         17.42616         12.37983         20.86361                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.15936868<br>0.16573364<br>0.19600125<br>0.16470088<br>0.11700620                                                                                                                                                                                                                                             | 0.000207<br>0.000122<br>0.000209<br>0.000258                                                                                                                                                                                                                                                   | 0.000413<br>0.000488<br>0.000410<br>0.000291                                                                                                                                                                                                | 3<br>3<br>)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3282<br>N 01<br>N 02<br>N 03                                                                                                               | final<br>final<br>final<br>final                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3282final<br>N 01final<br>N 02final<br>N 03final<br>N 04final<br>Summary<br>VNIIOFI-weighted mean:                                                                                                                                                                                                                                                                                                                                                                | 276.875<br>286.864<br>285.529<br>284.099<br>284.045     | 0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%                                                                                                                                                                                           | 0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85.734964<br>85.588783<br>85.709032<br>85.502599                                                                                                                                                                          | 0.000429<br>0.000429<br>0.000429<br>0.000429                                                                                                                         | 0.000122<br>0.000122<br>0.000122<br>0.000122                                                                                                                          | 0.001173<br>0.000448<br>0.001196<br>0.002160                                                                                                          | 0.125%<br>0.062%<br>0.127%<br>0.220%                                                                                                                                              | 0.249%<br>0.249%<br>0.249%<br>0.249%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.279%<br>0.257%<br>0.279%<br>0.332%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.24353<br>0.23880<br>0.21959<br>0.23955<br>0.28421<br>0.21893                                                                                                   | 17.53544         20.73790         17.42616         12.37983         20.86361         105.80493                                                                                                                                                                                                                                                                                                                                                                                                        | 0.15936868<br>0.16573364<br>0.19600125<br>0.16470088<br>0.11700620<br>0.19718936<br>1.00000                                                                                                                                                                                                                    | 0.000207<br>0.000122<br>0.000209<br>0.000258<br>0.000116                                                                                                                                                                                                                                       | 0.000413<br>0.000488<br>0.000410<br>0.000291<br>0.000491                                                                                                                                                                                    | 3<br>3<br>)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3282<br>N 01<br>N 02<br>N 03                                                                                                               | final<br>final<br>final<br>final                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3282final<br>N 01final<br>N 02final<br>N 03final<br>N 04final<br>Summary<br>VNIIOFI-weighted mean:<br>Uncertainties                                                                                                                                                                                                                                                                                                                                               | 276.875<br>286.864<br>285.529<br>284.099<br>284.045     | 0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%                                                                                                                                                                                           | 0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 85.734964<br>85.588783<br>85.709032<br>85.502599<br>85.591162                                                                                                                                                             | 0.000429<br>0.000429<br>0.000429<br>0.000429                                                                                                                         | 0.000122<br>0.000122<br>0.000122<br>0.000122                                                                                                                          | 0.001173<br>0.000448<br>0.001196<br>0.002160                                                                                                          | 0.125%<br>0.062%<br>0.127%<br>0.220%                                                                                                                                              | 0.249%<br>0.249%<br>0.249%<br>0.249%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.279%<br>0.257%<br>0.279%<br>0.332%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.24353<br>0.23880<br>0.21959<br>0.23955<br>0.28421<br>0.21893                                                                                                   | 17.53544         20.73790         17.42616         12.37983         20.86361         105.80493                                                                                                                                                                                                                                                                                                                                                                                                        | 0.15936868<br>0.16573364<br>0.19600125<br>0.16470088<br>0.11700620<br>0.19718936                                                                                                                                                                                                                               | 0.000207<br>0.000122<br>0.000209<br>0.000258<br>0.000116<br>t relative standar                                                                                                                                                                                                                 | 0.000413<br>0.000488<br>0.000410<br>0.000291<br>0.000491                                                                                                                                                                                    | 3<br>3<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3282<br>N 01<br>N 02<br>N 03                                                                                                               | final<br>final<br>final<br>final                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3282final<br>N 01final<br>N 02final<br>N 03final<br>N 04final<br>Summary<br>VNIIOFI-weighted mean:<br>Uncertainties<br>VNIIOFI                                                                                                                                                                                                                                                                                                                                    | 276.875<br>286.864<br>285.529<br>284.099<br>284.045     | 0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%                                                                                                                                                                                 | 0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br><i>R(i)=</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 85.734964<br>85.588783<br>85.709032<br>85.502599<br>85.591162                                                                                                                                                             | 0.000429<br>0.000429<br>0.000429<br>0.000429                                                                                                                         | 0.000122<br>0.000122<br>0.000122<br>0.000122                                                                                                                          | 0.001173<br>0.000448<br>0.001196<br>0.002160                                                                                                          | 0.125%<br>0.062%<br>0.127%<br>0.220%                                                                                                                                              | 0.249%<br>0.249%<br>0.249%<br>0.249%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.279%<br>0.257%<br>0.279%<br>0.332%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.24353<br>0.23880<br>0.21959<br>0.23955<br>0.28421<br>0.21893                                                                                                   | 17.53544         20.73790         17.42616         12.37983         20.86361         105.80493                                                                                                                                                                                                                                                                                                                                                                                                        | 0.15936868<br>0.16573364<br>0.19600125<br>0.16470088<br>0.11700620<br>0.19718936<br>1.00000<br>Final VNIIOFI + Pilo                                                                                                                                                                                            | 0.000207<br>0.000122<br>0.000209<br>0.000258<br>0.000116<br>t relative standar<br>u-uncorr                                                                                                                                                                                                     | 0.000413<br>0.000488<br>0.000410<br>0.000291<br>0.000491<br>d uncertainty:<br>u-corr                                                                                                                                                        | 3<br>3<br>1<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 282<br>  01<br>  02<br>  03                                                                                                                | final<br>final<br>final<br>final                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3282final<br>N 01final<br>N 02final<br>N 03final<br>N 04final<br>Summary<br>VNIIOFI-weighted mean:<br>Uncertainties<br>VNIIOFI<br>VNIIOFI + Pilot (u(Ri))                                                                                                                                                                                                                                                                                                         | 276.875<br>286.864<br>285.529<br>284.099<br>284.045     | 0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%                                                                                                                                                                                           | 0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 85.734964<br>85.588783<br>85.709032<br>85.502599<br>85.591162                                                                                                                                                             | 0.000429<br>0.000429<br>0.000429<br>0.000429                                                                                                                         | 0.000122<br>0.000122<br>0.000122<br>0.000122                                                                                                                          | 0.001173<br>0.000448<br>0.001196<br>0.002160                                                                                                          | 0.125%<br>0.062%<br>0.127%<br>0.220%                                                                                                                                              | 0.249%<br>0.249%<br>0.249%<br>0.249%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.279%<br>0.257%<br>0.279%<br>0.332%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.24353<br>0.23880<br>0.21959<br>0.23955<br>0.28421<br>0.21893                                                                                                   | 17.53544         20.73790         17.42616         12.37983         20.86361         105.80493                                                                                                                                                                                                                                                                                                                                                                                                        | 0.15936868<br>0.16573364<br>0.19600125<br>0.16470088<br>0.11700620<br>0.19718936<br>1.00000                                                                                                                                                                                                                    | 0.000207<br>0.000122<br>0.000209<br>0.000258<br>0.000116<br>t relative standar                                                                                                                                                                                                                 | 0.000413<br>0.000488<br>0.000410<br>0.000291<br>0.000491                                                                                                                                                                                    | 3<br>3<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3282<br>N 01<br>N 02<br>N 03                                                                                                               | final<br>final<br>final<br>final                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3282final<br>N 01final<br>N 02final<br>N 03final<br>N 04final<br>Summary<br>VNIIOFI-weighted mean:<br>Uncertainties<br>VNIIOFI                                                                                                                                                                                                                                                                                                                                    | 276.875<br>286.864<br>285.529<br>284.099<br>284.045     | 0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%                                                                                                                                                                                 | 0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br><i>R(i)=</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 85.734964<br>85.588783<br>85.709032<br>85.502599<br>85.591162                                                                                                                                                             | 0.000429<br>0.000429<br>0.000429<br>0.000429                                                                                                                         | 0.000122<br>0.000122<br>0.000122<br>0.000122                                                                                                                          | 0.001173<br>0.000448<br>0.001196<br>0.002160                                                                                                          | 0.125%<br>0.062%<br>0.127%<br>0.220%<br>0.059%                                                                                                                                    | 0.249%<br>0.249%<br>0.249%<br>0.249%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.279%<br>0.257%<br>0.279%<br>0.332%<br>0.256%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.24353<br>0.23880<br>0.21959<br>0.23955<br>0.28421<br>0.21893                                                                                                   | 17.53544         20.73790         17.42616         12.37983         20.86361         105.80493                                                                                                                                                                                                                                                                                                                                                                                                        | 0.15936868<br>0.16573364<br>0.19600125<br>0.16470088<br>0.11700620<br>0.19718936<br>1.00000<br>Final VNIIOFI + Pilo                                                                                                                                                                                            | 0.000207<br>0.000122<br>0.000209<br>0.000258<br>0.000116<br>t relative standar<br>u-uncorr                                                                                                                                                                                                     | 0.000413<br>0.000488<br>0.000410<br>0.000291<br>0.000491<br>d uncertainty:<br>u-corr                                                                                                                                                        | 3<br>3<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3282<br>N 01<br>N 02<br>N 03<br>N 04                                                                                                       | final<br>final<br>final<br>final                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3282final<br>N 01final<br>N 02final<br>N 03final<br>N 04final<br>Summary<br>VNIIOFI-weighted mean:<br>Uncertainties<br>VNIIOFI<br>VNIIOFI + Pilot (u(Ri))                                                                                                                                                                                                                                                                                                         | 276.875<br>286.864<br>285.529<br>284.099<br>284.045     | 0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%                                                                                                                                                                                 | 0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 85.734964<br>85.588783<br>85.709032<br>85.502599<br>85.591162                                                                                                                                                             | 0.000429<br>0.000429<br>0.000429<br>0.000429                                                                                                                         | 0.000122<br>0.000122<br>0.000122<br>0.000122                                                                                                                          | 0.001173<br>0.000448<br>0.001196<br>0.002160                                                                                                          | 0.125%<br>0.062%<br>0.127%<br>0.220%<br>0.059%                                                                                                                                    | 0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.279%<br>0.257%<br>0.279%<br>0.332%<br>0.256%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.24353<br>0.23880<br>0.21959<br>0.23955<br>0.28421<br>0.21893                                                                                                   | 17.53544         20.73790         17.42616         12.37983         20.86361         105.80493                                                                                                                                                                                                                                                                                                                                                                                                        | 0.15936868<br>0.16573364<br>0.19600125<br>0.16470088<br>0.11700620<br>0.19718936<br>1.00000<br>Final VNIIOFI + Pilo                                                                                                                                                                                            | 0.000207<br>0.000122<br>0.000209<br>0.000258<br>0.000116<br>t relative standar<br>u-uncorr                                                                                                                                                                                                     | 0.000413<br>0.000488<br>0.000410<br>0.000291<br>0.000491<br>d uncertainty:<br>u-corr                                                                                                                                                        | 3       3       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3282<br>N 01<br>N 02<br>N 03<br>N 04                                                                                                       | final<br>final<br>final<br>final<br>final                                                                                                                                                                                                                                                                                                                                                                                                                             | 3282final<br>N 01final<br>N 02final<br>N 03final<br>N 04final<br>Summary<br>VNIIOFI-weighted mean:<br>Uncertainties<br>VNIIOFI<br>VNIIOFI + Pilot (u(Ri))                                                                                                                                                                                                                                                                                                         | 276.875<br>286.864<br>285.529<br>284.099<br>284.045     | 0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%                                                                                                                                                                                 | 0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 85.734964<br>85.588783<br>85.709032<br>85.502599<br>85.591162                                                                                                                                                             | 0.000429<br>0.000429<br>0.000429<br>0.000429                                                                                                                         | 0.000122<br>0.000122<br>0.000122<br>0.000122                                                                                                                          | 0.001173<br>0.000448<br>0.001196<br>0.002160                                                                                                          | 0.125%<br>0.062%<br>0.127%<br>0.220%<br>0.059%                                                                                                                                    | 0.249%<br>0.249%<br>0.249%<br>0.249%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.279%<br>0.257%<br>0.279%<br>0.332%<br>0.256%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.24353<br>0.23880<br>0.21959<br>0.23955<br>0.28421<br>0.21893                                                                                                   | 17.53544         20.73790         17.42616         12.37983         20.86361         105.80493                                                                                                                                                                                                                                                                                                                                                                                                        | 0.15936868<br>0.16573364<br>0.19600125<br>0.16470088<br>0.11700620<br>0.19718936<br>1.00000<br>Final VNIIOFI + Pilo                                                                                                                                                                                            | 0.000207<br>0.000122<br>0.000209<br>0.000258<br>0.000116<br>t relative standar<br>u-uncorr                                                                                                                                                                                                     | 0.000413<br>0.000488<br>0.000410<br>0.000291<br>0.000491<br>d uncertainty:<br>u-corr                                                                                                                                                        | 3<br>3<br>)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3282<br>N 01<br>N 02<br>N 03<br>N 04                                                                                                       | final<br>final<br>final<br>final<br>final                                                                                                                                                                                                                                                                                                                                                                                                                             | 3282final<br>N 01final<br>N 02final<br>N 03final<br>N 04final<br>Summary<br>VNIIOFI-weighted mean:<br>Uncertainties<br>VNIIOFI<br>VNIIOFI + Pilot (u(Ri))                                                                                                                                                                                                                                                                                                         | 276.875<br>286.864<br>285.529<br>284.099<br>284.045     | 0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.2489%                                                                                                                                                            | 0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 85.734964<br>85.588783<br>85.709032<br>85.502599<br>85.591162                                                                                                                                                             | 0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429                                                                                                             | 0.000122<br>0.000122<br>0.000122<br>0.000122                                                                                                                          | 0.001173<br>0.000448<br>0.001196<br>0.002160                                                                                                          | 0.125%<br>0.062%<br>0.127%<br>0.220%<br>0.059%                                                                                                                                    | 0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.279%<br>0.257%<br>0.279%<br>0.332%<br>0.256%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.24353<br>0.23880<br>0.21959<br>0.23955<br>0.28421<br>0.21893                                                                                                   | <ul> <li>17.53544</li> <li>20.73790</li> <li>17.42616</li> <li>12.37983</li> <li>20.86361</li> <li>105.80493</li> <li>105.80493</li> </ul>                                                                                                                                                                                                                                                                                                                                                            | 0.15936868<br>0.16573364<br>0.19600125<br>0.16470088<br>0.11700620<br>0.19718936<br>1.00000<br>Final VNIIOFI + Pilo                                                                                                                                                                                            | 0.000207<br>0.000122<br>0.000209<br>0.000258<br>0.000116<br><b>t relative standar</b><br><b>u-uncorr</b><br>0.0479%                                                                                                                                                                            | 0.000413<br>0.000488<br>0.000410<br>0.000291<br>0.000491<br>d uncertainty:<br>u-corr                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3282<br>N 01<br>N 02<br>N 03<br>N 04                                                                                                       | final<br>final<br>final<br>final<br>final<br>                                                                                                                                                                                                                                                                                                                                                                                                                         | 3282final<br>N 01final<br>N 02final<br>N 03final<br>N 04final<br>Summary<br>VNIIOFI-weighted mean:<br>Uncertainties<br>VNIIOFI<br>VNIIOFI + Pilot (u(Ri))<br>VNIIOFI_transfer                                                                                                                                                                                                                                                                                     | 276.875<br>286.864<br>285.529<br>284.099<br>284.045     | 0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.2477%<br>0.2477%<br>0.2489%                                                                                                                                                | 0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.2535%<br>0.0531%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 85.734964<br>85.588783<br>85.709032<br>85.502599<br>85.591162                                                                                                                                                             | 0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429                                                                                                 | 0.000122<br>0.000122<br>0.000122<br>0.000122<br>0.000122                                                                                                              | 0.001173<br>0.000448<br>0.001196<br>0.002160                                                                                                          | 0.125%<br>0.062%<br>0.127%<br>0.220%<br>0.059%<br>Lamp uncer<br>all NIST                                                                                                          | 0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.279%<br>0.257%<br>0.279%<br>0.332%<br>0.256%<br>0.256%<br>or combining<br>rements<br>rements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.24353<br>0.23880<br>0.21959<br>0.23955<br>0.28421<br>0.21893                                                                                                   | <ul> <li>17.53544</li> <li>20.73790</li> <li>17.42616</li> <li>12.37983</li> <li>20.86361</li> <li>105.80493</li> <li>105.80493</li> </ul>                                                                                                                                                                                                                                                                                                                                                            | 0.15936868<br>0.16573364<br>0.19600125<br>0.16470088<br>0.11700620<br>0.19718936<br>1.00000<br>Final VNIIOFI + Pilo<br>VNIIOFI + Pilot                                                                                                                                                                         | 0.000207<br>0.000122<br>0.000209<br>0.000258<br>0.000116<br><b>t relative standar</b><br><b>u-uncorr</b><br>0.0479%                                                                                                                                                                            | 0.000413<br>0.000488<br>0.000410<br>0.000291<br>0.000491<br>d uncertainty:<br>u-corr                                                                                                                                                        | 3       3       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3282<br>N 01<br>N 02<br>N 03<br>N 04                                                                                                       | final<br>final<br>final<br>final<br>final<br>                                                                                                                                                                                                                                                                                                                                                                                                                         | 3282final<br>N 01final<br>N 02final<br>N 03final<br>N 04final<br>Summary<br>VNIIOFI-weighted mean:<br>Uncertainties<br>VNIIOFI<br>VNIIOFI + Pilot (u(Ri))<br>VNIIOFI_transfer                                                                                                                                                                                                                                                                                     | 276.875<br>286.864<br>285.529<br>284.099<br>284.045     | 0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.2489%<br>0.2489%<br>T Lamp Lun<br>Relative S                                                                                                                     | 0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.2479%<br>0.2535%<br>0.0531%<br>0.0531%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 85.734964<br>85.588783<br>85.709032<br>85.502599<br>85.591162<br>85.623532                                                                                                                                                | 0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429                                                                                                 | 0.000122<br>0.000122<br>0.000122<br>0.000122<br>0.000122                                                                                                              | 0.001173<br>0.000448<br>0.001196<br>0.002160<br>0.000402                                                                                              | 0.125%<br>0.062%<br>0.127%<br>0.220%<br>0.059%<br>Lamp uncer<br>all NIST                                                                                                          | 0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.279%<br>0.257%<br>0.279%<br>0.332%<br>0.256%<br>0.256%<br>or combining<br>rements<br>rements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.24353<br>0.23880<br>0.21959<br>0.23955<br>0.28421<br>0.21893                                                                                                   | <ul> <li>17.53544</li> <li>20.73790</li> <li>17.42616</li> <li>12.37983</li> <li>20.86361</li> <li>105.80493</li> <li>105.80493</li> <li>105.80493</li> </ul>                                                                                                                                                                                                                                                                                                                                         | 0.15936868<br>0.16573364<br>0.19600125<br>0.16470088<br>0.11700620<br>0.19718936<br>1.00000<br>Final VNIIOFI + Pilo<br>VNIIOFI + Pilot                                                                                                                                                                         | 0.000207<br>0.000122<br>0.000209<br>0.000258<br>0.000116<br><b>t relative standar</b><br><b>u-uncorr</b><br>0.0479%                                                                                                                                                                            | 0.000413<br>0.000488<br>0.000410<br>0.000291<br>0.000491<br>d uncertainty:<br>u-corr                                                                                                                                                        | 3<br>3<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3282<br>N 01<br>N 02<br>N 03<br>N 04                                                                                                       | final<br>final<br>final<br>final<br>final<br>inal<br>NIST                                                                                                                                                                                                                                                                                                                                                                                                             | 3282final<br>N 01final<br>N 02final<br>N 03final<br>N 04final<br>Summary<br>VNIIOFI-weighted mean:<br>Uncertainties<br>VNIIOFI<br>VNIIOFI + Pilot (u(Ri))<br>VNIIOFI_transfer                                                                                                                                                                                                                                                                                     | 276.875<br>286.864<br>285.529<br>284.099<br>284.045     | 0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.2489%<br>0.2489%<br>T Lamp Lun<br>Relative S                                                                                                                     | 0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.2479%<br>0.2535%<br>0.0531%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 85.734964<br>85.588783<br>85.709032<br>85.502599<br>85.591162<br>85.623532<br>85.623532                                                                                                                                   | 0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429                                                                                                 | 0.000122<br>0.000122<br>0.000122<br>0.000122<br>0.000122                                                                                                              | 0.001173<br>0.000448<br>0.001196<br>0.002160<br>0.000402                                                                                              | 0.125%<br>0.062%<br>0.127%<br>0.220%<br>0.059%<br>Lamp uncer<br>all NIST<br>Combine<br>Relative                                                                                   | 0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.279%<br>0.257%<br>0.279%<br>0.332%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.279%<br>0.279%<br>0.279%<br>0.279%<br>0.279%<br>0.279%<br>0.279%<br>0.279%<br>0.279%<br>0.279%<br>0.257%<br>0.279%<br>0.257%<br>0.279%<br>0.257%<br>0.279%<br>0.257%<br>0.257%<br>0.279%<br>0.257%<br>0.257%<br>0.257%<br>0.257%<br>0.257%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>00 | 0.24353<br>0.23880<br>0.21959<br>0.23955<br>0.28421<br>0.21893<br>sum:                                                                                           | <ul> <li>17.53544</li> <li>20.73790</li> <li>17.42616</li> <li>12.37983</li> <li>20.86361</li> <li>105.80493</li> <li>105.80493</li> <li>Calculat</li> <li>Weigh</li> </ul>                                                                                                                                                                                                                                                                                                                           | 0.15936868<br>0.16573364<br>0.19600125<br>0.16470088<br>0.11700620<br>0.19718936<br>1.00000<br>Final VNIIOFI + Pilot<br>VNIIOFI + Pilot<br>tions for NIST+Pilot<br>ts                                                                                                                                          | 0.000207<br>0.000122<br>0.000209<br>0.000258<br>0.000116<br><b>t relative standar</b><br><b>u-uncorr</b><br>0.0479%<br>weighted means                                                                                                                                                          | 0.000413<br>0.000488<br>0.000410<br>0.000291<br>0.000491<br>d uncertainty:<br>u-corr<br>0.2489%                                                                                                                                             | 3<br>3<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 282<br>1 01<br>1 02<br>1 03<br>1 04<br>IMI:<br>Lamp#                                                                                       | final<br>final<br>final<br>final<br>final<br>inal<br>NIST                                                                                                                                                                                                                                                                                                                                                                                                             | 3282final<br>N 01final<br>N 02final<br>N 03final<br>N 04final<br>Summary<br>VNIIOFI-weighted mean:<br>Uncertainties<br>VNIIOFI<br>VNIIOFI + Pilot (u(Ri))<br>VNIIOFI_transfer                                                                                                                                                                                                                                                                                     | 276.875<br>286.864<br>285.529<br>284.099<br>284.045     | 0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.2489%<br>0.2489%<br>T Lamp Lun<br>Relative S                                                                                                                     | 0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.2479%<br>0.2535%<br>0.0531%<br>0.0531%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 85.734964<br>85.588783<br>85.709032<br>85.502599<br>85.591162<br>85.623532<br>85.623532                                                                                                                                   | 0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429                                                                                                 | 0.000122<br>0.000122<br>0.000122<br>0.000122<br>0.000122                                                                                                              | 0.001173<br>0.000448<br>0.001196<br>0.002160<br>0.000402                                                                                              | 0.125%<br>0.062%<br>0.127%<br>0.220%<br>0.059%<br>Lamp uncer<br>all NIST<br>Combine<br>Relative                                                                                   | 0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.279%<br>0.257%<br>0.279%<br>0.332%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.279%<br>0.279%<br>0.279%<br>0.279%<br>0.279%<br>0.279%<br>0.279%<br>0.279%<br>0.279%<br>0.279%<br>0.257%<br>0.279%<br>0.257%<br>0.279%<br>0.257%<br>0.279%<br>0.257%<br>0.257%<br>0.279%<br>0.257%<br>0.257%<br>0.257%<br>0.257%<br>0.257%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>00 | 0.24353<br>0.23880<br>0.21959<br>0.23955<br>0.28421<br>0.21893<br>sum:<br>sum:                                                                                   | <ul> <li>17.53544</li> <li>20.73790</li> <li>17.42616</li> <li>12.37983</li> <li>20.86361</li> <li>105.80493</li> <li>105.80493</li> <li>Calculat</li> <li>Weigh</li> </ul>                                                                                                                                                                                                                                                                                                                           | 0.15936868<br>0.16573364<br>0.19600125<br>0.16470088<br>0.11700620<br>0.19718936<br>1.00000<br>Final VNIIOFI + Pilo<br>VNIIOFI + Pilot<br>tions for NIST+Pilot<br>ts<br>wi                                                                                                                                     | 0.000207<br>0.000122<br>0.000209<br>0.000258<br>0.000116<br><b>t relative standar</b><br><b>u-uncorr</b><br>0.0479%<br>weighted means                                                                                                                                                          | 0.000413<br>0.000488<br>0.000410<br>0.000291<br>0.000491<br>d uncertainty:<br>u-corr<br>0.2489%                                                                                                                                             | 3<br>3<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 282<br>1 01<br>1 02<br>1 03<br>1 04<br>IMI:<br>Lamp#<br>IIST20100                                                                          | final<br>final<br>final<br>final<br>final<br>inal<br>NIST                                                                                                                                                                                                                                                                                                                                                                                                             | 3282final<br>N 01final<br>N 02final<br>N 03final<br>N 04final<br>Summary<br>VNIIOFI-weighted mean:<br>Uncertainties<br>VNIIOFI<br>VNIIOFI + Pilot (u(Ri))<br>VNIIOFI_transfer                                                                                                                                                                                                                                                                                     | 276.875<br>286.864<br>285.529<br>284.099<br>284.045     | 0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%<br>NIS<br>NIS<br>random<br>u-uncorr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.2489%<br>0.2489%<br>T Lamp Lun<br>Relative S                                                                                                                     | 0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.2479%<br>0.2535%<br>0.0531%<br>0.0531%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 85.734964<br>85.588783<br>85.709032<br>85.502599<br>85.591162<br>85.623532<br>85.623532                                                                                                                                   | 0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>Pilot Mea<br>Relativ<br>u-uncorr                                                 | 0.000122<br>0.000122<br>0.000122<br>0.000122<br>0.000122                                                                                                              | 0.001173<br>0.000448<br>0.001196<br>0.002160<br>0.000402                                                                                              | 0.125%<br>0.062%<br>0.127%<br>0.220%<br>0.059%<br>Lamp uncer<br>all NIST<br>Combine<br>Relative                                                                                   | 0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.279%<br>0.257%<br>0.279%<br>0.332%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.279%<br>0.279%<br>0.279%<br>0.279%<br>0.279%<br>0.279%<br>0.279%<br>0.279%<br>0.279%<br>0.279%<br>0.257%<br>0.279%<br>0.257%<br>0.279%<br>0.257%<br>0.279%<br>0.257%<br>0.257%<br>0.279%<br>0.257%<br>0.257%<br>0.257%<br>0.257%<br>0.257%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>00 | 0.24353<br>0.23880<br>0.21959<br>0.23955<br>0.28421<br>0.21893<br>sum:<br>sum:                                                                                   | <ul> <li>17.53544</li> <li>20.73790</li> <li>17.42616</li> <li>12.37983</li> <li>20.86361</li> <li>105.80493</li> <li>105.80493</li> <li>Calculat</li> <li>Weigh</li> <li>1/(uT)^2</li> <li>I</li> </ul>                                                                                                                                                                                                                                                                                              | 0.15936868<br>0.16573364<br>0.19600125<br>0.16470088<br>0.11700620<br>0.19718936<br>1.00000<br>Final VNIIOFI + Pilo<br>VNIIOFI + Pilot<br>tions for NIST+Pilot<br>ts<br>wi                                                                                                                                     | 0.000207<br>0.000122<br>0.000209<br>0.000258<br>0.000116<br><b>t relative standar</b><br><b>u-uncorr</b><br>0.0479%<br>weighted means                                                                                                                                                          | 0.000413<br>0.000488<br>0.000410<br>0.000291<br>0.000491<br>d uncertainty:<br>u-corr<br>0.2489%                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 282<br>01<br>02<br>03<br>04<br>MI:<br>Lamp#<br>IST20100<br>IST20101                                                                        | final<br>final<br>final<br>final<br>final<br>NIST<br>NIST<br>Round#                                                                                                                                                                                                                                                                                                                                                                                                   | 3282final<br>N 01final<br>N 02final<br>N 03final<br>N 04final<br>Summary<br>VNIIOFI-weighted mean:<br>Uncertainties<br>VNIIOFI<br>VNIIOFI<br>VNIIOFI + Pilot (u(Ri))<br>VNIIOFI_transfer<br>Data ID                                                                                                                                                                                                                                                               | 276.875<br>286.864<br>285.529<br>284.099<br>284.045     | 0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.2477%<br>0.2489%<br>0.2489%<br>T Lamp Lun<br>Relative S<br>systematic<br>u-corr                                                                                  | 0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.2535%<br>0.0531%<br>0.0531%<br>5tandard Uncertainty<br>5tandard Uncertainty<br>5tandard Uncertainty<br>5tandard Uncertainty                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 85.734964<br>85.588783<br>85.709032<br>85.502599<br>85.591162<br>85.623532<br>85.623532<br><i>R(i,j)</i><br><cd v=""></cd>                                                                                                | 0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>Pilot Mea<br>Relativ<br>u-uncorr                                                 | 0.000122<br>0.000122<br>0.000122<br>0.000122<br>0.000122<br>surements<br>e Standard<br>u-corr                                                                         | 0.001173<br>0.000448<br>0.001196<br>0.002160<br>0.000402<br>Uncertainty<br>u-uncorr(lamp)<br>0.000969                                                 | 0.125%<br>0.062%<br>0.127%<br>0.220%<br>0.059%<br>Lamp uncer<br>all NIST<br>Combine<br>Relative<br>u-uncorr                                                                       | 0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.279%<br>0.257%<br>0.279%<br>0.332%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.279%<br>0.279%<br>0.279%<br>0.279%<br>0.279%<br>0.279%<br>0.279%<br>0.279%<br>0.279%<br>0.279%<br>0.279%<br>0.279%<br>0.257%<br>0.279%<br>0.257%<br>0.279%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>00 | 0.24353<br>0.23880<br>0.21959<br>0.23955<br>0.28421<br>0.21893<br>sum:<br>sum:<br>cur<br>cd/v                                                                    | <ul> <li>17.53544</li> <li>20.73790</li> <li>17.42616</li> <li>12.37983</li> <li>20.86361</li> <li>105.80493</li> <li>105.80493</li> <li>Calculat</li> <li>Weigh</li> <li>1/(uT)^2</li> <li>I</li> </ul>                                                                                                                                                                                                                                                                                              | 0.15936868<br>0.16573364<br>0.19600125<br>0.16470088<br>0.11700620<br>0.19718936<br>1.00000<br>Final VNIIOFI + Pilo<br>VNIIOFI + Pilot<br>tions for NIST+Pilot<br>ts<br>wi<br>normalised                                                                                                                       | 0.000207<br>0.000122<br>0.000209<br>0.000258<br>0.000116<br><b>t relative standar</b><br><b>u-uncorr</b><br>0.0479%<br>weighted means<br>wi*u-uncorr                                                                                                                                           | 0.000413<br>0.000488<br>0.000410<br>0.000291<br>0.000491<br>d uncertainty:<br>u-corr<br>0.2489%<br>wi*u-corr                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 282<br>01<br>02<br>03<br>04<br>MI:<br>Lamp#<br>IST20100<br>IST20101<br>IST20102                                                            | final<br>final<br>final<br>final<br>final<br>inal<br>NIST<br>NIST<br>Round#                                                                                                                                                                                                                                                                                                                                                                                           | 3282final<br>N 01final<br>N 02final<br>N 03final<br>N 04final<br>Summary<br>VNIIOFI-weighted mean:<br>Uncertainties<br>VNIIOFI<br>VNIIOFI<br>VNIIOFI + Pilot (u(Ri))<br>VNIIOFI_transfer<br>Data ID                                                                                                                                                                                                                                                               | 276.875<br>286.864<br>285.529<br>284.099<br>284.045<br> | 0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%<br>NIS<br>NIS<br>random<br>u-uncorr<br>0.089%<br>0.120%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.2477%<br>0.2489%<br>0.2489%<br>T Lamp Lun<br>Relative S<br>systematic<br>u-corr<br>0.200%                                                                        | 0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.2479%<br>0.2535%<br>0.0531%<br>0.0531%<br>0.0531%<br>5tandard Uncertainty<br>5tandard Uncertainty<br>5tandard Uncertainty<br>5tandard Uncertainty<br>5tandard Uncertainty<br>0.219%                                                                                                                                                                                                                                                                                                                                                                                                                  | 85.734964<br>85.588783<br>85.709032<br>85.502599<br>85.591162<br>85.623532<br>85.623532<br><i>R(i,j)</i><br><cd v=""><br/>86.302305</cd>                                                                                  | 0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>Pilot Mea<br>Relativ<br>u-uncorr<br>0.000429<br>0.000429                         | 0.000122<br>0.000122<br>0.000122<br>0.000122<br>0.000122<br>surements<br>e Standard<br>u-corr<br>0.000122                                                             | 0.001173<br>0.000448<br>0.001196<br>0.002160<br>0.000402<br>Uncertainty<br>u-uncorr(lamp)<br>0.000969                                                 | 0.125%<br>0.062%<br>0.127%<br>0.220%<br>0.059%<br>Lamp uncer<br>all NIST<br>Combine<br>Relative<br>u-uncorr                                                                       | 0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.279%<br>0.257%<br>0.279%<br>0.332%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.243%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.24353<br>0.23880<br>0.21959<br>0.23955<br>0.28421<br>0.21893<br>sum:<br>sum:<br>cd/V<br>0.21005<br>0.21005<br>0.21005                                          | <ul> <li>17.53544</li> <li>20.73790</li> <li>17.42616</li> <li>12.37983</li> <li>20.86361</li> <li>105.80493</li> <li>105.80493</li> <li>105.80493</li> <li>Calculat</li> <li>Weigh</li> <li>1/(uT)^2</li> <li>22.66487</li> </ul>                                                                                                                                                                                                                                                                    | 0.15936868<br>0.16573364<br>0.19600125<br>0.16470088<br>0.11700620<br>0.19718936<br>1.00000<br>Final VNIIOFI + Pilo<br>VNIIOFI + Pilot<br>tions for NIST+Pilot<br>ts<br>wi<br>normalised<br>0.156983006                                                                                                        | 0.000207<br>0.000122<br>0.000209<br>0.000258<br>0.000116<br><b>t relative standar</b><br><b>u-uncorr</b><br>0.0479%<br>weighted means<br>wi*u-uncorr                                                                                                                                           | 0.000413<br>0.000488<br>0.000410<br>0.000291<br>0.000491<br>d uncertainty:<br>u-corr<br>0.2489%<br>wi*u-corr<br>0.2489%                                                                                                                     | 3       3       3       4       4       5       6       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7 <t< td=""></t<> |
| 282<br>1 01<br>1 02<br>1 03<br>1 04<br>IMI:<br>Lamp#<br>IIST20100<br>IIST20101<br>IIST20101<br>IIST20102<br>IIST20103                      | final         final         final         final         final         final         state         NIST         Round#         inal         final         final                                                                                                                                                                                                                                                                                                        | 3282final<br>N 01final<br>N 02final<br>N 03final<br>N 04final<br>Summary<br>VNIIOFI-weighted mean:<br>Uncertainties<br>VNIIOFI<br>VNIIOFI<br>VNIIOFI + Pilot (u(Ri))<br>VNIIOFI_transfer<br>Data ID<br>Data ID                                                                                                                                                                                                                                                    | 276.875<br>286.864<br>285.529<br>284.099<br>284.045<br> | 0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.0479%<br>0.0479%<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.2477%<br>0.2489%<br>0.2489%<br>T Lamp Lun<br>Relative S<br>systematic<br>u-corr<br>0.200%<br>0.200%                                                              | 0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.2535%<br>0.0531%<br>0.0531%<br>0.0531%<br>5tandard Uncertainty<br>5tandard Uncertainty<br>5tandard Uncertainty<br>5tandard Uncertainty<br>0.219%<br>0.233%                                                                                                                                                                                                                                                                                                                                                                                                                                 | 85.734964<br>85.588783<br>85.709032<br>85.502599<br>85.591162<br>85.623532<br>85.623532<br>85.623532<br>85.623532<br>85.623532<br>85.623532<br>85.623532<br>85.623532<br>85.623532<br>86.302305<br>86.302305<br>86.265433 | 0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429                         | 0.000122<br>0.000122<br>0.000122<br>0.000122<br>0.000122<br>surements<br>e Standard<br>u-corr<br>0.000122<br>0.000122                                                 | 0.001173<br>0.000448<br>0.001196<br>0.002160<br>0.000402<br>Uncertainty<br>u-uncorr(lamp)<br>0.000969<br>0.000848                                     | 0.125%<br>0.062%<br>0.127%<br>0.220%<br>0.059%<br>Lamp uncer<br>all NIST<br>Combine<br>Relative<br>u-uncorr                                                                       | 0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>Internet of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.279%<br>0.257%<br>0.279%<br>0.332%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.252%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.24353<br>0.23880<br>0.21959<br>0.23955<br>0.28421<br>0.21893<br>sum:<br>sum:<br>cur<br>cd/V<br>0.21005<br>0.21005<br>0.21756<br>0.20235                        | <ul> <li>17.53544</li> <li>20.73790</li> <li>17.42616</li> <li>12.37983</li> <li>20.86361</li> <li>105.80493</li> <li>105.80493</li> <li>105.80493</li> <li>Calculat</li> <li>Calculat</li> <li>Weigh</li> <li>1/(uT)^2</li> <li>22.66487</li> <li>21.12687</li> </ul>                                                                                                                                                                                                                                | 0.15936868<br>0.16573364<br>0.19600125<br>0.16470088<br>0.11700620<br>0.19718936<br>1.00000<br>Final VNIIOFI + Pilo<br>VNIIOFI + Pilot<br>tions for NIST+Pilot<br>ts<br>wi<br>normalised<br>0.156983006<br>0.146330347                                                                                         | 0.000207<br>0.000122<br>0.000209<br>0.000258<br>0.000116<br><b>t relative standar</b><br><b>u-uncorr</b><br>0.0479%<br>weighted means<br>wi*u-uncorr<br>0.000166<br>0.000139                                                                                                                   | 0.000413<br>0.000488<br>0.000410<br>0.000291<br>0.000491<br>d uncertainty:<br>u-corr<br>0.2489%<br>0.2489%<br>wi*u-corr<br>0.200344<br>0.000344                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 282<br>I 01<br>I 02<br>I 03<br>I 04<br>IMI:<br>Lamp#<br>IIST20100<br>IIST20101<br>IIST20102<br>IIST20103<br>IIST20104                      | final         final | 3282final<br>N 01final<br>N 02final<br>N 03final<br>N 04final<br>Summary<br>VNIIOFI-weighted mean:<br>Uncertainties<br>VNIIOFI<br>VNIIOFI + Pilot (u(Ri))<br>VNIIOFI_transfer<br>Data ID<br>Data ID                                                                                                                                                                                                                                                               | 276.875<br>286.864<br>285.529<br>284.099<br>284.045<br> | 0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.042%<br>0.0479%<br>0.0479%<br>0.0479%<br>0.0479%<br>0.0479%<br>0.0479%<br>0.0479%<br>0.0479%<br>0.0479%<br>0.0479%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.2477%<br>0.2489%<br>0.2489%<br>T Lamp Lun<br>Relative S<br>systematic<br>u-corr<br>0.200%<br>0.200%<br>0.200%                                                    | 0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.2479%<br>0.2535%<br>0.0531%<br>0.0531%<br>0.0531%<br>5tandard Uncertainty<br>5tandard Uncertainty<br>5tandard Uncertainty<br>5tandard Uncertainty<br>5tandard Uncertainty<br>0.219%<br>0.233%<br>0.230%                                                                                                                                                                                                                                                                                                                                                                                              | 85.734964<br>85.588783<br>85.709032<br>85.502599<br>85.591162<br>85.623532<br>85.623532<br>85.623532<br>85.623532<br>85.623532<br>85.623532<br>85.623532<br>85.623532<br>86.302305<br>86.265433<br>86.368920              | 0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429                         | 0.000122<br>0.000122<br>0.000122<br>0.000122<br>0.000122<br>0.000122<br>surements<br>e Standard<br>u-corr<br>0.000122<br>0.000122<br>0.000122                         | 0.001173<br>0.000448<br>0.001196<br>0.002160<br>0.000402<br>Uncertainty<br>u-uncorr(lamp)<br>0.000969<br>0.000848<br>0.000123                         | 0.125%<br>0.062%<br>0.127%<br>0.220%<br>0.059%<br>Lamp uncer<br>all NIST<br>Combine<br>Relative<br>u-uncorr<br>0.106%<br>0.095%<br>0.045%<br>0.051%                               | 0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>Imp measu<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Contraint<br>Con | 0.279%<br>0.257%<br>0.279%<br>0.332%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.252%<br>0.243%<br>0.252%<br>0.234%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.24353<br>0.23880<br>0.21959<br>0.23955<br>0.28421<br>0.21893<br>sum:<br>sum:<br>cd/V<br>0.21005<br>0.21005<br>0.21756<br>0.20235<br>0.19761                    | <ul> <li>17.53544</li> <li>20.73790</li> <li>17.42616</li> <li>12.37983</li> <li>20.86361</li> <li>105.80493</li> <li>105.80493</li> <li>105.80493</li> <li>Calculat</li> <li>Calculat</li> <li>Weigh</li> <li>1/(uT)^2</li> <li>22.66487</li> <li>21.12687</li> <li>24.42365</li> </ul>                                                                                                                                                                                                              | 0.15936868<br>0.16573364<br>0.19600125<br>0.16470088<br>0.11700620<br>0.19718936<br>1.00000<br>Final VNIIOFI + Pilo<br>VNIIOFI + Pilot<br>tions for NIST+Pilot<br>ts<br>wi<br>normalised<br>0.156983006<br>0.146330347<br>0.169164733                                                                          | 0.000207<br>0.000122<br>0.000209<br>0.000258<br>0.000116<br><b>t relative standar</b><br><b>u-uncorr</b><br>0.0479%<br>weighted means<br>wi*u-uncorr<br>wi*u-uncorr<br>0.000166<br>0.000139<br>0.000075                                                                                        | 0.000413<br>0.000488<br>0.000410<br>0.000291<br>0.000491<br>d uncertainty:<br>u-corr<br>0.2489%<br>0.2489%<br>wi*u-corr<br>0.2489%<br>0.000344<br>0.000342<br>0.000342                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3282<br>N 01<br>N 02<br>N 03<br>N 04<br>Lamp#<br>NIST20100<br>NIST20100<br>NIST20101<br>NIST20101<br>NIST20102<br>NIST20103<br>NIST20104   | final   final   final   final   final   final   final   number   NIST   NIST   NIST   inal   final                                                                                                                                                                                                                                                                                    | 3282final<br>N 01final<br>N 02final<br>N 03final<br>N 04final<br>Summary<br>VNIIOFI-weighted mean:<br>Uncertainties<br>VNIIOFI<br>VNIIOFI + Pilot (u(Ri))<br>VNIIOFI_transfer<br>Data ID<br>Data ID                                                                                                                                                                                                                                                               | 276.875<br>286.864<br>285.529<br>284.099<br>284.045<br> | 0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.0087%         0.0479%         0.0479%         0.0479%         0.00479%         0.0479%         0.0479%         0.0479%         0.0479%         0.0479%         0.0479%         0.0479%         0.0479%         0.0479%         0.0479%         0.0479%         0.089%         0.120%         0.098%         0.096%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.2477%<br>0.2489%<br>0.2489%<br>T Lamp Lun<br>Relative S<br>systematic<br>u-corr<br>0.200%<br>0.200%<br>0.200%<br>0.200%                                          | 0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.2479%<br>0.2535%<br>0.0531%<br>0.0531%<br>0.0531%<br>5tandard Uncertainty<br>5tandard Uncertainty<br>5tandard Uncertainty<br>5tandard Uncertainty<br>0.219%<br>0.233%<br>0.230%<br>0.223%                                                                                                                                                                                                                                                                                                                                                                                                            | 85.734964<br>85.588783<br>85.709032<br>85.502599<br>85.591162<br>85.623532<br>85.623532<br>85.623532<br>85.623532<br>85.623532<br>85.623532<br>85.623532<br>85.623532<br>86.304520<br>86.304520                           | 0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429 | 0.000122<br>0.000122<br>0.000122<br>0.000122<br>0.000122<br>0.000122<br>surements<br>e Standard<br>u-corr<br>0.000122<br>0.000122<br>0.000122<br>0.000122             | 0.001173<br>0.000448<br>0.001196<br>0.002160<br>0.000402<br>Uncertainty<br>u-uncorr(lamp)<br>0.000969<br>0.000848<br>0.000123<br>0.000280<br>0.000096 | 0.125%<br>0.062%<br>0.127%<br>0.220%<br>0.059%<br>Lamp uncer<br>all NIST<br>Combine<br>Relative<br>u-uncorr<br>0.106%<br>0.095%<br>0.045%<br>0.051%<br>0.051%                     | 0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>International distribution<br>International distribution<br>Inter                                                                                                                                                                                                                                                                                                                                                                                           | 0.279%<br>0.257%<br>0.279%<br>0.332%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.243%<br>0.243%<br>0.252%<br>0.234%<br>0.229%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.24353<br>0.23880<br>0.21959<br>0.23955<br>0.28421<br>0.21893<br>sum:<br>sum:<br>cur<br>cd/v<br>0.21005<br>0.21756<br>0.20235<br>0.19761<br>0.19562             | <ul> <li>17.53544</li> <li>20.73790</li> <li>17.42616</li> <li>12.37983</li> <li>20.86361</li> <li>105.80493</li> <li>105.80493</li> <li>105.80493</li> <li>105.80493</li> <li>Calculat</li> <li>Calculat</li> <li>Weigh</li> <li>1/(uT)^2</li> <li>22.66487</li> <li>21.12687</li> <li>24.42365</li> <li>25.60772</li> </ul>                                                                                                                                                                         | 0.15936868<br>0.16573364<br>0.19600125<br>0.16470088<br>0.11700620<br>0.19718936<br>1.00000<br>Final VNIIOFI + Pilo<br>VNIIOFI + Pilot<br>tions for NIST+Pilot<br>ts<br>wi<br>normalised<br>0.156983006<br>0.146330347<br>0.169164733<br>0.17736598                                                            | 0.000207<br>0.000122<br>0.000209<br>0.000258<br>0.000116<br><b>t relative standar</b><br><b>u-uncorr</b><br>0.0479%<br>weighted means<br>wi*u-uncorr<br>0.000166<br>0.000139<br>0.000075<br>0.000091                                                                                           | 0.000413<br>0.000488<br>0.000410<br>0.000291<br>0.000491<br>d uncertainty:<br>u-corr<br>0.2489%<br>0.2489%<br>wi*u-corr<br>0.000344<br>0.000342<br>0.000389<br>0.000396                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3282<br>N 01<br>N 02<br>N 03<br>N 04<br>NMI:<br>Lamp#<br>NIST20100<br>NIST20100<br>NIST20101<br>NIST20102<br>NIST20103<br>NIST20104        | final         final | 3282final<br>N 01final<br>N 02final<br>N 03final<br>N 04final<br>Summary<br>VNIIOFI-weighted mean:<br>Uncertainties<br>VNIIOFI<br>VNIIOFI + Pilot (u(Ri))<br>VNIIOFI_transfer<br>Data ID<br>Data ID                                                                                                                                                                                                                                                               | 276.875<br>286.864<br>285.529<br>284.099<br>284.045<br> | 0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.0087%         0.0479%         0.0479%         0.0087%         0.0087%         0.0087%         0.0087%         0.0087%         0.0087%         0.0087%         0.0087%         0.0087%         0.0089%         0.120%         0.098%         0.096%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.2477%<br>0.2477%<br>0.2489%<br>0.2489%<br>0.2489%<br>0.2489%<br>0.2489%<br>0.2489%<br>0.2489%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%                  | 0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.2535%<br>0.0531%<br>0.0531%<br>0.0531%<br>5tandard Uncertainty<br>5tandard Uncertainty<br>5tandard Uncertainty<br>5tandard Uncertainty<br>5tandard Uncertainty<br>0.219%<br>0.233%<br>0.230%<br>0.223%<br>0.222%                                                                                                                                                                                                                                                                                                                                                                           | 85.734964<br>85.588783<br>85.709032<br>85.502599<br>85.591162<br>85.623532<br>85.623532<br>85.623532<br>85.623532<br>85.623532<br>85.623532<br>85.623532<br>86.304520<br>86.304520<br>86.304520<br>86.344087              | 0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429 | 0.000122<br>0.000122<br>0.000122<br>0.000122<br>0.000122<br>0.000122<br>surements<br>e Standard<br>u-corr<br>0.000122<br>0.000122<br>0.000122<br>0.000122<br>0.000122 | 0.001173<br>0.000448<br>0.001196<br>0.002160<br>0.000402<br>Uncertainty<br>u-uncorr(lamp)<br>0.000969<br>0.000848<br>0.000123<br>0.000280<br>0.000096 | 0.125%<br>0.062%<br>0.127%<br>0.220%<br>0.059%<br>Lamp uncer<br>all NIST<br>Combine<br>Relative<br>u-uncorr<br>0.106%<br>0.095%<br>0.045%<br>0.051%<br>0.051%                     | 0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.279%<br>0.257%<br>0.279%<br>0.332%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.252%<br>0.243%<br>0.252%<br>0.234%<br>0.229%<br>0.227%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.24353<br>0.23880<br>0.21959<br>0.23955<br>0.28421<br>0.21893<br>sum:<br>sum:<br>cur<br>cd/v<br>0.21005<br>0.21756<br>0.20235<br>0.19761<br>0.19562             | <ul> <li>17.53544</li> <li>20.73790</li> <li>17.42616</li> <li>12.37983</li> <li>20.86361</li> <li>105.80493</li> <li>105.80493</li> <li>105.80493</li> <li>105.80493</li> <li>Calculat</li> <li>Calculat</li> <li>Weigh</li> <li>1/(uT)^2</li> <li>22.66487</li> <li>21.12687</li> <li>24.42365</li> <li>25.60772</li> <li>26.13128</li> </ul>                                                                                                                                                       | 0.15936868<br>0.16573364<br>0.19600125<br>0.16470088<br>0.11700620<br>0.19718936<br>1.00000<br>Final VNIIOFI + Pilot<br>VNIIOFI + Pilot<br>VNIIOFI + Pilot<br>tions for NIST+Pilot<br>ts<br>wi<br>normalised<br>0.156983006<br>0.146330347<br>0.169164733<br>0.17736598<br>0.180992258                         | 0.000207<br>0.000122<br>0.000209<br>0.000258<br>0.000116<br><b>t relative standar</b><br><b>u-uncorr</b><br>0.0479%<br>weighted means<br>wi*u-uncorr<br>0.000166<br>0.000139<br>0.000075<br>0.000091<br>0.000080                                                                               | 0.000413<br>0.000488<br>0.000410<br>0.000291<br>0.000491<br>d uncertainty:<br>u-corr<br>0.2489%<br>0.2489%<br>0.2489%<br>0.000344<br>0.000342<br>0.000342<br>0.000349<br>0.000396<br>0.000396                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3282<br>N 01<br>N 02<br>N 03<br>N 04<br>NMI:<br>Lamp#<br>NIST20100<br>NIST20100<br>NIST20101<br>NIST20102<br>NIST20103<br>NIST20104        | final         final | 3282final<br>N 01final<br>N 02final<br>N 03final<br>N 04final<br>Summary<br>VNIIOFI-weighted mean:<br>Uncertainties<br>VNIIOFI<br>VNIIOFI + Pilot (u(Ri))<br>VNIIOFI_transfer<br>Data ID<br>Data ID<br>NIST20100final<br>NIST20101final<br>NIST20102final<br>NIST20103final<br>NIST20104final<br>NIST20105final<br>NIST20105final                                                                                                                                 | 276.875<br>286.864<br>285.529<br>284.099<br>284.045<br> | 0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.0087%         0.0479%         0.0479%         0.0087%         0.0087%         0.0087%         0.0087%         0.0087%         0.0087%         0.0087%         0.0087%         0.0087%         0.0089%         0.120%         0.098%         0.096%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.2477%<br>0.2477%<br>0.2489%<br>0.2489%<br>0.2489%<br>0.2489%<br>0.2489%<br>0.2489%<br>0.2489%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%                  | 0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.2535%<br>0.2535%<br>0.0531%<br>0.0531%<br>5tandard Uncertainty<br>5tandard Uncertainty<br>5tandard Uncertainty<br>5tandard Uncertainty<br>5tandard Uncertainty<br>5tandard Uncertainty<br>0.219%<br>0.233%<br>0.230%<br>0.223%<br>0.223%                                                                                                                                                                                                                                                                                                                                                             | 85.734964<br>85.588783<br>85.709032<br>85.502599<br>85.591162<br>85.623532<br>85.623532<br>85.623532<br>86.265433<br>86.302305<br>86.304520<br>86.304520<br>86.344087<br>86.240820                                        | 0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429 | 0.000122<br>0.000122<br>0.000122<br>0.000122<br>0.000122<br>0.000122<br>surements<br>e Standard<br>u-corr<br>0.000122<br>0.000122<br>0.000122<br>0.000122<br>0.000122 | 0.001173<br>0.000448<br>0.001196<br>0.002160<br>0.000402<br>Uncertainty<br>u-uncorr(lamp)<br>0.000969<br>0.000848<br>0.000123<br>0.000280<br>0.000096 | 0.125%<br>0.062%<br>0.127%<br>0.220%<br>0.059%<br>Lamp uncer<br>all NIST<br>Combine<br>Relative<br>u-uncorr<br>0.106%<br>0.095%<br>0.045%<br>0.051%<br>0.051%                     | 0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.279%<br>0.257%<br>0.279%<br>0.332%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.252%<br>0.243%<br>0.252%<br>0.234%<br>0.229%<br>0.227%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.24353<br>0.23880<br>0.21959<br>0.23955<br>0.28421<br>0.21893<br>sum:<br>sum:<br>cur<br>cd/v<br>0.21005<br>0.21756<br>0.20235<br>0.19761<br>0.19562             | <ul> <li>17.53544</li> <li>20.73790</li> <li>17.42616</li> <li>12.37983</li> <li>20.86361</li> <li>105.80493</li> <li>105.80493</li> <li>105.80493</li> <li>105.80493</li> <li>20.86361</li> <li>105.80493</li> <li>20.86361</li> <li>105.80493</li> <li>20.86361</li> <li>105.80493</li> <li>20.86361</li> <li>20.86361</li> <li>20.86361</li> <li>21.12687</li> <li>22.66487</li> <li>21.12687</li> <li>24.42365</li> <li>25.60772</li> <li>26.13128</li> <li>24.42349</li> <li>24.42349</li> </ul> | 0.15936868<br>0.16573364<br>0.19600125<br>0.16470088<br>0.11700620<br>0.19718936<br>1.00000<br>Final VNIIOFI + Pilot<br>VNIIOFI + Pilot<br>VNIIOFI + Pilot<br>tions for NIST+Pilot<br>ts<br>wi<br>normalised<br>0.156983006<br>0.146330347<br>0.169164733<br>0.17736598<br>0.180992258                         | 0.000207<br>0.000122<br>0.000209<br>0.000258<br>0.000116<br><b>t relative standar</b><br><b>u-uncorr</b><br>0.0479%<br>weighted means<br>wi*u-uncorr<br>0.000166<br>0.000139<br>0.000075<br>0.000091<br>0.000080                                                                               | 0.000413<br>0.000488<br>0.000410<br>0.000291<br>0.000491<br>d uncertainty:<br>u-corr<br>0.2489%<br>0.2489%<br>0.2489%<br>0.000344<br>0.000342<br>0.000342<br>0.000349<br>0.000396<br>0.000396                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3282<br>N 01<br>N 02<br>N 03<br>N 04<br>NMI:<br>Lamp#<br>NIST20100<br>NIST20100<br>NIST20101<br>NIST20102<br>NIST20103<br>NIST20104        | final         final | 3282final<br>N 01final<br>N 02final<br>N 03final<br>N 03final<br>N 04final<br>Summary<br>VNIIOFI-weighted mean:<br>Uncertainties<br>VNIIOFI<br>VNIIOFI + Pilot (u(Ri))<br>VNIIOFI_transfer<br>VNIIOFI_transfer<br>Data ID<br>Data ID<br>NIST20100final<br>NIST20101final<br>NIST20102final<br>NIST20103final<br>NIST20103final<br>NIST20104final<br>NIST20105final<br>Summary<br>NIST20105final                                                                   | 276.875<br>286.864<br>285.529<br>284.099<br>284.045<br> | 0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.0087%         0.0479%         0.0479%         0.0087%         0.0087%         0.0087%         0.0087%         0.0087%         0.0087%         0.0087%         0.0087%         0.0087%         0.0089%         0.120%         0.098%         0.096%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.2477%<br>0.2477%<br>0.2489%<br>0.2489%<br>0.2489%<br>0.2489%<br>0.2489%<br>0.2489%<br>0.2489%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%                  | 0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.2535%<br>0.0531%<br>0.0531%<br>0.0531%<br>5tandard Uncertainty<br>5tandard Uncertainty<br>5tandard Uncertainty<br>5tandard Uncertainty<br>5tandard Uncertainty<br>0.219%<br>0.233%<br>0.230%<br>0.223%<br>0.222%                                                                                                                                                                                                                                                                                                                                                                           | 85.734964<br>85.588783<br>85.709032<br>85.502599<br>85.591162<br>85.623532<br>85.623532<br>85.623532<br>85.623532<br>85.623532<br>85.623532<br>85.623532<br>86.304520<br>86.304520<br>86.304520<br>86.344087              | 0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429 | 0.000122<br>0.000122<br>0.000122<br>0.000122<br>0.000122<br>0.000122<br>surements<br>e Standard<br>u-corr<br>0.000122<br>0.000122<br>0.000122<br>0.000122<br>0.000122 | 0.001173<br>0.000448<br>0.001196<br>0.002160<br>0.000402<br>Uncertainty<br>u-uncorr(lamp)<br>0.000969<br>0.000848<br>0.000123<br>0.000280<br>0.000096 | 0.125%<br>0.062%<br>0.127%<br>0.220%<br>0.059%<br>Lamp uncer<br>all NIST<br>Combine<br>Relative<br>u-uncorr<br>0.106%<br>0.095%<br>0.045%<br>0.051%<br>0.051%                     | 0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.279%<br>0.257%<br>0.279%<br>0.332%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.252%<br>0.243%<br>0.252%<br>0.234%<br>0.229%<br>0.227%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.24353<br>0.23880<br>0.21959<br>0.23955<br>0.28421<br>0.21893<br>sum:<br>sum:<br>curr<br>cd/v<br>0.21005<br>0.21756<br>0.20235<br>0.19761<br>0.19562<br>0.20235 | <ul> <li>17.53544</li> <li>20.73790</li> <li>17.42616</li> <li>12.37983</li> <li>20.86361</li> <li>105.80493</li> <li>105.80493</li> <li>105.80493</li> <li>105.80493</li> <li>105.80493</li> <li>20.86361</li> <li>105.80493</li> <li>20.86361</li> <li>105.80493</li> <li>20.86361</li> <li>20.86361</li> <li>20.86361</li> <li>20.86361</li> <li>21.12687</li> <li>22.66487</li> <li>21.12687</li> <li>24.42365</li> <li>25.60772</li> <li>26.13128</li> <li>24.42349</li> <li>24.42349</li> </ul> | 0.15936868<br>0.16573364<br>0.19600125<br>0.16470088<br>0.11700620<br>0.19718936<br>1.00000<br>Final VNIIOFI + Pilo<br>VNIIOFI + Pilot<br>tions for NIST+Pilot<br>ts<br>wi<br>normalised<br>0.156983006<br>0.146330347<br>0.169164733<br>0.17736598<br>0.180992258<br>0.169163677                              | 0.000207<br>0.000122<br>0.000209<br>0.000258<br>0.000116<br><b>t relative standar</b><br><b>u-uncorr</b><br>0.0479%<br><b>weighted means</b><br>wi*u-uncorr<br>wi*u-uncorr<br>0.000166<br>0.000139<br>0.000075<br>0.000091<br>0.000091<br>0.000080<br>0.000120                                 | 0.000413<br>0.000488<br>0.000410<br>0.000291<br>0.000491<br>d uncertainty:<br>u-corr<br>0.2489%<br>0.2489%<br>0.2489%<br>0.2489%<br>0.000344<br>0.000344<br>0.000342<br>0.000389<br>0.000396<br>0.000378                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3282<br>N 01<br>N 02<br>N 03<br>N 04<br>NO4<br>NMI:<br>Lamp#<br>NIST20100<br>NIST20100<br>NIST20101<br>NIST20102<br>NIST20103<br>NIST20104 | final         final | 3282final<br>N 01final<br>N 02final<br>N 03final<br>N 04final<br>Summary<br>VNIIOFI-weighted mean:<br>Uncertainties<br>VNIIOFI<br>VNIIOFI + Pilot (u(Ri))<br>VNIIOFI_transfer<br>Data ID<br>Data ID<br>NIST20100final<br>NIST20101final<br>NIST20102final<br>NIST20103final<br>NIST20104final<br>NIST20105final<br>NIST20105final                                                                                                                                 | 276.875<br>286.864<br>285.529<br>284.099<br>284.045<br> | 0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.0087%         0.0479%         0.0479%         0.0087%         0.0087%         0.0087%         0.0087%         0.0087%         0.0087%         0.0087%         0.0087%         0.0087%         0.0089%         0.120%         0.098%         0.096%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.2477%<br>0.2489%<br>0.2489%<br>0.2489%<br>0.2489%<br>0.2489%<br>0.2489%<br>0.2489%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%         | 0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.2535%<br>0.2535%<br>0.0531%<br>0.0531%<br>5tandard Uncertainty<br>5tandard Uncertainty<br>5tandard Uncertainty<br>5tandard Uncertainty<br>5tandard Uncertainty<br>5tandard Uncertainty<br>0.219%<br>0.233%<br>0.230%<br>0.223%<br>0.223%                                                                                                                                                                                                                                                                                                                                                             | 85.734964<br>85.588783<br>85.709032<br>85.502599<br>85.591162<br>85.623532<br>85.623532<br>85.623532<br>86.265433<br>86.302305<br>86.304520<br>86.304520<br>86.344087<br>86.240820                                        | 0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429 | 0.000122<br>0.000122<br>0.000122<br>0.000122<br>0.000122<br>0.000122<br>surements<br>e Standard<br>u-corr<br>0.000122<br>0.000122<br>0.000122<br>0.000122<br>0.000122 | 0.001173<br>0.000448<br>0.001196<br>0.002160<br>0.000402<br>Uncertainty<br>u-uncorr(lamp)<br>0.000969<br>0.000848<br>0.000123<br>0.000280<br>0.000096 | 0.125%<br>0.062%<br>0.127%<br>0.220%<br>0.059%<br>Lamp uncer<br>all NIST<br>Combine<br>Relative<br>u-uncorr<br>0.106%<br>0.095%<br>0.045%<br>0.051%<br>0.051%                     | 0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.279%<br>0.257%<br>0.279%<br>0.332%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.252%<br>0.243%<br>0.252%<br>0.234%<br>0.229%<br>0.227%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.24353<br>0.23880<br>0.21959<br>0.23955<br>0.28421<br>0.21893<br>sum:<br>sum:<br>curr<br>cd/v<br>0.21005<br>0.21756<br>0.20235<br>0.19761<br>0.19562<br>0.20235 | <ul> <li>17.53544</li> <li>20.73790</li> <li>17.42616</li> <li>12.37983</li> <li>20.86361</li> <li>105.80493</li> <li>105.80493</li> <li>105.80493</li> <li>105.80493</li> <li>105.80493</li> <li>20.86361</li> <li>105.80493</li> <li>20.86361</li> <li>105.80493</li> <li>20.86361</li> <li>20.86361</li> <li>20.86361</li> <li>20.86361</li> <li>21.12687</li> <li>22.66487</li> <li>21.12687</li> <li>24.42365</li> <li>25.60772</li> <li>26.13128</li> <li>24.42349</li> <li>24.42349</li> </ul> | 0.15936868<br>0.16573364<br>0.19600125<br>0.16470088<br>0.11700620<br>0.19718936<br>1.00000<br>Final VNIIOFI + Pilot<br>VNIIOFI + Pilot<br>VNIIOFI + Pilot<br>tions for NIST+Pilot<br>ts<br>wi<br>normalised<br>0.156983006<br>0.146330347<br>0.169164733<br>0.17736598<br>0.180992258<br>0.169163677          | 0.000207<br>0.000122<br>0.000209<br>0.000258<br>0.000116<br><b>t relative standar</b><br><b>u-uncorr</b><br>0.0479%<br><b>weighted means</b><br>wi*u-uncorr<br>wi*u-uncorr<br>0.000166<br>0.000139<br>0.000075<br>0.000091<br>0.000091<br>0.000080<br>0.000120                                 | 0.000413<br>0.000488<br>0.000410<br>0.000291<br>0.000491<br>d uncertainty:<br>u-corr<br>0.2489%<br>0.2489%<br>0.2489%<br>0.2489%<br>0.000344<br>0.000344<br>0.000342<br>0.000389<br>0.000396<br>0.000378                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3282<br>N 01<br>N 02<br>N 03<br>N 04<br>NMI:<br>Lamp#<br>NIST20100<br>NIST20100<br>NIST20101<br>NIST20102<br>NIST20103<br>NIST20104        | final         final | 3282final<br>N 01final<br>N 02final<br>N 03final<br>N 03final<br>N 04final<br>Summary<br>VNIIOFI-weighted mean:<br>Uncertainties<br>VNIIOFI<br>VNIIOFI + Pilot (u(Ri))<br>VNIIOFI_transfer<br>VNIIOFI_transfer<br>Data ID<br>Data ID<br>NIST20100final<br>NIST20101final<br>NIST20102final<br>NIST20103final<br>NIST20103final<br>NIST20104final<br>NIST20105final<br>Summary<br>NIST20105final                                                                   | 276.875<br>286.864<br>285.529<br>284.099<br>284.045<br> | <ul> <li>0.042%</li> <li>0.042%</li> <li>0.042%</li> <li>0.042%</li> <li>0.042%</li> <li>0.042%</li> <li>0.042%</li> <li>0.042%</li> <li>0.0479%</li> <li>0.0087%</li> <li>0.00479%</li> <li>Interpretation of the second s</li></ul> | 0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.2489%<br>0.2489%<br>0.2489%<br>0.2489%<br>0.2489%<br>0.2489%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200% | 0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.2535%<br>0.2535%<br>0.0531%<br>0.0531%<br>5tandard Uncertainty<br>5tandard Uncertainty<br>5tandard Uncertainty<br>5tandard Uncertainty<br>5tandard Uncertainty<br>5tandard Uncertainty<br>0.219%<br>0.233%<br>0.230%<br>0.223%<br>0.223%                                                                                                                                                                                                                                                                                                                                                             | 85.734964<br>85.588783<br>85.709032<br>85.502599<br>85.591162<br>85.623532<br>85.623532<br>85.623532<br>86.265433<br>86.302305<br>86.304520<br>86.304520<br>86.344087<br>86.240820                                        | 0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429 | 0.000122<br>0.000122<br>0.000122<br>0.000122<br>0.000122<br>0.000122<br>surements<br>e Standard<br>u-corr<br>0.000122<br>0.000122<br>0.000122<br>0.000122<br>0.000122 | 0.001173<br>0.000448<br>0.001196<br>0.002160<br>0.000402<br>Uncertainty<br>u-uncorr(lamp)<br>0.000969<br>0.000848<br>0.000123<br>0.000280<br>0.000096 | 0.125%<br>0.062%<br>0.127%<br>0.220%<br>0.059%<br>Lamp uncer<br>all NIST<br>Combine<br>Relative<br>u-uncorr<br>0.106%<br>0.095%<br>0.045%<br>0.051%<br>0.051%                     | 0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.279%<br>0.257%<br>0.279%<br>0.332%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.252%<br>0.243%<br>0.252%<br>0.234%<br>0.229%<br>0.227%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.24353<br>0.23880<br>0.21959<br>0.23955<br>0.28421<br>0.21893<br>sum:<br>sum:<br>curr<br>cd/v<br>0.21005<br>0.21756<br>0.20235<br>0.19761<br>0.19562<br>0.20235 | <ul> <li>17.53544</li> <li>20.73790</li> <li>17.42616</li> <li>12.37983</li> <li>20.86361</li> <li>105.80493</li> <li>105.80493</li> <li>105.80493</li> <li>105.80493</li> <li>105.80493</li> <li>20.86361</li> <li>105.80493</li> <li>20.86361</li> <li>105.80493</li> <li>20.86361</li> <li>20.86361</li> <li>20.86361</li> <li>20.86361</li> <li>21.12687</li> <li>22.66487</li> <li>21.12687</li> <li>24.42365</li> <li>25.60772</li> <li>26.13128</li> <li>24.42349</li> <li>24.42349</li> </ul> | 0.15936868<br>0.16573364<br>0.19600125<br>0.16470088<br>0.11700620<br>0.19718936<br>1.00000<br>Final VNIIOFI + Pilo<br>VNIIOFI + Pilot<br>tions for NIST+Pilot<br>ts<br>wi<br>normalised<br>0.156983006<br>0.146330347<br>0.169164733<br>0.17736598<br>0.180992258<br>0.169163677                              | 0.000207<br>0.000122<br>0.000209<br>0.000258<br>0.000116<br><b>t relative standar</b><br><b>u-uncorr</b><br>0.0479%<br><b>weighted means</b><br>wi*u-uncorr<br>wi*u-uncorr<br>0.000166<br>0.000139<br>0.000075<br>0.000091<br>0.000091<br>0.000080<br>0.000120                                 | 0.000413<br>0.000488<br>0.000410<br>0.000291<br>0.000491<br>d uncertainty:<br>u-corr<br>0.2489%<br>0.2489%<br>0.2489%<br>0.2489%<br>0.000344<br>0.000344<br>0.000342<br>0.000389<br>0.000396<br>0.000378                                    | 3       3       3       4       5       6       7       8       9       5       2       3       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <t< td=""></t<> |
| 3282<br>N 01<br>N 02<br>N 03<br>N 04<br>NMI:<br>Lamp#<br>NIST20100<br>NIST20100<br>NIST20101<br>NIST20102<br>NIST20103<br>NIST20104        | final         final | 3282final<br>N 01final<br>N 02final<br>N 03final<br>N 04final<br>Summary<br>VNIIOFI-weighted mean:<br>Uncertainties<br>VNIIOFI<br>VNIIOFI + Pilot (u(Ri))<br>VNIIOFI_transfer<br>VNIIOFI_transfer<br>Data ID<br>Data ID<br>NIST20100final<br>NIST20101final<br>NIST20102final<br>NIST20103final<br>NIST20103final<br>NIST20103final<br>NIST20105final<br>NIST20105final<br>NIST20105final<br>NIST20105final<br>NIST20105final<br>NIST20105final<br>NIST20105final | 276.875<br>286.864<br>285.529<br>284.099<br>284.045<br> | 0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.042%         0.0087%         0.0087%         0.0087%         0.0087%         0.00479%         0.00479%         0.00479%         0.00479%         0.00479%         0.00479%         0.0089%         0.120%         0.098%         0.099%         0.099%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.2489%<br>0.2489%<br>0.2489%<br>0.2489%<br>0.2489%<br>0.2489%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200% | 0.249% $0.249%$ $0.249%$ $0.249%$ $0.249%$ $0.249%$ $0.249%$ $0.249%$ $0.249%$ $0.249%$ $0.2535%$ $0.0531%$ $0.0531%$ $0.0531%$ $0.0531%$ $0.0531%$ $0.0531%$ $0.0531%$ $0.0219%$ $0.219%$ $0.223%$ $0.223%$ $0.223%$ $0.223%$ $0.223%$ $0.223%$ $0.223%$ $0.223%$ $0.223%$ $0.223%$ $0.223%$ $0.223%$ $0.223%$ $0.223%$ $0.223%$ $0.223%$ $0.223%$ $0.223%$ $0.223%$ $0.223%$ $0.223%$ $0.223%$ $0.223%$ $0.223%$ $0.223%$ $0.223%$ $0.223%$ $0.223%$ $0.223%$ $0.223%$ $0.223%$ $0.223%$ $0.223%$ $0.223%$ $0.223%$ $0.223%$ $0.223%$ $0.223%$ $0.223%$ $0.223%$ $0.223%$ $0.223%$ $0.223%$ $0.223%$ $0.223%$ $0.223%$ $0.223%$ $0.223%$ $0.223%$ $0.223%$ $0.223%$ $0.223%$ $0.223%$ $0.223%$ | 85.734964<br>85.588783<br>85.709032<br>85.502599<br>85.591162<br>85.623532<br>85.623532<br>85.623532<br>86.265433<br>86.302305<br>86.304520<br>86.304520<br>86.344087<br>86.240820                                        | 0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429 | 0.000122<br>0.000122<br>0.000122<br>0.000122<br>0.000122<br>0.000122<br>surements<br>e Standard<br>u-corr<br>0.000122<br>0.000122<br>0.000122<br>0.000122<br>0.000122 | 0.001173<br>0.000448<br>0.001196<br>0.002160<br>0.000402<br>Uncertainty<br>u-uncorr(lamp)<br>0.000969<br>0.000848<br>0.000123<br>0.000280<br>0.000096 | 0.125%<br>0.062%<br>0.127%<br>0.220%<br>0.059%<br>Lamp uncer<br>all NIST<br>Combine<br>Relative<br>u-uncorr<br>0.106%<br>0.095%<br>0.045%<br>0.051%<br>0.051%                     | 0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.279%<br>0.257%<br>0.279%<br>0.332%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.243%<br>0.252%<br>0.243%<br>0.252%<br>0.234%<br>0.229%<br>0.227%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.24353<br>0.23880<br>0.21959<br>0.23955<br>0.28421<br>0.21893<br>sum:<br>sum:<br>curr<br>cd/v<br>0.21005<br>0.21756<br>0.20235<br>0.19761<br>0.19562<br>0.20235 | <ul> <li>17.53544</li> <li>20.73790</li> <li>17.42616</li> <li>12.37983</li> <li>20.86361</li> <li>105.80493</li> <li>105.80493</li> <li>105.80493</li> <li>105.80493</li> <li>105.80493</li> <li>20.86361</li> <li>105.80493</li> <li>20.86361</li> <li>105.80493</li> <li>20.86361</li> <li>20.86361</li> <li>20.86361</li> <li>20.86361</li> <li>21.12687</li> <li>22.66487</li> <li>21.12687</li> <li>24.42365</li> <li>25.60772</li> <li>26.13128</li> <li>24.42349</li> <li>24.42349</li> </ul> | 0.15936868<br>0.16573364<br>0.19600125<br>0.16470088<br>0.11700620<br>0.19718936<br>1.00000<br>Final VNIIOFI + Pilo<br>VNIIOFI + Pilot<br>tions for NIST+Pilot<br>ts<br>wi<br>normalised<br>0.156983006<br>0.146330347<br>0.169164733<br>0.17736598<br>0.180992258<br>0.169163677                              | 0.000207<br>0.000122<br>0.000209<br>0.000258<br>0.000116<br><b>t relative standar</b><br><b>u-uncorr</b><br>0.0479%<br>0.0479%<br>weighted means<br>wi*u-uncorr<br>0.000166<br>0.000139<br>0.0000139<br>0.000075<br>0.000091<br>0.000091<br>0.000080<br>0.0000120                              | 0.000413<br>0.000488<br>0.000410<br>0.000291<br>0.000491<br>duncertainty:<br>u-corr<br>0.2489%<br>0.2489%<br>0.2489%<br>0.2489%<br>0.000344<br>0.000342<br>0.000342<br>0.000342<br>0.000342<br>0.000342                                     | 3       3       3       4       5       6       7       8       8       9       5       2       3       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3282<br>N 01<br>N 02<br>N 03<br>N 04                                                                                                       | final         final | 3282final<br>N 01final<br>N 02final<br>N 03final<br>N 04final<br>Summary<br>VNIIOFI-weighted mean:<br>Uncertainties<br>VNIIOFI<br>VNIIOFI + Pilot (u(Ri))<br>VNIIOFI_transfer<br>Data ID<br>Data ID<br>Data ID<br>NIST20100final<br>NIST20101final<br>NIST20102final<br>NIST20102final<br>NIST20103final<br>NIST20103final<br>NIST20104final<br>NIST20105final<br>NIST20105final<br>NIST20105final<br>NIST20105final<br>NIST20105final                            | 276.875<br>286.864<br>285.529<br>284.099<br>284.045<br> | <ul> <li>0.042%</li> <li>0.042%</li> <li>0.042%</li> <li>0.042%</li> <li>0.042%</li> <li>0.042%</li> <li>0.042%</li> <li>0.042%</li> <li>0.0479%</li> <li>0.0087%</li> <li>0.00479%</li> <li>Interpretation of the second s</li></ul> | 0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.245%<br>0.2489%<br>0.2489%<br>0.2489%<br>0.2489%<br>0.2489%<br>0.2489%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200%<br>0.200% | $0.249\%$ $0.249\%$ $0.249\%$ $0.249\%$ $0.249\%$ $0.249\%$ $0.249\%$ $0.249\%$ $0.249\%$ $0.2479\%$ $0.2535\%$ $0.0531\%$ $0.0531\%$ $0.0531\%$ $c final lamp (uf)$ $SQRT(u-uncorr^2 + u-corr^2)$ $0.219\%$ $0.223\%$ $0.223\%$ $0.223\%$ $0.222\%$ $0.223\%$ $0.223\%$ $0.223\%$                                                                                                                                                                                                                                                                                                                                                                                                               | 85.734964<br>85.588783<br>85.709032<br>85.502599<br>85.591162<br>85.623532<br>85.623532<br>85.623532<br>86.265433<br>86.302305<br>86.304520<br>86.304520<br>86.344087<br>86.240820                                        | 0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429<br>0.000429 | 0.000122<br>0.000122<br>0.000122<br>0.000122<br>0.000122<br>0.000122<br>surements<br>e Standard<br>u-corr<br>0.000122<br>0.000122<br>0.000122<br>0.000122<br>0.000122 | 0.001173<br>0.000448<br>0.001196<br>0.002160<br>0.000402<br>Uncertainty<br>u-uncorr(lamp)<br>0.000969<br>0.000848<br>0.000123<br>0.000280<br>0.000096 | 0.125%<br>0.062%<br>0.127%<br>0.220%<br>0.059%<br>Lamp uncer<br>all NIST<br>Combine<br>Relative<br>u-uncorr<br>0.106%<br>0.095%<br>0.045%<br>0.051%<br>0.051%<br>0.044%<br>0.071% | 0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>0.249%<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.279%<br>0.257%<br>0.279%<br>0.332%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.256%<br>0.243%<br>0.252%<br>0.243%<br>0.252%<br>0.234%<br>0.229%<br>0.227%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.24353<br>0.23880<br>0.21959<br>0.23955<br>0.28421<br>0.21893<br>sum:<br>sum:<br>curr<br>cd/v<br>0.21005<br>0.21756<br>0.20235<br>0.19761<br>0.19562<br>0.20235 | <ul> <li>17.53544</li> <li>20.73790</li> <li>17.42616</li> <li>12.37983</li> <li>20.86361</li> <li>105.80493</li> <li>105.80493</li> <li>105.80493</li> <li>105.80493</li> <li>105.80493</li> <li>20.86361</li> <li>105.80493</li> <li>20.86361</li> <li>105.80493</li> <li>20.86361</li> <li>20.86361</li> <li>20.86361</li> <li>20.86361</li> <li>21.12687</li> <li>22.66487</li> <li>21.12687</li> <li>24.42365</li> <li>25.60772</li> <li>26.13128</li> <li>24.42349</li> <li>24.42349</li> </ul> | 0.15936868<br>0.16573364<br>0.19600125<br>0.16470088<br>0.11700620<br>0.19718936<br>1.00000<br>Final VNIIOFI + Pilot<br>VNIIOFI + Pilot<br>VNIIOFI + Pilot<br>ts<br>wi<br>normalised<br>0.156983006<br>0.146330347<br>0.169164733<br>0.17736598<br>0.180992258<br>0.169163677<br>1.00000<br>Final NIST + Pilot | 0.000207<br>0.000122<br>0.000258<br>0.000116<br><b>t relative standar</b><br><b>u-uncorr</b><br>0.0479%<br><b>weighted means</b><br>wi*u-uncorr<br>0.000166<br>0.000166<br>0.000139<br>0.000075<br>0.000091<br>0.000091<br>0.000080<br>0.000120<br><b>relative standard</b><br><b>u-uncorr</b> | 0.000413<br>0.000488<br>0.000410<br>0.000291<br>0.000491<br>d uncertainty:<br>u-corr<br>0.2489%<br>0.2489%<br>0.2489%<br>0.2489%<br>0.00344<br>0.000342<br>0.000344<br>0.000342<br>0.000342<br>0.000342<br>0.000342<br>0.000342<br>0.000378 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

CCPR-K3.2014: Luminous Intensity Draft B


|     | А      | В      | С                   | D       | E        | F           | G                          | Н              | Ι         | J          | К              | L        | М            | N                            | 0 P     | Q        | R                     | S                | Т            | U       |
|-----|--------|--------|---------------------|---------|----------|-------------|----------------------------|----------------|-----------|------------|----------------|----------|--------------|------------------------------|---------|----------|-----------------------|------------------|--------------|---------|
| 232 |        |        |                     |         |          |             |                            |                |           |            |                |          |              |                              |         |          |                       |                  |              |         |
| 233 | Lamp#  | Round# | Data ID             |         | NR       | C Lamp Lumi | nous Intensity             |                | Pilot Mea | surements  |                | Combine  | ed Uncertain | <b>ty u(</b> <i>R(i,j)</i> ) |         | Calcula  | tions for NRC+Pilot v | weighted means   |              |         |
| 234 |        |        |                     | l(cd)   |          | Relative St | tandard Uncertainty        | R(i,j)         | Relativ   | e Standard | Jncertainty    | Relative | Standard U   | ncertainty                   |         | Weigl    | nts                   |                  |              |         |
| 235 |        |        |                     |         | random   | systematic  | final lamp (uf)            | <cd v=""></cd> | u-uncorr  | u-corr     | u-uncorr(lamp) | u-uncorr | u-corr       | combined uT                  | uT      | 1/(uT)^2 | wi                    | wi*u-uncorr      | wi*u-corr    |         |
| 236 |        |        |                     |         | u-uncorr | u-corr      | SQRT(u-uncorr^2 + u-corr^2 | 2)             |           |            |                |          |              |                              | cd/V    |          | normalised            |                  |              |         |
| 237 |        |        |                     |         |          |             |                            |                |           |            |                |          |              |                              |         |          |                       |                  |              |         |
| 238 | NRC021 | final  | NRC021final         | 254.400 | 0.100%   | 0.605%      | 0.614%                     | 86.710956      | 0.000303  | 0.000122   | 0.000663       | 0.073%   | 0.614%       | 0.618%                       | 0.53582 | 3.48310  | 0.165944              | 0.000121         | 0.001018     |         |
| 239 | NRC022 | final  | NRC022final         | 251.600 | 0.100%   | 0.605%      | 0.614%                     | 86.432845      | 0.000303  | 0.000122   | 0.000604       | 0.068%   | 0.614%       | 0.617%                       | 0.53358 | 3.51242  | 0.167341              | 0.000113         | 0.001027     |         |
| 240 | NRC023 | final  | NRC023final         | 254.000 | 0.100%   | 0.605%      | 0.614%                     | 86.667211      | 0.000303  | 0.000122   | 0.000168       | 0.035%   | 0.614%       | 0.615%                       | 0.53266 | 3.52457  | 0.167920              | 0.000058         | 0.001030     |         |
| 241 | NRC026 | final  | NRC026final         | 252.200 | 0.100%   | 0.605%      | 0.614%                     | 86.838748      | 0.000303  | 0.000122   | 0.000788       | 0.084%   | 0.614%       | 0.619%                       | 0.53789 | 3.45635  | 0.164669              | 0.000139         | 0.001010     |         |
| 242 | NRC027 | final  | NRC027final         | 254.600 | 0.100%   | 0.605%      | 0.614%                     | 86.676055      | 0.000303  | 0.000122   | 0.000294       | 0.042%   | 0.614%       | 0.615%                       | 0.53312 | 3.51843  | 0.167627              | 0.000071         | 0.001029     |         |
| 243 | NRC030 | final  | NRC030final         | 253.800 | 0.100%   | 0.605%      | 0.614%                     | 86.872708      | 0.000303  | 0.000122   | 0.000413       | 0.051%   | 0.614%       | 0.616%                       | 0.53492 | 3.49476  | 0.166499              | 0.000085         | 0.001022     |         |
| 244 |        |        |                     |         |          |             |                            |                |           |            |                |          |              |                              |         |          |                       |                  |              |         |
| 245 |        |        | Summary             |         |          |             |                            |                |           |            |                |          |              |                              | sum:    | 20.98962 | 1.00000               |                  |              |         |
| 246 |        |        | NRC-weighted mean:  |         |          |             | R(i                        | )= 86.699196   |           |            |                |          |              |                              |         |          |                       |                  |              |         |
| 247 |        |        | Uncertainties       |         |          |             |                            |                |           |            |                |          |              |                              |         |          | Final NRC + Pilot r   | elative standard | uncertainty: |         |
| 248 |        |        | NRC                 |         | 0.0204%  | 0.6115%     | 0.6118%                    |                |           |            |                |          |              |                              |         |          |                       | u-uncorr         | u-corr       | uf      |
| 249 |        |        | NRC + Pilot (u(Ri)) |         | 0.0250%  | 0.6136%     | 0.6141%                    |                |           |            |                |          |              |                              |         |          | NRC + Pilot           | 0.0250%          | 0.6136%      | 0.6141% |
| 250 |        |        | NRC_transfer        |         |          |             | 0.0534%                    |                |           |            |                |          |              |                              |         |          |                       |                  |              |         |

| А                                                                                                     | В                     | С                      | D                  | E                    | F                    | G                 | н               | Ι                      | J                    | К                 | L                    | М          | N O       | Р                  | O R                      | S T            | U                | V             | W                 | Х                |
|-------------------------------------------------------------------------------------------------------|-----------------------|------------------------|--------------------|----------------------|----------------------|-------------------|-----------------|------------------------|----------------------|-------------------|----------------------|------------|-----------|--------------------|--------------------------|----------------|------------------|---------------|-------------------|------------------|
| 1 <b>CCPF</b>                                                                                         | -K3.2014: Luminous I  | Intensity              |                    |                      |                      |                   |                 |                        |                      |                   |                      |            |           |                    |                          |                |                  |               |                   |                  |
| 2 Draf                                                                                                | B Report              |                        |                    |                      |                      |                   |                 |                        |                      |                   |                      |            |           |                    |                          |                |                  |               |                   |                  |
| 3 2020                                                                                                | -October-15           |                        |                    |                      |                      |                   |                 |                        |                      |                   |                      |            |           |                    |                          |                |                  |               |                   |                  |
| 4 <b>Appe</b>                                                                                         | endix Ev2.1           |                        |                    |                      |                      |                   |                 |                        |                      |                   |                      |            |           |                    |                          |                |                  |               |                   |                  |
| 5 Calc                                                                                                | lation of the KCRV ar | nd the Unilatera       | l DoE              |                      |                      |                   |                 |                        |                      |                   |                      |            |           |                    |                          |                |                  |               |                   |                  |
| 6                                                                                                     |                       |                        |                    |                      |                      | 0.0006163         | Draft Av1.0 va  | lue                    |                      |                   |                      |            |           |                    |                          |                |                  |               |                   |                  |
| 7                                                                                                     |                       |                        |                    |                      |                      | 0.0003400         | Draft Av2.0 va  | lue                    |                      |                   |                      |            |           |                    |                          |                |                  |               |                   |                  |
| 8                                                                                                     |                       |                        |                    | Mandel-Pa            | ule adjustment s:    | 0.0003100         | (relative stand | lard uncertainty       | ()                   |                   |                      |            |           |                    |                          |                |                  |               |                   |                  |
| 9                                                                                                     |                       |                        |                    |                      |                      |                   |                 |                        |                      |                   |                      |            |           |                    |                          |                |                  |               |                   |                  |
| 10                                                                                                    |                       |                        |                    |                      |                      |                   |                 |                        |                      |                   |                      |            |           |                    |                          |                | Unilateral D     |               |                   |                  |
| 11                                                                                                    |                       |                        |                    | Standard Unce        |                      | Uncertaint        |                 |                        |                      |                   | ertainty calcula     |            |           | Outlier Test       | Chi-square               | Unilateral DoE |                  | i(Di) for k=1 | -                 |                  |
| 12                                                                                                    | NMI                   | R(i)                   | u(NMI)             | uc(NMI)              | Pilot Transfer       | cutoff NMI+       |                 |                        | eights wi            | u(R(i))=u(NN      |                      | wi*u(R(i)) | R(i)-KCRV | (R(i)-KCRV)/u(NMI) | (R(i)-KCRV)^2/u(c,t,s)^2 | Di             | correlation term | ui(Di)        | k=1               |                  |
| 13                                                                                                    |                       | cd/V                   | no cutoff          | with cutoff          | u(t)                 | relative standard | cd/V            | 1/u(c,t,s)^2           | normalised           | relative Standard | cd/V                 | cd/V       | cd/V      |                    | 16.906950                | (Ri-KCRV)/KCRV | cd/V             |               | ui(Di)/KCRV       | Di/ui            |
| 14                                                                                                    |                       |                        |                    |                      |                      |                   |                 |                        |                      |                   |                      |            |           |                    |                          |                |                  |               |                   |                  |
| 15<br>16 1                                                                                            |                       | 86 650060              | 0.002622           | 0.002622             | 0.000400             | 0.002672          | 0.221546        | 18 (52020              | 0.071500             | 0.002654          | 0.220082             | 0.010407   | 0.402221  | 4 77               | 2.022584                 | 0.004675       | 0.007574         | 0.220050      | 0.0025.00         | 1.0250           |
| 16 1<br>17 2                                                                                          | NMIJ<br>NIM           | 86.659060<br>86.269629 | 0.002622           | 0.002622<br>0.001722 | 0.000408<br>0.000494 | 0.002672          | 0.231546        | 18.652039<br>40.632629 | 0.071599<br>0.155976 | 0.002654          | 0.229982<br>0.151194 | 0.016467   | 0.403221  | 1.77<br>0.10       | 3.032584<br>0.007727     | 0.004675       | 0.007574         | 0.220850      | 0.002560 0.001606 | 1.8258<br>0.0996 |
| 17 <u>2</u><br>18 3                                                                                   | PTB                   | 86.269629              | 0.001681           | 0.001722             | 0.000494             | 0.001818          | 0.156726        | 40.632629              | 0.155976             | 0.001753          | 0.131194             | 0.023583   | -0.030379 | -0.23              | 0.037572                 | -0.000352      | 0.005865         | 0.138511      | 0.001606          | -0.2375          |
| 19 4                                                                                                  | METAS                 | 86.206253              | 0.003133           | 0.003133             | 0.000301             | 0.003163          | 0.272672        | 13.449899              | 0.051630             | 0.003148          | 0.130382             | 0.014010   | -0.049586 | -0.18              | 0.033070                 | -0.000575      | 0.007604         | 0.263608      | 0.003056          | -0.1881          |
| 20 5                                                                                                  | NIST                  | 86.305732              | 0.002198           | 0.002198             | 0.000563             | 0.002290          | 0.197679        | 25.590523              | 0.091030             | 0.002269          | 0.195860             | 0.019240   | 0.049893  | 0.26               | 0.063704                 | 0.000578       | 0.007537         | 0.185152      | 0.002147          | 0.2695           |
| 21 6                                                                                                  | NMIA                  | 86.100187              | 0.001529           | 0.001722             | 0.000360             | 0.001787          | 0.153834        | 42.256726              | 0.162211             | 0.001571          | 0.135221             | 0.021934   | -0.155652 | -1.18              | 1.023773                 | -0.001805      | 0.005932         | 0.125736      | 0.001458          | -1.2379          |
| 22 7                                                                                                  | VNIIOFI               | 85.623532              | 0.002479           | 0.002479             | 0.000531             | 0.002554          | 0.218685        | 20.910394              | 0.080269             | 0.002535          | 0.217068             | 0.017424   | -0.632307 | -2.98              | 8.360223                 | -0.007331      | 0.007564         | 0.207391      | 0.002404          | -3.0489          |
| 23 8                                                                                                  | IO-CSIC               | 86.162792              | 0.003100           | 0.003100             | 0.000365             | 0.003137          | 0.270298        | 13.687225              | 0.052541             | 0.003122          | 0.268975             | 0.014132   | -0.093046 | -0.35              | 0.118499                 | -0.001079      | 0.007602         | 0.261155      | 0.003028          | -0.3563          |
| 24 9                                                                                                  | NPL                   | 86.549260              | 0.001692           | 0.001722             | 0.000431             | 0.001802          | 0.155991        | 41.095974              | 0.157755             | 0.001746          | 0.151156             | 0.023846   | 0.293421  | 2.00               | 3.538205                 | 0.003402       | 0.007209         | 0.138189      | 0.001602          | 2.1233           |
| 25 10                                                                                                 | NMISA                 | 85.452603              | 0.006608           | 0.006608             | 0.000614             | 0.006644          | 0.567723        | 0.000000               | 0.000000             | 0.006636          | 0.567105             | 0.000000   | -0.803236 | -1.42              | 0.000000                 | -0.009312      | 0.000000         | 0.570144      | 0.006610          | -1.4088          |
| 26 11                                                                                                 | NRC                   | 86.699196              | 0.006118           | 0.006118             | 0.000534             | 0.006149          | 0.533124        | 3.518389               | 0.013506             | 0.006141          | 0.532446             | 0.007191   | 0.443357  | 0.84               | 0.691594                 | 0.005140       | 0.007658         | 0.528486      | 0.006127          | 0.8389           |
| 27                                                                                                    |                       |                        |                    |                      |                      |                   |                 |                        |                      |                   |                      |            |           |                    |                          |                |                  |               |                   |                  |
| 26 11<br>27<br>28<br>29<br>30                                                                         | median N              | MI uncertainty:        | 0.002339           |                      |                      |                   | SUM(wi          | ): 260.505487          | 1.000000             |                   | u(KCRV):             | 0.058794   |           |                    |                          |                |                  |               |                   |                  |
| 29                                                                                                    | cut                   | off uncertainty:       | 0.001722           |                      |                      |                   |                 |                        |                      |                   |                      |            |           |                    |                          |                |                  |               |                   |                  |
| 50                                                                                                    |                       |                        |                    |                      |                      |                   |                 |                        |                      |                   |                      |            |           |                    |                          |                |                  |               |                   |                  |
| 31                                                                                                    | KCRV:                 |                        | cd/V               |                      |                      |                   |                 |                        |                      |                   |                      |            |           |                    |                          |                |                  |               |                   |                  |
| 32                                                                                                    | u(KCRV):              |                        | cd/V               |                      |                      |                   |                 |                        |                      |                   |                      |            |           |                    |                          |                |                  |               |                   |                  |
| 33                                                                                                    | u(KCRV):              | 0.000682               | (relative standar  | d uncertainty)       |                      |                   |                 |                        |                      |                   |                      |            |           |                    |                          |                |                  |               |                   |                  |
| 34                                                                                                    |                       |                        |                    |                      |                      | •                 |                 |                        |                      |                   |                      |            |           |                    |                          |                |                  |               |                   |                  |
| 35                                                                                                    | for plot text box:    |                        |                    |                      |                      | y)                |                 |                        |                      |                   |                      |            |           |                    |                          |                |                  |               |                   |                  |
| 36                                                                                                    |                       | u(KCRV): 0.0006        | 8 (relative standa | ard uncertainty)     |                      |                   |                 |                        |                      |                   |                      |            |           |                    |                          |                |                  |               |                   |                  |
| 31       32       33       34       35       36       37       38       39       40       41       42 | for plot:             | 0.0                    | 0.000682           | -0.000682            |                      |                   |                 |                        |                      |                   |                      |            |           |                    |                          |                |                  |               |                   |                  |
| 30                                                                                                    |                       | 12.0                   | 0.000682           |                      |                      |                   |                 |                        |                      |                   |                      |            |           |                    |                          |                |                  |               |                   |                  |
| 40                                                                                                    |                       | 12.0                   | 0.000682           |                      |                      |                   |                 |                        |                      |                   |                      |            |           |                    |                          |                |                  |               |                   |                  |
| 41                                                                                                    |                       |                        | 0.000682           |                      |                      |                   |                 |                        |                      |                   |                      |            |           |                    |                          |                |                  |               |                   |                  |
| 42                                                                                                    |                       |                        | 0.000682           |                      |                      |                   |                 |                        |                      |                   |                      |            |           |                    |                          |                |                  |               |                   |                  |
| 43                                                                                                    |                       |                        | 0.000682           |                      |                      |                   |                 |                        |                      |                   |                      |            |           |                    |                          |                |                  |               |                   |                  |
| 43<br>44<br>45<br>46<br>47                                                                            |                       |                        | 0.000682           |                      |                      |                   |                 |                        |                      |                   |                      |            |           |                    |                          |                |                  |               |                   |                  |
| 45                                                                                                    |                       |                        | 0.000682           | -0.000682            |                      |                   |                 |                        |                      |                   |                      |            |           |                    |                          |                |                  |               |                   |                  |
| 46                                                                                                    |                       |                        | 0.000682           |                      |                      |                   |                 |                        |                      |                   |                      |            |           |                    |                          |                |                  |               |                   |                  |
| 47                                                                                                    |                       |                        | 0.000682           | -0.000682            |                      |                   |                 |                        |                      |                   |                      |            |           |                    |                          |                |                  |               |                   |                  |
| 48                                                                                                    |                       |                        | 0.000682           | -0.000682            |                      |                   |                 |                        |                      |                   |                      |            |           |                    |                          |                |                  |               |                   |                  |
| 48<br>49<br>50                                                                                        |                       |                        | 0.000682           |                      |                      |                   |                 |                        |                      |                   |                      |            |           |                    |                          |                |                  |               |                   |                  |
| 50                                                                                                    |                       |                        | 0.000682           | -0.000682            |                      |                   |                 |                        |                      |                   |                      |            |           |                    |                          |                |                  |               |                   |                  |

Page 13 of 15

| A             | В                              | С                   | D E      | F         | G        | н         | I        | J         | К        | L         | М        | N         | 0         | P                      | Q         | R         | S        | т         | U        | V                      | W        | х         | Y        | Z         | AA                                      |
|---------------|--------------------------------|---------------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|-----------|------------------------|-----------|-----------|----------|-----------|----------|------------------------|----------|-----------|----------|-----------|-----------------------------------------|
| 1 <b>CCP</b>  | -K3.2014: Luminou              | is Intensity        |          |           |          |           |          |           |          |           |          |           |           |                        | -         |           |          |           |          |                        |          |           |          |           |                                         |
| 2 Draf        | B Report                       |                     |          |           |          |           |          |           |          |           |          |           |           |                        |           |           |          |           |          |                        |          |           |          |           |                                         |
| 3 <b>202</b>  | -October-15                    |                     |          |           |          |           |          |           |          |           |          |           |           |                        |           |           |          |           |          |                        |          |           |          |           | *************************************** |
| 4 App         | endix Fv2.1                    |                     |          |           |          |           |          |           |          |           |          |           |           |                        |           |           |          |           |          |                        |          |           |          |           |                                         |
| 5 Calc        | lation of the Bilate           | eral DoE (uij, k=1) |          |           |          |           |          |           |          |           |          |           |           |                        |           |           |          |           |          |                        |          |           |          |           |                                         |
| 5             | <mark>ui and uij are k=</mark> | 1 uncertainties     |          |           |          |           |          |           |          |           |          |           |           |                        |           |           |          |           |          |                        |          |           |          |           |                                         |
| 7             |                                |                     |          |           |          |           |          |           |          |           |          |           |           |                        |           |           |          |           |          |                        |          |           |          |           |                                         |
| 8             |                                |                     |          |           |          |           |          |           |          |           |          |           |           |                        |           |           |          |           |          |                        |          |           |          |           |                                         |
| 9             |                                |                     | j:       | 10-05     | SIC      | MET       | AS       | NI        | М        | NIS       | ST       | NMI       | Α         | NM                     | IJ        | NMIS      | 5A       | NP        | L        | NR                     | RC       | PT        | В        | VNIIC     |                                         |
| .0 i          | NMI                            | Di                  | ui       | Dij       | uij       | Dij                    | uij       | Dij       | uij      | Dij       | uij      | Dij                    | uij      | Dij       | uij      | Dij       | uij                                     |
| 1 1           | IO-CSIC                        | -0.001079           | 0.003028 |           |          | -0.000504 | 0.004433 | -0.001239 | 0.003580 | -0.001657 | 0.003859 | 0.000726  | 0.003494  | -0.005753              | 0.004097  | 0.008234  | 0.007334 | -0.004480 | 0.003577 | -0.006219              | 0.006889 | -0.000727 | 0.003503 | 0.006252  | 0.0040                                  |
| 2 2           | METAS                          | -0.000575           | 0.003056 | 0.000504  | 0.004433 |           |          | -0.000735 | 0.003603 | -0.001153 | 0.003881 | 0.001230  | 0.003518  | -0.005250              | 0.004117  | 0.008737  | 0.007345 | -0.003977 | 0.003600 | -0.005715              | 0.006901 | -0.000223 | 0.003526 | 0.006756  | 0.00404                                 |
| .3 3          | NIM                            | 0.000160            | 0.001606 | 0.001239  | 0.003580 | 0.000735  | 0.003603 |           |          | -0.000419 | 0.002867 | 0.001964  | 0.002353  | -0.004515              | 0.003180  | 0.009472  | 0.006864 | -0.003242 | 0.002474 | -0.004980              | 0.006386 | 0.000512  | 0.002365 | 0.007490  | 0.0030                                  |
| 4 4           | NIST                           | 0.000578            | 0.002147 | 0.001657  | 0.003859 | 0.001153  | 0.003881 | 0.000419  | 0.002867 |           |          | 0.002383  | 0.002760  | -0.004096              | 0.003492  | 0.009891  | 0.007014 | -0.002823 | 0.002864 | -0.004562              | 0.006547 | 0.000931  | 0.002770 | 0.007909  | 0.0034                                  |
| .5 5          | NMIA                           | -0.001805           | 0.001458 | -0.000726 | 0.003494 | -0.001230 | 0.003518 | -0.001964 | 0.002353 | -0.002383 | 0.002760 | 0.000470  | 0.00000.4 | -0.006479              | 0.003084  | 0.007508  | 0.006820 | -0.005206 | 0.002349 | -0.006945              | 0.006339 | -0.001452 | 0.002234 | 0.005526  | 0.0029                                  |
| .6 6<br>.7 7  | NMIJ                           | 0.004675            | 0.002560 | 0.005753  | 0.004097 | 0.005250  | 0.004117 | 0.004515  | 0.003180 | 0.004096  | 0.003492 | 0.006479  | 0.003084  | 0.012007               | 0 0071 47 | 0.013987  | 0.007147 | 0.001273  | 0.003177 | -0.000465              | 0.006690 | 0.005027  | 0.003093 | 0.012005  | 0.0036                                  |
|               | NMISA                          | -0.009312           | 0.006610 | -0.008234 | 0.007334 | -0.008737 | 0.007345 | -0.009472 | 0.006864 | -0.009891 | 0.007014 | -0.007508 | 0.006820  | -0.013987              | 0.007147  | 0.01271.4 | 0.000000 | -0.012714 | 0.006862 | -0.014452              | 0.009042 | -0.008960 | 0.006824 | -0.001982 | 0.00710                                 |
| .8 8<br>.9 9  | NPL                            | 0.003402            | 0.001602 | 0.004480  | 0.003577 | 0.003977  | 0.003600 | 0.003242  | 0.002474 | 0.002823  | 0.002864 | 0.005206  | 0.002349  | -0.001273              | 0.003177  | 0.012714  | 0.006862 | 0.001720  | 0.000205 | -0.001738              | 0.006385 | 0.003754  | 0.002361 | 0.010732  | 0.0030                                  |
|               | NRC                            | 0.005140            | 0.006127 | 0.006219  | 0.006889 | 0.005715  | 0.006901 | 0.004980  | 0.006386 | 0.004562  | 0.006547 | 0.006945  | 0.006339  | 0.000465               | 0.006690  | 0.014452  | 0.009042 | 0.001738  | 0.006385 | 0.005.402              | 0.006242 | 0.005492  | 0.006343 | 0.012471  | 0.00664                                 |
| 0 10          | PTB                            | -0.000352           | 0.001483 | 0.000727  | 0.003503 | 0.000223  | 0.003526 | -0.000512 | 0.002365 | -0.000931 | 0.002770 | 0.001452  | 0.002234  | -0.005027<br>-0.012005 | 0.003093  | 0.008960  | 0.006824 | -0.003754 | 0.002361 | -0.005492<br>-0.012471 | 0.006343 | -0.006978 | 0.002992 | 0.006978  | 0.0029                                  |
| 10 10<br>1 11 | VNIIOFI                        | -0.007331           | 0.002404 | -0.006252 | 0.004021 | -0.006756 | 0.004042 |           |          |           |          |           |           |                        |           |           |          |           |          |                        |          |           |          |           |                                         |

Page 14 of 15



# CCPR-K .201 Luminous Intensity Unilateral Degrees of Equivalence