

SIM.QM-S10

Supplementary Comparison for Trace elements in skim milk powder

January, 2021

Coordinating Laboratory:

Patricia Grinberg and Zoltan Mester National Research Council Canada, Metrology Ottawa, Ontario, Canada, K1A 0R6

With contributions from:

Patricia Gatti, Osvaldo Acosta, Mabel Puelles, Instituto Nacional de Tecnología Industrial, Argentina (INTI)

Mabel Delgado, Instituto Boliviano de Metrología, Bolivia (IBMETRO)

Rodrigo Caciano de Sena, Marcelo Dominguez de Almeida, Marcia Silva da Rocha, National Institute of Metrology, Quality and Technology, Brazil (INMETRO)

Soraya Sandoval, Claudia Núñez, Javier Vera, Instituto de Salud Pública de Chile, Public Health Institute of Chile, Chile (ISP)

Wei Chao, Li Xiao, National Institute of Metrology, China, (NIM China)

Henry Torres Quezada, Gina Torres, Diego A. Garzón, Diego A. Ahumada, Instituto Nacional de Metrología de Colombia, Colombia (INMC Colombia)

Jimmy Venegas Padilla, Katia Rosales Ovares, Bryan Calderón Jiménez, Laboratorio Costarricense de Metrología, Costa Rica (LACOMET)

Evelyn Vasco, Servicio Ecuatoriano de Normalización, Ecuador (INEN)

Laura Regalado Contreras, Mariana Arce Osuna, National Metrology Institute of Mexico, Mexico (CENAM)

Radojko Jacimovic, Tea Zuliani, Jozef Stefan Institute, Slovenia (JSI)

Nunnapus Laitip, Usana Thiengmanee, Nattikarn Ornthai, Pranee Phukphatthanachai, Suttinun Taebunpakul, National Institute of Metrology of Thailand, Thailand (NIMT)

Hanen Klich, National Institute of Research and Physical chemical Analysis, Tunisia (INRAP)

Abstract

SIM.QM-S10 was performed to assess the analytical capabilities of National Metrology Institutes (NMIs) and Designated Institutes (DIs) of SIM members (or other regions) for the accurate determination of trace metals in skim milk powder. The study was proposed by the coordinating laboratories National Research Council Canada (NRC) and INTI Argentina as an activity of Sistema Interamericano de Metrología (SIM) approved by the Inorganic Analysis Working Group (IAWG) of *Consultative Committee for Amount of Substance – Metrology in Chemistry and Biology* (CCQM). Participants included NMIs/DIs from twelve countries. No measurement method was prescribed by the coordinating laboratories. Therefore, NMIs used measurement methods of their choice. However, the majority of NMIs/DIs used closed vessel microwave system using a mixture of HNO₃ and H₂O₂ for the digestion and ICP-MS and ICP-OES for the determination of the measurands.

This SIM.QM-S10 Supplementary Comparison provides NMIs/DIs with the needed evidence for CMC claims for trace elements in skim milk powder and similar matrices.

1. Introduction and background

Skim milk powder is widely used as a food ingredient and has the same nutrition of fresh nonfat milk but with a longer shelf life. The determination of micronutrients and trace elements in skim milk powder is an important and commonly performed measurement responsibility to ensure the nutritional quality of milk powder and derivates products.

An earlier key comparison in this area was conducted in 2014 under the auspices of the CIPM as CCQM-K125, with the parallel pilot study CCQM-P159 (Iodine and other elements in infant formula). Since a few members from the SIM community did not participate in this comparison, the SIM regional comparison (SIM.QM-S10) was proposed to ensure the comparable and traceable measurement results for microelements and trace elements such as Ca, Fe, Se, and Zn in skim milk powder and similar matrices. This comparison provided NMIs with the needed evidence for CMC claims for trace elements in skim milk powder and similar matrices. Note that those laboratories wishing to utilize this exercise for support of CMC claims must register for this comparison. Although this is organized as a SIM regional comparison, it is open to other participants of the MRA throughout all RMOs. Results for the comparison are going to be registered on the BIPM Key and Supplemental Comparisons Database, the KCDB. The planned time scale of SIM.QM.S-10 is presented in Table 1.

Action	Date
Proposal agreed by SIM	August, 2019
Call for participating	September 23, 2019
Registration deadline	October 4, 2019
Shipment of the samples	Week of October 9, 2019
Deadline for report of results	January 10, 2020 (extended to January 31,
	2020 as participants' requested)
Draft A circulation	April 2, 2020 (deadline for comments: May 22,
	2020)
Draft B circulation	October, 2020
Presentation/discussion of results at IAWG	November 4, 2020
meeting	
Presentation/discussion of results at SIM	November 10, 2020
meeting	
Draft B Final report	November 30, 2020

 Table 1. Timetable of SIM.QM-S10

Although this was organized as a SIM regional comparison, it was open to other participants of the MRA throughout all RMOs. The source of material was Canadian food-grade skim milk powder. The material was blended and packed into trilaminate stick-packs at a pharmaceutical manufacturing company. Long term storage of the material at NRC Canada is at -20 °C. Analyte

mass fractions are representing their natural levels, and four analytes were selected for this comparison. Participants may use any method of their choice. Table 2 summarizes the analytes and target mass fractions.

Analyte	Target mass fraction
Са	(0-20 000) mg/kg
Fe	(0-10) mg/kg
Se	(0-10) mg/kg
Zn	(0-100) mg/kg

Table 2. Analytes and target mass fractions in SIM.QM-S10 Supplementary Comparison

2. Instruction to Participants

A technical protocol was sent to all participants to SIM.QM-S10 providing information about the approximate analyte contents, the sample handling and data submission form (in excel format). Appendix A presents the technical protocol for SIM.QM-S10.

Each participant received five identified trilaminate stick packs of the study sample, with each trilaminate stick pack containing approximately 2.5 g of skim milk powder.

Participants were requested to report results for the measurands in minimum triplicate as the element content mass fraction (mass/mass, mg/kg) on test aliquots drawn from the stick packs on a dry mass basis using their method of choice. Dry mass corrections were to be determined. No protocol for the dry mass correction was provided.

In order to allow a sufficient evaluation of the comparison, a complete description of the method(s) used, including sample preparation, calibration technique(s) along with their metrological traceability and uncertainty assessment in accordance with JCGM 100:2008 Evaluation of Measurement Data-Guide to the Expression of Uncertainty in Measurement, as well calibration standard, and reference materials used and any specific challenges encountered was also requested to be provided.

When the participant reported individual results from different methods, the reported values using the method with the lowest uncertainty was used as the official result for the reference value and degree of equivalence calculations.

3. Participants Institutes

In total, 12 participants (8 NMIs and 4 designated institutes (DIs)) registered for the SIM.QM-S10 supplementary comparison as listed in Table 3. Table 3 also present information regarding the analytes registered, sample delivery date, reporting date and analyte reported for each registered participant.

Participant	Responsible	Country	Analytes	Sample	Reporting	Analyte
			registered	delivery date	date	reported
INTI, Instituto	Osvaldo Acosta; Mabel	Argentina	Ca, Fe, Se, Zn	Oct. 15,	Jan. 13,	Ca, Fe, Se,
Nacional de	Puelles			2019	2020	Zn
Tecnologia Industrial						
IBMETRO, Instituto	Mabel Delgado	Bolivia	Ca, Fe, Zn	Oct. 17,	Jan. 10,	Ca, Fe, Se
Boliviano de Metrología				2019	2020	
INMETRO, National	Rodrigo Caciano de Sena:	Brazil	Ca. Fe. Se. Zn	Oct.15.	Dec. 27.	Ca. Se. Zn
Institute of	Marcelo Dominguez de	-	, -,,	2019	2019	,
Metrology, Quality	Almeida; Marcia Silva da					
and Technology	Rocha					
ISP, Public Health	Soraya Sandoval; Claudia	Chile	Fe, Zn	Nov. 10,	Jan. 10,	Fe, Zn
Institute of Chile	Núñez; Javier Vera			2019	2020	
NIM China, National	Wei Chao; Li Xiao	China	Ca, Fe, Se, Zn	Dec 20,	Jan. 25,	Ca, Fe, Se,
Institute of Metrology				2019	2020	Zn
INMC Colombia,	Henry Torres Quezada;	Colombia	Ca, Fe, Zn	Oct. 15,	Jan. 10,	Ca, Zn
Instituto Nacional de	Gina A. Torres; Diego A.			2019	2020	
Metrología de	Garzón; Diego A.					
Colombia	Ahumada					
LACOMET,	Jimmy Venegas Padilla;	Costa Rica	Ca, Fe, Se, Zn	Oct. 15,	Jan. 31,	Ca, Zn
Laboratorio	Katia Rosales Ovares,			2019	2020	
Metrología de	Bryan Calderon Jimenez					
INEN, Servicion	Evelyn Vasco	Ecuador	Ca, Fe, Zn	Nov. 14,	Jan. 31,	Fe, Zn
Ecuatoriano de				2019	2020	
Normalización						
CENAM, National	Laura Regalado Contreras;	Mexico	Ca, Fe, Se, Zn	Oct. 21,	Feb. 2 <i>,</i> 2020	Ca, Zn
Metrology Institute of	Mariana Arce Osuna			2019		
Mexico						
JSI, Jozef Stefan	Radojko Jacimovic; Tea	Slovenia	Ca, Fe, Se, Zn	Oct. 16,	Jan. 10,	Ca, Fe, Se,
Institute	Zuliani			2019	2020	Zn
NIMT, National	Nunnapus Laitip; Usana	Thailand	Ca, Fe, Se, Zn	Oct. 21,	Jan. 10,	Ca, Fe, Se,
Institute of Metrology	Iniengmanee; Nattikarn			2019	2020	Zn
	Ornthal; Pranee					
	Suttinun Taebunnakul					
INRAP National	Hanen Klich	Tunisia	Ca Zn	Oct 16	lan 12	7n
Institute of Research		Tuttisia	Ca, 211	2019	2020	211
and Physical chemical					2020	
Analysis						

Table 3. Registered institutes, contacts, analytes registered, sample delivery date, reporting data and analyte reported.

Samples were shipped to all participants by FEDEX international priority from October 9, 2019 to October 11, 2019. Samples were delivered between October 15, 2019 and November 14, 2019. There were some customs issues with shipping samples to China and Russia. For Russia, the material (skim milk powder) is banned to be import to the country and The Russian

Metrological Institute of Technical Physics and radio engineering requested to abandon the material. Thus the Russian Metrological Institute of Technical Physics and radio engineering was not able to participate in the SIM.QM-S10 comparison. For China, the packaged was detained during clearance and was informed by NIM China that FEDEX suggested to abandoned the package and send the samples by express mail service instead. Another set of samples were sent by express mail service to NIM China on December 20, 2019.

Samples were also submitted to two reference laboratories in Panama (Laboratorio de referencia de alimentos y aguas (ICGES) and Instituto Especializado de Ánalisis. To expedite the process, samples were shipped to Esther Santamaria (CENAMEP)) and she distributed to the participating laboratories. Results of those laboratories was not included in this report.

Participants were requested to inspect immediately the samples upon receipt and inform the coordinator if there were any issues with the condition of received samples. All laboratories reported that the samples arrived in good conditions.

4. Methods of measurement

Participants were free to use a method of their choice for both sample preparation and measurement method. A majority of the participants digested the samples using a closed vessel microwave system using a mixture of acid nitric (HNO₃) and hydrogen peroxide (H₂O₂) and measured the digested samples using ICP-MS or ICP-OES. Different calibration strategies were used ranging from external calibration and standard addition to isotope dilution. Table 4 summarized the sample preparation, measurement method (including calibration strategy) and sample mass used.

Participant	Sample preparation	Measurement method (instrument)	Sample mass
INTI, Argentina	Microwave digestion (Ultrawave) (5 ml HNO ₃ +0.5 ml HF)	Se: SA-ICP-MS, Ge as IS (Elan DRC II ICP-MS); Ca, Fe, Zn: SA-ICP-OES; Y as IS (Perkin Elmer Optima 7300 DV ICP-OES)	0.5
IBMETRO, Bolivia	Microwave digestion (Multiwave Pro) (8 ml HNO ₃ + 2 ml H ₂ O ₂)	Ca, Fe, Zn: EC- AAS, no IS (Perkin Elmer PinAACle 900T)	0.5
INMETRO, Brazil	Microwave digestion (Multiwave Pro) (4 ml HNO ₃ + 2 ml H ₂ O ₂)	Ca: EC- ICP-OES, no IS; Zn: SA-ICP-OES, no IS (Jobin Yvon Ultima 2 ICPOES); Se: SA-ICP-MS, no IS (Elan DRC II ICP-MS)	0.5
ISP, Chile	Microwave digestion (Multiwave Pro) (8 ml HNO ₃ + 2 ml H ₂ O ₂ + 1 ml H ₂ O)	Fe, Zn :SA-ICP-MS, Sc as IS (Agilent 7700 ICP-MS)	0.5
NIM China	Microwave digestion (CEM MARS 5) (5 ml HNO ₃)	Ca, Fe, Zn : SA-ICP-OES, no IS (iCap 7400 ICP-OES); Se : ID-ICP-MS, reference isotope ⁸⁰ Se, spiked isotope ⁷⁸ Se (Agilent 8800 ICP-MS)	0.45 – 0.5

Table 4. Summary	of sample preparation,	measurement method a	nd sample mass used.
------------------	------------------------	----------------------	----------------------

Participant	Sample preparation	Measurement method	Sample mass
	(instrument)	(instrument)	(g)
INMC	Microwave digestion	Ca, Zn: SA-ICP-MS, TI and Rh as IS (ICP-MS NEXION	0.5
Colombia	(Multiwave Pro)	300D); Ca, Zn: EC-FAAS	
	(4 ml HNO ₃ + 2 ml H ₂ O ₂)		
LACOMET,	Microwave digestion (CEM	Ca: EC-FAAS, no IS (PerkinElmer PiAAcle 900T); Zn:	1
Costa Rica	MARS 6)	SA-FAAS, no IS (PerkinElmer PiAAcle 900T)	
	(10 ml HNO₃)		
INEN,	Dry Ashing (525°C, 8 h,	Zn, Fe: EC-FAAS, no IS	1
Ecuador	dissolved in 1M HNO ₃)		
CENAM,	Microwave digestion (Mars	Ca: SA-ICP-MS, Y as IS (Thermo ICAP Q ICP-MS); Zn:	0.5
Mexico	6)	SA-ICP-MS, Y as IS (Thermo ICAP Q ICP-MS)	
	(8 ml HNO ₃ + 2 ml H ₂ O ₂)		
JSI, Slovenia	Sample pelletized	Ca, Se, Zn: <i>k</i> ₀ -INAA (250 kW TRIGA Mark II reactor,	0.3-0.33
	Microwave digestion MARS	HPGe detector);	
	6, CEM Corporation)	Fe: EC-ICP-MS, Rh as IS (Agilent 7900x ICP-MS)	0.5
	(4 ml HNO ₃ + 1 ml H ₂ O ₂)		
NIMT,	Microwave digestion	Zn: ID-ICP-MS (reference isotope ⁶⁶ Zn, spiked isotope	0.25
Thailand	(Multiwave 7000)	⁶⁷ Zn) (Agilent 8800 ICP-MS)	
	(5 ml HNO₃)	Ca: SA-ICP-MS, Rh as IS (Agilent 8800 ICP-MS); Ca:	
		SA-ICP-OES, Rh as IS ; Fe: SA-ICP-OES, Y as IS (Perkin	
		Elmer Avio 500); Se: SA-HR-ICP-MS, Rh as IS (Thermo	
		Element XR, HR-ICP-MS)	
INRAP,	Microwave digestion	Zn: EC-HR-ICP-OES, no IS (Analytik Jena, Plasma	0.5
Tunisia	(Milestone Start D)	Quant 9000 Elite)	
	$(8 \text{ ml HNO}_3 + 2 \text{ ml H}_2O_2)$		

EC- external calibration; HR- high resolution; ID- isotope dilution; IS-internal standard, SA- standard addition

The primary standards as well the certified reference materials used are listed in Tables 5 and 6. Most participants used NIST standard solution as primary standards. NIM China used GBW primary standards for Ca and Zn and JSI used IRMM primary standards.

Regarding CRM used, all participants, except one (INRAP, Tunisia) used a CRM with similar matrix, i.e., milk powder or infant/nutritional formula. INRAP, Tunisia did not submit any results for CRM.

Participant	Са	Fe	Se	Zn
INTI, Argentina	NIST SRM 3109a	NIST SRM 3126	NIST SRM 3149	NIST SRM 3168a
IBMETRO, Bolivia	NIST SRM 3109a	NIST SRM 3126a		NIST SRM 3168a
INMETRO, Brazil	NIST SRM 3109		NIST SRM 3149	NIST SRM 3168a
ISP, Chile		NIST SRM 3126a		NIST SRM 3168a
NIM China	GBW(E)080118	GBW08616	NIST SRM 3149	GBW08620
INMC Colombia	NIST SRM 3109a			NIST SRM 3168a
LACOMET, Costa Rica	NIST SRM 3109a			NIST SRM 3168a

Table 5. Calibration Standards used as reported by the participants

Participant	Са	Fe	Se	Zn
INEN, Ecuador		NIST SRM 3126a		NIST SRM 3168a
CENAM, Mexico	NIST SRM 3109a			CENAM DMR-61d
JSI, Slovenia	IRMM-530R (Al- 0.1% Au alloy)	NIST SRM 3126a	IRMM-530R (Al- 0.1% Au alloy)	IRMM-530R (Al- 0.1% Au alloy)
NIMT, Thailand	NIST SRM 3109a	NIST SRM 3126a	NIST SRM 3149	NIST SRM 3168a
INRAP, Tunisia				NIST SRM 3168a

Table 6. Certified reference materials used for quality assurance as reported by the participants

Participant	CRM used					
INTI, Argentina	Ca, Fe, Se, Zn: NIST SRM 1849a (infant/adult nutritional formula)					
IBMETRO, Bolivia	NP					
INMETRO, Brazil	Ca, Se, Zn: NIST SRM 1849a (infant/adult nutritional formula)					
ISP, Chile	Fe, Zn: NIST SRM 1849a (infant/adult nutritional formula)					
NIM China	Ca, Fe, Zn: ERM BD-150 (skimmed milk powder)					
	Se: GBW10115 (infant formula)					
INMC Colombia	Ca, Fe, Zn: CENAM DMR-82c (Skim milk powder)					
LACOMET, Costa Rica	Ca, Zn: NIST SRM 1869 (Infant/Adult Nutritional Formula II (milk/whey/soy- based)					
INEN, Ecuador	Zn, Fe: NIST SRM 3234 (soy flour)					
CENAM, Mexico	Ca, Zn: CENAM CMR-6300082d (Skim milk powder)					
JSI, Slovenia	ERM-BD151 (Skimmed milk powder)					
NIMT, Thailand	Ca, Fe, and Zn :NMIJ CRM 7512-a (milk powder)					
	Se: SRM 1568b rice flour					
INRAP, Tunisia	NP					

NP: not provided

Table 7 presents the dry weight correction reported by each participants. INEN, Ecuador did not provide this information.

Participant	Number of samples	Sample mass (g)	Correction for dry mass (% of weighted sample) ^a
INTI, Argentina	3	0.5	97.40 ± 0.32%
IBMETRO, Bolivia	5	0.5	97.34 ± 0.07% ^b
INMETRO, Brazil	3	1.0	96.43 ± 0.16%
ISP, Chile	4	1.0	96.605 ± 0.048 %
NIM China	4	0.4-0.7	98.00 ± 0.05%
INMC Colombia	3	0.25	97.10 ± 0.5%
LACOMET, Costa Rica	4	1.0	97.31 ± 0.18 %
INEN, Ecuador	NP	NP	NP
CENAM, Mexico	2	0.5	96.898 ± 0.095%
JSI, Slovenia	3	0.8-0.9	97.78 ± 0.003%
NIMT, Thailand	3	1	97.40 ± 0.10 %
INRAP, Tunisia	6	1	96.18 ± 0.07 %

Table 7. Dry weight correction used as reported by the participants

^a results presented as average ± uncertainty (*k*=1)

^b performed for each sample separately. Results combined as average (100-dry weight) NP: not provided.

5. Results and Discussion

5.1. General

The participants' results as reported to the coordinating laboratory are shown in Tables 8 to 15 and Figures 1 to 4. All measurement results were reported on a dry mass basis.

As documented in the technical protocol of SIM.QM-S10, the supplementary Comparison Reference Value (SCRV) was originally proposed to be assigned based on NRC results. However, after discussion with coordinators and participants, all data from participating NMIs (except identified outliers) were used to calculate the SCRV.

Results from each analyte is presented separately.

5.1.1. Calcium

Nine laboratories reported values for mass fraction of calcium. INMC, Colombia and NIMT Thailand reported two calcium results. INMC, Colombia used standard addition (SA) ICP-MS with TI and Rh as internal standard (IS) and external calibration (EC) FAAS for the determination of mass fraction of Calcium. NIMT Thailand used both SA-ICP-MS and SA-ICP-OES (both using Rh as IS). For both laboratories, only the ICP-MS data was used for the calculation of the SCRV.

Table 8. Reported Results for mass fraction of Ca (dry mass basis) and their associated combined and relative expanded uncertainties, with the coverage factor *k* as reported by the participants in the order of increasing mass fraction value.

Participant	Reported value mg/kg	u _{c,} mg/kg	k (95% level confidence)	U, mg/kg	Nª	Analytical Method/ Instrument
IBMETRO, Bolivia	3099.74	375.89	2	751.78	5	EC-FAAS, no IS
JSI, Slovenia	12295	408	2	816	5	k ₀ -INAA
LACOMET, Costa Rica	12498	109	2	218	6	EC-FAAS, no IS
NIMT,	12610	465	2	930	5	SA-ICP-MS, Rh as IS
Thailand ^c	(12780)	(420)	2	(840)		SA-ICP-OES, Rh as IS
INMETRO, Brazil	12631	91	2	182	5	EC- ICP-OES, no IS
INMC	12715	612.8	1.97	1207	3	SA-ICP-MS, TI & Rh as
Colombia [®]	(12669)	(386.1)	1.97	(761)	3	IS
						EC-FAAS
NIM China	12979	169	2	339	7	SA-ICP-OES, no IS
CENAM, Mexico	13033	292	2	583	5	SA-ICP-MS, Y as IS
INTI, Argentina	13053	379	2	758	7	SA-ICP-OES; Y as IS

^a N Number of independent replicates

^b Considered the ICP-MS value. Second value (in parenthesis) was determined with EC-FAAS

^c Considered the ICP-MS value. Second value (in parenthesis) was determined with SA-ICP-OES

Figure 1. Calcium mass fraction ((dry mass basis) as reported by the participants. Error bars denote the combined uncertainty u_c for a coverage factor of k=1 as reported.

5.1.2. Iron

Seven laboratories reported values for mass fraction of iron. Results are presented in Table 9.

Table 9. Reported Results for mass fraction of Fe (dry mass basis) and their associated combined and relative expanded uncertainties, with the coverage factor *k* as reported by the participants **in the order of increasing mass fraction value.**

Participant	Reported	U _c ,	k	U,	N ^a	Method
value mg/kg	value mg/kg	mg/kg	(95% level confidence)	mg/kg		
INEN, Ecuador	0.002	1.12	2	2.24	3	EC-FAAS, no IS
NIM China	2.35	0.05	2	0.10	6	SA-ICP-OES, no IS
NIMT, Thailand	2.61	0.0859	2	0.18	3	SA-ICP-OES, Y as IS
JSI, Slovenia	2.77	0.03	2	0.06	5	EC-ICP-MS, Rh as IS
ISP, Chile	2.85	0.20	3.18	0.63	5	SA-ICP-MS, Sc as IS
INTI, Argentina	3.987	0.288	2	0.576	5	SA-ICP-OES; Y as IS
IBMETRO, Bolivia	4.06	0.17	2	0.34	5	EC-FAAS, no IS

Figure 2. Iron mass fraction (dry mass basis) as reported by the participants. Error bars denote the combined uncertainty u_c for a coverage factor of k=1 as reported.

5.1.3. Selenium

Five laboratories reported values for mass fraction of selenium and results are presented in Table 10.

Table 10. Reported Results for mass fraction of Se (dry mass basis) and their associated combined and relative expanded uncertainties, with the coverage factor k as reported by the participants in the order of increasing mass fraction value.

Participant	Reported value mg/kg	u _{c,} mg/kg	<i>k</i> (95% level confidence)	U, mg/kg	Nª	Method
JSI, Slovenia	0.350	0.017	2	0.034	5	k ₀ -INAA
NIMT, Thailand	0.352	0.0130	2	0.027	4	SA-HR-ICP-MS, Rh as IS
NIM, China	0.372	0.002	2	0.004	6	ID-ICP-MS, reference isotope ⁸⁰ Se, spiked isotope ⁷⁸ Se
INTI, Argentina	0.3832	0.0207	2	0.0413	7	SA-ICP-MS, Ge as IS
INMETRO, Brazil	0.542	0.031	2	0.062	4	SA-ICP-MS, no IS

Figure 3. Selenium mass fraction (dry mass basis) as reported by the participants. Error bars denote the combined uncertainty u_c for a coverage factor of k=1 as reported.

5.1.4. Zinc

Twelve laboratories reported values for mass fraction of zinc. INMC, Colombia reported two zinc results. The first one used standard addition (SA) ICP-MS with TI & Rh as internal standard (IS) and the second used external calibration (EC) FAAS for the determination of mass fraction of zinc. For both laboratories, only the ICP-MS data was used for the calculation of the SCRV. Results are presented in Table 11.

Table 11. Reported Results for mass fraction of Zn (dry mass basis) and their associated combined and relative expanded uncertainties, with the coverage factor k as reported by the participants in the order of increasing mass fraction value.

Institute/Country	Reported value	u _{c,} mg/kg	k (95% level	U _c , mg/kg	N ^a	Method
	mg/ kg		confidence)			
INEN, Ecuador	0.204	1.12	2	2.24	3	EC-FAAS, no IS
IBMETRO, Bolivia	31.70	1.39	2	2.80	5	EC-FAAS, no IS
INRAP, Tunisia	38.25	1.30	2	2.60	5	EC-HR-ICP-OES, no IS
INTI, Argentina	42.443	1.575	2	3.150	6	SA-ICP-OES; Y as IS
JSI, Slovenia	43.0	1.3	2	2.6	5	k ₀ -INAA

Institute/Country	Reported value mg/kg	u _{c,} mg/kg	<i>k</i> (95% level confidence)	U _c , mg/kg	N ^a	Method
NIM China	43.03	0.25	2	0.49	14	SA-ICP-OES, no IS
NIMT, Thailand	43.2	0.39	2	0.8	5	ID-ICP-MS (reference isotope ⁶⁶ Zn, spiked isotope ⁶⁷ Zn)
INMETRO, Brazil	43.3	0.56	2	1.1	5	SA-ICP-OES, no IS
LACOMET, Costa Rica	43.6	1.3	2	2.6	5	SA-FAAS, no IS
ISP, Chile	43.8	0.29	2.78	0.80	4	SA-ICP-MS, Sc ad IS
INMC Colombia ^b	45.0	1.8	1.97	3.6	3	SA-ICP-MS, TI & Rh as IS
	(45.7)	(2.3)	(1.97)	(4.5)	3	EC-FAAS
CENAM, Mexico	45.40	1.03	2	2.07	5	SA-ICP-MS, Y as IS

^a N Number of independent replicates

^b Considered the ICP-MS value. Second value (in parenthesis) was determined with EC-FAAS

Figure 4. Zinc mass fraction (dry mass basis) as reported by the participants. Error bars denote the combined uncertainty u_c for a coverage factor of k=1 as reported.

5.2. Supplementary Comparison Reference Values (SCRVs)

The compile data for SIM.QM-S10 Supplementary Comparison for trace elements in skim milk powder was circulated among the participants on April 2, 2020 for checking any transcription and typographical errors. Participants were requested to review their data and provide comments by May 1, 2020, which was further extended as some participants have been serious affected with the COVID-19 situation in their countries and were not able to provide comments on time.

On May 4, 2020, IBMETRO requested to revise the reported results for zinc from 31.70 mg/kg (original results) to 42.45 mg/kg and for calcium from 3099.74 mg/kg (original results) to 13099.74 mg/kg informing that the correct value with CRM comparison was now included.

In this regard, those results (Ca and Zn) were and considered as outliers (see section below) and were not included in the calculation of SCRV.

On November 9, 2020, INTI informed that they found an error when applying the Grubbs test for their Fe data (7 results). They had wrongly discarded two results for the Fe measurements (i.e, only submitted 5 results). The results were re-checked applying two tests (Grubbs and Dixon) for outliers and had shown that the discarded results were not outliers. The revised data for Fe should be 3.637 ± 0.638 mg/kg instead of 3.987 ± 0.576 mg/kg.

In this regard, since the participant only informed at a latter stage of the comparison, no action was taken but mostly important with the mitigated action, the participant was able to improve their measurement capabilities.

Homogeneity uncertainty component was less than 0.8 % and considered insignificant compared with the spread between the results from all participants, thus were not carried in the future calculations.

5.3. Screening the data for consistency and outlier rejection

A preliminary inspection of the reported laboratory results show that few individual reported results are inconsistent with the majority of results. Consistency was checked using the chi-squared test and it was found that all datasets were mutually inconsistent, with chi-squared of 639.3, 145.8, 34.4 and 1536.8 for calcium, iron, selenium and zinc respectively (critical values were 15.5, 12.6, 9.5 and 16.9 respectively). Possible outliers were identified using a t-test and were based on DerSimonian-Laird mean calculation and 99 % confidence level. Calculation of the DerSimonian-Laird mean and associated standard uncertainty was performed according to section 3.4 of the Appendix 2 of the CCQM Guidance note 1. The t-test was applied to compare the di/U(di) (ratio of absolute difference between the individual value and the mean, and its expanded uncertainty) and the critical t value at 99 % of critical-99 % t for the purpose of identifying outliers. An individual value is considered as an outlier when di/U(di) is greater than the t critical-99% at given degree of freedom. All data are included and degree of freedom is calculated using n-1 (n: number of data). One low outlier (3099.74 ±375.89 mg/kg from

IBMETRO) was identified for calcium (see Table 8). Three low outliers (0.204 \pm 1.12 mg/kg (INEN), 31.70 \pm 1.39 mg/kg (IBMETRO) and 38.25 \pm 1.30 mg/kg (INRAP) were identified for Zinc (see Table 11).. Repetitive outlier testing and rejection was used to identify multiple extreme values, but since no more than 20 % of the values in a data set should be rejected according to CCQM guidance, results from INRAP was considered for the calculations of the consensus estimators for zinc. No outliers were identified for iron and selenium.

The possible outliers were further investigated. Regarding digestion protocols, IBMETRO performed microwave digestion with HNO₃ and H₂O₂ and INEN used dry ashing (based on the AOAC official method 985.35) to digest the SIM.QM-S10 sample. The sample mass used by both laboratories are higher than the recommended mass. Both participants used FAAS as the measurement method and external calibration as the calibration strategy. They both used NIST Standard Solutions as calibration standards. IBMETRO did not included any quality control (QC) sample and INEN used NIST SRM 3234 (soy flour) as a QC sample but did not submit any data regarding the agreement between the results and QC samples. It was verified that IBMETRO only have CMCs for water and pH and INEN does not have any CMC. IBMETRO informed us that submitted values did not include the QC agreement. INEN informed that after investigation, they noticed some issues with contamination of the muffle (in common use with another area of the institution) and the quality of water used that may had caused the extreme value obtained.

5.4. Determination of the Supplementary Comparison Reference Values (SCRV)

Eight results were used for the calculation of the SCRV for calcium, seven for the calculation of the SCRV for iron, five for the calculation of the SCRV for selenium and ten for the calculation of the SCRV for zinc. All pilot study participants were excluded from the SCRV calculations as well the outliers as previously discussed. According to IAWG, the decision for proposed SCRV calculation should be based on the number of participants, with for more than 8 participants, the median should be used and for 7 or less participants, the arithmetic mean should be used.

Table 12 present consensus estimators based on arithmetic mean, median, as well uncertaintyweighted mean, uncertainty-weighted mean corrected for over-dispersion, and DerSimonian-Laird mean (DLS). These values are proposed in accordance with CCQM/13-22 Guidance note: Estimation of a consensus SCRV and associated Degrees of Equivalence.

Consensus estimator	SCRV	u(SCRV)	U ₉₅ (SCRV)
Ca, mg/kg ^a (n=8)			
Arithmetic mean	12727	97	194
Median	12673	158	316
Uncertainty-weighted mean	12656	61	121

Table 12. Consensus estimators for the measurand from SIM.QM-S10.

Consensus estimator	SCRV	u(SCRV)	U ₉₅ (SCRV)
Uncertainty-weighted mean (corrected for overdispersion)	12656	70	141
DerSimonian-Laird mean	12688	84	167
Fe, mg/kg (n=7)		L	
Arithmetic mean	2.66	0.51	1.02
Median	2.77	0.29	0.59
Uncertainty-weighted mean	2.69	0.02	0.05
Uncertainty-weighted mean (corrected for overdispersion)	2.69	0.12	0.24
DerSimonian-Laird mean	2.97	0.17	0.34
Se, mg/kg (n=5)	•	L	
Arithmetic mean	0.400	0.036	0.072
Median	0.372	0.017	0.033
Uncertainty-weighted mean	0.372	0.002	0.004
Uncertainty-weighted mean (corrected for overdispersion)	0.372	0.006	0.011
DerSimonian-Laird mean	0.389	0.018	0.035
Zn, mg/kg ^a (n=10)		L	
Arithmetic mean	43.10	0.61	1.22
Median	43.25	0.26	0.53
Uncertainty-weighted mean	43.30	0.16	0.31
Uncertainty-weighted mean (corrected for overdispersion)	43.30	0.26	0.52
DerSimonian-Laird mean	43.23	0.34	0.68

^aafter outliers removal

According to the CCQM Guidance note, the DerSimonian-Laird mean estimator is recommended to calculate the SCRV and respective uncertainty when a data set is lacking mutial consistency with no individual anomalous values (which is the case for Ca) or lacking mutial consistency with one or more anomalous values for dataset with 7 results or more (which is the case for Fe and Zn).

Since the DerSimonian-Laird (DSL) mean estimator also takes into account the uncertainties from participants' results and it handles the excess of variance given the suspected influence of random effects observed in the data, it was chosen for the final calculation of SCRV and related uncertainties for all analytes. Participants results are presented relative to the SCRV in Figures 5 to 8.

	n	SCRV	u(SCRV)	U95(X)
Ca, mg/kg	8	12688	84	167
Fe, mg/kg	7	2.97	0.17	0.34
Se, mg/kg	5	0.389	0.018	0.035
Zn, mg/kg	10	43.23	0.34	0.68

Table 13. Summary of DSL-mean SCRV and associated uncertainty.

Figure 5. Plot of participant's results relative to the DSL-mean SCRV values for calcium. Uncertainties are standard uncertainties.

Notes:

- (i) Error bars represent reported standard uncertainties. The solid horizontal blue line is the proposed SCRV (as DerSimonian-Laird mean) of the participant's results and the dashed lines show the standard uncertainty, *u*(SCRV).
- (ii) The result submitted by IBMETRO were considered as an outlier and was not included in the calculation of SCRV. Please refer to Section 3.1.1

Figure 6. Plot of participant's results relative to the DSL-mean SCRV values for iron. Uncertainties are standard uncertainties.

Notes:

(i) Error bars represent reported standard uncertainties. The solid horizontal blue line is the proposed SCRV (as DerSimonian-Laird mean) of the participant's results and the dashed lines show the standard uncertainty, *u*(SCRV).

Figure 7. Plot of participant's results relative to the DSL-mean SCRV values for selenium. Uncertainties are standard uncertainties.

Notes:

(i) Error bars represent reported standard uncertainties. The solid horizontal blue line is the proposed SCRV (as DerSimonian-Laird mean) of the participant's results and the dashed lines show the standard uncertainty, u(SCRV).

Figure 8. Plot of participant's results relative to the DSL-mean SCRV values for zinc. Uncertainties are standard uncertainties.

Notes:

(i) Error bars represent reported standard uncertainties. The solid horizontal blue line is the proposed SCRV (as DerSimonian-Laird mean) of the participant's results and the dashed lines show the standard uncertainty, u(SCRV).

(ii)The result submitted by INEN and IBMETRO were considered as an outlier and was not included in the calculation of SCRV. Please refer to Section 3.1.1.

5.5. Degrees of equivalence and their associated uncertainties

Degrees of equivalence of each national measurement standard were calculated as its deviation from the SCRV values based on DSL mean estimator and the corresponding uncertainty of this deviation (at a 95% level of confidence) according to CCQM guidance note using the equation 1.

$$d_E = x_i - x_{SCRV} \tag{1}$$

where X_{SCRV} is the calculated SCRV and x_i is the participant's result.

And corresponding uncertainty of the degree of equivalence ($u(d_i)$) was calculated using equation 2 (when the value x_i was included in the calculation) or 3 (When the value x_i was not included in the calculation)

$u^2(d_i) = u_i^2 + \lambda - u_{SCRV}^2$	(2)	
$u^2(d_i) = u_i^2 + \lambda + u_{SCRV}^2$	(3)	

Where λ is the excess variance due to differences between submitted results from participating laboratories and its contribution was included in the uncertainty of degrees of equivalence.

Those values are listed in tables 14 to 17 and presented in Figures 9 to 12.

Participant	d _E	U(d _E)	dE/U(dE)
IBMETRO*	-9588.5	803.00	-11.9
JSI	-393.2	829.94	-0.47
LACOMET	-190.2	265.47	-0.72
NIMT	-78.2	942.26	-0.08
INMETRO	-57.2	236.80	-0.24
INM	26.8	1234.93	0.02
NIM China	290.8	370.40	0.79
CENAM	344.8	603.33	0.57
INTI	364.8	772.99	0.47

Table 14. Degrees of equivalence and their uncertainties (95% CI) for calcium in SIM.QM-S10.

*reported value not included in the calculation of SCRV

Participant	d _E	U(d _E)	dE/U(dE)
INEN	-3.0	2.35	-1.26
NIM	-0.6	0.72	-0.86
NIMT	-0.4	0.73	-0.49
JSI	-0.2	0.71	-0.28
ISP	-0.1	0.82	-0.15
INTI	1.0	0.92	1.11
IBMETRO	1.1	0.79	1.38

Table 15. Degrees of equivalence and their uncertainties (95% CI) for iron in SIM.QM-S10.

Figure 10. Degrees of equivalence estimates for iron in SIM.QM-S10.

Table 16. Degrees of equivalence and their uncertainties (95% CI) for selenium in SIM.QM-S10.

Participant	d _E	U(d _E)	dE/U(dE)
JSI	-0.04	0.07	-0.56
NIMT	-0.04	0.07	-0.56
NIM	-0.02	0.06	-0.28
INTI	-0.01	0.07	-0.08
INMETRO	0.15	0.09	1.76

Figure 11. Degrees of equivalence estimates for selenium in SIM.QM-S10.

Table 17. Degrees of equivalence and their uncertainties (95% CI) for zinc in SIM. QM-S10.

Participant	d _E	U(d _Ĕ)	dE/U(dE)
INEN*	-43.0	2.75	-15.63
IBMETRO*	-11.5	3.21	-3.60
INRAP	-5.0	2.90	-1.72
INTI	-0.8	3.40	-0.23
JSI	-0.2	2.90	-0.08
NIM	-0.2	1.37	-0.15
NIMT	0.0	1.50	-0.02
INMETRO	0.1	1.70	0.04
LACOMET	0.4	2.90	0.13
ISP	0.6	1.40	0.40
INMC	1.7	3.82	0.46
CENAM	2.2	2.42	0.89

*reported value not included in the calculation of SCRV

Figure 12. Degrees of equivalence estimates for zinc in SIM.QM-S10.

5.6. Demonstrated Core capabilities – How far the light shines

Successful participation in SIM.QM-S10 demonstrates the following measurement capabilities in determining mass fraction of Ca, Fe, Se and Zn in a complex food matrix.

Calibration and Measurement Capabilities (CMCs) claim based on total elements may include other elements with similar core competencies in a wide range of food matrices at similar level of performance using the same measurement technique applied in this comparison.

6. Conclusion

Most participants used microwave digestion methods for sample preparation and ICP-MS or ICP-OES for determination of the proposed analytes in SIM.QM-S10. Participants used calibration materials, mostly from NIST, for traceability purposes.

Data was screnned for consistency using the chi-squared test and possible anomalous values were identified by t-test. Results for Ca and Zn from IBMETRO and for Zn from INEN were considered as outliers. Several approaches for the calculation of the consensus estimators (arithmetic mean, median, uncertainty weighed mean and DSL) and since all datasets were considered mutually inconsistent, the DLS values were proposed for the calculation of SCRV for Ca, Fe, Se and Zn in SIM.QM-S10.

In general, the majority of results from NMIs/DIs are in agreement with the SCRV with their expanded uncertainties, making the SIM.QM-S10 a successful supplementary comparison. Participants showed the measurement capabilities for Ca, Fe, Se and Zn in a complex food matrix.

7. Acknowledgements

The study coordinators thank the participating laboratories for providing the requested information used in this study. We also thank Dr. Mike Winchester for his hepful comments and suggestions.

8. Reference

CCQM Guidance note: Estimation of a consensus KCRV and associated degrees of Equivalence(2013) version 10 available from

https://www.bipm.org/cc/CCQM/Restricted/19/CCQM13-22 Consensus KCRV v10.pdf

Appendix A - Technical protocol

SIM.QM-S10 Supplementary Comparison for Trace elements in skim milk powder Technical Protocol

1. Background

The comparison is piloted by NRC Canada and INTI Argentina.

Skim milk powder is widely used as a food ingredient and has the same nutrition of fresh nonfat milk but with a longer shelf life. The determination of trace elements in skim milk powder is an important and commonly performed measurement responsibility.

An earlier Key comparison in this area was conducted under the auspices of the CIPM as CCQM-K125, with the parallel pilot study CCQM-P159 (Iodine and other elements in infant formula) in 2014. Since a few SIM members did not participate in this comparison, the purpose of SIM.QM-S10 is to ensure the comparable and traceable measurement results for trace elements such as Ca, Fe, Se, and Zn in skim milk powder and similar matrices. This comparison will provide NMIs with the needed evidence for CMC claims for trace elements in skim milk powder and similar matrices. Note that those laboratories wishing to utilize this exercise for support of CMC claims must register for this comparison. Although this is organized as a SIM regional comparison, it is open to other participants of the MRA throughout all RMOs. Results for the comparison are going to be registered on the BIPM Key and Supplemental Comparisons Database, the KCDB.

The SCRV for each element will be assigned based on NRC results, which are obtained by using both ID-ICP-MS (primary method) and standard addition ICP-MS for Fe, Se, and Zn, and standard additions calibration for Ca and Fe by ICPOES.

2. Material

The source of material was food-grade skim milk powder. The material was blended and packed into trilaminate stick-packs at a pharmaceutical manufacturing company.

Reference values are determined by primary measurement method (ID-ICPMS) and standard addition ICP-MS (SA-ICP-MS) for Fe, Se and Zn. Ca and Fe were determined by standard additions ICPOES. Bottle-to-bottle homogeneity was evaluated and determined to be fit for purpose.

Samples will be made available in stick-pack containing approximately 2.5 g of material.

3. Measurands

Element	Target Concentration
Са	(0-20 000) mg/kg
Fe	(0-10) mg/kg
Se	(0-10) mg/kg
Zn	(0-100) mg/kg

4. Choice of Method / Procedure

Participants may use any method of their choice.

5. Test Sample Receipt / Handling

Samples will be distributed by courier to the participants. Each laboratory will receive five trilaminate stick packs.

Please inform the coordinator immediately if the test sample has been compromised in any way and arrives in questionable condition.

6. Reporting

A reporting form will be provided to participants after test materials are distributed. Results for each measurand should be reported in minimum triplicate as the element content mass fraction (mass/mass, mg/kg) on test aliquots drawn from the stick packs. All results shall be reported in a dry mass basis. Please state all the individual results, not only the final mean value. All analytical calibrations should be performed using metrologically traceable standards. Sources, purity and traceability of reference materials used for calibration purpose shall be provided.

Any participant that chooses to use multiple methods can decide only one composite result; e.g., an average value from different methods. If the participant decides to report the individual results from different methods as the reporting value(s) for each measurand, reported values using the method with the lowest uncertainty will be used, the others will be considered as information values.

Each laboratory shall provide a complete description of the method(s) used, including calibration technique(s) along with their metrological traceability and uncertainty assessment in accordance with JCGM 100:2008 Evaluation of Measurement Data-Guide to the Expression of Uncertainty in Measurement as well any specific challenges encountered.

6. Time Schedule

Registration deadline: October 4, 2019

Ship materials: October 11, 2019

Deadline for receipt of data: January 10 2020

Prepare/distribute draft A report: March 31, 2020

Discussion of the results and draft A report at CCQM IAWG: April, 2020

Finalize report: June 26, 2020

7. Coordinating laboratories

SIM.QM-S10 Supplementary Comparison for Trace elements in skim milk powder is coordinated by NRC Canada and INTI Argentina.

Patricia Grinberg NRC Canada

Registration Form

SIM.QM-S10 Supplementary Comparison for Trace elements in skim milk powder

Although this is a SIM comparison, the invitation to participate is extended to National Metrology Institutes (NMIs) and Designated Institutes (DIs) in all RMOs.

Indicate the element(s) for which you will be submitting results by inserting an **X** under the heading of the appropriate comparison.

Measurand	SIM.QM-S10 Supplementary Comparison
Са	
Fe	
Se	
Zn	

Participant's Name	
Describe if it is a NMI or	
Designated Institute	
Name of the Institute	
Address	
Country	
E-Mail of contact	
TelNumber	
Fax-Number	

Shipping instructions:

Please indicate any special instructions (for importation) and the full shipping address and telephone number of a contact.

Please send the completed form by e-mail before **October 4, 2019** to:

Patricia Grinberg

patricia.grinberg@nrc-cnrc.gc.ca

If you do not receive an acknowledgement of your registration from us within 5 working days, please send us an email.

1. Coordinating laboratories

National Research Council of Canada, Metrology Ottawa, Ontario, K1A 0R9, Canada Tel. 613 991 5482 Fax. 613 993 2451 E-mail: patricia.grinberg@nrc-cnrc.gc.ca

Appendix B – Reporting form

The following form was available to all participants

	Partic	ipatiı	ng de	tails							
	SIM.QM.S10										
	Supplementary Comparison	n for Tra	ce Elemo	ents in Sl	kim Milk	Powder					
	Data Submission Form	n									
Please co	omplete all pages of the reporting	form and	submit it	by email b	pefore Jan	uary 10 20	020 to:				
patricia.g	rinberg@nrc-cnrc.gc.ca										
	Participating Laboratory										
	Institute/Laboratowy										
	Institute/ Laboratory:										
	NMI/DI:										
	Reporting date:										
	Postal address:			•							
	Contact person:										
	E-mail:										

		Repo	rt of Resu	ults					
		SIN	M.QM.S10)					
Results									
Results should be rep	orted as at least three	replicates as the ele	ement content mas	ss fraction (1	nass/mass, m	ng/kg) and re	eported on a	dry mass bas	sis.
Summary of Results sample S	SM.QM.S10 (dry ma	ss basis)							
		Ca	1	k	e	S	Se	Z	n
Mean value (m	g/kg)								
Combined standard unce	rtainty (mg/kg)								
Coverage factor k (95% leve	el of confidence)								
Expanded uncertaint	ty (mg/kg)								
Individual Results sample SN	I.QM.S10 (Results s	hould be reported a	as at least three r	eplicates)					
		Ca	ì	K	^r e	S	le	Z	'n
	Identification stick pack	Mass Fraction (mg/kg)	Uncertainty	Mass Fraction (mg/kg)	Uncertainty	Mass Fraction (mg/kg)	Uncertainty	Mass Fraction (mg/kg)	Uncertainty
replicate #1									
replicate #2									
replicate #3									
replicate #4									

Summary of Results for Reference	e materials used								
Reference Material used:									
		Ca	h i		Fe	S	Se	Z	'n
		Mass Fraction (mg/kg)	Uncertainty	Mass Fraction (mg/kg)	Uncertainty	Mass Fraction (mg/kg)	Uncertainty	Mass Fraction (mg/kg)	Uncertainty
replicate #	1								
replicate #	2								
replicate #	3								
replicate #	4								
replicate #	5								
mean value	9								
standard devia	tion								
certified value	e, U								

replicate #5

						ł	Analy	tical I	nforn	natio	n				
							S	IM.Q	M.S1	0					
Description	of the n	ethodo	ology used							1	1				
Instr	umenta	ition u	sed												
Calibratio	n meth	od/des	sign used												
For ID-ICP-MS, plea	ase indi sotopes	cate r used	eference and	spiked											
Traceability (i.e., source, purity of calibration standards)															
Internal stan	dards u	sed (if	applicable)												
Measurement equation and uncertainty budget (please include breakdown of the budget, describing individual uncertainty contributions and how they were combined)															
Refere	ence ma	terial	used												
Sample am	ount u	ed for	analysis												
Sample amount used for dry mass correction															
Number of samples aliquots taken for dry mass correction.															
Correction for dry	mass (% of w	eighted sam	ple)								 			
Uncertainty	for dry	mass	correction												
Additional Co	mment	s or O	bservations												

Appendix B – Summary of Participants' Analytical Information

Institute: INTI Argentina

Analytes	Ca, Fe, Se, Zn							
QC sample	NIST 1849a							
Description of the methodology used	Acid digestion by microwave 5ml HNO3 + 0,5ml HF	Acid digestion by microwave 5ml HNO3 + 0,5ml HF						
	Ca, Fe and Zn by ICP-OES Se by ICP-MS							
Instrumentation used	SAMPLE DIGESTION BY ULTRAWA	VE (MILES	TONE)					
	ICP-OES 7300 DV (PERKIN ELMER)							
	ICP-MS ELAN DRC II (PERKIN ELME	ER)						
Calibration method/design used	standard addition							
For ID-ICP-MS, please indicate reference and spiked isotopes used	NA							
Traceability (i.e., source, purity of calibration standards)	NIST STANDARD REFENCE MATERIAL 3109a CALCIUM NIST STANDARD REFENCE MATERIAL 3168a ZINC NIST STANDARD REFENCE MATERIAL 3126 IRON NIST STANDARD REFENCE MATERIAL 3149 SELENILLM							
Internal standards used (if applicable)								
Measurement equation and uncertainty budget (please include breakdown of the	EXAMPLE FOR CALCIUM							
budget, describing	Incertidumbre total							
individual uncertainty	Elemento	Nist 1	849a	St	10			
contributions and how	Promedio de replicados	5385,15	5385,15	13052,85	13053			
	Desviacion estandar de los replicados	48,36	0,01	110,17	0,01	- L		
they were combined)	Incertidumbre Curva	2,0174	0,0202	2,7159	0,0272	<u>⊢ I</u>		
	u Humedad	0,0032	0,0032		0,0032	⊢ I.		
	Incertidumbre del MRC	51,0000	0,0049		0,0049	⊢ I.		
	valor del MRC	5253,0000	122.0726		270.004.0			
		combined	245 0472	comoined	757 9027	c		
		expanded %	4 570%	expanded %	5 810/	ev		
	di = Xi - Xcertificado	expanded %	132.15	expanded %	13052.85	CA.		
	Ui = 2* [Raiz(u2 (xi) + u2(Xcertif) - 2*cov(xi xcertif)]	01	251.18		#:VALOR!			
	Grado de equivalencia = di / Ili		0.53		#:VALOR!			
	Recuperación %		102.5		#;DIV/0!			

Reference material	
used	NIST STANDARD REFENCE MATERIAL 1849a INFANT/ADULT NUTRITIONAL
	FORMULA I
Sample amount used	0,5 g OF SAMPLE
for analysis	
Sample amount used	0,5 g OF SAMPLE
for dry mass correction	
Number of samples	3
aliquots taken for dry	
mass correction.	
Correction for dry mass	97,4%
(% of weighted sample)	
Uncertainty for dry	0,32%
mass correction	
Additional Comments	
or Observations	

Institute: IBMETRO Bolivia

Analytes	Ca, Fe, Zn
QC sample	no QC sample
Description of the methodology used	The samples were dried at 102 ° C for 2hr to remove moisture and perform measurements on a dry basis. To determine the concentration of analytes, an approximate mass of 0,5 g of sample was weighed in an Anton Paar (Multiwave Pro) microwave oven for 30 min assisted by 8 ml of HNO3 and 2 ml of analytical grade H2O2. The digestate masses obtained were brought to a volume of 100 ml for measurement. The measurements were made by AAS, using lamps HCL and EDL Perkin Elemer brand. For the measurement of Fe a calibration curve of 0 to 1 mg / L was used. For the determination of Ca a calibration curve of 0 to 6 mg / L was used and for the measurement of Zn a calibration curve of 0 to 0,4 mg / L was used. The wavelengths and parameters of each analyte were determined based on supplier considerations. The traceability of the measurements were evaluated by MRC of INTI REDELAC milk PEA CPLLP milk powder, measured at the same time and conditions of the target samples. Sample masses and CRM were statistically treated to correct variations by environmental and air thrust factors. The values obtained in the measurements were statistically treated to calculate the uncertainties and amount of substance of the target analyte in each replica

	group. Replicas were performed for 3
Instrumentation used	AAS Perkin Elmer model PinAACle 900T, Microwave Anton Paar model Mutiwave Pro, Balance Mettler Toledo Model XS204, Hydrothermobarometer Extech, Stove Memmert, and mass set for calibration of the balance. For the Calibration curve used a CRM at NIST (Zn lot 120629, code 3168a, Ca lot 130213, code 3109a and Fe lot 140812 code 3126a) Finaly used a water desionizer MerckMilipore Ultrapure water equipment CE < 1,2 uS/cm
Calibration method/design used	Calibration curves were performed by gravimetric preparation from the CRM afore mentioned CRM The readings of the concentrations, as well as the determination of the optimal conditions of measurement was carried out by studying factors in a 2k experimental design using as responses of the process to the recovery and the characteristic concentration
For ID-ICP-MS, please indicate reference and spiked isotopes used	NA
Traceability (i.e., source, purity of calibration standards)	For the Calibration curve used a CRM at NIST (Zn lot 120629, code 3168a, Ca lot 130213, code 3109a and Fe lot 140812 code 3126a)
Internal standards used (if applicable)	Ge FOR SELENIUM Y FOR Ca, Zn and Fe
Measurement equation and uncertainty budget (please include breakdown of the budget, describing individual uncertainty contributions and how they were combined)	
Reference material used	For the Calibration curve used a CRM at NIST (Zn lot 120629, code 3168a, Ca lot 130213, code 3109a and Fe lot 140812 code 3126a)
Sample amount used for analysis	0,5 g for replicate (1,5 g for stick)

Sample amount	
used for dry mass	0,5 g for replicate (1,5 g for stick)
correction	
Number of samples	
aliquots taken for	
dry mass	
correction.	
Correction for dry	36) 2,6271%
mass (% of	37)2,6379%
weighted sample)	38) 2,6284%
	39) 2,6986%
	40) 2,6889%
Uncertainty for dry	36) 0,0480 %
mass correction	37) 0,0850%
	38)0,0450%
	39) 0,0820%
	40) 0,1210%
Additional	
Comments or	
Observations	

Institute: IMMETRO Brazil

Analytes	Ca, Zn, Se
QC sample	NIST 1849a
Description of the methodology used	A pool of three packs were homogeneized and after, five sub samples were weighed (0.5 g) and transferred to a teflon tube. Four mL of subboiling nitric acid and two mL of high purity hidrogen peroxide 30 % were added to the tubes. The samples were digested in a micro wave reaction sistem according the following program (300 W - ramp 8 minutes / 0W hold for 10 minutes/ 500 W - ramp 15 minutes / 0 W for 10 minutes / 1300 W - ramp 15 minutes / 1300 W for 15 minutes). The SRM 1849a was used as quality control and a reagent blank was running. The dry mass correction factor was calculated from three sub samples of 1 g that were dryed at 80 °C for 60 h at -760 mmHg. Ca mass fraction was determined by external calibration and Zn and Se mass fraction were determined by standard addition method.
Instrumentation used	Ca/Zn - ICP OES Ultima 2 - Jobin Yvon Se - ICP-MS ELA DRC II - Perkin Elmer Sample Digestion - Micro wave reaction Sistem - Multiwave Pro - Anton Paar

Calibration method/design used	Ca - External Calibration Zn - Standard addition Se - Standard addition
For ID-ICP-MS, please indicate reference and spiked isotopes used	NA
Traceability (i.e., source, purity of calibration standards)	Ca - SRM 3109, Zn SRM 3168a , Se SRM 3149 from NIST
Internal standards used (if applicable)	Not applicable
Measurement equation and uncertainty budget (please include breakdown of the budget, describing individual uncertainty contributions and how they were combined)	External Calibration: w = w0 x df x frep x fdrymass, where w0 is the calcium mass fraction in the diluted solution, df is the dilution factor of the sample, frep is the factor of the instrumental repeatability and fdrymass is the dry mass correction factor. The main source of uncertainty are: calibration curve, dilution factor, repeatability, and dry mass factor. A typical contribution from these sources of uncertainty is: calibration curve (0.22 %) sample dilution (0.25 %), repeatability (0.55 %) and dry mass factor (0.16 %). Combined standard uncertainty is the square-root fo the linear sum of squared relative uncertainty components. The combined standard uncertainty ranged from 0.61 to 0.89 % relative to the calcium mass fraction in the sample. Gravimetric standard addition: "Uncertainty of standard addition experiments: a novel approach to include the uncertainty associated with the standard in the model equation" Anna-Lisa Hauswaldt• Olaf Rienitz• Reinhard Jahrling•Nicolas Fischer• Detlef Schiel• Guillaume Labarraque• Bertil Magnusson, Accred Qual Assur (2012) 17:129–138. DOI 10.1007/s00769-011-0827-5
	w = 1/wdry * fexp * wx * dmx * dmz * dmi, where w is the Mass fraction of the analyte Zn or Se in the sample, wdry is the Dry mass correction—result of repeated measurements, fexp is Sampling, sample preparation and inhomogeneity, wx is the Result of the standard addition model equation, dmx is the Uncertainty contribution from the sample mass, dmz is Uncertainty contribution from the mass of standard added and dmi is the Uncertainty contribution from the mass of solutions measured.
Reference material used	SRM 1849a - Infant/Adult Nutritional Formula I (milk-based) was used as quality control. Normalized error was used to check the consistency between the measured and certified values.
Sample amount used for analysis	0.5 g

Sample amount used for dry mass correction	Approximately 1,0 g
Number of samples aliquots taken for dry mass correction.	Three sub samples
Correction for dry mass (% of weighted sample)	The dry mass factor correction is 0,9643 and the combined standard uncertainty is 0,0016. The uncertainty is a combination from the repeatability and the uncertainty from the sample mass.
Uncertainty for dry mass correction	The dry mass factor correction is 0,9643 and the combined standard uncertainty is 0,0016. The uncertainty is a combination from the repeatability and the uncertainty from the sample mass.
Additional Comments or Observations	

Institute:ISP Chile

Analytes	Fe, Zn
QC sample	NIST 1849a
Description of the methodology used	Digestion of food with nitric acid & hydrogen-peroxide in MW digestor. Quantification for ICP-MS with internal standard addition.
Instrumentation used	ICP MS Agilent Model 7700 - MW digestor Anton Para Model Multiwave PRO- Analytical Balance Sartorius Model LA320S
Calibration method/design used	Internal Standard Addition, preparation for gravimetric method.
For ID-ICP-MS, please indicate reference and spiked isotopes used	NA
Traceability (i.e., source, purity of calibration	NIST SRM [®] Fe 3126a ,NIST SRM [®] Fe 3168a , Metrology Designated Institute for mass of Chile CESMEC.

standards)	
Internal standards used (if applicable)	Scandium NIST 3148a
Measurement equation and uncertainty budget (please include breakdown of the budget, describing individual uncertainty contributions and how they were combined)	uncertainty contributions considered: Signal Ration Metal/Internal Standard Fraction of mass Calibration of metal mass sample dilution factor moisture, meaurement Precision $\omega_{smp} = \frac{R * W_{cal} * m_{cal-FB} * m_{sln}}{m_{sln-FB} * m_{smn}} * FD$
Reference material used	NIST CRM 1849a
Sample amount used for analysis	0,50 g +/- 0,05 g
Sample amount used for dry mass correction	1,00 g +/- 0,05 g
Number of samples aliquots taken for dry mass correction.	4 samples
Correction for dry mass (% of weighted sample)	Zn= 3,39 % & Fe = 3,39%
Uncertainty for dry mass correction	Colocar la inncertidumbre u , k=1
Additional Comments or Observations	Participants in the test analysis Claudia Núñez and Javier Vera. The report of Uncertaninty for Zn & Fe is 95%IC k=2,78. Review and statistical calculations Soraya Sandoval, Claudia Núñez and Javier Vera

Institute:NIM China

Analytes	Ca, Fe, Se, Zn
QC sample	ERM BD-150 (for Ca, Fe and Zn) & GBW10115 (for Se)
Description of the methodology used	Microwave digestion for sample preparation, 5mL HNO3 as digestion solvent ICP-OES, Std-Addtion Method for Fe, Zn and Ca Determination ICP-MS, IDMS Method for Se Determination
Instrumentation used	CEM Mars 5 Microwave Digestion System Thermofisher iCap 7400 ICP-OES Agilent 8800 ICP-MS
Calibration method/design used	Std-Addtion Method for Fe, Zn, Ca IDMS Method for Se
For ID-ICP-MS, please indicate reference and spiked isotopes used	80Se as reference isotope, 78Se as spiked isotope
Traceability (i.e., source, purity of calibration standards)	Ca, GBW(E)080118, 1000±5mg/L (992.8±5.0mg/g) Fe, GBW08616, 1000±2mg/L (990.5±2.0mg/g) Zn, GBW08620, 1000±1mg/L (996.6±1.0mg/g) Se, NIST SRM 3149
used (if applicable)	None

Measurement		Measur	ement equation and uncertainty budget						
equation and		5e	$R - R_i = \sum_{i=1}^{n} R_{ii} M_i$ $m_i = C_i$			$R_{\mu} - R_{\mu} \sum_{i=1}^{n} I$	₹M _m	n o	
uncertainty budget		Cy	$= \frac{1}{R_b'-R_y} \frac{1}{\sum R_c M_c} \frac{1}{m_{y_c}} \frac{1}{\sum R_c M_c} \frac{1}{m_{y_c}} \frac{1}{\sum R_c M_c} \frac{1}{m_{y_c}} \frac{1}{\sum R_c M_c} \frac{1}{\sum R_c} \frac$	_	Cx=	$\frac{R_{h}-R_{x}}{R_{h}-R_{x}}$	R M m	<u>n</u>	
(nlease include						.≕ Standard		Typ	
breakdown of the		raramete ,	concentration of ⁷⁸ Se solve		0.4683	uncertainty 0.0008	mgkg	AB	
		₹, ₹.	measured isotope amount ratio in the milk powder sample $R_{76,80}$	_	0.4653	0.0010			
budget, describing		Ro-	measured isotope amount ratio of blend b' R 76.80	_	1.7558	0.0032			
individual		K.: P.:	measured isotope amount ratio in the primary assay standard $R_{7,8,80}$		0.4578	0.0013		+	
uncertainty			amount content of the primary assay standard	-	10110	10	meke		
contributions and		n _x	mass fraction of sample in blend b		0.48233	0.00005	g		
	1	n _y	mass fraction of spike in blend b	-	0.25020	0.00005	g	+	
how they were		n., n.:	mass fraction of primary assay standard in blend b'		0.50568	0.00005	g		
combined)		lx .	measured result of Se in milk powder sample		0.3724	0.0011	mgkg		
		€x	dry mass of the weighted sample		98.00	0.05	%	<u></u>	
		Ç _x	Mass fraction of Se		0.372	mgka	2		
		1 _c	Combined standard uncertainty		0.002	mglq	2	<u> </u>	
	Í	V	Expanded unceratinty		0.004	mgka	z		
		Co Eo C	7.	_					
		ca, re œ		- až) (y	, - b)	D		
					- (-	8	. <u>р</u>		
	ľ	Ca		_	Typical	Standard		-	
		Paramete	er Source of unceratinty		vatie	uncertainty	Unit	T	
		- 5d F	dry mass correction		98.00%	2.5	mgl.		
		n	mass of sample		0.48993	0.0000	5 g	<u>z</u>	
		n _{sol} N _{std-add}	mass of standard addition solution	-+	4 10194	0.0001) <u>s</u>	<u>a</u>	
		n _w ,	mass of measured digestion solution		1.02497	0.0001) g	<u>e</u>	
		; , (; , -b)/a	measured result of C a in sample concentration of C a from sample in measured std-added solution	-+	<u>12979</u> 22.5	8	l mgka	12 17	
		B	procedure blank subtraction		0.4	0.1	l mgkg	12 12	
		0.	Mass fraction of Ca	-	12979	mgka	2	<u>+-</u>	
		l _c	Combined standard uncertainty		169	mgkq	2		
	ť	i V	Coverage factor Expanded unceratinty		339	mgka	2		
	Fe	_		-					
	Para	meter	Source of unceratinty	Typic	cal S	itandard U	init Ty	Type	
	C_{Sal}	con	centration of CRM Solution	100	0	l m	gL	в	
	16°	<u>drv</u> 1025	mass correction	98.0	0%	0.05%		A	
	792 _{av 1}	1123	is of digestion solution	54.31	198	0.00010	5	B	
	792 _{and -a}	м 1033	ss of standard addition solution	2.55	745	0.00010		B	
	C 1	mea	saredresult of Fe in sample	2	1.35	0.00010	ngkg	A	
	() b	a con	centration of Fe from sample in measured std-added solution	13	54	0.18	ngig	A	
	_	pro	Ceble Elans subfaction			0.02	LEKE		
	C _x	Ma	ss fraction of Fe whined standard property into	2	2.35	ngkg	_	_	
	k	Cor	verame factor	Ľ	2				
	0	Exp	endes uncereiniv	0	. 10	ngkg			
	Ze			-					
	Para	meter	Source of uncertainty	Typic	cal S	itandard U	init Ty	Type	
	C_{Sal}	con	centration of CRM Solution	100	0	0.5 m	gL	в	
	16° 790 -	drv mas	mass correction is of sample	98.0	0% 993	0.05%	g	B	
	792 and	1235	ss of digestion solution	54.31	198	0.00010	g	в	
	792 and-a	M 1023	s of standard addition solution s of measured digestion solution	2.55	745	0.00010	2 5	B	
	¢ x	mea	saured result of Zn in sample	43	8.03	0.11 1	ngkg	A	
	00 R	a con	centration of Zn from sample in measured std-added solution	0.24	487	0.0013 1	ngkg	A	
		200	n nega na kalenda da na	1000		0.0001	12 N 2		
	C _x	Ma	ss traction of Zn mbined standard uncertainty	43	0.03	ngig ngiy	_		
	k	Co	verage factor	Ľ	2				
	U	Exe	endes uncerziniv	1 0	1.49	metr			
Defense suited									
Reference material									
used		-150) (for Ca. Fe and 7n) & GRW1	101	15/	for ۲۵۱			
		1.50		-01	-) (

Sample amount used for analysis	0.45~0.55g
Sample amount used for dry mass correction	0.4~0.7g
Number of samples aliquots taken for dry mass correction.	4
Correction for dry mass (% of weighted sample)	98.01%, 97.97%, 98.07%, 97.95%
Uncertainty for dry mass correction	0.00053
Additional Comments or Observations	

Institute: INMC Colombia

Analytes	Ca, Zn Fe not reported
QC sample	
Description of the methodology used	Microwave assisted digestion was used. Samples were weight in a PFA digestion vessels, 4 mL of bisub-distilled nitric acid (69%) and 2 mL of hidrogen peroxide (30%) were added. The digestion was carried out to 900 W during 25 minutes with a predigestion step of 12 hours. After that, the extract were left to cool and diluted to final mass of 20 g with DIW.
Instrumentation used	- The digestion was carried out in the AntonPaar Multiwave PRO instrument. '- ICP-MS Perkin Elmer NEXION 300D was used with instrumental analytical.
Calibration method/design used	Measurement method by ICP-MS : Standard addition combined with internal standard. The Internal Standard used was TI and Rh.
For ID-ICP-MS, please indicate reference and	NA

spiked isotopes used	
Traceability (i.e., source, purity of calibration standards)	 For ICPMS measurements were used: Zinc (Zn) Standard Solution (10.007 mg/g ± 0.020 mg/g) NIST SRM 3168a. The internal standards were Rh and Tl. Calcium (Ca) Standard Solution (9.819 mg/g ± 0.019 mg/g) NIST SRM 3109a. The internal standards were Rh and Tl. Iron (Fe) Standard Solution (10.013 mg/g ± 0.024 mg/g) NIST SRM 3126a. The internal standards were Rh and Tl.
	For FAAS measurements were used: - Zinc (Zn) Standard Solution (10.007 mg/g ± 0.020 mg/g) NIST SRM 3168a. The internal standards were Rh and Tl. - Calcium (Ca) Standard Solution (9.819 mg/g ± 0.019 mg/g) NIST SRM 3109a. The internal standards were Rh and Tl.
Internal standards used (if applicable)	To ICP-MS: The internal standard was Rh103, Tl 81
Measurement equation and uncertainty budget (please include breakdown of the budget, describing individual uncertainty contributions and how they were combined)	mass fraction (mg/kg) by ICP-MS measurement $w_x = \frac{w_x from standard model^m dilution}{m_{aliquot} m_{sample}(1 - w_{moisture})} abc$ mass fraction (mg/kg) by FAAS measurement $w_x (\frac{mg}{kg}) = \frac{w_x EC(\frac{mg}{kg})}{(1 - w_{moisture})} ab$ Uncertainty on measurements was evaluated based on a ISO-GUM approach, the main sources were: repeatability, calibration, CMRs and model regression (for addintion standard method). In addition, for sodium measurements were include: dilution factor and sample mass The uncertainty sources for the calibrants were: calibration balance, resolution and CRMs certificates. These sources were estimated and integrated in the estimation of the total combined uncertainty. Then, the most the contributions were obtained from the statistical analysis of repeated measurements to estimate the combined uncertainty. After the estimation of all sources of uncertainty, they were combined according to the law of propagation of uncertainty, they were combined
	standard uncertainty. The expanded uncertainties, obtaining the combined standard uncertainty. The expanded uncertainty, U, is obtained by multiplying relative uncertainty by a coverage factor k, assuming a normal distribution of the measurand.
Reference material used	 NIST SRM 3109a, Calcium (Ca) Standard Solution NIST SRM 3126a, Iron (Fe) Standard Solution NIST SRM 3168a, Zinc (Zn) Standard Solution DMR-82c CENAM, Leche descremada en polvo.

Sample amount used for analysis	0.5g
Sample amount used for dry mass correction	0.25g
Number of samples aliquots taken for dry mass correction.	3
Correction for dry mass (% of weighted sample)	Between 2.6% to 3.2%
Uncertainty for dry mass correction	2.5% (relative)
Additional Comments or Observations	The iron measurement result in the sample SM.QM.S10 was not reported, because we had problems in the measurement.

Institute: LACOMET Costa Rica

Analytes	Ca, Zn
QC sample	NIST 1869
Description of the methodology used	1,0 g test portions taken from SIMQM-S10 packets. Samples were digested using a high purity nitric acid in a microwave oven. The remaining acid after digestion was evaporated to a volume between (2 and 3) ml. All samples were mass diluted with desionized water with resistance \geq 18 M Ω · cm and COT \leq 5 ppm.
Instrumentation used	For calcium and zinc a flame atomic absorption spectrometry PerkinElmer PinAAcle 900T with hollow cathode lamps.
Calibration method/design used	For calcium external calibration. For zinc standard addtion calibration.
For ID-ICP-MS, please indicate reference and spiked isotopes used	NA
Traceability (i.e.,	For Ca NIST, SRM 3109a.

source, purity of	For Zn NIST, SRM 3168a.
calibration	
Internal standards	
used (if applicable)	none
Mossuromont	
equation and	$\bar{\gamma}_{Ca_i} = \bar{\gamma}_{regression_{Ca_i}} \cdot \frac{m_{solution_i}}{m} \cdot \frac{m_{extract_i}}{m} \cdot rep + C_{Recovery}$
uncertainty budget	" ""alicuot _i ""dry mass sample _i
(please include	
breakdown of the	$\bar{w}_{solution_i} = m_{extract_i}$
budget, describing	$\gamma_{Zn_i} = -p_{intercept of the inverse regression_{Ca_i}}, \overline{m_{alicuot_i}}, \overline{m_{dry mass sample_i}}, rep + c_{Recovery}$
uncertainty	
contributions and	m = mass measure; C= correction of recovery; extract= diluted extract of
how they were	digestion solution; rep= method repeatability
combined)	Uncertainties mass measurements: resolution and balance calibration
	certificate.
	Mass dry: resolution and balance calibration certificate.
	Uncertainty type B from SRM 3109 and SRM 3168a.
	Uncertainty type A from repeatibility method.
	For mass dry basis the uncertainty was estimated using the Kragten method. For Ca and Zn concentration estimation the uncertainty was estimated using the "Guide to the Expression of Uncertainty in Measurement (GUM).
Reference material	
used	NIST, SRM 1869
Sample amount	
used for analysis	lg
Sample amount	
used for dry mass	1g
correction	
aliquots taken for	
dry mass	4
correction.	
Correction for dry	
mass (% of weighted sample)	% Total Solids: (97,31±0,18) %
Uncertainty for dry	
mass correction	0.18%

Institute: INEN Equador

Analytes	Fe, Zn
QC sample	no QC sample
Description of the methodology used	Organic matrix is destroyed by dry ashing in muffle furnace at 525 °C during a time no longer than 8 hours. The remaining ash is dissolved in diluted nitric acid 1M and the analyte is determined by atomic absorption spectrophotometry - flame method (AAS).
Instrumentation used	Porcelain Crucibles Hot plate Glassware Atomic absorption spectrophotometer Muffle furnace Drying oven
Calibration method/design used	EC-FAAS: External calibration-Atomic flame absorption spectrometry
For ID-ICP-MS, please indicate reference and spiked isotopes used	NA
Traceability (i.e., source, purity of calibration standards)	NIST SRM 3126A Iron Standard Solution NIST SRM 3168a Zinc Standard Solution NIST SRM 3234 Soy flour.
Internal standards used (if applicable)	

Measurement equation and uncertainty budget (please include breakdown of the budget, describing individual uncertainty contributions and	$w_M = w_{(x-B)} * fd * fd_n$
how they were combined)	$m_x = m * \frac{100}{(100 - w_{H_2O})}$
Reference material used	NIST SRM 3234 Soy flour.
Sample amount used for analysis	1 g
Sample amount used for dry mass correction	
Number of samples aliquots taken for dry mass correction.	
Correction for dry mass (% of weighted sample)	
Uncertainty for dry mass correction	
Additional Comments or Observations	

Institute: CENAM Mexico

Analytes	Ca, Zn
QC sample	CMR082d

Description of the methodology used	Three aliquots of 0.5 g were accurately weighed for the five samples into microwave vessels, 8 mL of HNO3 and 2 mL of H2O2 were added to each vessel and the contents were digested using a MARS 6 microwave digestor. The digested samples were transferred to a 250 mL PTFE beakers and the contents were evaporated on a hot plate to near dryness. The contents were transferred to a 50 mL low-density polyethylene (LDPE) tube and diluted to 30 g with 1 % HNO3. A 3.6 g aliquot of each sample was weighed into a 125 mL LDPE bottle and diluted to 120 g with 1 % HNO3. The control CMR082d was similarly treated.
used	A Thermo Scientific ICAP Q inductively coupled plasma mass spectrometer (ICP- MS) was used for calcium and zinc measurements with the follow conditions: KED mode, RF power 1550 W, Nebuliser gas flow 0.91 L/min, Auxiliary Argon flow 0.8 mL/min, Colision gas He flow of 5.368 mL/min for Ca and 5.355 mL/min for Zn
Calibration method/design used	A 9.75 g aliquot subsample containing internal standard (Y) was transferred into a 15 mL tube, 250 mg aliquot of a solution containing 300.99 μg/g of Calcium was added to the vial to constitute a spiked sample for the purpose of quantification by the method of standard addition. A 9.2 g aliquot subsample containing internal standard (Y) was transferred into a 15 mL tube, 700 mg aliquot of a solution containing 4.26 μg/g of Zinc was added to the vial to constitute a spiked sample for the purpose of quantification by the method of standard addition.
For ID-ICP-MS, please indicate reference and spiked isotopes used	NA
Traceability (i.e., source, purity of calibration standards)	NIST SRM 3109a Calcium Standard Solution was employed for calcium measurementsCENAMCertified Reference Material DMR-61d Zinc spectrometric solution was employed for zinc measurementsCENAM
Internal standards used (if applicable)	Y spectrometric solution was used as internal standard
Measurement equation and uncertainty budget (please include breakdown of the budget, describing individual uncertainty contributions and how they were combined)	Standard addition method was used for calcium and zinc measurements. The uncertainty budget included: dry mass correction, measurement replication, calibrant and dilutions. The expanded uncertainty U= ku was calculated using the uncertainty propagation law where k is the coverage factor of 2 for a 95 % confidence level. The components of uncertainty for calcium and zinc measurements are described as follow For calcium- dry mass correction: 0.095 g/100 g, measurement replications: 139 mg/kg, calibbrant: 291 µg/kg, dilutions: 0.00009 g For zinc- dry mass correction: 0.095 g/100 g, measurement replications: 0.5314 mg/kg, calibbrant: 0.689 µg/kg, dilutions: 0.00009 g

Reference material used	CENAM Certified Reference Material CMR082d Skim milk powder was used as control
Sample amount used for analysis	0.5 g of sample were used for calcium and zinc analysis
Sample amount used for dry mass correction	0.5 g were used for dry mass correction
Number of samples aliquots taken for dry mass correction.	Duplicated aliquots of 0.5 g for each sample were used for dry mass correction
Correction for dry mass (% of weighted sample)	3.102 g/100 g
Uncertainty for dry mass correction	0.095 g/100 g
Additional Comments or Observations	Due to technical problems during sample preparation of sample 61, for calcium only two results are reported

Institute: JSI Slovenia

Analytes	Ca Fe Se Zn
QC sample	ERM-BD151
Description of the methodology used	For k0-INAA, an aliquot varied from 0.30 to 0.33 g was pelletized using manual hydraulic press in diameter 10 mm and 3 mm high. An aliquot and standard Al-0.1%Au alloy (IRMM-530R) were stacked together, fixed in the polyethylene vial in sandwich form and irradiated for 20 hours in the carousel facility (CF) of the TRIGA reactor with a thermal neutron flux of 1.1E+12 cm-2 s-1. 5 aliquots were taken in this study. This technique is non-destructive. ICP-MS: About 0.5000 g of samples were weighted into Teflon tubes. Then concentrated HNO3 and H2O2 were added. The tubes were closed and subjected to closed vessel microwave-assisted digestion for 1 hour. After the samples were cooled down, they were quantitatively transferred into 30 mL PE tubes and filler with MilliQ to 20 mL. Before measurement, the samples were diluted 10 times.
Instrumentation used	250 kW TRIGA Mark II reactor, HPGe detector ICP-MS 7900x, Agilent Technology

Calibration	k0-standardization method of INAA.							
method/design	Reference material used for calibration: IRMM-530R (Al-0.1%Au alloy).							
used	k0-INAA technique is non-destructive.							
	ICP-MS: External calibration							
For ID-ICP-MS, please indicate reference and spiked isotopes used	N/A							
Traceability (i.e.,								
source, purity of	IRMM-530R, Al-0.1%Au alloy (1.003±0.012 g/kg, k=2)							
calibration	ICP-MS NIST SRM 3126a							
standards)								
Internal standards used (if applicable)								
	ICP-MS' Bh							
Moasuromont	The uncertainty budget of k0 INAA includes the following uncertainties:							
equation and	literature values for T1/2 \overline{F} 00 and k0; the irradiation decay and measuring							
uncertainty budget	times: true-coincidence correction factor (COI): Au composition in AL-0.1%Au							
(nlesse include	allov: masses of sample and standard (Al-0.1%Au allov): dry mass correction:							
breakdown of the	previously determined neutron flux parameters (f and α) using Cd-ratio							
budget describing	method: and detection efficiency							
individual	Combined standard uncertainty of k O-INAA in this study is calculated as:							
uncertainty								
contributions and	$u_c = \sqrt{\frac{St.dev^2}{1} + u_{method}^2}$							
how they were	n							
combined)	where St.dev. is standard deviation of independent measurements (n=5) and umethod is combined standard uncertainty of the method used (k=1).							
	Expanded uncertainty is calculated as: $U = 2 \times u_c$							
	ICP-MS: Measurement uncertainty was estimated on the basis of Eurachem Guide "Quantifying Uncertainty in Analytical Measurement" (3rd Edition, 2012). Combined measurement uncertainty was calculated by the following equations:							
	where m is sample mass; V is the final volume; c is the element concentration							
	as measured by ICP-MS, f(rep) is the repeatability of the method and							
	f(moisture) is the factor of sample moisture.							
	$\gamma = \frac{c \times V}{m} \times f_{repeatability} \times f_{moisture}$							
	$\frac{u(\gamma)}{\gamma} = \sqrt{\left(\frac{u(c)}{c}\right)^2 + \left(\frac{u(V)}{V}\right)^2 + \left(\frac{u(m)}{m}\right)^2 + \left(\frac{u(f_{rep})}{f_{rep}}\right)^2 + \left(\frac{u(moisture)}{moisture}\right)^2}$							
	$U = 2 \times v(v)$							
	$U = 2 \times u(\gamma)$							

Reference material used	ERM-BD151
Sample amount used for analysis	K0-INAA: from 0.30 to 0.33 g; ICP-MS 0.5g
Sample amount used for dry mass correction	from 0.8 to 0.9 g
Number of samples aliquots taken for dry mass correction.	n=3
Correction for dry mass (% of weighted sample)	Correction dry mass factor of 1.0227 was used corresponding to moisture content of 2.22 %.
Uncertainty for dry mass correction	Standard uncertainty of moisture content is about 0.003% and negligible contribute to the uncertainty budget of the method used.
Additional Comments or Observations	

Institute: NIMT, Thailand

Analytes	Ca, Fe, Se, Zn
QC sample	SRM 1568b (for Se). NMIJ CRM 7512-a Trace Elements in Milk Powder (for Ca, Fe and Zn).

methodology accurately 0.25 g with the addition of Rh as an internal standard was digested with 5 mL HNO3 using Multiwave 7000 Microwave. Temperature program was set up to 250 degree celsius. This condition made it possible to obtain clear digests. The digestate was then made up with deionized water by approximately 25 g. Then a series of standard addition solutions was prepared and monitored at m/2 \$2 (Medium resolution). Ca:Through GSA-ICPDES and GSA-ICPMS method, SIM.QM-510 sample weighed out accurately 0.25 g with the addition of Rh as an internal standard was digested with 5 mL HNO3 using Multiwave 7000 Microwave. Temperature program was set up to 250 degree celsius. This condition made it possible to obtain clear digests. The digestate was then made up with deionized water by approximately 25 g. Then a series of standard addition solutions was prepared and monitored at m/2 42,43, and 44 for ICP-MS. Calcium measurement was monitored at wavelength 317.931 m and Ca 315.887 nm for ICP-0ES. Zn: Isotope Diluton-ICP-MS was used and the target mole ratio was aimed at 0.7. 662n was an analyte ion and 672n was spike ion. 0.25g of SIM.QM-510 sample was microwave. The digestion condition was ramp to 250 °C for 30 min and hold for 30 min and then cool down to room temperature. This condition made it possible to obtain clear digests. The digestate was then made up with deionized water to 25 multi clear digests. The digestate was then cool down to room temperature. This condition made it possible to obtain clear digested with 5 m. HNO3 using Multiwave 7000 Microwave. The digestion condition was ramp to 250 °C for 30 min and hold for 30 min and then cool down to room temperature. This condition mater tho cool down to room temperature. This condition made it possible to obtain cle	Description of the	Se: Through GSA-HR-ICPMS method, SIM.QM-S10 sample weighed out
used with 5 mt HNO3 using Multiwave 7000 Microwave. Temperature program was set up to 250 degree celsius. This condition made it possible to obtain clear digests. The digestate was then made up with deionized water by approximately 25 g. Then a series of standard addition solutions was prepared and monitored at m/z 82 (Medium resolution). Ca:Through GSA-ICPOES and GSA-ICPMS method, SIM.QM-510 sample weighed out accurately 0.25 g with the addition of Rh as an internal standard was digested with 5 mt HNO3 using Multiwave 7000 Microwave. Temperature program was set up to 250 degree celsius. This condition made it possible to obtain clear digests. The digestate was then made up with deionized water by approximately 25 g. Then a series of standard addition solutions was prepared and monitored at m/z 42,43, and 44 for ICP-MS.Calcium measurement was monitored at wavelength 317.933 nm and Ca 315.887 nm for ICP-0ES. Zn: Isotope Diluton-ICP-MS was used and the target mole ratio was aimed at 0.7. 662n was an analyte ion and 672n was spike ion. 0.25g of SIM.QM.510 sample was microwave. The digestate was then made up with deionized water to 25 mL. This solution was diluted 8 times. Then, they were analsed utilizing ICP-MS for Zn quantitation. 662n and 672n were monitored. Fe: Through GSA-ICPOES method, SIM.QM-S10 sample weighed out accurately 0.25g with the addition of Y as an internal standard was digested with 5 mL HNO3 using Multiwave 7000 Microwave. The digestate was then made up with deionized water to 25 mL. This solution was aprepared and monitored. Fe: Through GSA-ICPOES method, SIM.QM-S10 sample weighed out accurately 0.25g with the addition of Y as an internal standard was digested with 5 mL HNO3 using Multiwave 7000 Microwave. The digestate was then made up with deionized water by approximately 25 g. Then a series of standard addition	methodology	accurately 0.25 g with the addition of Rh as an internal standard was digested
set up to 250 degree celsius. This condition made it possible to obtain clear digests. The digestate was then made up with deionized water by approximately 25 g. Then a series of standard addition solutions was prepared and monitored at m/z 82 (Medium resolution). Ca:Through GSA:ICPOES and GSA-ICPMS method, SIM.QM-S10 sample weighed out accurately 0.25 g with the addition of Rh as an internal standard was digested with 5 mt HNO3 using Multiwave 7000 Microwave. Temperature program was set up to 250 degree celsius. This condition made it possible to obtain clear digests. The digestate was then made up with deionized water by approximately 25 g. Then a series of standard addition solutions was prepared and monitored at m/z 42,43, and 44 for ICP-MS.Calcium measurement was monitored at wavelength 317.933 nm and Ca 315.887 nm for ICP-OES. Zn: Isotope Diluton-ICP-MS was used and the target mole ratio was aimed at 0.7. 66Zn was an analyte ion and 67Zn was spike ion. 0.25g of SIM.QM.S10 sample was microwave. The digestate was then made up with deionized water to 30 min and then cool down to room temperature. This condition made it possible to obtain clear digests. The digestate was then made up with deionized water to 25 ml. This solution was diluted 8 times. Then, they were analsed utilizing ICP- MS for D quantitation. 66Zn and 67Zn were monitored. Fe: Th	used	with 5 mL HNO3 using Multiwave 7000 Microwave. Temperature program was
digests. The digestate was then made up with deionized water by approximately 25 g. Then a series of standard addition solutions was prepared and monitored at m/2 82 (Medium resolution). Ca:Through GSA-ICPOES and GSA-ICPMS method, SIM.QM-S10 sample weighed out accurately 0.25 g with the addition of Rh as an internal standard was digested with 5 mL HNO3 using Multiwave 7000 Microwave. Temperature program was set up to 250 degree celsius. This condition made it possible to obtain clear digests. The digestate was then made up with deionized water by approximately 25 S. Then a series of standard addition oslutions was prepared and monitored at m/z 42,43, and 44 for ICP-MS.Calcium measurement was monitored at wavelength 317.933 nm and Ca 315.887 nm for ICP-OES. Zn: Isotope Diluton-ICP-MS was used and the target mole ratio was aimed at 0.7. 66Zn was an analyte ion and 67Zn was spike ion. 0.25g of SIM.QM.S10 sample was microwave acid digested with 5 mL of HNO3 using multiwave 7000 microwave. The digestion condition was ramp to 250 °C for 30 min and hold for 30 min and then cool down to room temperature. This condition made it possible to obtain clear digests. The digestate was then made up with deionized water to 25 mC. Through GSA-ICPOES method, SIM.QM-S10 sample weighed out accurately 0.25 g with the addition of Y as an internal standard was digested with 5 mL 10 with we additiwave 7000 Microwave. The digestion condition was ramp to 250 °C for 30 min and hold for 30 min and then cool down to room temperature. This condition made it possible to obtain clear digests. The digestate was th		set up to 250 degree celsius. This condition made it possible to obtain clear
25 g. Then a series of standard addition solutions was prepared and monitored at m/z 82 (Medium resolution). Ca:Through GSA-ICPOES and GSA-ICPMS method, SIM.QM-510 sample weighed out accurately 0.25 g with the addition of Rh as an internal standard was digested with 5 mL HNO3 using Multiwave 7000 Microwave. Temperature program was set up to 250 degree celsius. This condition made it possible to obtain clear digests. The digestate was then made up with deionized water by approximately 25 g. Then a series of standard addition solutions was prepared and monitored at m/z 42,43, and 44 for ICP-MS. Calcium measurement was monitored at wavelength 317.933 nm and Ca 315.887 nm for ICP-OES. Zn: Isotope Diluton-ICP-MS was used and the target mole ratio was almed at 0.7. G6Zn was a niable ion and 67Zn was spite ion. 0.25g of SIM.QM.S10 sample was microwave acid digested with 5 mL of HNO3 using multiwave 7000 microwave. The digestin condition was ramp to 250 °C for 30 min and hold for 30 min and then cool down to room temperature. This condition made it possible to obtain clear digests. The digestate was then made up with deionized water to 25 mL. This solution was diluted 8 times. Then, they were analsed utilizing ICP-MS for Zn quantitation. 662.1 and 672n were monitored. Fe: Through GSA-ICPOES method, SIM.QM-S10 sample weighed out accurately 0.25 g with the addition of Y as an internal standard was digested with 5 mL HNO3 using Multiwave 7000 Microwave. The digestinc condition was ramp to 250 °C for 30 min and hold for 30 min and then cool down to room temperature. This condition mase tipossible to obtain clear digests. The digestate was then made up with deionized water by approximately 25 g. Then a series of standard addition solutions was prepared and monitored at wavelength 238.204 nm and 239.562 nm. Instrumentation used Se: High Resolutio		digests. The digestate was then made up with deionized water by approximately
at m/z 82 (Medium resolution). Ca:Through GSA-ICPOES and GSA-ICPOIS method, SIM.QM-S10 sample weighed out accurately 0.25 g with the addition of Rh as an internal standard was digested with 5 mL HNO3 using Multiwave 7000 Microwave. Temperature program was set up to 250 degree celsius. This condition made it possible to obtain clear digests. The digestate was then made up with deionized water by approximately 25 g. Then a series of standard addition solutions was prepared and monitored at m/z 42, 43, and 44 for ICP-MS.Calcium measurement was monitored at wavelength 317.933 nm and Ca 315.887 nm for ICP-OES. Zn: Isotope Diluton-ICP-MS was used and the target mole ratio was aimed at 0.7. 662n was an analyte ion and 672n was spike ion. 0.25g of SIM.QM.S10 sample was microwave. The digestion condition was ramp to 250 °C for 30 min and hold for 30 min and then cool down to room temperature. This condition made it possible to obtain clear digests. The digestate was then made up with deionized water to 25 mL. This solution was diluted 8 times. Then, they were analsed utilizing ICP-MS for Zn quantitation. 662n and 672n ware monitored. Fe: Through GSA-ICPOES method, SIM.QM-S10 sample weighed out accurately 0.25 g with the addition of Y as an internal standard was digested with 5 mL HNO3 using Multiwave 7000 Microwave. The digestate was then made up with deionized water by approximately 25 g. Then a series of standard addition solutions was prepared and monitored at wavelength 238.204 nm and 239.562 nm. Instrumentation used Se: High Resolution ICP-MS (Element XR, Thermo Fisher Scientific) Ca: ICP-MS Triple Quad (8800, Agilent) and ICP-OES (Avio 500, PerkinElmer) Fe: ICP-OES (Avio 500, PerkinElmer) Zn: ICP-MS triple Quad (8800, Agilent) and ICP-OES (Avio 500, PerkinElmer) Zn: ICP-MS Triple Quad (8800, Agilent) ICP-MS, GSA-ICP-OES Fe: Gravimetric		25 g. Then a series of standard addition solutions was prepared and monitored
Ca:Through GSA-ICPOES and GSA-ICPMS method, SIM.QM-S10 sample weighed out accurately 0.25 g with the addition of Rh as an internal standard was digested with 5 mL HNO3 using Multiwave 7000 Microwave. Temperature program was set up to 250 degree celsius. This condition made it possible to obtain clear digests. The digestate was then made up with deionized water by approximately 25 g. Then a series of standard addition solutions was prepared and monitored at m/2 42,43, and 44 for ICP-MS.Calcium measurement was monitored at wavelength 317.933 nm and Ca 315.887 nm for ICP-QES. Zn: Isotope Diluton-ICP-MS was uesd and the target mole ratio was aimed at 0.7. G6Zn was an analyte ion and 67Zn was spike ion. 0.25g of SIM.QM.S10 sample was microwave acid digested with 5 mL of HNO3 using multiwave 7000 microwave. The digestion condition was ramp to 250 °C for 30 min and then cool down to room temperature. This condition made it possible to obtain clear digests. The digestate was then made up with deionized water to 25 mL. This solution was diluted 8 times. Then, they were analsed utilizing ICP-MS for Zn quantitation. 66Zn and 67Zn were monitored. Fe: Through GSA-ICPOES method, SIM.QM-S10 sample weighed out accurately 0.25 g with the addition of Y as an internal standard was digested with 5 mL HNO3 using Multiwave 7000 Microwave. The digestion condition was ramp to 250 °C for 30 min and hold for 30 min and then cool down to room temperature. This condition made it possible to obtain clear digests. The digestate was then made up with deionized water by approximately 25 g. Then a series of standard addition solutions was prepared and monitored at wavelength 238.204 nm and 239.562 nm. Instrumentation used Se: High Resolution ICP-MS (Element XR, Thermo Fisher Scientific) Ca: ICP-MS Triple Quad (8800, Agilent) Calibration method/design <td< td=""><td></td><td>at m/z 82 (Medium resolution).</td></td<>		at m/z 82 (Medium resolution).
out accurately 0.25 g with the addition of Rh as an internal standard was digested with 5 mL HNO3 using Multiwave 7000 Microwave. Temperature program was set up to 250 degree celsius. This condition made it possible to obtain clear digests. The digestate was then made up with deionized water by approximately 25 g. Then a series of standard addition solutions was prepared and monitored at m/a 42,43, and 44 for ICP-MS. Calcium measurement was monitored at wavelength 31.933 nm and Ca 315.887 nm for ICP-OES. Zn: Isotope Diluton-ICP-MS was used and the target mole ratio was aimed at 0.7. 662n was an analyte ion and 672n was spike ion. 0.25g of SIM.QM.S10 sample was microwave acid digested with 5 mL of HNO3 using multiwave 7000 microwave. The digestin condition was ramp to 250 °C for 30 min and then cool down to room temperature. This condition made it possible to obtain clear digests. The digestate was then made up with deionized water to 25 mL. This solution was diluted 8 times. Then, they were analsed utilizing ICP-MS for Zn quantitation. 66Zn and 67Zn were monitored. Fe: Through GSA-ICPOES method, SIM.QM-S10 sample weighed out accurately 0.25 g with the addition of Y as an internal standard was digested with 5 mL HNO3 using Multiwave 7000 Microwave. The digestion condition was ramp to 250 °C for 30 min and bold for 30 min and ther solutions was prepared and monitored at wavelength 328.204 nm and 239.562 nm. Instrumentation used Se: High Resolution ICP-MS (Element XR, Thermo Fisher Scientific) Ca: Gravimetric Standard Addition ICP-MS Calibration Se: Gravimetric Standard Addition ICP-MS used Se: Gravimetric Standard Addition ICP-MS Calibration Se: Gravimetric Standard Addition ICP-MS Calibrat		Ca:Through GSA-ICPOES and GSA-ICPMS method, SIM.QM-S10 sample weighed
with 5 mL HN03 using Multiwave 7000 Microwave. Temperature program was set up to 250 degree celsius. This condition made it possible to obtain clear digests. The digestate was then made up with deionized water by approximately 25 g. Then a series of standard addition solutions was prepared and monitored at m/z 42,43, and 44 for ICP-MS. Calcium measurement was monitored at wavelength 317.933 nm and Ca 315.887 nm for ICP-OES. Zn: Isotope Diluton-ICP-MS was used and the target mole ratio was aimed at 0.7. 662n was an analyte ion and 672n was spike ion. 0.25g of SIM.QM.S10 sample was microwave acid digested with 5 mL of HN03 using multiwave 7000 microwave. The digestion condition was ramp to 250 °C for 30 min and hold for 30 min and then cool down to room temperature. This condition made it possible to obtain clear digests. The digestate was then made up with deionized water to 25 mL. This solution was diluted 8 times. Then, they were analsed utilizing ICP-MS for 2n quantitation. 662n and 672n were monitored. Fe: Through GSA-ICPOES method, SIM.QM-S10 sample weighed out accurately 0.25 g with the addition of Y as an internal standard was digested with 5 mL HN03 using MUltiwave 7000 Microwave. The digestion condition was ramp to 250 °C for 30 min and hold for 30 min and then cool down to room temperature. This condition made it possible to obtain clear digests. The digestate was then made up with deionized water by approximately 25 g. Then a series of standard addition solutions was prepared and monitored at wavelength 238.204 nm and 239.562 nm. Instrumentation used Se: High Resolution ICP-MS (Element XR, Thermo Fisher Scientific) Ca: ICP-MS Triple Quad (8800, Agilent) Calibration method/design used Se: Gravimetric Standard Addition (GSA)-ICP-OES [Avio 500, PerkinElmer) Fe: ICP-OES (Avio 500, PerkinElmer) Zn: ICP-MS Triple		out accurately 0.25 g with the addition of Rh as an internal standard was digested
set up to 250 degree celsius. This condition made it possible to obtain clear digests. The digestate was then made up with deionized water by approximately 25 g. Then a series of standard addition solutions was prepared and monitored at m/z 42,43, and 44 for ICP-MS. Calcium measurement was monitored at wavelength 317.933 nm and Ca 315.887 nm for ICP-OES. Zn. Isotope Diluton-ICP-MS was used and the target mole ratio was aimed at 0.7. 662n was an analyte ion and 672n was spike ion. 0.25g of SIM.QM.S10 sample was microwave acid digested with 5 m Lof HNO3 using multiwave 7000 microwave. The digestion condition was ramp to 250 °C for 30 min and hold for 30 min and then cool down to room temperature. This condition made it possible to obtain clear digests. The digestate was then made up with deionized water to 25 mL. This solution was diluted 8 times. Then, they were analsed utilizing ICP-MS for Zn quantitation. 66Zn and 67Zn was monitored. Fe: Through GSA-ICPOES method, SIM.QM-S10 sample weighed out accurately 0.25 g with the addition of Y as an internal standard was digested with 5 mL HNO3 using Multiwave 7000 Microwave. The digestate was then made up with deionized water to 250 °C for 30 min and hold for 30 min and then cool down to room temperature. This condition made it possible to obtain clear digests. The digestate was then made up with deionized water by approximately 25 g. Then a series of standard addition solutions was prepared and monitored at wavelength 238.204 nm and 239.562 nm. Instrumentation used Se: High Resolution ICP-MS (Element XR, Thermo Fisher Scientific) Ca: ICP-MS Triple Quad (8800, Agilent) and ICP-OES (Avio 500, PerkinElmer) Fe: ICP-OES (Avio 500, PerkinElmer) Zn: ICP-MS Triple Quad (8800, Agilent) and ICP-OES (Avio 500, PerkinElmer) Zn: ICP-MS		with 5 mL HNO3 using Multiwave 7000 Microwave. Temperature program was
digests. The digestate was then made up with deionized water by approximately 25 g. Then a series of standard addition solutions was prepared and monitored at m/2 42,43, and 44 for ICP-MS.Calcium measurement was monitored at wavelength 317.933 nm and Ca 315.887 nm for ICP-OES. Zn: Isotope Diluton-ICP-MS was used and the target mole ratio was aimed at 0.7. 66Zn was an analyte ion and 67Zn was spike ion. 0.25g of SIM.QM.S10 sample was microwave acid digested with 5 mL of HNO3 using multiwave 7000 microwave. The digestion condition was ramp to 250 °C for 30 min and hold for 30 min and then cool down to room temperature. This condition made it possible to obtain clear digests. The digestate was then made up with deionized water to 25 mL. This solution was diluted 8 times. Then, they were analsed utilizing ICP-MS for Zn quantitation. 66Zn and 67Zn were monitored. Fe: Through GSA-ICPOES method, SIM.QM-S10 sample weighed out accurately 0.25 g with the addition of Ya sa niternal standard was digested with 5 mL HNO3 using Multiwave 7000 Microwave. The digestate was dien was then made up with deionized water by approximately 25 g. Then a series of standard addition solutions was prepared and monitored at wavelength 238.204 nm and 239.562 nm. Instrumentation used Se: High Resolution ICP-MS (Element XR, Thermo Fisher Scientific) Ca: ICP-MS Triple Quad (8800, Agilent) and ICP-OES (Avio 500, PerkinElmer) Zr. ICP-MS Triple Quad (8800, Agilent) Calibration method/design Se: Gravimetric Standard Addition (CP-MS (SA-ICP-OES Zr. ICP-OES Zr. ID-ICP-MS, please indicate reference isotope was 66Zn and spiked isotope was 67Zn. spiked isotopes used For ID-ICP-MS, please indicate reference isotope was 66Zn and spiked from NIST, was used as pri		set up to 250 degree celsius. This condition made it possible to obtain clear
25 g. Then a series of standard addition solutions was prepared and monitored at m/z 42,43, and 44 for ICP-MS. Calcium measurement was monitored at wavelength 317.933 nm and Ca 315.887 nm for ICP-OES. Zn: Isotope Diluton-ICP-MS was uesd and the target mole ratio was aimed at 0.7. 66Zn was an analyte ion and 67Zn was spike ion. 0.25g of SIM.QM.S10 sample was microwave acid digested with 5 mL of HNO3 using multiwave 7000 microwave. The digestion condition was ramp to 250 °C for 30 min and then cool down to room temperature. This condition made it possible to obtain clear digests. The digestate was then made up with deionized water to 25 mL. This solution was diluted 8 times. Then, they were analsed utilizing ICP- MS for Zn quantitation. 66Zn and 67Zn were monitored. Fe: Through GSA-ICPOES method, SIM.QM-S10 sample weighed out accurately 0.25 g with the addition of Y as an internal standard was digested with 5 mL HNO3 using Multiwave 7000 Microwave. The digestion cool down to room temperature. This condition made it possible to obtain clear digests. The digestate was then made up with deionized water by approximately 25 g. Then a series of standard addition solutions was prepared and monitored at wavelength 238.204 nm and 239.562 nm.Instrumentation usedSe: High Resolution ICP-MS (Element XR, Thermo Fisher Scientific) Ca: (CP-MS Triple Quad (8800, Agilent) and ICP-OES (Avio 500, PerkinElmer) Fe: ICP-OES (Avio 500, PerkinElmer) Fe: ICP-OES (Avio 500, PerkinElmer) Zr: ICP-MS Triple Quad (8800, Agilent)Calibration method/design usedSe: Gravimetric Standard Addition ICP-MS Ca: Gravimetric Standard Addition ICP-MS Ca: Gravimetric Standard Addition ICP-MS ca: Gravimetric Standard Addition ICP-MS ca: Gravimetric Standard Addition ICP-MS please indicate reference and spiked isotope susedFor ID-ICP-MS, please in		digests. The digestate was then made up with deionized water by approximately
at m/z 42,43, and 44 for ICP-MS. Calcium measurement was monitored at wavelength 317,933 nm and Ca 315.887 nm for ICP-OES. Zn: Isotope Diluton-ICP-MS was uesd and the target mole ratio was aimed at 0.7. (662n was an analyte ion and 672n was spike ion. 0.25g of SIM.QM.S10 sample was microwave. The digestion condition was ramp to 250 °C for 30 min and hold for 30 min and then cool down to room temperature. This condition was exite to obtain clear digests. The digestate was then made up with deionized water to 25 mL. This solution was diluted 8 times. Then, they were analsed utilizing ICP- MS for 2n quantitation. 662n and 672n were monitored. Fe: Through GSA-ICPOES method, SIM.QM-S10 sample weighed out accurately 0.25 g with the addition of Y as an internal standard was digested with 5 mL HNO3 using Multiwave 7000 Microwave. The digestion condition was ramp to 250 °C for 30 min and hold for 30 min and then cool down to room temperature. This condition made it possible to obtain clear digests. The digestate was then made up with deionized water by approximately 25 g. Then a series of standard addition solutions was prepared and monitored at wavelength 238.204 nm and 239.562 nm.Instrumentation usedSe: High Resolution ICP-MS (Element XR, Thermo Fisher Scientific) Ca: ICP-MS Triple Quad (8800, Agilent) and ICP-OES (Avio 500, PerkinElmer) Fe: ICP-OES (Avio 500, PerkinElmer) Se: Gravimetric Standard Addition (GSA) ICP-MS, GSA-ICP-OES Traceability (i.e., SRM 3149 Lot No. 100901, purchased from NIST, was used as primary source nutry of calibration standard for Se		25 g. Then a series of standard addition solutions was prepared and monitored
wavelength 317.933 nm and Ca 315.887 nm for ICP-OES. Zn: Isotope Diluton-ICP-MS was uesd and the target mole ratio was aimed at 0.7. 66Zn was an analyte ion and 67Zn was spike ion. 0.25g of SIM.QM.S10 sample was microwave acid digested with 5 mL of HNO3 using multiwave 7000 microwave. The digestion condition was ramp to 250 °C for 30 min and hold for 30 min and then cool down to room temperature. This condition made it possible to obtain clear digests. The digestate was then made up with deionized water to 25 mL. This solution was diluted 8 times. Then, they were analsed utilizing ICP-MS for Zn quantitation. 66Zn and 67Zn were monitored. Fe: Through GSA-ICPOES method, SIM.QM-510 sample weighed out accurately 0.25 g with the addition of Y as an internal standard was digested with 5 mL HNO3 using Multiwave 7000 Microwave. The digestion condition was ramp to 250 °C for 30 min and hold for 30 min and then cool down to room temperature. This condition made it possible to obtain clear digests. The digestate was then made up with deionized water by approximately 25 g. Then a series of standard addition solutions was prepared and monitored at wavelength 238.204 nm and 239.562 nm. Instrumentation used Se: High Resolution ICP-MS (Element XR, Thermo Fisher Scientific) Ca: ICP-MS Triple Quad (8800, Agilent) and ICP-OES (Avio 500,PerkinElmer) Fe: ICP-OES (Avio 500, PerkinElmer) Calibration Se: Gravimetric Standard Addition (GSA) ICP-MS, GSA-ICP-OES (Avio 500,PerkinElmer) rot ICP-MS, please indicate reference and spiked isotope was 66Zn and spiked isotope was 67Zn. reference and spiked isotope was 64Zn and spiked from NIST, was used as primary source nutry of calibrations standard for Se		at m/z 42,43, and 44 for ICP-MS.Calcium measurement was monitored at
Zn: Isotope Diluton-ICP-MS was uesd and the target mole ratio was aimed at 0.7. 66Zn was an analyte ion and 6Zn was spike ion. 0.25g of SIM.QM.S10 sample was microwave acid digested with 5 mL of HNO3 using multiwave 7000 microwave. The digestion condition was ramp to 250 °C for 30 min and hold for 30 min and then cool down to room temperature. This condition made it possible to obtain clear digests. The digestate was then made up with deionized water to 25 mL. This solution was diluted 8 times. Then, they were analsed utilizing ICP- MS for Zn quantitation. 66Zn and 67Zn were monitored. Fe: Through GSA-ICPOES method, SIM.QM-S10 sample weighed out accurately 0.25 g with the addition of Y as an internal standard was digested with 5 mL HNO3 using Multiwave 7000 Microwave. The digestion condition was ramp to 250 °C for 30 min and hold for 30 min and then cool down to room temperature. This condition made it possible to obtain clear digets. The digestate was then made up with deionized water by approximately 25 g. Then a series of standard addition solutions was prepared and monitored at wavelength 238.204 nm and 239.562 nm.Instrumentation usedSe: High Resolution ICP-MS (Element XR, Thermo Fisher Scientific) Ca: ICP-MS Triple Quad (8800, Agilent) and ICP-OES (Avio 500, PerkinElmer) Fe: ICP-OES (Avio 500, PerkinElmer) Fe: Gravimetric Standard Addition (GSA) ICP-MS, GSA-ICP-OES Zn: ICP-MS, please indicate reference and spiked isotopes usedFor ID-ICP-MS, please indicate reference and spiked isotopes usedReference isotope was 66Zn and spiked isotope was 67Zn.SRM 3149 Lot No. 100901, purchased from NIST, was used as primary calibration standard for Se		wavelength 317.933 nm and Ca 315.887 nm for ICP-OES.
662n was an analyte ion and 672n was spike ion. 0.25g of SIM.QM.S10 sample was microwave acid digested with 5 mL of HNO3 using multiwave 7000 microwave. The digestion condition was ramp to 250 °C for 30 min and hold for 30 min and then cool down to room temperature. This condition made it possible to obtain clear digests. The digestate was then made up with deionized water to 25 mL. This solution was diluted 8 times. Then, they were analsed utilizing ICP- MS for 2n quantitation. 662n and 672n were monitored. Fe: Through GSA-ICPOES method, SIM.QM-S10 sample weighed out accurately 0.25 g with the addition of Y as an internal standard was digested with 5 mL HNO3 using Multiwave 7000 Microwave. The digestion condition was ramp to 250 °C for 30 min and hold for 30 min and then cool down to room temperature. This condition made it possible to obtain clear digests. The digestate was then made up with deionized water by approximately 25 g. Then a series of standard addition solutions was prepared and monitored at wavelength 238.204 nm and 239.562 nm.Instrumentation usedSe: High Resolution ICP-MS (Element XR, Thermo Fisher Scientific) Ca: ICP-MS Triple Quad (8800, Agilent) and ICP-OES (Avio 500, PerkinElmer) Fe: ICP-OES (Avio 500, PerkinElmer) Fe: Gravimetric Standard Addition (GSA) ICP-MS, GSA-ICP-OES Zn: ICP-MS Triple Quad (8800, Agilent)Calibration method/design usedSe: Gravimetric Standard Addition (GSA) ICP-OES Zn: ID-ICP-MS, please indicate reference and spiked isotopes usedFor ID-ICP-MS, please indicate reference and spiked isotopes usedReference isotope was 66Zn and spiked isotope was 67Zn.SRM 3149 Lot No. 100901, purchased from NIST, was used as primary calibration standard for Se		Zn: Isotope Diluton-ICP-MS was uesd and the target mole ratio was aimed at 0.7.
was microwave acid digested with 5 mL of HNO3 using multiwave 7000 microwave. The digestion condition was ramp to 250 °C for 30 min and hold for 30 min and then cool down to room temperature. This condition made it possible to obtain clear digests. The digestate was then made up with deionized water to 25 mL. This solution was diluted 8 times. Then, they were analsed utilizing ICP- MS for Zn quantitation. 66Zn and 67Zn were monitored. Fe: Through GSA-ICPOES method, SIM.QM-S10 sample weighed out accurately 0.25 g with the addition of Y as an internal standard was digested with 5 mL HNO3 using Multiwave 7000 Microwave. The digestion condition was ramp to 250 °C for 30 min and hold for 30 min and then cool down to room temperature. This condition made it possible to obtain clear digests. The digestate was then made up with deionized water by approximately 25 g. Then a series of standard addition solutions was prepared and monitored at wavelength 238.204 nm and 239.562 nm.Instrumentation usedSe: High Resolution ICP-MS (Element XR, Thermo Fisher Scientific) Ca: ICP-MS Triple Quad (8800, Agilent) and ICP-OES (Avio 500, PerkinElmer) Fe: ICP-OES (Avio 500, PerkinElmer) Zn: ICP-MS Triple Quad (8800, Agilent)Calibration usedSe: Gravimetric Standard Addition ICP-MS Ca: Gravimetric Standard Addition (GSA) ICP-OES Fe: Gravimetric Standard Addition(GSA)-ICP-OES Fe: Gravimetric Standard Addition(GSA)-ICP-OES Zn: ID-ICP-MS, please indicate reference and spiked isotopeFor ID-ICP-MS, please indicate reference and spiked isotopes usedSRM 3149 Lot No. 100901, purchased from NIST, was used as primary calibrations standard for Se		66Zn was an analyte ion and 67Zn was spike ion. 0.25g of SIM.QM.S10 sample
microwave. The digestion condition was ramp to 250 °C for 30 min and hold for 30 min and then cool down to room temperature. This condition made it possible to obtain clear digests. The digestate was then made up with deionized water to 25 mL. This solution was diluted 8 times. Then, they were analsed utilizing ICP- MS for Zn quantitation. 66Zn and 67Zn were monitored. Fe: Through GSA-ICPOES method, SIM.QM-S10 sample weighed out accurately 0.25 g with the addition of Y as an internal standard was digested with 5 mL HNO3 using Multiwave 7000 Microwave. The digestion condition was ramp to 250 °C for 30 min and hold for 30 min and then cool down to room temperature. This condition made it possible to obtain clear digests. The digestate was then made up with deionized water by approximately 25 g. Then a series of standard addition solutions was prepared and monitored at wavelength 238.204 nm and 239.562 nm.Instrumentation usedSe: High Resolution ICP-MS (Element XR, Thermo Fisher Scientific) Ca: ICP-MS Triple Quad (8800, Agilent) and ICP-OES (Avio 500, PerkinElmer) Fe: ICP-OES (Avio 500, PerkinElmer) Zn: ICP-MS Triple Quad (8800, Agilent)Calibration method/design usedSe: Gravimetric Standard Addition ICP-MS Ca: Gravimetric Standard Addition (GSA) -ICP-OES Zn: ID-ICP-MS, please indicate reference and spiked isotopes usedFor ID-ICP-MS, please indicate reference and spiked isotopes usedReference isotope was 66Zn and spiked isotope was 67Zn.SRM 3149 Lot No. 100901, purchased from NIST, was used as primary calibrations standard for Se		was microwave acid digested with 5 mL of HNO3 using multiwave 7000
30 min and then cool down to room temperature. This condition made it possible to obtain clear digests. The digestate was then made up with deionized water to 25 mL. This solution was diluted 8 times. Then, they were analsed utilizing ICP- MS for Zn quantitation. 66Zn and 67Zn were monitored. Fe: Through GSA-ICPOES method, SIM.QM-S10 sample weighed out accurately 0.25 g with the addition of Y as an internal standard was digested with 5 mL HNO3 using Multiwave 7000 Microwave. The digestion condition was ramp to 250 °C for 30 min and hold for 30 min and then cool down to room temperature. This condition made it possible to obtain clear digests. The digestate was then made up with deionized water by approximately 25 g. Then a series of standard addition solutions was prepared and monitored at wavelength 238.204 nm and 239.562 nm.Instrumentation usedSe: High Resolution ICP-MS (Element XR, Thermo Fisher Scientific) Ca: ICP-MS Triple Quad (8800, Agilent) and ICP-OES (Avio 500, PerkinElmer) Fe: ICP-OES (Avio 500, PerkinElmer) Zn: ICP-MS Triple Quad (8800, Agilent)Calibration method/design usedSe: Gravimetric Standard Addition ICP-MS Fe: Gravimetric Standard Addition(GSA) ICP-MS, GSA-ICP-OES Fe: Gravimetric Standard Addition(GSA)-ICP-OES Zn: ID-ICP-MS, please indicate reference and spiked isotopes usedFor ID-ICP-MS, please indicate reference and spiked isotopes usedReference isotope was 66Zn and spiked isotope was 67Zn.SRM 3149 Lot No. 100901, purchased from NIST, was used as primary calibrations standard for Se		microwave. The digestion condition was ramp to 250 °C for 30 min and hold for
to obtain clear digests. The digestate was then made up with deionized water to 25 mL. This solution was diluted 8 times. Then, they were analsed utilizing ICP- MS for Zn quantitation. 66Zn and 67Zn were monitored. Fe: Through GSA-ICPOES method, SIM.QM-S10 sample weighed out accurately 0.25 g with the addition of Y as an internal standard was digested with 5 mL HNO3 using Multiwave 7000 Microwave. The digestion condition was ramp to 250 °C for 30 min and hold for 30 min and then cool down to room temperature. This condition made it possible to obtain clear digests. The digestate was then made up with deionized water by approximately 25 g. Then a series of standard addition solutions was prepared and monitored at wavelength 238.204 nm and 239.562 nm.Instrumentation usedSe: High Resolution ICP-MS (Element XR, Thermo Fisher Scientific) Ca: ICP-MS Triple Quad (8800, Agilent) and ICP-OES (Avio 500, PerkinElmer) Fe: ICP-OES (Avio 500, PerkinElmer) Zn: ICP-MS Triple Quad (8800, Agilent)Calibration method/design usedSe: Gravimetric Standard Addition ICP-MS Ca: Gravimetric Standard Addition (CSA) ICP-MS, GSA-ICP-OES Fe: Gravimetric Standard Addition(GSA) ICP-OES Zn: ID-ICPMSFor ID-ICP-MS, please indicate reference and spiked isotopes usedReference isotope was 66Zn and spiked isotope was 67Zn.SRM 3149 Lot No. 100901, purchased from NIST, was used as primary calibrations standard for Se calibrations calibrations standard for Se o		30 min and then cool down to room temperature. This condition made it possible
25 mL. This solution was diluted 8 times. Then, they were analsed utilizing ICP- MS for Zn quantitation. 66Zn and 67Zn were monitored. Fe: Through GSA-ICPOES method, SIM.QM-S10 sample weighed out accurately 0.25 g with the addition of Y as an internal standard was digested with 5 mL HNO3 using Multiwave 7000 Microwave. The digestion condition was ramp to 250 °C for 30 min and hold for 30 min and then cool down to room temperature. This condition made it possible to obtain clear digests. The digestate was then made up with deionized water by approximately 25 g. Then a series of standard addition solutions was prepared and monitored at wavelength 238.204 nm and 239.562 nm.Instrumentation usedSe: High Resolution ICP-MS (Element XR, Thermo Fisher Scientific) Ca: ICP-MS Triple Quad (8800, Agilent) and ICP-OES (Avio 500, PerkinElmer) Fe: ICP-OES (Avio 500, PerkinElmer) Zn: ICP-MS Triple Quad (8800, Agilent)Calibration method/design usedSe: Gravimetric Standard Addition ICP-MS Ca: Gravimetric Standard Addition (GSA) ICP-MS, GSA-ICP-OES Zn: ID-ICPMSFor ID-ICP-MS, please indicate reference and spiked isotopes usedReference isotope was 66Zn and spiked isotope was 67Zn.SRM 3149 Lot No. 100901, purchased from NIST, was used as primary calibrations standard for Se		to obtain clear digests. The digestate was then made up with deionized water to
MS for Zn quantitation. 66Zn and 67Zn were monitored. Fe: Through GSA-ICPOES method, SIM.QM-S10 sample weighed out accurately 0.25 g with the addition of Y as an internal standard was digested with 5 mL HNO3 using Multiwave 7000 Microwave. The digestion condition was ramp to 250 °C for 30 min and hold for 30 min and then cool down to room temperature. This condition made it possible to obtain clear digests. The digestate was then made up with deionized water by approximately 25 g. Then a series of standard addition solutions was prepared and monitored at wavelength 238.204 nm and 239.562 nm.Instrumentation usedSe: High Resolution ICP-MS (Element XR, Thermo Fisher Scientific) Ca: ICP-MS Triple Quad (8800, Agilent) and ICP-OES (Avio 500, PerkinElmer) Fe: ICP-OES (Avio 500, PerkinElmer) Zn: ICP-MS Triple Quad (8800, Agilent)Calibration method/design usedSe: Gravimetric Standard Addition ICP-MS Ca: Gravimetric Standard Addition (GSA) ICP-MS, GSA-ICP-OES Fe: Gravimetric Standard Addition(GSA)-ICP-OES Zn: ID-ICP-MS, please indicate reference and spiked isotopes usedFor ID-ICP-MS, please indicate reference and spiked isotopes usedSRM 3149 Lot No. 100901, purchased from NIST, was used as primary calibration for Se calibration standard for Se		25 mL. This solution was diluted 8 times. Then, they were analsed utilizing ICP-
Fe: Through GSA-ICPOES method, SIM.QM-S10 sample weighed out accurately 0.25 g with the addition of Y as an internal standard was digested with 5 mL HNO3 using Multiwave 7000 Microwave. The digestion condition was ramp to 250 °C for 30 min and hold for 30 min and then cool down to room temperature. This condition made it possible to obtain clear digests. The digestate was then made up with deionized water by approximately 25 g. Then a series of standard addition solutions was prepared and monitored at wavelength 238.204 nm and 239.562 nm.Instrumentation usedSe: High Resolution ICP-MS (Element XR, Thermo Fisher Scientific) Ca: ICP-MS Triple Quad (8800, Agilent) and ICP-OES (Avio 500, PerkinElmer) Fe: ICP-OES (Avio 500, PerkinElmer) Zn: ICP-MS Triple Quad (8800, Agilent)Calibration method/design usedSe: Gravimetric Standard Addition ICP-MS Ca: Gravimetric Standard Addition(GSA) ICP-MS, GSA-ICP-OES Fe: Gravimetric Standard Addition(GSA)-ICP-OES Zn: ID-ICPMS please indicate reference and spiked isotopes usedFor ID-ICP-MS, please indicate reference and spiked isotopes usedReference isotope was 66Zn and spiked isotope was 67Zn.SRM 3149 Lot No. 100901, purchased from NIST, was used as primary calibrations standard for Se		MS for Zn quantitation. 66Zn and 67Zn were monitored.
0.25 g with the addition of Y as an internal standard was digested with 5 mL HNO3 using Multiwave 7000 Microwave. The digestion condition was ramp to 250 °C for 30 min and hold for 30 min and then cool down to room temperature. This condition made it possible to obtain clear digests. The digestate was then made up with deionized water by approximately 25 g. Then a series of standard addition solutions was prepared and monitored at wavelength 238.204 nm and 239.562 nm.Instrumentation usedSe: High Resolution ICP-MS (Element XR, Thermo Fisher Scientific) Ca: ICP-MS Triple Quad (8800, Agilent) and ICP-OES (Avio 500, PerkinElmer) Fe: ICP-OES (Avio 500, PerkinElmer) Zn: ICP-MS Triple Quad (8800, Agilent)Calibration method/design usedSe: Gravimetric Standard Addition ICP-MS Ca: Gravimetric Standard Addition(GSA) ICP-MS, GSA-ICP-OES Fe: Gravimetric Standard Addition(GSA)-ICP-OES Zn: ID-ICPMSFor ID-ICP-MS, please indicate reference and spiked isotopes usedReference isotope was 66Zn and spiked isotope was 67Zn.SRM 3149 Lot No. 100901, purchased from NIST, was used as primary calibrations standard for Se		Fe: Through GSA-ICPOES method, SIM.QM-S10 sample weighed out accurately
HNO3 using Multiwave 7000 Microwave. The digestion condition was ramp to 250 °C for 30 min and hold for 30 min and then cool down to room temperature. This condition made it possible to obtain clear digests. The digestate was then made up with deionized water by approximately 25 g. Then a series of standard addition solutions was prepared and monitored at wavelength 238.204 nm and 239.562 nm.Instrumentation usedSe: High Resolution ICP-MS (Element XR, Thermo Fisher Scientific) Ca: ICP-MS Triple Quad (8800, Agilent) and ICP-OES (Avio 500, PerkinElmer) Fe: ICP-OES (Avio 500, PerkinElmer) Fe: ICP-OES (Avio 500, PerkinElmer) Zn: ICP-MS Triple Quad (8800, Agilent)Calibration method/design usedSe: Gravimetric Standard Addition ICP-MS Ca: Gravimetric Standard Addition(GSA) ICP-MS, GSA-ICP-OES Fe: Gravimetric Standard Addition(GSA)-ICP-OES Zn: ID-ICPMS, please indicate reference and spiked isotopes usedFor ID-ICP-MS, please indicate reference and spiked isotopes usedReference isotope was 66Zn and spiked isotope was 67Zn.SRM 3149 Lot No. 100901, purchased from NIST, was used as primary calibrations standard for Se		0.25 g with the addition of Y as an internal standard was digested with 5 mL
250 °C for 30 min and hold for 30 min and then cool down to room temperature. This condition made it possible to obtain clear digests. The digestate was then made up with deionized water by approximately 25 g. Then a series of standard addition solutions was prepared and monitored at wavelength 238.204 nm and 239.562 nm.Instrumentation usedSe: High Resolution ICP-MS (Element XR, Thermo Fisher Scientific) Ca: ICP-MS Triple Quad (8800, Agilent) and ICP-OES (Avio 500, PerkinElmer) Fe: ICP-OES (Avio 500, PerkinElmer) Zn: ICP-MS Triple Quad (8800, Agilent)Calibration method/design usedSe: Gravimetric Standard Addition ICP-MS Ca: Gravimetric Standard Addition(GSA) ICP-MS, GSA-ICP-OES Fe: Gravimetric Standard Addition(GSA)-ICP-OES Zn: ID-ICPMSFor ID-ICP-MS, please indicate reference and spiked isotopes usedReference isotope was 66Zn and spiked isotope was 67Zn.SRM 3149 Lot No. 100901, purchased from NIST, was used as primary calibration standard for Se		HNO3 using Multiwave 7000 Microwave. The digestion condition was ramp to
This condition made it possible to obtain clear digests. The digestate was then made up with deionized water by approximately 25 g. Then a series of standard addition solutions was prepared and monitored at wavelength 238.204 nm and 239.562 nm.Instrumentation usedSe: High Resolution ICP-MS (Element XR, Thermo Fisher Scientific) Ca: ICP-MS Triple Quad (8800, Agilent) and ICP-OES (Avio 500, PerkinElmer) Fe: ICP-OES (Avio 500, PerkinElmer) Zn: ICP-MS Triple Quad (8800, Agilent)Calibration method/design usedSe: Gravimetric Standard Addition ICP-MS Ca: Gravimetric Standard Addition(GSA) ICP-MS, GSA-ICP-OES Fe: Gravimetric Standard Addition(GSA)-ICP-OES Zn: ID-ICPMSFor ID-ICP-MS, please indicate reference and spiked isotopes usedReference isotope was 66Zn and spiked isotope was 67Zn.Traceability (i.e., source purity of calibrations standard for SeSRM 3149 Lot No. 100901, purchased from NIST, was used as primary calibrations standard for Se		250 °C for 30 min and hold for 30 min and then cool down to room temperature.
made up with deionized water by approximately 25 g. Then a series of standard addition solutions was prepared and monitored at wavelength 238.204 nm and 239.562 nm.Instrumentation usedSe: High Resolution ICP-MS (Element XR, Thermo Fisher Scientific) Ca: ICP-MS Triple Quad (8800, Agilent) and ICP-OES (Avio 500, PerkinElmer) Fe: ICP-OES (Avio 500, PerkinElmer) Zn: ICP-MS Triple Quad (8800, Agilent)Calibration method/design usedSe: Gravimetric Standard Addition ICP-MS Ca: Gravimetric Standard Addition (GSA) ICP-MS, GSA-ICP-OES Fe: Gravimetric Standard Addition(GSA)-ICP-OES Zn: ID-ICPMSFor ID-ICP-MS, please indicate reference and spiked isotopes usedReference isotope was 66Zn and spiked isotope was 67Zn.Traceability (i.e., source nurity of calibrations standard for SeSRM 3149 Lot No. 100901, purchased from NIST, was used as primary calibrations standard for Se		This condition made it possible to obtain clear digests. The digestate was then
addition solutions was prepared and monitored at wavelength 238.204 nm and 239.562 nm.Instrumentation usedSe: High Resolution ICP-MS (Element XR, Thermo Fisher Scientific) Ca: ICP-MS Triple Quad (8800, Agilent) and ICP-OES (Avio 500, PerkinElmer) Fe: ICP-OES (Avio 500, PerkinElmer) Zn: ICP-MS Triple Quad (8800, Agilent)Calibration method/design usedSe: Gravimetric Standard Addition ICP-MS Ca: Gravimetric Standard Addition(GSA) ICP-MS, GSA-ICP-OES Fe: Gravimetric Standard Addition(GSA)-ICP-OES Zn: ID-ICPMSFor ID-ICP-MS, please indicate reference and spiked isotopes usedReference isotope was 66Zn and spiked isotope was 67Zn.Fraceability (i.e., source nurity of calibrations standard for SeSRM 3149 Lot No. 100901, purchased from NIST, was used as primary calibrations standard for Se		made up with deionized water by approximately 25 g. Then a series of standard
Instrumentation usedSe: High Resolution ICP-MS (Element XR, Thermo Fisher Scientific) Ca: ICP-MS Triple Quad (8800, Agilent) and ICP-OES (Avio 500, PerkinElmer) Fe: ICP-OES (Avio 500, PerkinElmer) Zn: ICP-MS Triple Quad (8800, Agilent)Calibration method/design usedSe: Gravimetric Standard Addition ICP-MS Ca: Gravimetric Standard Addition(GSA) ICP-MS, GSA-ICP-OES Fe: Gravimetric Standard Addition(GSA)-ICP-OES Zn: ID-ICPMSFor ID-ICP-MS, please indicate reference and spiked isotopes usedReference isotope was 66Zn and spiked isotope was 67Zn.Traceability (i.e., source nurity of calibrations standard for SeSRM 3149 Lot No. 100901, purchased from NIST, was used as primary calibrations standard for Se		addition solutions was prepared and monitored at wavelength 238.204 nm and
Instrumentation usedSe: High Resolution ICP-MS (Element XR, Thermo Fisher Scientific) Ca: ICP-MS Triple Quad (8800, Agilent) and ICP-OES (Avio 500, PerkinElmer) Fe: ICP-OES (Avio 500, PerkinElmer) Zn: ICP-MS Triple Quad (8800, Agilent)Calibration method/design usedSe: Gravimetric Standard Addition ICP-MS Ca: Gravimetric Standard Addition(GSA) ICP-MS, GSA-ICP-OES Zn: ID-ICPMSFor ID-ICP-MS, please indicate reference and spiked isotopes usedReference isotope was 66Zn and spiked isotope was 67Zn.Traceability (i.e., source purity of calibrations standard for SeSRM 3149 Lot No. 100901, purchased from NIST, was used as primary calibrations standard for Se		239.562 nm.
Instrumentation usedSe: High Resolution ICP-MS (Element XR, Thermo Fisher Scientific) Ca: ICP-MS Triple Quad (8800, Agilent) and ICP-OES (Avio 500,PerkinElmer) Fe: ICP-OES (Avio 500, PerkinElmer) Zn: ICP-MS Triple Quad (8800, Agilent)Calibration method/design usedSe: Gravimetric Standard Addition ICP-MS Ca: Gravimetric Standard Addition(GSA) ICP-MS, GSA-ICP-OES Fe: Gravimetric Standard Addition(GSA)-ICP-OES Zn: ID-ICPMSFor ID-ICP-MS, please indicate reference and spiked isotopes usedReference isotope was 66Zn and spiked isotope was 67Zn.Traceability (i.e., source nurity ofSRM 3149 Lot No. 100901, purchased from NIST, was used as primary calibrations standard for Se		
usedSe: High Resolution ICP-MS (Element XR, Thermo Fisher Scientific) Ca: ICP-MS Triple Quad (8800, Agilent) and ICP-OES (Avio 500, PerkinElmer) Fe: ICP-OES (Avio 500, PerkinElmer) Zn: ICP-MS Triple Quad (8800, Agilent)Calibration method/design usedSe: Gravimetric Standard Addition ICP-MS Ca: Gravimetric Standard Addition(GSA) ICP-MS, GSA-ICP-OES Fe: Gravimetric Standard Addition(GSA)-ICP-OES Zn: ID-ICPMSFor ID-ICP-MS, please indicate reference and spiked isotopes usedReference isotope was 66Zn and spiked isotope was 67Zn.Traceability (i.e., source nurity of calibrations standard for SeSRM 3149 Lot No. 100901, purchased from NIST, was used as primary calibrations standard for Se	Instrumentation	
Ca: ICP-MS Triple Quad (8800, Agilent) and ICP-OES (Avio 500, PerkinElmer) Fe: ICP-OES (Avio 500, PerkinElmer) Zn: ICP-MS Triple Quad (8800, Agilent)Calibration method/design usedSe: Gravimetric Standard Addition ICP-MS Ca: Gravimetric Standard Addition(GSA) ICP-MS, GSA-ICP-OES Fe: Gravimetric Standard Addition(GSA)-ICP-OES Zn: ID-ICPMSFor ID-ICP-MS, please indicate reference and spiked isotopes usedReference isotope was 66Zn and spiked isotope was 67Zn.Traceability (i.e., source nurity ofSRM 3149 Lot No. 100901, purchased from NIST, was used as primary calibrations standard for Se	used	Se: High Resolution ICP-MS (Element XR, Thermo Fisher Scientific)
Fe: ICP-OES (Avio 500, PerkinElmer) Zn: ICP-MS Triple Quad (8800, Agilent)Calibration method/design usedSe: Gravimetric Standard Addition ICP-MS Ca: Gravimetric Standard Addition(GSA) ICP-MS, GSA-ICP-OES Fe: Gravimetric Standard Addition(GSA)-ICP-OES Zn: ID-ICPMSFor ID-ICP-MS, please indicate reference and spiked isotopes usedReference isotope was 66Zn and spiked isotope was 67Zn.Traceability (i.e., source nurity of calibrations standard for SeSRM 3149 Lot No. 100901, purchased from NIST, was used as primary calibrations standard for Se		Ca: ICP-MS Triple Quad (8800, Agilent) and ICP-OES (Avio 500, PerkinElmer)
Zn: ICP-MS Triple Quad (8800, Agilent)Calibration method/design usedSe: Gravimetric Standard Addition ICP-MS Ca: Gravimetric Standard Addition(GSA) ICP-MS, GSA-ICP-OES Fe: Gravimetric Standard Addition(GSA)-ICP-OES Zn: ID-ICPMSFor ID-ICP-MS, please indicate reference and spiked isotopes usedReference isotope was 66Zn and spiked isotope was 67Zn.Traceability (i.e., source purity of calibrations standard for SeSRM 3149 Lot No. 100901, purchased from NIST, was used as primary calibrations standard for Se		Fe: ICP-OES (Avio 500, PerkinElmer)
Calibration method/design usedSe: Gravimetric Standard Addition ICP-MS Ca: Gravimetric Standard Addition(GSA) ICP-MS, GSA-ICP-OES Fe: Gravimetric Standard Addition(GSA)-ICP-OES Zn: ID-ICPMSFor ID-ICP-MS, please indicate reference and spiked isotopes usedReference isotope was 66Zn and spiked isotope was 67Zn.Traceability (i.e., source nurity of calibrations standard for SeSRM 3149 Lot No. 100901, purchased from NIST, was used as primary calibrations standard for Se		Zn: ICP-MS Triple Quad (8800, Agilent)
method/design Sc. Gravimetric Standard Addition (GSA) ICP-MS, GSA-ICP-OES used Fe: Gravimetric Standard Addition (GSA) -ICP-OES Zn: ID-ICP-MS, please indicate reference and Reference isotope was 66Zn and spiked isotope was 67Zn. spiked isotopes SRM 3149 Lot No. 100901, purchased from NIST, was used as primary source nurity of calibrations standard for Se	Calibration	Se: Gravimetric Standard Addition ICP-MS
used Fe: Gravimetric Standard Addition(GSA)-ICP-OES Zn: ID-ICP-MS, please indicate reference and Reference isotope was 66Zn and spiked isotope was 67Zn. spiked isotopes SRM 3149 Lot No. 100901, purchased from NIST, was used as primary source calibrations standard for Se	method/design	Ca: Gravimetric Standard Addition(GSA) ICP-MS_GSA-ICP-OFS
used Tell of avrime the standard Addition (GSA) for OES Zn: ID-ICPMS For ID-ICP-MS, please indicate reference and spiked isotopes used Traceability (i.e., SRM 3149 Lot No. 100901, purchased from NIST, was used as primary source purity of calibrations standard for Se	used	Ee: Gravimetric Standard Addition(GSA)-ICP-OFS
For ID-ICP-MS, please indicate reference and spiked isotopes used Traceability (i.e., SRM 3149 Lot No. 100901, purchased from NIST, was used as primary source purity of calibrations standard for Se	useu	Zn: ID-ICPMS
please indicate reference and Reference isotope was 66Zn and spiked isotope was 67Zn. spiked isotopes used Traceability (i.e., SRM 3149 Lot No. 100901, purchased from NIST, was used as primary source purity of calibrations standard for Se	For ID-ICP-MS	
reference and spiked isotopes used Traceability (i.e., source purity of calibrations standard for Se	please indicate	
spiked isotope was or 2m used Traceability (i.e., SRM 3149 Lot No. 100901, purchased from NIST, was used as primary source purity of calibrations standard for Se	reference and	Reference isotope was 667n and spiked isotope was 677n
used Traceability (i.e., SRM 3149 Lot No. 100901, purchased from NIST, was used as primary source purity of calibrations standard for Se	spiked isotones	
Traceability (i.e., SRM 3149 Lot No. 100901, purchased from NIST, was used as primary source purity of calibrations standard for Se	used	
source nurity of calibrations standard for Se	Traceability (i.e.,	SRM 3149 Lot No. 100901, purchased from NIST, was used as primary
ן סטורכן אווונץ טר ן כמוטרמנוטווס זנמוטמרט וטר שב.	source, purity of	calibrations standard for Se.

calibration	SRM 3109a Lot No. 130213, purchased from NIST, was used as primary									
standards)	calibrations standard for Ca									
Standardsy	SPM 2126a Lot No. 140812 purchased from NIST was used as primary									
	SKIVI STZDA LOU NO. 140812, purchased from NIST, was used as primary									
	calibrations standard for 56Fe.									
	SRM 3168a Lot No. 120629, purchased from NIST, was used as primary									
	calibrations standard for 66Zn.									
	Stable enriched 67Zn isotope batch no. 217901, purchased from Oak Ridge, was									
	used as an isotropic spike.									
Internal	·····									
standards used (if										
stanuarus useu (ii	Rhodium (Rh) SRM 3144 Lot No. 070619 for Se. Ca									
applicable)	KNOULUM (KN) SKIVI 3144 LOT NO. U/U619 TOR SE, Ca									
	Yttrium (Y) SRM 3167a Lot No. 120314 was purchased from NIST. (for Fe)									
Measurement								7		
equation and	The equation for the o	calculation of the mass fraction of Zn								
uncertainty	$C = f \cdot f$	$f + f + C + \frac{M_y \cdot M_z}{M_y \cdot M_z} + \frac{R_y - R_b}{R_y - R_b} + \frac{R_{bc} - R_z}{R_{bc} - R_z}$								
budget (please	$C_x = J_{H_2O} \cdot J_P$	$J_B \cdot J_D \cdot C_z \cdot \overline{M_x \cdot M_{yc}} \cdot \overline{R_b - R_x} \cdot \overline{R_y - R_{bc}}$						-		
include				Typical	Standard	i		T		
hreakdown of the	Parameter	Source of unceratinty		value	uncertair v	t Unit	Туре			
budget	R _b	Isotopic ratio in sample blend		0.6877	0.0013	-	A			
budget,	R _{bc}	Isotopic ratio in calibration blen	d	0.6843	0.0015	-	A	-		
describing	Rz	Isotopic ratio in standard		6.8638	0.0024	-	В			
individual	f _D	Blank correction factor		1.0000	0.0050	- ma ka ⁻¹	B			
uncertainty	f _P	Method Precision		1.0000	0.0018	-	Α			
, contributions and	Cz Rv	Calibration solution		20.0711	0.0356	mg kg ⁻¹	B			
how they were	M _x	Mass of sample in sample blen	d	0.2475	0.0004	g	В			
now they were	M _y	Mass of spike in sample blend Mass of spike in calibration blen	nd	0.1071	0.0004	g	B	-		
combined)	Mz	Mass of standard in calibration bl	end	0.5230	0.0004	g	В			
	f _{H2O}	Moisture content factor		1.0000	0.0014	•	В	J		
	C _x	Mass fraction of total Zn		43.2	mg kg ⁻¹					
	u _c	Combined standard uncertaint	у	0.39	mg kg ⁻¹					
	U	Expanded unceratinty		0.8	mg kg ⁻¹					
	The equation for the o	calculation of the mass fraction of Fe								
	C _x =	= P.B.D.C ₀ .DF.100/(100-%	∕₀moistu	re)						
			Typical	Star	ndard		_			
	Parameter	Source of unceratinty	value	unce	rtainty	Unit	Type	_		
	P Co	Regression	1	0.0194		-		_		
	Cal Std moisture	Calibration standard	1	0.0052		mg kg⁻¹ ⁰⁄		-		
	DF sample digest Dilution for sample digest 1 0.0032 - B									
	DF sample solution solution = B									
	B Blank factor 1 0.0232 - B D Direction 1 0.0500 - B									
			•	0.0			1 9	⊣		
	C _x	Mass fraction of total Fe	2.61	mg kg	1					
	k k	Coverage factor	2	ing kg						
	U Expanded unceratinty 0.18 mg kg ⁻¹									

	ICP-MS The equation for the c	alculation of the mass frac	tion of Ca						
	c _x = P.B.D.C ₀ .DF.100/(100-%moisture)								
	Parameter Source of unceratinty			Typical value	Standard uncertainty		Unit	Туре	
	Р	Precision		1	0.0353		-	Α	
	Co Col Stal	Regression		1	0.0084			B	
	moisture	Dry mass		1	0.0010		mg kg *	В	ſ
	DF sample digest	Dilution factor for sam	nple digest	1	0.0033		-	В	
	DF sample solution	Dilution factor for sam	pie	1	0.0014		-	в	
	В	Blank factor		1	0.0006		-	В	
	D	Digestion		1	0.00500		-	В	
	C,	Mass fraction of to	otal Ca	12610	ma ka ⁻¹				
	u _c	Combined standard u	incertainty	465	mg kg ⁻¹				
	k	Coverage fac	tor	2					
	U	Expanded uncer	atinty	930	mg kg ⁻¹				
	The equation for the calcula	ation of the mass fraction of Se							
		c _x = P.B.D.C ₀ .DF.100/(100-%moist	ture)						
			Typical	Standard					
	Parameter	Source of unceratinty	value	uncertainty	Unit	Туре			
	P Pre Co Reg	cision Iression	1		-	B	_		
	Cal Std Cali	bration standard	1		mg kg ⁻¹	В			
	DF sample digest Dilu	mass ition factor for sample digest	1		%	B			
	DF sample solution	tion factor for sample	1		-	в			
	B Blai	nk factor	1		-	в			
	D Dig	estion	1		-	В			
	C _x	Mass fraction of total Se	0.352	mg kg ⁻¹					
	u _c Co	mbined standard uncertainty Coverage factor	0.0130	mg kg ⁻¹					
	U	Expanded unceratinty	0.027	mg kg ⁻¹					
Poforonco									
Nelelence									
material used	NMILCRM 75	12-a Trace Flem	onts in	Milk Pow	ider wa		d as mati	riv rofo	rence
	motorial as O					s usc	u us muti		rence
	material as Q	c sample.							
Sample amount									
used for analysis	0.25 g of SIM.	QM S-10 sample	e for eac	h analysi:	s.				
Sample amount	1 g of SIM.Q	M S-10 samples	(three s	aperate S	SIM.QM	S10	sample)	were p	ut in
used for dry	chamber. The	v were kent in V	、 /irTis wiz	vard 2.0 h	vonhiliz	er co	ntroller f	reeze (Irver
mass correction) using vacuum	modo a	+ 50 mm	Jarandr	r r r r r r r r r r r r r r r r r r r	om tomn	oratura	$\sqrt{20}$
	CLEINITEN		moue a		ig and a		on temp	erature	: (20
	°C) for 24 h. l	nen, they were v	weighed	i. The pro	ocess wa	is rej	peated to	r every	[,] 24 n.
	to a constant mass.								
Number of									
samples aliquots									
taken for dry	Three senarat		samnles	aliquots	(Sample		21 No '	22 and	No
	The separate Shvi. Qivi S-10 samples and uots (Sample NO. 21, NO. 22 and NO.								
mass correction.	23)								

Correction for dry	
weighted sample)	97.4% (moisture 2.61%)
Uncertainty for	
dry mass	0.10%
correction	
Additional	
Comments or	
Observations	

Institute: INRAP, Tunisia

Analytes	Zn
QC sample	no QC sample
Description of the methodology used	Acid Digestion by Microwave (Milestone), Using 8 mLhigh pur Nitric Acid HNO3 (67%) and 2 mL Hydrogen peroxide H2O2 (37%), final volume: 40 mL, parameters of Microwave: Power 1000 Watts, Temperature 120°C, Time 30 min
Instrumentation used	HR-ICP-AES (Analytik Jena)
Calibration method/design used	Standard calibration method
For ID-ICP-MS, please indicate reference and spiked isotopes used	
Traceability (i.e., source, purity of calibration standards)	Zinc (Zn)Standard solution (NIST) SRM 3168a, Certified Zinc Mass Fraction : 10,007 mg/g ± 0,02 mg/g
Internal standards used (if applicable)	

Measurement equation and uncertainty budget (please include breakdown of the budget, describing individual uncertainty contributions and how they were combined)	Mass fraction of Zinc (mg/Kg) = [CZn (mg/L)*final Volume(mL)]/sample mass(g) ; Standard solution(u = 0,01 mg/Kg), Trueness(u = 0,13),Reproducibility (u = 1,27)
Reference material used	
Sample amount used for analysis	0.5 g
Sample amount used for dry mass correction	1g
Number of samples aliquots taken for dry mass correction.	6
Correction for dry mass (% of weighted sample)	96,18 % ; Humidity (3,82 %)
Uncertainty for dry mass correction	0.07
Additional Comments or Observations	