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Introduction

Testing hypotheses

Hypothesis testing

I central problem of statistical inference

I dramatically differentiating feature between classical and
Bayesian paradigms

I wide open to controversy and divergent opinions, includ.
within the Bayesian community

I non-informative Bayesian testing case mostly unresolved,
witness the Jeffreys–Lindley paradox

[Berger (2003), Mayo & Cox (2006), Gelman (2008)]
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Introduction

Besting hypotheses

I Bayesian model selection as comparison of k potential
statistical models towards the selection of model that fits the
data “best”

I mostly accepted perspective: it does not primarily seek to
identify which model is “true”, but compares fits

I tools like Bayes factor naturally include a penalisation
addressing model complexity, mimicked by Bayes Information
(BIC) and Deviance Information (DIC) criteria

I posterior predictive tools successfully advocated in Gelman et
al. (2013) even though they involve double use of data



Testing as estimation: the demise of the Bayes factors

Introduction

Besting hypotheses

I Bayesian model selection as comparison of k potential
statistical models towards the selection of model that fits the
data “best”

I mostly accepted perspective: it does not primarily seek to
identify which model is “true”, but compares fits

I tools like Bayes factor naturally include a penalisation
addressing model complexity, mimicked by Bayes Information
(BIC) and Deviance Information (DIC) criteria

I posterior predictive tools successfully advocated in Gelman et
al. (2013) even though they involve double use of data



Testing as estimation: the demise of the Bayes factors

Introduction

Bayesian modelling

Standard Bayesian approach to testing: consider two families of
models, one for each of the hypotheses under comparison,

M1 : x ∼ f1(x |θ1) , θ1 ∈ Θ1 and M2 : x ∼ f2(x |θ2) , θ2 ∈ Θ2 ,

and associate with each model a prior distribution,

θ1 ∼ π1(θ1) and θ2 ∼ π2(θ2) ,

[Jeffreys, 1939]
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Bayesian modelling

Standard Bayesian approach to testing: consider two families of
models, one for each of the hypotheses under comparison,

M1 : x ∼ f1(x |θ1) , θ1 ∈ Θ1 and M2 : x ∼ f2(x |θ2) , θ2 ∈ Θ2 ,

in order to compare the marginal likelihoods

m1(x) =

∫
Θ1

f1(x |θ1)π1(θ1)dθ1 and m2(x) =

∫
Θ2

f2(x |θ2)π1(θ2)dθ2

[Jeffreys, 1939]
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Bayesian modelling

Standard Bayesian approach to testing: consider two families of
models, one for each of the hypotheses under comparison,

M1 : x ∼ f1(x |θ1) , θ1 ∈ Θ1 and M2 : x ∼ f2(x |θ2) , θ2 ∈ Θ2 ,

either through Bayes factor or posterior probability,

B12 =
m1(x)

m2(x)
, P(M1|x) =

ω1m1(x)

ω1m1(x) +ω2m2(x)
;

the latter depends on the prior weights ωi

[Jeffreys, 1939]
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Introduction

Bayesian modelling

Standard Bayesian approach to testing: consider two families of
models, one for each of the hypotheses under comparison,

M1 : x ∼ f1(x |θ1) , θ1 ∈ Θ1 and M2 : x ∼ f2(x |θ2) , θ2 ∈ Θ2 ,

Bayesian decision step

I comparing Bayes factor B12 with threshold value of one or

I comparing posterior probability P(M1|x) with bound α

[Jeffreys, 1939]
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Introduction

Some difficulties

I tension between (i) posterior probabilities justified by binary
loss but depending on unnatural prior weights, and (ii) Bayes
factors that eliminate dependence but lose direct connection
with posterior, unless prior weights are integrated within loss

I delicate interpretation (or calibration) of the strength of the
Bayes factor towards supporting a given hypothesis or model:
not a Bayesian decision rule!

I difficulty with posterior probabilities: tendency to interpret
them as p-values while they only report respective strengths
of fitting to both models
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Introduction

Some further difficulties

I long-lasting impact of the prior modeling, i.e., choice of prior
distributions on both parameter spaces under comparison,
despite overall consistency for Bayes factor

I major discontinuity in use of improper priors, not justified in
most testing situations, leading to ad hoc solutions (zoo),
where data is either used twice or split artificially

I binary (accept vs. reject) outcome more suited for immediate
decision (if any) than for model evaluation, connected with
rudimentary loss function
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Lindley’s paradox

In a normal mean testing problem,

x̄n ∼ N(θ,σ2/n) , H0 : θ = θ0 ,

under Jeffreys prior, θ ∼ N(θ0,σ
2), the Bayes factor

B01(tn) = (1 + n)1/2 exp
(
−nt2n/2[1 + n]

)
,

where tn =
√
n|x̄n − θ0|/σ, satisfies

B01(tn)
n−→∞−→ ∞

[assuming a fixed tn]
[Lindley, 1957]
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Introduction

A strong impropriety

Improper priors not allowed in Bayes factors:

If ∫
Θ1

π1(dθ1) =∞ or

∫
Θ2

π2(dθ2) =∞
then π1 or π2 cannot be coherently normalised while the
normalisation matters in the Bayes factor B12

Lack of mathematical justification for “common nuisance
parameter” [and prior of]

[Berger, Pericchi, and Varshavsky, 1998; Marin and Robert, 2013]
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Testing problems as estimating mixture models

Paradigm shift

New proposal as paradigm shift in Bayesian processing of
hypothesis testing and of model selection

I convergent and naturally interpretable solution

I extended use of improper priors

I abandonment of the Neyman-Pearson decision framework

I natural strenght of evidence

Simple representation of the testing problem as a
two-component mixture estimation problem where the
weights are formally equal to 0 or 1



Testing as estimation: the demise of the Bayes factors

Testing problems as estimating mixture models

Paradigm shift

New proposal as paradigm shift in Bayesian processing of
hypothesis testing and of model selection

I convergent and naturally interpretable solution

I extended use of improper priors

I abandonment of the Neyman-Pearson decision framework

I natural strenght of evidence

Simple representation of the testing problem as a
two-component mixture estimation problem where the
weights are formally equal to 0 or 1



Testing as estimation: the demise of the Bayes factors

Testing problems as estimating mixture models

Paradigm shift

Simple representation of the testing problem as a
two-component mixture estimation problem where the
weights are formally equal to 0 or 1

I Approach inspired from consistency result of Rousseau and
Mengersen (2011) on estimated overfitting mixtures

I Mixture representation not equivalent to use of a posterior
probability

I More natural approach to testing, while sparse in parameters

I Calibration of the posterior distribution of mixture weight,
while moving away from artificial notion of the posterior
probability of a model
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Testing problems as estimating mixture models

Encompassing mixture model

Idea: Given two statistical models,

M1 : x ∼ f1(x |θ1) , θ1 ∈ Θ1 and M2 : x ∼ f2(x |θ2) , θ2 ∈ Θ2 ,

embed both within an encompassing mixture

Mα : x ∼ αf1(x |θ1) + (1 − α)f2(x |θ2) , 0 6 α 6 1 (1)

Note: Both models correspond to special cases of (1), one for
α = 1 and one for α = 0
Draw inference on mixture representation (1), as if each
observation was individually and independently produced by the
mixture model
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Testing problems as estimating mixture models

Inferential motivations

Sounds like approximation to the real problem, but definitive
advantages to shift:

I Bayes estimate of the weight α replaces posterior probability
of model M1, equally convergent indicator of which model is
“true”, while avoiding artificial prior probabilities on model
indices, ω1 and ω2, and 0 − 1 loss setting

I posterior on α provides measure of proximity to models, while
being interpretable as data propensity to stand within one
model

I further allows for alternative perspectives on testing and
model choice, like predictive tools, cross-validation, and
information indices like WAIC
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Testing problems as estimating mixture models

Computational motivations

I avoids problematic computations of marginal likelihoods, since
standard algorithms are available for Bayesian mixture
estimation

I straightforward extension to finite collection of models, which
considers all models at once and eliminates least likely models
by simulation

I eliminates famous difficulty of label switching that plagues
both Bayes estimation and computation: components are no
longer exchangeable

I posterior distribution on α evaluates more thoroughly strength
of support for a given model than the single figure posterior
probability

I variability of posterior distribution on α allows for a more
thorough assessment of the strength of this support
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Testing problems as estimating mixture models

Noninformative motivations

I novel Bayesian feature: a mixture model acknowledges
possibility that, for a finite dataset, both models or none
could be acceptable

I standard (proper and informative) prior modeling can be
processed in this setting, but non-informative (improper)
priors also are manageable, provided both models first
reparameterised into shared parameters, e.g. location and
scale parameters

I in special case when all parameters are common

Mα : x ∼ αf1(x |θ) + (1 − α)f2(x |θ) , 0 6 α 6 1

if θ is a location parameter, a flat prior π(θ) ∝ 1 is available
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Testing problems as estimating mixture models

Weakly informative motivations

I using the same parameters or some identical parameters on
both components highlights that opposition between the two
components is not an issue of enjoying different parameters

I common parameters are nuisance parameters, easily integrated

I prior model weights ωi rarely discussed in classical Bayesian
approach, with linear impact on posterior probabilities

I prior modeling only involves selecting a prior on α, e.g.,
α ∼ B(a0, a0)

I while a0 impacts posterior on α, it always leads to mass
accumulation near 1 or 0, i.e. favours most likely model

I sensitivity analysis straightforward to carry

I approach easily calibrated by parametric boostrap providing
reference posterior of α under each model

I natural Metropolis–Hastings alternative
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Illustrations

Poisson/Geometric example

I choice betwen Poisson P(λ) and Geometric Geo(p)
distribution

I mixture with common parameter λ

Mα : αP(λ) + (1 − α)Geo(1/1+λ)

Allows for Jeffreys prior since resulting posterior is proper

I independent Metropolis–within–Gibbs with proposal
distribution on λ equal to Poisson posterior (with acceptance
rate larger than 75%)
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Illustrations

Beta prior

When α ∼ Be(a0, a0) prior, full conditional posterior

α ∼ Be(n1(ζ) + a0, n2(ζ) + a0)

Exact Bayes factor opposing Poisson and Geometric

B12 = nnx̄n
n∏

i=1

xi ! Γ

(
n + 2 +

n∑
i=1

xi

)/
Γ(n + 2)

although undefined from a purely mathematical viewpoint
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Illustrations

Weight estimation
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Posterior medians of α for 100 Poisson P(4) datasets of size n = 1000, for

a0 = .0001, .001, .01, .1, .2, .3, .4, .5. Each posterior approximation is based on

104 Metropolis-Hastings iterations.
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Illustrations

Consistency
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Posterior means (sky-blue) and medians (grey-dotted) of α, over 100 Poisson

P(4) datasets for sample sizes from 1 to 1000.
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Illustrations

Behaviour of Bayes factor
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Comparison between P(M1|x) (red dotted area) and posterior medians of α

(grey zone) for 100 Poisson P(4) datasets with sample sizes n between 1 and

1000, for a0 = .001, .1, .5



Testing as estimation: the demise of the Bayes factors

Illustrations

Normal-normal comparison

I comparison of a normal N(θ1, 1) with a normal N(θ2, 2)
distribution

I mixture with identical location parameter θ
αN(θ, 1) + (1 − α)N(θ, 2)

I Jeffreys prior π(θ) = 1 can be used, since posterior is proper

I Reference (improper) Bayes factor

B12 = 2
n−1/2

/
exp 1/4

n∑
i=1

(xi − x̄)2 ,
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Illustrations

Comparison with posterior probability
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dotted) over 100 N(0, 1) samples as sample size n grows from 1 to 500. and α
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Illustrations

Comments

I convergence to one boundary value as sample size n grows

I impact of hyperarameter a0 slowly vanishes as n increases, but
present for moderate sample sizes

I when simulated sample is neither from N(θ1, 1) nor from
N(θ2, 2), behaviour of posterior varies, depending on which
distribution is closest
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Illustrations

Logit or Probit?

I binary dataset, R dataset about diabetes in 200 Pima Indian
women with body mass index as explanatory variable

I comparison of logit and probit fits could be suitable. We are
thus comparing both fits via our method

M1 : yi | x
i , θ1 ∼ B(1, pi ) where pi =

exp(xiθ1)

1 + exp(xiθ1)

M2 : yi | x
i , θ2 ∼ B(1, qi ) where qi = Φ(xiθ2)
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Illustrations

Common parameterisation
Local reparameterisation strategy that rescales parameters of the
probit model M2 so that the MLE’s of both models coincide.

[Choudhuty et al., 2007]

Φ(xiθ2) ≈
exp(kxiθ2)

1 + exp(kxiθ2)

and use best estimate of k to bring both parameters into coherency

(k0, k1) = (θ̂01/θ̂02, θ̂11/θ̂12) ,

reparameterise M1 and M2 as

M1 :yi | x
i , θ ∼ B(1, pi ) where pi =

exp(xiθ)

1 + exp(xiθ)

M2 :yi | x
i , θ ∼ B(1, qi ) where qi = Φ(xi (κ−1θ)) ,

with κ−1θ = (θ0/k0, θ1/k1).
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Illustrations

Prior modelling

Under default g -prior

θ ∼ N2(0, n(XTX )−1)

full conditional posterior distributions given allocations

π(θ | y,X , ζ) ∝
exp
{∑

i Iζi=1yix
iθ
}∏

i ;ζi=1[1 + exp(xiθ)]
exp
{
−θT (XTX )θ

/
2n
}

×
∏
i ;ζi=2

Φ(xi (κ−1θ))yi (1 −Φ(xi (κ−1θ)))(1−yi)

hence posterior distribution clearly defined
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Illustrations

Results
Logistic Probit

a0 α θ0 θ1
θ0

k0
θ1

k1
.1 .352 -4.06 .103 -2.51 .064
.2 .427 -4.03 .103 -2.49 .064
.3 .440 -4.02 .102 -2.49 .063
.4 .456 -4.01 .102 -2.48 .063
.5 .449 -4.05 .103 -2.51 .064

Histograms of posteriors of α in favour of logistic model where a0 = .1, .2, .3,

.4, .5 for (a) Pima dataset, (b) Data from logistic model, (c) Data from probit

model
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Illustrations

Survival analysis models

Testing hypothesis that data comes from a

1. log-Normal(φ, κ2),

2. Weibull(α, λ), or

3. log-Logistic(γ, δ)

distribution

Corresponding mixture given by the density

α1 exp{−(log x − φ)2/2κ2}/
√

2πxκ+

α2
α

λ
exp{−(x/λ)α}((x/λ)α−1+

α3(δ/γ)(x/γ)
δ−1/(1 + (x/γ)δ)2

where α1 + α2 + α3 = 1
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Illustrations

Reparameterisation

Looking for common parameter(s):

φ = µ+ γβ = ξ

σ2 = π2β2/6 = ζ2π2/3

where γ ≈ 0.5772 is Euler-Mascheroni constant.

Allows for a noninformative prior on the common location scale
parameter,

π(φ,σ2) = 1/σ2
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Illustrations

Recovery
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Boxplots of the posterior distributions of the Normal weight α1 under the two

scenarii: truth = Normal (left panel), truth = Gumbel (right panel), a0=0.01,

0.1, 1.0, 10.0 (from left to right in each panel) and n = 10, 000 simulated

observations.
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Asymptotic consistency

Asymptotic consistency

Posterior consistency holds for mixture testing procedure [under
minor conditions]

Two different cases

I the two models, M1 and M2, are well separated

I model M1 is a submodel of M2.
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Asymptotic consistency

Separated models

Assumption: Models are separated, i.e. identifiability holds:

∀α,α ′ ∈ [0, 1], ∀θj , θ
′
j , j = 1, 2 Pθ,α = Pθ′ ,α′ ⇒ α = α

′
, θ = θ

′

theorem

Under above assumptions, then for all ε > 0,

π [|α− α∗| > ε|xn] = op(1)
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Asymptotic consistency

Separated models
Assumption: Models are separated, i.e. identifiability holds:

∀α,α ′ ∈ [0, 1], ∀θj , θ
′
j , j = 1, 2 Pθ,α = Pθ′ ,α′ ⇒ α = α

′
, θ = θ

′

theorem

If

I θj → fj ,θj is C2 around θ∗j , j = 1, 2,

I f1,θ∗1
− f2,θ∗2

,∇f1,θ∗1
,∇f2,θ∗2

are linearly independent in y and

I there exists δ > 0 such that

∇f1,θ∗1 , ∇f2,θ∗2 , sup
|θ1−θ

∗
1 |<δ

|D2f1,θ1 |, sup
|θ2−θ

∗
2 |<δ

|D2f2,θ2 | ∈ L1

then
π
[
|α− α∗| > M

√
log n/n

∣∣xn
]
= op(1).
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Asymptotic consistency

Separated models

Assumption: Models are separated, i.e. identifiability holds:

∀α,α ′ ∈ [0, 1], ∀θj , θ
′
j , j = 1, 2 Pθ,α = Pθ′ ,α′ ⇒ α = α

′
, θ = θ

′

theorem allows for interpretation of α under the posterior: If data
xn is generated from model M1 then posterior on α concentrates
around α = 1
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Asymptotic consistency

Embedded case

Here M1 is a submodel of M2, i.e.

θ2 = (θ1,ψ) and θ2 = (θ1,ψ0 = 0)

corresponds to f2,θ2 ∈M1

Same posterior concentration rate√
log n/n

for estimating α when α∗ ∈ (0, 1) and ψ∗ 6= 0.
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Asymptotic consistency

Null case

I Case where ψ∗ = 0, i.e., f ∗ is in model M1

I Two possible paths to approximate f ∗: either α goes to 1
(path 1) or ψ goes to 0 (path 2)

I New identifiability condition: Pθ,α = P∗ only if

α = 1, θ1 = θ
∗
1 , θ2 = (θ∗1 ,ψ) or α 6 1, θ1 = θ

∗
1 , θ2 = (θ∗1 , 0)

Prior
π(α, θ) = πα(α)π1(θ1)πψ(ψ), θ2 = (θ1,ψ)

with common (prior on) θ1
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Asymptotic consistency

Consistency

theorem

Given the mixture fθ1,ψ,α = αf1,θ1 + (1 − α)f2,θ1,ψ and a sample
xn = (x1, · · · , xn) issued from f1,θ∗1

, under regularity assumptions,
and an M > 0 such that

π
[
(α, θ); ‖fθ,α − f ∗‖1 > M

√
log n/n|xn

]
= op(1).

If α ∼ B(a1, a2), with a2 < d2, and if the prior πθ1,ψ is absolutely
continuous with positive and continuous density at (θ∗1 , 0), then for
Mn −→∞
π
[
|α− α∗| > Mn(log n)

γ/
√
n|xn

]
= op(1), γ = max((d1 + a2)/(d2 − a2), 1)/2,
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Conclusion

Conclusion

I many applications of the Bayesian paradigm concentrate on
the comparison of scientific theories and on testing of null
hypotheses

I natural tendency to default to Bayes factors

I poorly understood sensitivity to prior modeling and posterior
calibration

Time is ripe for a paradigm shift
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Conclusion

Conclusion

Time is ripe for a paradigm shift

I original testing problem replaced with a better controlled
estimation target

I allow for posterior variability over the component frequency as
opposed to deterministic Bayes factors

I range of acceptance, rejection and indecision conclusions
easily calibrated by simulation

I posterior medians quickly settling near the boundary values of
0 and 1

I potential derivation of a Bayesian b-value by looking at the
posterior area under the tail of the distribution of the weight
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Conclusion

Prior modelling

Time is ripe for a paradigm shift

I Partly common parameterisation always feasible and hence
allows for reference priors

I removal of the absolute prohibition of improper priors in
hypothesis testing

I prior on the weight α shows sensitivity that naturally vanishes
as the sample size increases

I default value of a0 = 0.5 in the Beta prior
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Conclusion

Computing aspects

Time is ripe for a paradigm shift

I proposal that does not induce additional computational strain

I when algorithmic solutions exist for both models, they can be
recycled towards estimating the encompassing mixture

I easier than in standard mixture problems due to common
parameters that allow for original MCMC samplers to be
turned into proposals

I Gibbs sampling completions useful for assessing potential
outliers but not essential to achieve a conclusion about the
overall problem
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