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Sascha Eichstädt1, Volker Wilkens1, Paul Hale2, Andrew Dienstfrey2,
Ben Hughes3 and Charlie Jarvis3

1Physikalisch-Technische Bundesanstalt, Germany
2National Institute of Standards and Technology, USA

3National Physical Laboratory, UK

9. - 10. June 2015 BIPM Workshop on Uncertainty

1 / 20



Introduction
Case studies
Conclusions

1 Introduction

2 Case studies

3 Conclusions

2 / 20



Introduction
Case studies
Conclusions

Problem setting

A quantity is called dynamic if its
variation as a function of time must be
accounted for explicitly for its intended
use.

A measurement is called dynamic when
at least one of the involved quantities is
dynamic.

Dynamic Metrology
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Problem setting

Measurement model

Convolution

Y (t) =

∫ t

−∞
h(t − τ) X (τ)dτ

measurement measurand

How to obtain an estimate of the measurand?

→ de-convolution
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Case study: thrust balance

micro-thrusters operate in range from 0.1µN up to 500 mN

applied for spacecraft altitude control, drag compensation, etc.

calibration measurements very much affected by environmental noise
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Case study: thrust balance

micro-thrusters operate in range from 0.1µN up to 500 mN

applied for spacecraft altitude control, drag compensation, etc.

calibration measurements very much affected by environmental noise

MBA thrust force + environmental noise
TCA environmental noise only

Method

1 deconvolve TCA response to noise (→ ’true’ noise)

2 deconvolve MBA response

3 remove noise in deconvolved MBA response
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Case study: thrust balance

deconvolution approach

1 determine system frequency response from calibration measurements

2 fit a digital filter to its reciprocal

3 apply filter to the output signal
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Case study: thrust balance

deconvolution approach

1 determine system frequency response from calibration measurements

2 fit a digital filter to its reciprocal

3 apply filter to the output signal

4 apply additional low-pass filter
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Case study: thrust balance

lowpass filter cut-off frequency

What is the uncertainty contribution of the induced systematic error?

The answer is informed by prior knowledge about the measurand.
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Case study: sampling oscilloscope

Test and Measurement 

Wireless communications Internet applications 

Fiber optics Electronics 

Data storage 
and 

Computing 
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Case study: sampling oscilloscope

Necessity of dynamic calibration

Generator 
failed 

Generator 
passed 

Figure: Eye diagram for characterizing electric signals
same device under test – different oscilloscopes
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Case study: sampling oscilloscope

deconvolution approach

1 determine system impulse response from calibration measurements

2 calculate convolution matrix

3 solve linear estimation problem

measurement model

y = Hx∗ + n n ∼ N(0,Σn)

best linear unbiased estimator
(BLUE)

x0 =
(
H∗Σ−1n H

)−1
H∗Σ−1n y
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Case study: sampling oscilloscope

deconvolution approach

1 determine system impulse response from calibration measurements

2 calculate convolution matrix

3 solve regularized linear estimation problem

xλ =
(
H∗H + λ2L∗L

)−1
H∗y

interpretation as generalized filter

xλ = RλH−1y

Rλ =
(
H∗H + λ2L∗L

)−1
H∗H

⇒ parameter λ controls bias-variance trade-off
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Case study: sampling oscilloscope

choice of λ
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What is the uncertainty contribution of the induced systematic error?

The answer is informed by prior knowledge about the measurand.
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Case study: hydrophone

measurement of pressure generated by medical ultrasound devices

assessment of pressure peaks to ensure patient safety

current standards consider quasi-static or approximate dynamic
methods
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Case study: hydrophone

deconvolution approach

1 determine frequency response from measurements

2 design low-pass filter based on prior knowledge

3 carry out deconvolution in frequency domain

X0(jω) =
Y (jω)

H(jω)
L(jω)
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Case study: hydrophone

design additional low-pass filter X0(jω) = Y (jω)
H(jω)L(jω)

What is the uncertainty contribution of the induced systematic error?

The answer is informed by prior knowledge about the measurand.
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Comparison

frequency deconvolution approach regularization approach

thrust balance ≈ 5 Hz digital filter visual inspection
hydrophones ≈ 40 MHz division in freq. domain prior knowledge
oscilloscopes ≈ 20 GHz linear estimation model data dependent

Generic estimation problem

Determine trade-off between reduced variance and increased systematic
error.

Generic uncertainty problem

Quantification of the uncertainty contribution of the introduced
systematic error requires prior knowledge about the measurand.

Incorporation of prior knowledge not considered by the GUM
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Summary

Dynamic Metrology is emerging field in almost all application areas

Typical task in Dynamic Metrology is deconvolution

Different approaches, but similar mathematical challenges

Deconvolution requires some kind of regularization

Regularization introduces systematic error

Uncertainty contribution of regularization requires prior knowledge
about the measurand
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Some further challenges in Dynamic Metrology

Estimation of large covariance matrices from measurement

Transfer of large covariance matrices (calibration certificates)

Utilization of noise structures other than normal distributed

Standard software tools for uncertainty evaluation not applicable

System models often based on differential equations

Dynamic estimation requires dynamic calibration (new approaches!)

Classical key comparisons not suitable

Conclusion

Dynamic measurements are becoming increasingly relevant throughout
metrology, but there is almost no guidance in the GUM.
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