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 Long-run success rate and Bayesian intervals 

 

 The three examples 

 

 Considerations 

 

 Conclusions 
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Bayes at work 
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Bayesian approach Orthodox approach 

Usefulness of the 
resulting pdf 

Direct (probability of 
measurand values) 

Indirect 
(probability of measured values 
for a supposed measurand) 

Use of the pdf Simple (credible intervals) Convoluted (confidence intervals) 

Prior information Integrated in the scheme Not covered 

Uncertainty Known quantity Uncertain quantity 
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 When only vague prior information is available («X is in the interval [a;b]») 

 

 Bayesian approach requires a clever technical construction of the right 
“objective” prior pdf (objective = non-informative = non-subjective) 

 

 Stein’s Paradox:  
different priors are needed to estimate 𝜇  and 𝜇2 in 𝑁(𝜇, 𝜎2) 
 

 Words from the (objective) Bayesian statistician J. Berger: 
 

 

 
“frequentist notions are valuable in 
the construction of objective Bayesian 
methodology” (frequentist validation) 

Bayesian Analysis (2006)  vol. 1, pp. 385-402 
 

The Case for Objective Bayesian Analysis 
 

J. Berger 
 

Objective priors can vary depending on the goal of the 
analysis for a given model. 
 
Use of constant priors, vague proper priors […] I call such 
analyses pseudo-Bayes.  
 

They do not carry with them any of the 
guarantees of good performance that come 
with (well-studied) objective Bayesian analysis 

LRSR evaluation 
 

(«Think like a Bayesian, 
check like a frequentist») 
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 Pdf are assigned to 𝑋𝑖   
according to rules 
independent on the 
propagation problem 
 

 Equivalent to a Bayesian 
analysis using particular 
prefixed priors 
(Elster, Toman, Forbes, Lira, 
Grientschnig…) 

 
 

6 



BIPM Workshop on Measurement Uncertainty – 15-16 June 2015 

 In nonlinear problems the pdf of 𝑌 may have undesirable 
properties  
(Hall, Elster, Toman, Willink, Forbes, …) 

 
 LRSR of coverage intervals (which is NOT the coverage probability) 

can be low 
 
 
 
 
 
 
 

 Different positions: 
◦ Low LRSR demonstrates that the scheme is wrong 
◦ The pdf of Y can be improved with proper Bayesian techniques like MCMC 
◦ Low LRSR is not a problem and must be ignored 
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 Three pair of examples  
(A, B, C) 

 

 In each pair, input quantities 
has the same pdf 

 

 In each pair: 
◦ n.1 yields 𝐿𝑅𝑆𝑅 = 𝑝 (satisfying) 

◦ n.2 yields 𝐿𝑅𝑆𝑅 ≅ 0 (unsatisfying) 
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Effect of dice 

Effect of noise Effect of quantization 
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 Measurement model: quadratic mean 𝑌 = 𝑓 𝑥1, … , 𝑥𝑁 =
1

𝑁
 𝑋𝑖

2𝑁
𝑖=1  

◦ results can be intuitively interpreted 
◦ any other nonlinear model would be good 

 

 Number of input quantities 
◦ 𝑵 = 𝟐𝟓𝟎𝟎, generates BIG differences between examples 
◦ 𝑵 = 𝟏, 𝟐 generates identical (smaller) effects 

 

 Coverage interval 
◦ 95% probability symmetric interval 

 
 Computations 

◦ NPLUnc software (exact Monte Carlo and approximate GUF solution)  
 
http://resource.npl.co.uk/docs/science_technology/scientific_computing/ssfm/documents/s
oftware/NPLUnc.zip  
 

◦ Analytical results are easy to obtain 
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 𝑋1, … , 𝑋𝑁 are totally unknown 
 

 Information:  
 
A1 
◦ 𝑋𝑖 = outcomes of the roll of 𝑁 independent fair dice 
 
A2 
◦ 𝐷𝑖 = outcome of 𝑁 fair dice, values [−2.5, −1.5, −0.5, +0.5, +1.5, +2.5] 
◦ Values 𝑥𝑖 = 𝑋𝑖 + 𝐷𝑖 are given 
 
 

𝑥𝑖 − 2.5 𝑥𝑖 + 2.5 𝑥𝑖 

pdf of 𝑋𝑖 
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 In A1, 𝑥𝑖 = 𝐸[𝑋𝑖] = 3.5, 𝑋𝑖 = 𝑥𝑖 + 𝐷𝑖, with 𝐷𝑖 ∈ [−2.5, −1.5, −0.5, +0.5, +1.5, +2.5] 
 

 In A2, the situation is reversed, 𝑥𝑖 = 𝑋𝑖 + 𝐷𝑖 and 𝑥𝑖 assume different («random») values 
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 Actual experiment: 𝑌 = 15.3152 
 

 The GUM2 interval has 𝐿𝑅𝑆𝑅 = 𝑝 = 95% 

 

 The GUM2 (bayesian) pdf is also a 
frequency pdf 
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 Actual experiment: 𝑌 = 9! 

 

 The GUM2 interval has 𝐿𝑅𝑆𝑅 ≅ 0 
 

 An interval with 𝐿𝑅𝑆𝑅 = 95% is easily 
computed using a “frequentist” approach: it 
is the confidence interval [8.65; 9.60] 
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 𝑋1, … , 𝑋𝑁 are totally unknown 
 

 Information: 

 
A1 

◦ 𝑋𝑖 = 𝑥𝑖 + 𝑁𝑖, with 𝑁𝑖~𝑁(0, 1) i.i.d. 
◦ measurands 𝑋𝑖 are obtained by summing noise to measurements 𝑥𝑖 

 
◦ A2 

◦ 𝑥𝑖 = 𝑋𝑖 + 𝑁𝑖, with 𝑁𝑖~𝑁(0, 1) i.i.d. 
◦ measurements 𝑥𝑖 are obtained by summing noise to measurands 𝑋𝑖 

𝑥𝑖 

pdf of 𝑋𝑖 
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 In B1, 𝑥𝑖 = 𝐸[𝑋𝑖] = 1 (different 𝑥𝑖 can be used) 

 In B2, 𝑥𝑖 assume different («random») values 
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 Actual experiment: 𝑌 = 2.0541 
 

 The GUM2 interval has 𝐿𝑅𝑆𝑅 =
𝑝 = 95% 
 

 The GUM2 (bayesian) pdf is also 
a frequency pdf 
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 Actual experiment: 𝑌 = 1! 
 

 The GUM2 interval has 𝐿𝑅𝑆𝑅 ≅ 0 
 

 An interval with 𝐿𝑅𝑆𝑅 = 95% is easily 
computed using a “frequentist” 
approach: it is the confidence interval 
[0.94; 1.17] 
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 𝑋1, … , 𝑋𝑁 are totally unknown 

 

 Information: 

 
The same for C1 and C2 

◦ 𝑥𝑖 = 𝑟𝑜𝑢𝑛𝑑(𝑋𝑖) (quantization with step 𝑄 = 1) 

 

𝑥𝑖 

pdf of 𝑋𝑖 

𝑥𝑖-0.5 𝑥𝑖+0.5 
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 In C1, the quantizer input is a “special” signal  
◦ It spans uniformly an integer number of quantization step 

 
 In C2, the quantizer input is a much more generic signal 

◦ It has a span that satisfies Quantization Theorem II (bandlimited distribution) 
 
(Widrow and Kollar, «Quantization noise», Cambridge University Press, 2008) 
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 Actual experiment: 𝑌 = 2.0581 
 

 The GUM2 interval has 𝐿𝑅𝑆𝑅 =
𝑝 = 95% 
 

 The GUM2 (bayesian) pdf is also a 
frequency pdf 0 500 1000 1500 2000 2500
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 Actual experiment: 𝑌 = 1.867 
 

 The GUM2 interval has 𝐿𝑅𝑆𝑅 = 0 
 

 An interval with 𝐿𝑅𝑆𝑅 = 95% is easily 
computed using a “frequentist” 
approach: it is the confidence interval 
[1.843; 1.906] 

1.85 1.9 1.95 2 2.05 2.1 2.15

0

5

10

15

20

25

Probability distribution for the output quantity

Value

P
ro

b
a

b
il
it

y 
d

e
n
s
it

y

GUF solution GUM2/S1 solution 

actual Y 

0 500 1000 1500 2000 2500
-5

-4

-3

-2

-1

0

1

2

3

4

5

measurement #

m
ea

su
re

m
en

t v
al

ue

measurements 

22 



BIPM Workshop on Measurement Uncertainty – 15-16 June 2015 

Is success rate important in real life? 
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 Additive noise of known power 𝑝𝑛 (𝑝𝑛 = 𝑄
2/12 for quantization) 

 Measured signal of (measured) power 𝑝𝑥 

 Unknown signal of unknown power 𝑃𝑋  

 

 GUM2 estimates 𝑃𝑋 as 
◦ 𝑃𝑋 = 𝑝𝑥 + 𝑝𝑁 

 This is OK in the (rare) case of noise uncorrelated with 
the output (examples A1, B1, C1) 

 

 What usually happens is that noise is uncorrelated with 
the input (examples A2, B2, C2)  
◦ 𝑝𝑥 = 𝑃𝑋 + 𝑝𝑛 ⇒ 𝑃𝑋 = 𝑝𝑥 − 𝑝𝑛 
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 A good Bayesian does not require 
𝐿𝑅𝑆𝑅 = 𝑝 
 

 But a good Bayesian does not accept 
𝐿𝑅𝑆𝑅 = 0  
 
(remember the words of Berger; see 
also J. M. Bernardo) 
 

 When 𝐿𝑅𝑆𝑅 = 0, the prior pdf must 
be changed, in a problem-
dependent way («true» Bayesianism) 
 

 Yes, it is a problem 

J. Statistics Planning and Inference (1997)      vol. 65 
 

Noninformative priors do not exist: A discussion 
 

J. M. Bernardo 
 
 

An important part of the discussion on methods for 
deriving non-subjective priors is based on the 
analysis of the statistical properties of the posteriors 
they produce in specific, “test-case” examples  
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 If the dice are not fair, and 
we get LRSR = 0, the 
problem is not in the 
methodology 

 

 But if the dice are fair and 
we get LRSR = 0, the 
problem is in the 
methodology 
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Examples A (dice), B (noise) show that: 

 
 When measurands 𝑋𝑖 are obtained summing random numbers 𝐸𝑖 to fixed measurements 𝑥𝑖 

 
⇒ the Bayesian pdf of 𝒀 is good (btw it is also the frequency pdf of 𝑌 in repeated experiments) 

 

 When measurements 𝑥𝑖 are obtained summing random numbers 𝐸𝑖 to fixed measurands 𝑋𝑖 

 
⇒ the Bayesian pdf of 𝒀 is bad 
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𝑥𝑖 

measurand 
𝑋𝑖 

𝐸𝑖 

GUM2 OK  
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In examples C1, C2 we do not have a «summation» mechanism 
 
 We have different statistics for the quantization error  

𝐸𝑖 = 𝑟𝑜𝑢𝑛𝑑 𝑥𝑖 − 𝑋𝑖 = 𝑥𝑖 − 𝑋𝑖 
 

 𝐸𝑖 , 𝑥𝑖  are independent ⇒ the Bayesian pdf of 𝒀 is good (C1, «special» 
input) and is also the frequency pdf of 𝑌 in repeated experiments 
 

 𝐸𝑖 , 𝑥𝑖  are not independent ⇒ the Bayesian pdf of 𝒀 is bad (C1, «generic» 
input: 𝐸𝑖 , 𝑋𝑖 independent) 
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 Add to GUM2/S1 a statement: 
« » 

Long-run success rate of coverage 
intervals in repeated measurements 

 
The long-run success rate of a coverage 
interval in repeated measurements do not 
coincide, in general, with the coverage 
probability 𝑝.  

 

(LRSR may become arbitrarily low. Details 
may be added…) 
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 Guidance to implement «true» 
Bayesian analysis 
◦ JCGM 108 

 

 Guidance to assess LRSR of 
intervals / determine intervals 
with given LRSR 
◦ It can be done easily by Monte 

Carlo simulations 
◦ LRSR can be assessed for any 

interval, however obtained (also 
frequentist methods) 

◦ The statistics of 𝐸𝑖 = 𝑥𝑖 − 𝑋𝑖 is of 
essential importance here 
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 Success rate is of practical 
interest, and intervals with 
assured LRSR have a market 

 

 People use frequentist, 
Bayesian, and mixed 
approaches – all sort of tools 

 

 Providing guidance to 
everybody is a lot of work, 
but it can be worth it 
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Thank 
you! 
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