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Uncertainty evaluation in chemistry 
and molecular biology: 
From Reproducibility to Bayes

Stephen L R Ellison (LGC)

Science
for a safer world

Introduction

• Uncertainty evaluation in chemistry
– Propagation, Reproducibility and Bayes

• Molecular biology
– Recent examples of uncertainty evaluation

• Summary
– Current practice and future directions
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Chemistry 

i) Basic approaches

Uncertainty evolution in 
Chemical measurement

• BIPM INC-1 (1980)

– Type A / Type B

– Combine as variances

• ISO Guide 
• EURACHEM Guide 1st ed

• EURACHEM Guide 2nd 
ed (QUAM:2000

• GUM Supplement 1 
(MCS)

• AOAC Stats manual
(Development/validation)

• ISO 5725:1986 (Collab
trial)

• ISO 5725:1994 (Adds 
trueness)

• ISO 21748 – Uncertainty 
from collab study data

Random/systematic error; Error propagation in 
chemistry (Eckschlager 1961); Collaborative study

Pre-
1978

1980

1982

1986

1993

1995
2000

2010

20122012 �� 33rdrd Edition  EURACHEM/CITAC guide Edition  EURACHEM/CITAC guide 
publishedpublished What next?
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The Process of Measurement 
Uncertainty Estimation

 

Specify
Measurand

Identify
Uncertainty

Sources

Simplify by
grouping sources

covered by
existing data

Quantify 
remaining 

components

Quantify
grouped

components

Convert
components to

standard deviations

Calculate
combined 

standard uncertainty

END

Calculate
Expanded 
uncertainty

Review and if 
necessary re-evaluate

 large components

START

Step 1

Step 2

Step 3

Step 4

• Specify measurand
• Identify Sources
• Group and quantify
• Combine

Example ‘GUM’ approach:
Forensic alcohol standard titration

0 0.02 0.04 0.06 0.08 0.1 0.12

Oxidant conc.

Mol. Wt.

Extent Oxid'n

Sample mass

Titration vol.

Blank corr.

Density

Precision

TOTAL

Uncertainty  contribution (mg/100ml)

Chemistry
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Uncertainty evaluation approaches

“Well characterised” “Well characterised” 
quantified effects, 
differentiable, continuous, 
traceable

Poorly characterised;Poorly characterised;
Unpredictable effects;

Input quantitiesunclear

Measurement model applies POORLYPOORLY

Whole method study applies

WELLWELL

WELLWELLPOORLYPOORLY

Quantifying Uncertainty in chemical 
measurement: Eurachem Guide options

• Evaluating uncertainty by quantification of individual 
components

• Closely matched certified reference materials
• Uncertainty estimation using prior collaborative method 

development and validation study data
• Uncertainty estimation using in-house development and 

validation studies
• Data from proficiency testing
• Empirical and ad-hoc methods
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Precision
(long term)

Bias
uncertainty

Other
effects

• “Physical” uncertainties 
usually negligible

• Chemical effects need 
study

• Good reference 
needed

• Analytical recovery a 
problem

Principle:
Applying in-house validation data

Method
bias

Matrix 
effect

Sample
weight

BalanceGC

Cause and effect analysis 

Analytical
result

GC ratio

Ratio

IS
area

Sample peak
area

GC
Response

factor

IS Concentration

Weight
used

Standard
volume

Repeatability

Flask
Calibration

Temperature

Purity

IS Volume

Pipette
volume

Repeatability Calibration

Temperature

Balance
calibration

linearity
Buoyancy
correction

Internal Standard 
weight

“Recovery”

Experiment:
Recovery for 
representative 
matrices, levels 
(replicated) 
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“Whole method” information“Whole method” information

Hybrid approach:
Determination of Acesulfam-K

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

 Contribution to Uncertainty (RSD)

TOTAL

Final volume

Sample volume

Stock concentration

Calibration

Precision

Sample recovery

Method recovery

“Input quantity” information

Most of the uncertainty comes from 
poorly understood effects

Bottom -up approach:
Determination of Acesulfam-K
Top-down approach:
Determination of Acesulfam-K

12

Chemistry 

ii) Combining 
uncertainties
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Combining uncertainties for chemistry

• The basic GUM theory

• Simple spreadsheet 
methods

• Simulation methods
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Why use a simplistic estimate?

• Exact only for linear examples
• Does not reproduce 1st order GUM

• Usually adequate for mild nonlinearity
• May be better for highly non-linear cases

Much simpler than manual differentiation

GUM Supplement 1
‘Propagation of distributions’ using MCS

• Starts from observed x and u
• Assumes distributions appropriate to input quantities
• Samples from each (“Monte Carlo simulation”)

– calculates y for each sample

• Calculates u(y) from ‘observed’ distribution
• Can calculate quantiles to provide coverage interval

– May be asymmetric

• Only corresponds to distribution for the true value under 
some assumptions
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MCS example
y = a/(b-c) (999 replicates)

Values of y
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Calculations carried out using metRology 0.9-4 (http://sourceforge.net/projects/metrology/)

Compare GUM and MCS

GUM
Expression: a/(b - c)

Uncertainty budget:

x u c u.c

a 1 0.05 1 0.05

b 3 0.15 -1 -0.15

c 2 0.10 1 0.10

y: 1

u(y):0.1870829

y = 1 ± 0.37 (k=2)  

MCS
Expression: a/(b - c)

Uncertainty budget:

x u c u.c

a 1 0.05 1.08 0.054

b 3 0.15 -1.09 -0.16

c 2 0.10 1.06 0.11

y: 1

u(y): 0.221

y = 0.718 to 1.535
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Chemistry 

iii) Uncertainty near
natural limits:
A Bayesian
approach helps

Uncertainty near zero/100%

±2σ

0

±2σ

0

What is the ‘best estimate’?

Should the uncertainty  
change?

Impossible
values
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Truncation provides accurate
coverage

±t.u

0

Retain mean value

Asymmetric interval:
0 <  x  < x+t.u

Truncated interval near zero
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Bayesian approach

Rectangular prior

Observations

0

Posterior distribution 
(truncated t)

Mode
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Bayesian interval

95% of posterior distribution
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Uncertainty on values near zero 

• Truncated interval retains exact coverage properties
– Standard uncertainty unchanged
– Minimally biased mean
– Convergence to zero width implies probable measurement 

failure

• Correct Bayesian interval more general but more complex to 
calculate

• Essential to truncate AFTER ALL OTHER CALCULATIONS
– Truncating interim values leads to increased bias

“Handling undetected and low-level components in purity determination”.
S Cowen, S L R Ellison, Accred. Qual. Assur. 12, 323-328 (2007)

26

Biology

DNA measurement
using Real-Time PCR



6/16/2015

14

The Polymerase Chain Reaction 
(PCR)

Hot 
Phase

Warm 
Phase

Hot 
Phase

Warm 
Phase

2nd cycle Etc.1st cycle

PCR Threshold Cycle

Threshold cycle ct is the fractional cycle at which the 
amplification curve crosses a chosen threshold

ct

Observing count to 
threshold allows 

quantitation
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qPCR Calibration

29

Calibration regresses Cq on log10(c) 

Uncertainties arising from 
“systematic” effects

• Reference value uncertainty 

• Uncertainties in calibration material dilution volumes

• Uncertainties in test material aliquot volume

• Uncertainty in calibration material aliquot volume

• Differences in amplification efficiency
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Uncertainty contributions
Matched calibration standard

0.0 2.0 4.0 6.0 8.0

Pipetting

Calibration solution value c0

Volumetric effects in calibration

Random variation (Precision)

Combined standard uncertainty

Standard uncertainty ng ul-1 x104

Does not fully account for long-
term variations or 

interlaboratory dispersion

Omitted for relative measurement

Correlation included

Uncertainties arising from 
“systematic” effects

• Reference value uncertainty 

• Uncertainties in calibration material dilution volumes

• Uncertainties in test material aliquot volume

• Uncertainty in calibration material aliquot volume

• Differences in amplification efficiency

2% difference in efficiency leads 
to 80% error in result (30 cycles)
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Biology 2

Digital PCR

Digital PCR

• Perform PCR process in 
large number of wells

• Choose dilution so that 
some wells have no 
molecules 

• Run for 30-40 cycles
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Data

Count number of positive wells k

Positive wells contain(ed) ≥ 1 molecule
Average number λ estimated from p(0) in Poisson 

distribution:








 −−=⇒−=
N

kN
p ln)exp()0( λλ

Assumptions

Assumptions about the distribution of the number of 
molecules in the wells:

– Independent

– Identical (requires same volume per well)

– Poisson distribution Bayesian modelling allows us to 
build a more complete model for 

uncertainty evaluation
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Variable volume likelihood

• If we assume the well volume is Gamma distributed with
relative standard deviation ω, then the distribution of
molecules is Gamma-Poisson with the likelihood

      22
1

22 111,;  
knk

nkL







 

Volume variation causes 
a bias as well as 

increased uncertainty

38

c q

Using Cq data to allow for 
departure from Poisson distribution

Cq data shows distinct 
groups for different initial 

copy number
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Model for cq data

Main Parameters:

μ – mean molecules per partition

E – efficiency

A – Fluorescence per molecule

Optional Parameters:

ν – dispersion parameter

E0 – cycle 1 efficiency

bx, by – trends 39

Approximate Likelihood given
threshold cycle
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Comparison of ct data to model

Model fit provides 
estimated λλλλ, 

overdispersion and 
uncertainty

Summary of current practice

• Chemistry
– Most chemical testing labs rely on reproducibility data for

uncertainty evaluation
• Often more realistic because the most important effects can

not be well understood

– Some reference measurements allow input-based models
– Numerical methods of combination rare outside NMIs
– Some advanced treatment appearing in a few NMIs

• Biological measurement
– More heavily dominated by variability
– Wider range of distributions
– Somewhat more statistical awareness
– Some advanced treatments appearing
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Looking forward

Looking forward

• Testing laboratories appear content with uncertainties 
based on validation and interlaboratory study data

• Increasing interest in reporting uncertainties in 
proficiency tests

• ML and Bayesian treatments rare and will take time to 
understand
– Intuition is a poor guide to sound priors

• Uncorrected bias is a bigger problem than new 
uncertainty methods

• Small degrees of freedom (≤2) will remain common …
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Conclusion

From Reproducibility to Bayes
(via GUM 1995)

is

not an evolutionary course

it is a 
vital range of options


