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Outline 

• Bayesian analysis of flow meter calibration problem 

– An example of a normal linear regression problem 

 

• Treatment of different prior knowledge 

– About flow meter calibration curve 

– About repeatability of flow meter 

 

• Comparison with classical ordinary least squares (OLS) approach 
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Background 
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• Flow meter measures the volume of fluid flowing through the meter per 
unit of time, e.g. reported in L min-1 

 

• High-quality meter will have an electrical pulse output such that each 
pulse corresponds to a fixed volume flowing through the meter 
 

• Frequency of the pulse output is proportional to flow rate q, and the 
proportionality constant is the K-factor k 
 

• A calibration involves determining the K-factor for several known flow 
rates, and fitting a curve to the calibration data 
 

• That calibration curve is used to provide an estimate of the K-factor at any 
flow rate within the measurement range of the device 



Prior knowledge regarding flow 
meter calibration 

• Specified K-factor by manufacturer (constant) 

 -> correct within 1 % 

 

• Calibration curve of previous calibration 

 -> correct within 0.1 % 

 

• Typical variation in curve 

 -> maximum and minimum values differ by less than 0.2 % 

 

• Information on repeatability specified by manufacturer 

 -> estimate of 0.025 % with degree of belief ν0 
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Data and some of the prior knowledge 
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Deviation from 
nominal value kspec 

Repeatability σ 

Deviation from 
prescribed calibration 
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Statistical model 
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•  Calibration data 
 

  (qi, ki), i = 1, ..., n 
 
•  Calibration curve 
 

  fβ(q) = β1 + β2 / q + β3 q + β4 q
2 + β5 q

3 

 
•  Statistical model 
 

  ki = fβ(qi) + εi,  εi ~ N(0, σ2) 

 
•  Normal linear regression problem with parameters β and σ2 



Bayesian analysis 

Prior knowledge 
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Data &  

statistical model 

 

Posterior knowledge 
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Prior distribution for curve 
parameters β  
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Prior distribution for repeatability σ 
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
0
 = 1


0
 =  n

 Inverse-Gamma(ν0 / 2, ν0 σ0
2 /2)  with σ0 = 0.025 % 
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Prior

Posterior
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Prior

Posterior

• As ν0 -> 0, the data dominates (as represented by the OLS estimate σOLS) 
 
• As ν0 -> ∞, the prior dominates (as represented by the prior estimate σ0) 

Prior and posterior distributions for σ 

ν0 = n ν0 = 1 

σOLS σ0 σOLS σ0 



Estimate of the calibration curve 
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Prior and posterior distribution for 
K-factor for particular flow rate 

Prior distribution 
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Posterior distribution 
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• Estimates of K-factors are equal for all statistical approaches 
 

• Standard uncertainties of K-factors vary depending on the weight 
given to the prior information on the repeatability 

Numerical results and comparison 



Influence of prior information 
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Distributions for fβ(qmin) as constraint relating to previous calibration 
becomes tighter 
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• Estimates of K-factors are different, especially for smallest flow rate 
 

• Standard uncertainties of K-factor at smallest flow rate becomes 
smaller, as prior knowledge ‘actively adds information’ in this case 
 

• Standard uncertainties of K-factors at other flow rates are almost 
identical to the values before 

Numerical results and comparison 
(case: more informative prior knowledge on calibration curve) 



Final remarks 

• Numerical algorithm is quite straightforward and only uses methods similar to 
GUM Supplement 1. 

 

• Treatment does not answer questions about whether the flow meter 
‘conforms to specifications’ about its repeatability and calibration curve 

– By interpreting those ‘specifications’ as prior knowledge, the flow meter is 
forced to conform! 

 

• Use of ‘strict’ constraints leads to posterior distributions that are truncated at 
the boundaries of the constraints 

– Alternative forms of prior distributions, which associate small probabilities 
with ‘infeasible’ calibration curves, might be considered to be more 
realistic but are more difficult to cope with numerically. 
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  Bayesian analysis permits both prior information about the 
flow meter and observed data to be used.  

 
 In contrast, Ordinary Least Squares only treats the extreme 
cases where any of the unknowns (regression parameters β and 
variance of the data σ2) is either completely known or unknown.   
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