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Uncertainty evaluation in chemistry
and molecular biology:
From Reproducibility to Bayes

Stephen L R Ellison (LGC)
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Introduction @

» Uncertainty evaluation in chemistry
— Propagation, Reproducibility and Bayes

* Molecular biology
— Recent examples of uncertainty evaluation

* Summary
— Current practice and future directions




6/16/2015

1) Basic approaches

Uncertainty evolution in
Chemical measurement @

Pre- Random/systematic error; Error propagation in
1978 chemistry (Eckschlager 1961); Collaborative study

1980 + BIPM INC-1 (1980)

1982 — Type A/ Type B + AOAC Stats manual

— Combine as variances (Development/validation)
1986 « 1S0 5725:1986 (Collab
1993 « SO Guide trial)
1995 + EURACHEM Guide 1sted | * SO 5725:1994 (Adds

; trueness)

2000 °* EURACHEM Guide 2nd

ed (QUAM:2000

« GUM Supplement 1 e |SO 21748 — Uncertainty

2010 (MCS) from collab study data

% 3 Edition EURACHEMI/CITAC guide
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The Process of Measurement @
Uncertainty Estimation

Specify measurand
Identify Sources
Group and quantify
Combine

Example ‘GUM’ approach: @
Forensic alcohol standard titration

Oxidant conc.
Mol. W. Chemistry
Extent Oxid'n (————
Sample mass
Titration vol.
Blank corr.

Density

Precision
TOTAL

0 0.02 0.04 0.06 0.08 0.1 0.12
Uncertainty contribution (mg/100ml)




Uncertainty evaluation approaches @
“Well characterised” Poorly characterised,;
quantified effects, Unpredictable effects;
differentiable, continuous, Input quantitiesunclear
traceable
WELL Measurement model applies —— POORLY

POORLY «—— Whole method study applies — WELL

Quantifying Uncertainty in chemical @
measurement: Eurachem Guide options

« Evaluating uncertainty by quantification of individual
components

» Closely matched certified reference materials

* Uncertainty estimation using prior collaborative method
development and validation study data

* Uncertainty estimation using in-house development and
validation studies

« Data from proficiency testing
« Empirical and ad-hoc methods
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Principle: @

Applying in-house validation data

Bias
(long term) uncertainty

* “Physical” uncertainties | * Good reference

usually negligible needed

Other
effects )) * Analytical recovery a
problem

Precision

* Chemical effects need
study

Cause and effect analysis @

Sample )
GC rati(V weight Recovery

&alance

calibration

Balanc:
lineari

Buoyanc
correcti

IS

\/Gcar

Ratio
Sample peak
area

GC
Respons
factor

Analytical
Weight Standard resu |t

us voluge
/Repeatability Reéatahility Temperaturex
alibration Flask . .
* cation 3¢ ./ Experiment:

IS Concentration 7
’ Recovery for
PUI’I& tati
Pipette reprgsen ative
v/ Voluge matrices, levels
Repeatability Calibratio\x (rep“cated)
IS Volume 7
Temperaturex

Internal Standard
weight
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Top-down approach: @

Determination of Acesulfam-K

Method recovery )

Sample recovery

Precision “Whole method” information

& J
é Calibration )
Stock concentration

Sample volume

\_ Final volume “Input quantity” information )

TOTAL

0 001 002 003 004 005 006 007 0.08
Contribution to Uncertainty (RSD)

Most of the uncertainty comes from
poorly understood effects

i) Combining
uncertainties




Combining uncertainties for chemistry

* The basic GUM theory U2 + U2

* Simple spreadsheet

&

methods

* Simulation methods

Kragten’s spreadsheet method

Measurement result y
Y ommmmmmm e Pie

]

Input parameter x;
al(x)

ui(y)z y+ _yO

e
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Why use a simplistic estimate? @

Exact only for linear examples
* Does not reproduce 15t order GUM

Usually adequate for mild nonlinearity
* May be better for highly non-linear cases

Much simpler than manual differentiation

GUM Supplement 1 @
‘Propagation of distributions’ using MCS

+ Starts from observed x and u
» Assumes distributions appropriate to input quantities
« Samples from each (“Monte Carlo simulation”)
— calculates y for each sample
» Calculates u(y) from ‘observed’ distribution
» Can calculate quantiles to provide coverage interval
— May be asymmetric

* Only corresponds to distribution for the true value under
some assumptions




MCS example
y = al/(b-c) (999 replicates)
Histogram

Frequency
200
|

100
|

il

T T 1
0.5 1.0 15 20

Values of y

Calculations carried out using metRology 0.9-4 (http://sourceforge.net/projects/metrology/)

Q-Q plot

Theoretical Quantiles
0
|

T T T
1.0 15 20

Sample Quantiles

Compare GUM and MCS

GUM
Expression: a/(b - ¢)

Uncertainty budget:

X u c u.c
a 1 0.05 1 0.05
b 3 0.15 -1 -0.15
c 2 010 1 0.10

y: 1

u(y):0.1870829
y=1%0.37 (k=2)

e

MCS
Expression: a/(b - ¢)

Uncertainty budget:
X U c u.c

a l 005 108 0.054

b 3 015 -1.09 -0.16

c 2 010 106 011
y: 1

uly): 0.221

y =0.718 to 1.535
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i) Uncertainty near
natural limits:
A Bayesian
approach helps

Uncertainty near zero/100% @

Impossible
values

What is the ‘best estimate’?

Should the uncertainty
change?

10



Truncation provides accurate
coverage

o

Retain mean value

0< x <x+t.u

Asymmetric interval:

Truncated interval near zero

— Classical truncated CI (n=6)
— Max(0,Mean)

6
1

Upper and lower limits of U(X) /u

x/u
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Bayesian approach @

Rectangular prior

g

o

Posterior distribution
uncated t)

tions

0 Mode

Bayesian interval @

= = Classical truncated ClI (n=|
— Bayesian (t, n=6)
— Max(0,Mean)

Upper and lower limits of U(X) /u

X/ u
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Uncertainty on values near zero @

e Truncated interval retains exact coverage properties
— Standard uncertainty unchanged
— Minimally biased mean

— Convergence to zero width implies probable measurement
failure

e Correct Bayesian interval more general but more complex to
calculate

» Essential to truncate AFTER ALL OTHER CALCULATIONS
— Truncating interim values leads to increased bias

“Handling undetected and low-level components iritguletermination”.
S Cowen, S L R Ellison, Accred. Qual. Ass2r323-328 (2007

DNA measurement
using Real-Time PCR

6/16/2015
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The Polymerase Chain Reaction @
(PCR)
1stcycle : 2d cycle : Etc.
| |
| |
| |
| Ve i
x Hot / Warm x : Hot \ Warm x :
Phase \ Phase x : Phase / Phase x :
| - X
| |

PCR Threshold Cycle @

Threshold cycle c; is the fractional cycle at which the
amplification curve crosses a chosen threshold

EIEEIRE:
Amplificaion
1.00 - //l
/
/|
0.80 /
/
E 080 J,"
.ff
0.40 - /
020 / .
/ Observing count to
000 = ” ” threshold allows
Cycle guantitation
v
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gPCR Calibration

0.28-A : Do e
1 s i 37 5
0.244 1 ;/f»"’u 35 "\
0.20 v — 334
- 016 L] @30 N
& 016 }f iy ;
<0127 if ! W &7 Pt
0.08- / iy 227 \\
0.047 / 1/ LA 214
0.00 = .__pufi 19 \*'\..\_
_GGE T T T T T II T T : T : T 17 T T T T T T I_ 5
2 6 10 14 18 22 26 30 34 38 110" 10° 10° 10* 10° 105107

Cycle number

Quantity, pg

Calibration regresses C, on log;(c)

29

Uncertainties arising from
“systematic” effects

» Reference value uncertainty

* Uncertainties in calibration material dilution volumes

* Uncertainties in test material aliquot volume

* Uncertainty in calibration material aliquot volume

 Differences in amplification efficiency

e
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Uncertainty contributions @
Matched calibration standard

Pipetting Correlation|included

Calibration solution value cO | Omitted for relative measurement

Volumetric effects in calibration

Random variation (Precision)

0.0 2.0 4.0 6.0 8.0

Standard uncertainty ng ul* x10*

Does not fully account for long-
term variations or

interlaboratory dispersion

Uncertainties arising from @
“systematic” effects

» Reference value uncertainty
* Uncertainties in calibration material dilution volumes
» Uncertainties in test material aliquot volume

* Uncertainty in calibration material aliquot volume

[  Differences in amplification efficiency ]

2% difference in efficiency leads
to 80% error in result (30 cycles)

6/16/2015
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Digital PCR

Digital PCR

* Perform PCR process in
large number of wells

¢ Choose dilution so that
some wells have no
molecules

e Run for 30-40 cycles

6/16/2015
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Data @

Count number of positive wells k

Positive wells contain(ed) = 1 molecule

Average number A estimated from p(0) in Poisson
distribution: j

p(0) =exp(-4) = A =—In( N -k

Assumptions

Assumptions about the distribution of the number of
molecules in the wells:

— Independent

— ldentical (requires same volume per well)

— Poisson distribution Bayesian modelling allows us to

build a more complete model for

e

uncertainty evaluation

6/16/2015
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Variable volume likelihood @

e If we assume the well volume is Gamma distributed with
relative standard deviation w, then the distribution of
molecules is Gamma-Poisson with the likelihood

L(&;k,n)oc (1 —(1 +)Lcol)_a%)k (1 +iwl)_a_:

k ~ Binom(n,l — (1 + Ao’ )_fJ

Volume variation causes

a bias as well as
increased uncertainty

02 03 04 05

01

00

Using C, data to allow for @
departure from Poisson distribution
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Model for ¢, data @

o
—
@ |
o
© |
o
<
o
o
o
o |
© T T T T T
30 31 32 33 34 35
cq
Main Parameters: Optional Parameters:
1 — mean molecules per partition v — dispersion parameter
E — efficiency E, — cycle 1 efficiency
A — Fluorescence per molecule b,, b, — trends 39
Approximate Likelihood given @

threshold cycle

LEpeh)s 537 pliclp, Ol it~ EY* £i1- EXi= EY *(1+ EY 1)+ o* )

Ol 4i(1+ EY %, 471 - EN1+ EY 1+ EF = —1)s 07
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Comparison of ¢, data to model @

— Data density
Model density

15

. Model fit provides
i estimated A,

A overdispersion and
uncertainty

10
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a10 s I

320

Summary of current practice @

e Chemistry

— Most chemical testing labs rely on reproducibility data for
uncertainty evaluation

» Often more realistic because the most important effects can
not be well understood

— Some reference measurements allow input-based models
— Numerical methods of combination rare outside NMIs
— Some advanced treatment appearing in a few NMls
* Biological measurement
— More heavily dominated by variability
— Wider range of distributions
— Somewhat more statistical awareness
— Some advanced treatments appearing

6/16/2015
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Looking forward

Looking forward @

» Testing laboratories appear content with uncertainties
based on validation and interlaboratory study data

* Increasing interest in reporting uncertainties in
proficiency tests

* ML and Bayesian treatments rare and will take time to
understand

— Intuition is a poor guide to sound priors

* Uncorrected bias is a bigger problem than new
uncertainty methods

« Small degrees of freedom (<2) will remain common ...

6/16/2015
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Conclusion @

From Reproducibility to Bayes
(via GUM 1995)
IS

not an evolutionary course
itis a
vital range of options
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