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Why prefer Bayesian solutions?
" Thayesian approach | Orthodox approach

Usefulness of the Direct (probability of Indirect
resulting pdf measurand values) (probability of measured values
for a supposed measurand)
Use of the pdf Simple (credible intervals) Convoluted (confidence intervals)
Prior information Integrated in the scheme  Not covered
Uncertainty Known quantity Uncertain quantity
Bayesian Frequentist

1.00 0.00 0.35 1.00
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When scrutinize Bayesian solutions?

» When only vague prior information is available («Xis in the interval [a;b]»)

» Bayesian approach requires a clever technical construction of the right
“objectlve" prior pdf (objective = non-informative = non-subjective)

»  Stein’s Paradox:
different priors are needed to estimate u and u? in N(u,02?)

»  Words from the (objective) Bayesian statistician J. Berger:

Bayesian Analysis (2006) vol. 1, pp. 385-402 . ) _ _
frequentist notions are valuable in

the construction of objective Bayesian
methodology” (frequentist validation)

¥

LRSR evaluation

The Case for Objective Bayesian Analysis

J. Berger

Objective priors can vary depending on the goal of the
analysis for a given model.

Use of constant priors, vague proper priors [...] | call such
analyses pseudo-Bayes.

They do not carry with them any of the («Thin_k like a BayeSi_an’
guarantees of good performance that come check like a frequentist»)
with (well-studied) objective Bayesian analysis
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The «weakly Bayesian» GUMZ2 /ST

approach

» Pdf are assigned to X;
according to rules
independent on the
propagation problem

» Equivalent to a Bayesian
analysis using particular

prefixed priors
(Elster, Toman, Forbes, Lira,
Grientschnig...)

yxi (El)

-\

gy (1)

El'xgiwﬂ)



BIPM Workshop on Measurement Uncertainty - 15-16 June 2015

Known problems of GUM2/S1 intervals

» In nonlinear problems the pdf of Y may have undesirable
properties
(Hall, Elster, Toman, Willink, Forbes, ...)

» LRSR of coverage intervals (which is NOT the coverage probability)
can be low

25

201

15 P = 90%
LRSR =7

107

0 0.05 0.1 0.15

» Different positions:
> Low LRSR demonstrates that the scheme is wrong
- The pdf of Y can be improved with proper Bayesian techniques like MCMC
> Low LRSR is not a problem and must be ignored
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Investigating the problems by
means of examples

Probability distribution for the output quantity
T

» Three pair of examples
(A, B, O)

actual YQ”‘““’

» In each pair, input quantities

Probability density
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has the same pdf

» In each pair: o 2y
- n.1 yields LRSR = p (satisfying) -
> n.2 yields LRSR = 0 (unsatisfying) -

Probability density
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T -
Effect of dice
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Common elements in the examples

» Measurement model: quadratic mean Y = f(xl, o xN) = —ZN X2

> results can be intuitively interpreted
> any other nonlinear model would be good

» Number of input quantities
- N = 2500, generates BIG differences between examples
- N = 1,2 generates identical (smaller) effects

» Coverage interval
> 95% probability symmetric interval

» Computations
- NPLUnc software (exact Monte Carlo and approximate GUF solution)

http://resource.npl.co.uk/docs/science_technology/scientific_computing/ssfm/documents/s
oftware/NPLUnc.zip

Probability distribution for the output quantity
T T T T T T

> Analytical results are easy to obtain L6

Probability density

| r r r r r r r r
9 10 11 12 13 14 15 16 17 ] 0
Value
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A - Rolling N dice
» X4, ..., Xy are totally unknown

» Information:

Al
> X; = outcomes of the roll of N independent fair dice

A2

> D; = outcome of N fair dice, values [-2.5,—1.5,-0.5,+0.5,+1.5,+2.5]
- Values x; = X; + D; are given

pdf of X; |

X — 2.5 Xi xX; + 2.5 ]

1
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Actual «kmeasurements» x; in
examples Al and A2

Note:
these are not repeated experiments, these are the input measurements x; in
a single experiment

6 3 T 3 T 6

N
I

measurement value
w
I
measurement value

r r r r
0 500 1000 1500 2000 2500 0
measurement #

r r r r
0 500 1000 1500 2000 2500
measurement #

» In Al y Xi = E[Xl] = 3.5, Xi =Xx; + Di! with Di € [—25,—15,—05,+05,+15,+25]

In A2, the situation is reversed, x; = X; + D; and x; assume different («<random») values

4

12
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A1 - NPLUnc solution and actual Y

»  Actual experiment: Y = 15.3152
ok measurements .
3T 7 »  The GUM2 interval has LRSR = p = 95%
.l - »  The GUM2 (bayesian) pdf is also a
b | frequency pdf

Probability distribution for the output quantity

T T T T 3 T T T

16  GUF solution GUM2/S1 solution | '3 = 12.25
i uly) = 0.239096

g I(y) = 11.7814, 12.7186

Results from GUM uncertainty framework:

1.4

I

actual Y

I

1.2
ﬁ Eesults from a HMonte Carlo method:

i v = 15.166%
] uly) = 0.24381
I{y) = 14.6913, 15.6851

0.6

T

Probability density
o
[e0]
I

i MCH calculation has stabilized
GUF i= NOT wvalidated against MCH
>»> guadratlic mean (X)

0.4

T

ansg =
15.315200000000001
>

13




BIPM Workshop on Measurement Uncertainty - 15-16 June 2015

A2 NPLUNc solution and actual Y

» Actual experiment: Y = 9!

L TR

measurements

»  The GUM2 interval has LRSR = 0

u »An interval with LRSR = 95% is easily
computed using a “frequentist” approach: it
is the confidence interval [8.65; 9.60]

measurement value

e e e e
o 500 1000 1500 2000 2500
measurement #

Results from GUM uncertainty framework:

Probability distribution for the output quantity Y = 12.0396
i " GUF solution GUMé/Si solution u(y) = 0.237033
o H\ 1l | I{y) = 11.575, 12.5042
14 | actual Y (\ | i
1.2 ?:ii} | \ - Eesults from a Monte Carlo method:
g Lo ( | g || = 14,9568
s / | | u(y) = 0.242001
% 0.8 E \ I T |I{y) = 14.4823, 15.432¢
Sos | | 7 ,
0.4k i \ | MCHM calculation has stabilized
i GUF i= NHOT walidated against HMCH
02/ | \\ 1 |»> guadratic mean(X)
0 E // ﬂﬁ hh ans =
é r r r r r r r r

10 11 12 13 14 15 16 17 : 8

Value s | 14
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B - Gaussian noise

» Xq,...,Xy are totally unknown

» Information:

Al
° Xi = X; + Ni! with NiNN(O, 1) i.i.d.
measurands X; are obtained by summing noise to measurements x;

o

> A2
X; = Xi + Ni! with NiNN(O, 1) i.i.d.
measurements x; are obtained by summing noise to measurands X;

(¢]

(o]

pdf of Xi
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Actual measurements x; in
examples B1 and B2

4r 1 4

3~ ] 3

()
2} 12 2

(0]
>
3 [
> >
g 1 e 1
(0] [J]
2 2 }
S ©
@ 0 1 o
£ 2 0
1 - A
_2 —~ - 2+
_3 C r r r r _3 r r r r
0 500 1000 1500 2000 2500 0 500 1000 1500 2000
measuremen t # measurement #

» In B1, x; = E[X;] = 1 (different x; can be used)
» In B2, x; assume different («randomy») values

2500

16
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Bl - NPLUnc solutlon and actual Y

» Actual experiment: Y = 2.0541
al- measurements i
g =r - » The GUM?2 interval has LRSR =
- p =95%
] » The GUM2 (bayesian) pdf is also
= a frequency pdf
Probab|l|ty distribution for the output quantlty
10‘GUFSONUOH GUM2/51SNUUOH y Results from GUM uncertainty framework:
9- i ] 1y = 1
i 1 = D.04
8- i actual Y ;:y: 0 o216 1.0724
1t ¥ = = r Q78
R K )
. 7 ‘ i?
@ 6l- | I 1 REesults from a Monte Carlo method:
s / | v = 2.00015
g0 | u(y) = D.043088
g 4r 7 I(v) = 1.90417, 2.08711
o 3L |
MCH calculation has stabilized
o ] GUF is NOT validated against MCM
1 1 »» guadratic mean (X)
0 N Jﬁ hy ans =

r r 2.0541584423005921

17
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B2 - NPLUnc solution and actual Y

5¢

» Actual experiment: Y = 1!
» The GUM2 interval has LRSR = 0

» An interval with LRSR = 95% is easily
computed using a “frequentist”
approach: it is the confidence interval
[0.94; 1.17]

Eesults from GUM uncertainty framework:

1) = 2.05416
ul(y) = 0.0573293
I{y) = 1.94179, 2.l6e52

Eesults from a Monte Carlo method:

v = 3.05445
u(y) = 0.0639412

I(y) = 2.93006, 3.18169

MCM calculation has stabilized
GUOF i= HOT wvalidated against MCH

a - -
s measurements |
2 =2
é 1 “I
;
g o
a -
o -
=5 s00 1000 1500 2000 2500
measuremen t ##
Probability distribution for the output quantity
L T " — " "
7 i GUF solution  GUM2/S1 solution
! |
I |
6~ I | -
i |
! actual Y
5~ 1 ‘ ‘ N
1
2 | |
= )
[%2]
§ 4~ | :
© i
> | '
= 1
2 3 i A
Qo 1 ‘
o I
o i
of I \ ]
1
1
i
1- 1 N
1
1
1
- j N 4
01
[ L L r L r
1 1.5 2 25 3 35
Value

>» guadratic mean (X)
ans =
1

i 18
>
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C - Quantization

» X4, ..., Xy are totally unknown

» Information:

The same for C1 and C2
> x; = round(X;) (quantization with step Q = 1)

pdf of X;

xi—0.5 Xi

xi+0.5

19
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measurement value

Actual measurements x; in
examples C1 and C2

C

measurement value
(6] B w N ol o [l N w » (6]

r r r r I L L
0 500 1000 1500 2000 2500 500 1000 1500
measurement # measurement #

» In C1, the quantizer input is a “special’ signal
o [t spans uniformly an integer number of quantization step

o

» In C2, the quantizer input is a much more generic signal
> It has a span that satisfies Quantization Theorem I/ (bandlimited distribution)

(Widrow and Kollar, «Quantization noise», Cambridge University Press, 2008)

;
2000

2500

20
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C1- NPLUnc solution and actual Y

measurements » Actual experiment: Y = 2.058]1

| I » The GUM?2 interval has LRSR =
| —_ 0
N \m p=95%

measurement value
o]

= » The GUM2 (bayesian) pdf is also a
55 560 1000 1500 2600 2500 frequency pdf

measurement #

Probability distribution for the output quantity Results from GUM uncertainty framework:

T T T L3 T t H] Vi 1.5974
GUF solution GUMZ2/S1 solution 0.01622234

| = 1.9422, 2.0058

251

]
==
| ]

20

T

Probability density
H
ol
]
H;
I
\
e
4
[
<<
n

Results from a Monte Carlo method:
= 2.05735

= 0.0162797
2.02564, 2.08941

actual Y

MCM calculation has stabilized
GUF 1s NOT validated agalnst MCM
. >> quadratic mean (X)
ans =

h‘ 2.0581

}}|

[EEN
o
]
I
|

1.9 1.95 2 2.05 2.1 2.15 2.2

Value 21
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C2- NPLUNC sQIution and actual Y

T

measurements » Actual experiment: Y = 1.867

The GUM?2 interval has LRSR =0

|
_——= = m—
v v

An interval with LRSR = 95% is easily
computed using a “frequentist”
approach: it is the confidence interval

500 1000 1500 2000 2500 [ ] . 84 3 , ] . 9 0 6]

measurement #

measurement value
a A W N P O B N W » O

]

Probability distribution for the output quantity )
[ — — — : [ Eesults from GUM uncertainty framework:

251 i GUF solution GUM2/S1 solution 1y = 1.958
i / \ ] u(y) = 0.0161576
20 - | 1 4 I{y) = 1.92633, 1.98387
: | *
g 5l i actual Y H \ | ] | REesults from a Monte Carlo method:
%; ? H v = 2.04135
= | | I a(y) = 0.0162843
g 10- i \ 1 4 | T(y) = 2.00938, 2.07331
O i \ i
i MCM calculation has stabilized
> i | I | GUF is NOT validated against MCM
! / } L >> guadratic mean (X)
0 : E ] : : : ] : ans =
1.85 1.9 1.95 2 2.05 2.1 2.15 1.867475027358905 -

Value ]
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Consideratio

V

1/1/2009

2
=
o
=
)
=
=
o~

1/15/2009

23
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Simple interpretation of the examples

» Additive noise of known power p, (p, = Q%/12 for quantization)
» Measured signal of (measured) power p,
» Unknown signal of unknown power Py

» GUMZ2 estimates Py as

° Py =pyx +pn
» This is OK in the (rare) case of noise uncorrelated with
the output (examples Al, B1, C1)

» What usually happens is that noise is uncorrelated with
the input (examples A2, B2, C2)

° Px = Px +pn = Px = Py — Dn

24
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. . 1/N
Different measurement model: geometric mean Y = ([]L, X;) /

measurements _

» Actual experiment: Y = 1.998
.| W » The GUM2 interval has LRSR =0
P |
» HN . . .
- M » An interval with LRSR = 95% is

y easily computed usmﬂ a

g 55 “frequentist” approac

Probability distribution for the output quantity

o e - 7 1" T Results from GUM uncertainty framework:
- L A actual Y:,.,r = 1.97447
60/ / \‘ w u(y) = 0.00591626
i [ i I{y) = 1.96288, 1.98607
f 1 i
50 f a :
1
% - / \ H Ee=sylt=s from a Monte Carlo method:
[ — | 1 -
g 0 “‘ E v = 1.95197
£ “ / i uly) = 0.00594091
o) - — -
g i I{y) = 1.894028, 1.9&636
o i
20—~ | 1 - )
H HMCHM calculation has stabilized
1
10 H GUOF i= NOT walidated against MCH
n -
J‘_ﬁ h_’l K: *>» geometric mean (X)
! - |
0 L 1 ans
: : : L : : L L : i: 1.9898302305573880
1.9 191 1.92 193 194 195 1.96 197 1.98 1.99 2 |

Value

> |
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LRSR=0: is it a problem?

v

A good Bayesian does not require
LRSR =p

But a good Bayesian does not accept

LRSR =0

(remember the words of Berger; see

also J. M. Bernardo)

When LRSR = 0, the prior pdf must

be changed, in a problem-

dependent way («true» Bayesianism)

J. Statistics Planning and Inference (1997) vol. 65
Noninformative priors do not exist: A discussion

J. M. Bernardo

An important part of the discussion on methods for
deriving non-subjective priors is based on the
analysis of the statistical properties of the posteriors
they produce in specific, “test-case” examples

Table 2 Available knowledge of a quantity X, PDF for X on the basis of that knowledge, best
estimate r of X and associated standard uncertainty wir) (T3 IR and [0

Available knowladge PDF and illustration (not to scala) r and uir) Subclanse

n indication values having av- Scaled and shifted ¢ r=§, Bz
erage £ and standard deviation ¢, (£, 5% /n) . 1y,

# drawn independently from WT)= l:ﬁll e

Ganssian PDF with unknown

Fenactation and variance

Yes, it is a problem

s A
RELIGION '

THIS WMOLE Boox 'S PUL
OF PRIORS THAT Wk TO

BE ACCEPTED ON FAITM Y

ints having average § Gamma: =g+ ‘F ExH
n independently from Ging+1/2,1/n) wir) = (L 1 12
on distribution with F =t =)
own expectation
r and upper limits a, b Rectangular: T =2k EX3
Ria,b) ufx) = %—'-':
estimate r and standard  Gaussian: =,
tainty wiz) Niz, u'(z]) u(r)
o \‘ estimate r, expanded Scaled and shifted : T, e |
tainty Uy, coverage Lo (2,0, wir) = (v .l'--'-‘c
rky and effective degrees 2 _ .f-.'_.,'-lﬂ (r) = | var—3)
edom veg (> 2) obtained \% )
iplying JOGM 1002008
oidal eycling betwean Are sine (U-shaped): | r =24 b 30
ia. b Uja, b) uir) = "T,gl_
sstimate r of non-negative  Exponential: T EX3

ity Ex(1/1) u;:r:l =z 26
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Important note

» If the dice are not fair, and
we get LRSR = 0, the
problem is not in the
methodology

» But if the dice are fair and
we get LRSR = 0, the
problem is in the
methodology

27
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Frequentist properties of pdf in
GUM2: examples A, B

Examples A (dice), B (noise) show that:

»  When measurands X; are obtained summing random numbers E; to fixed measurements x;
= the Bayesian pdf of Y is good (btw it is also the frequency pdf of Y in repeated experiments)
» When measurements x; are obtained summing random numbers E; to fixed measurands X;

= the Bayesian pdf of Y is bad

measurement measurand measurand measurement
X Xi Xi X
ar 4 ) X
N N
Ei Ei
GUM2 OK © GUM2 KO ®

28
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Frequentist properties of pdf in
GUM2 : examples C

In examples C1, C2 we do not have a «<summation» mechanism

» We have different statistics for the quantization error
E; = round(x;) — X; = x; — X;

» E;, x; are independent = the Bayesian pdf of Y is good (C1, «special»
input) and is also the frequency pdf of Y in repeated experiments

» E;, x; are not independent = the Bayesian pdf of Y is bad (C1, «generic»
input: E;, X; independent)

amplitude

digital
i representation| ~,
T 1 T ] T u T T
time
1 |

29
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Conclusions

30
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Possible immediate action

» Add to GUMZ2/S1 a statement

«»

Long-run success rate of coverage
intervals in repeated measurements

The long-run success rate of a coverage
interval in repeated measurements do no
coincide, in general, with the coverage
probability p.

AWARNING |

Read & understand
operators manual before
using this machine.

Failure to follow operating
instructions could result
in death or serious injury.

(LRSR may become arbitrarily low. Details
may be added...)

31



BIPM Workshop on Measurement Uncertainty - 15-16 June 2015

Possible long-term actions

» Guidance to implement «true»
Bayesian analysis
- JCGM 108

» Guidance to assess LRSR of
intervals / determine intervals
with given LRSR

0,20
> |t can be done easily by Monte
Carlo simulations )
> LRSR can be assessed for any . £
interval, however obtained (also /A
frequentist methods) 010 A
> The statistics of E; = x; — X; is of g 0N
essential importance here . FEECRE A
I LS %
;-:.- g o Y
Q.00 == -—”'"i: -. : . T mb"-“-—-
5 10 15 210
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One final suggestion

» Success rate is of practical
interest, and intervals with

assured LRSR have a market Opportunities
straight ahead

-t

» People use frequentist,
Bayesian, and mixed
approaches - all sort of tools

» Providing guidance to
everybody is a lot of work,
but it can be worth it

33
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