
1

When the model 
doesn't cover reality

Stefaan Pommé

Joint Research Centre

Institute for Reference Materials and Measurement

Uncertainties workshop
BIPM,  15 June 2015



The prime objective of JRC -IRMM is…

… to build confidence in measurements
and ensure their comparability.

• Method development and validation
• Validated data
• Reference measurements
• Production of reference materials
• Inter-laboratory comparisons
• Training, knowledge transfer

‘Once measured, accepted everywhere.'.



Example :

Proficiency test results

Measurement of Radioactivity
137Cs in bilberry
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‘Normal’ distribution of data 

-4 -2 0 2 4
3

2

1

0

ζζζζ=+1ζζζζ=
-1

ζζζζ=+3
ζζζζ=-3

ζζζζ=+2
ζζζζ=

-2

 

u 
/ M

A
D

D/MAD



Cs-137 in bilberry

Accred Qual Assur 12, 623
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Do NMIs control uncertainty better?

CCRI(II) Key Comparison data

Activity concentration in a solution



Pomplot of 1 key comparison

12



Pomplot of all KCs in KCDB
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Appl. Rad. Isot. 64, 1158



'Fingerprint' of laboratories
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KCDB CCRI(II) data:
D proportional to sqrt(u)
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PomPlot of data with sqrt(u)
-> looks more 'normal'
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IC uncertainty evaluation
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Result from extrapolation
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Analysis of 1 data set
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Uncertainty budgets 
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spread on uncertainties
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Known - Unknown

• "[…] as we know, there are known knowns; there 
are things we know we know.

• We also know there are known unknowns; that is 
to say we know there are some things we do not 
know.

• But there are also unknown unknowns – the ones 
we don't know we don't know." 

Donald Rumsfeld
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Exponential decay

• Known known

• radioactive decay is a random process

• => activity decreases exponentially with time

• Known unknown

• Poisson process with statistical variations

• Unknown unknown

• Variation in count rate due to instability of 
measurement equipment
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Example: decay of 55Fe

fitted decay curve

measured activity

T1/2=1005.0 d ± 1.4d
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Half-life and uncertainty 
from least-squares fit
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=> fit underestimates uncertainty!



Residuals 55Fe: blow up
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uncertainty only including counting statistics
=> does not fully account for spread of data

Appl. Rad. Isot. 64, 1412
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Autocorrelated data 
=> not stochastic

autocorrelation plot
of the residuals
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Residuals Cs-134

NIM A390 (1997) 267-273

MEDIUM FREQUENCY instability
=> fit underestimates uncertainty
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Consequences

• Due to lack of statistical control, speculations
arose that "half-lives are not constant": depend 
on solar distance, temperature, chemical state, 
etc.

• => proper uncertainty evaluations needed to 
refute these claims
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Other examples

• Incorrect decay data (e.g. simplified modelling 
of beta spectra) leads to erroneous detection 
efficiency calculations

• Use of computer codes (e.g. transport 
simulations) alienates metrologist from the 
underlying physics/chemistry

• Spectral fitting underestimates uncertainty due 
to imperfection of analytical model to exactly 
reproduce reality
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Metrologia 52 (June 2015!)
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• Detailed uncertainty analysis for each technique 
underpinning SI-unit becquerel



Power-Moderated Mean
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S is a typical uncertainty per datum (max arithmetic or M-P unc)
0<α<2 = power reflects level of trust in uncertainties 

Power Moderated Mean - PMM
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PMM gives realistic uncertainty 
for consistent data set

35

13500

13550

13600

13650

13700

13750

13800

13850

13900

13950

NIST NPL PMM AM

eq
ui

va
le

nt
 a

ct
iv

ity
 / 

kB
q

Eu-154



PMM is more efficient then AM
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PMM close to arithmetic mean 
for discrepant data
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Efficiency for discrepant data

arithmetic < , M-P < D-L < weighted
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Robustness of uncertainty

weighted << D-L < M -P < < arithmetic
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distribution around true value
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PMM (α = 2-3/N)
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Obtaining statistical control

Technical scrutiny: find unknown unknowns

Redundancy of methods: reveal systematic errors

Uncertainty monograph: pass on knowledge
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