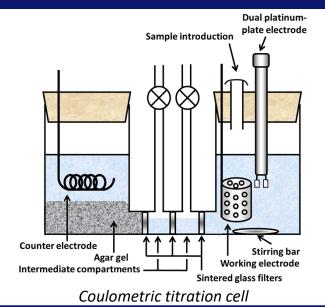
Toshiaki Asakai / National Metrology Institute of Japan (NMIJ)

Introduction

There are few reports published on RMs of NH₄Cl in which NH₄⁺ are accurately determined, though NH₄Cl is widely used as a standard of NH₄+.


In this study, NH_A^+ were assayed by coulometric titration with electrogenerated hypobromite ions.

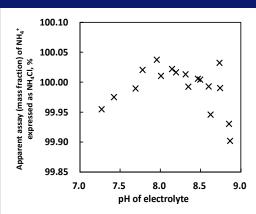
NH₂SO₃H is being used not only as a standard of acids to standardize bases such as NaOH but also as a standard of nitrogen in Kjeldahl method. The nitrogen content in high-purity NH₂SO₃H is also measurable as NH₄⁺ by the coulometric titration after the acid decomposition of NH₂SO₃H.

The comprehensive evaluation of the uncertainties for NH₄Cl and NH₂SO₃H assays as nitrogen was carried out, resulting in the first establishment of CRMs for nitrogen contents with SI traceability.

NH₄CI NH₂SO₃H

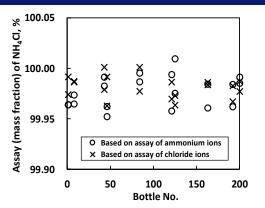
Coulometric titration

Coulometric titration is one of the primary methods of measurement, and provides the link to the SI by measuring the electric charge (electrical current and time) in an electrochemical reaction based on Faraday's Laws of electrolysis.

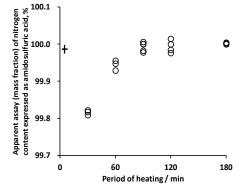

Electrogenerated hypobromite ions are traceable to the SI, and oxidize ammonium ions to nitrogen gas. NH₄⁺ in NH₄Cl are directly determined by the coulometric titration. For NH₂SO₃H, NH₄⁺ are obtained by hydrolyzing NH₂SO₃H in an acidic medium.

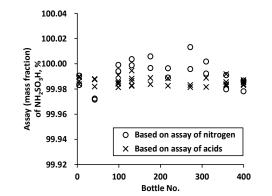
$$Br^{-} + 2OH^{-} \rightarrow BrO^{-} + H_{2}O + 2e^{-}$$

 $3BrO^{-} + 2NH_{4}^{+} \rightarrow N_{2} + 3Br^{-} + 2H^{+} + 3H_{2}O$
 $NH_{2}SO_{3}^{-} + H_{2}O \rightarrow NH_{4}^{+} + SO_{4}^{2-}$


Electric charge (C) Nitrogen assay = Sample mass (kg)

 \times Faraday const. (C/mol) \times n Molar mass (kg/mol)


Results


Dependency of NH₄Cl assays on pH. The assays had a maximum around pH 8.0 to pH 8.5. The lower assays were understood as a result of the evaporation of NH₃ at higher pH values and the insufficient BrO electrogeneration (e.g., Br₂ generation) at lower pH values.

Homogeneity test for NH₄Cl. Ten bottles were chosen from 200 bottles for the homogeneity test. Cl- were determined by gravimetric titration with AgNO₃ standardized based on NMIJ CRM NaCl through precipitation reaction.

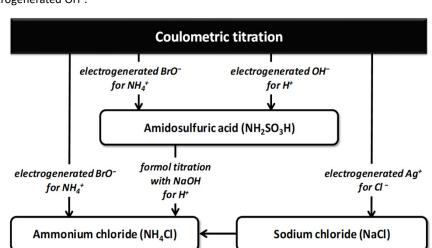
Decomposition of NH₂SO₃H with H₂SO₄ by heating. NH₂SO₃H seemed to be completely decomposed more than 90 min by heating; the assays were close to 100 %. The bar on the left indicates the certified value (k = 2) of NH₂SO₃H as an acid determined by coulometric titration with electrogenerated OH-

Homogeneity test for NH₂SO₃H. Ten bottles were chosen from 400 bottles for the homogeneity test. Both NH₄⁺ and H⁺ were determined by coulometric titration.

Uncertainty budget for NH₄⁺ in NH₄Cl.

Uncertainty source	Relative standard uncertainty, %
Repeatability and homogeneity	0.017
Faraday constant	0.000 002 2
Standard resistor	0.000 65
Reference frequency	0.000 050
Voltmeter	0.000 29
Weighing and preparation	0.003 5
Molar mass	0.002 2
Current efficiency	0.004 9
Combined standard uncertainty, %	0.0182

NMIJ CRM 3011-a Ammonium chloride


Ammonium ions expressed as NH ₄ Cl	99.977 % ± 0.065 % (<i>k</i> = 2)
Chloride ions expressed as NH ₄ Cl	99.981 % ± 0.077 % (k = 2)

NMIJ CRM 3004-a Amidosulfuric acid

Acids expressed as NH ₂ SO ₃ H	99.986 % \pm 0.010 % (k = 2)
Nitrogen expressed as NH ₂ SO ₃ H	99.992 % ± 0.031 % (<i>k</i> = 2)

References

[1] T. Asakai et al., "Certified reference material for ammonium ions in high-purity ammonium chloride: Influence of pH on coulometric titration of ammonium ions with electrogenerated hypobromite", Microchem. J., 114 (2014) 203-209. [2] T. Asakai, "Nitrogen content of amidosulfuric acid assayed by coulometric titration with electrogenerated hypobromite ions: establishment of SI traceability of nitrogen involving amidosulfuric acid, ammonium chloride and sodium chloride",

gravimetric titration with AgNO₃

The relationship among NH₂SO₃H, NH₄Cl and NaCl was clarified through different reactions, neutralization, redox, and precipitation reactions. The assays of these materials were all consistent within their uncertainties; consequently, the accuracy of measurement methods presented was ascertained. Providing with the CRM with the SI traceable nitrogen content enables to obtain reliable analytical data in several applications such as Kjeldahl method.