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Because of	the	1/Nx quantum	limits in	optical measurements (x=0,5	for	standard	quantum	noise	and	1	for	Heisenberg	limited measurements),	the	best	strategy for	
maximum	sensitivity is to	use	states	of	light	with very high	photon	number N.	In	this respect,	multimode	Gaussian states	of	light,	encompassing intense	coherent
states,	squeezed states	and	EPR	entangled states,	are	the	best	practical choice.	This	strategy has	indeed been	successfully implemented to	reduce the	quantum	noise	
floor in	the	gravitational wave interferometers which use	ultra-intense	lasers	and	vacuum	squeezed state.	We have	generalized this approach to	any parameter
estimation	by	optical means,	and	found the	expression	of	the	quantum	Cramer	Rao	limit when one	uses	multimode	non-classical Gaussian states,	with the	possibility
of	optimizing not	only the	multimode	Gaussian quantum	state,	but	also the	shape of	the	modes	in	which the	state	“lives”.	

We have	identified in	particular a	“noise	mode”,	the	quantum	fluctuations	of	which are	responsible for	the	noise	in	the	estimation,	and	given techniques	enabling us	to	
reach the	quantum	Cramer-Rao	limit.	We have	implemented this approach and	improved parameter estimation	beyond the	standard	quantum	noise	in	the	case	of	
measurements of	frequency shifts	and	beam displacements.
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our choice of quantum states carrying the information about the parameter p : the multimode Gaussian pure states

includes a wide class of non-classical states - coherent state
- multimode squeezed state
- Einstein Podolsky Rosen entangled state
- choice left also for number and spatio-temporal shape of modes
Fock states, NOON states … are not included, as they are so far produced only with low N values

Ultimate quantum limit (Quantum Cramer Rao limit) for the measurement of p with Gaussian states:

p-sensitivity

« shot noise »

Quantum fluctuations in a single mode, the detection mode

value independent of the fluctuations of all other modes
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- Put maximum power in coherent state 

Conclusions for the experimentalist

- Use squeezed light in only one mode, but in the right one! (the detection mode)

To	get the	lowest possible	Quantum	Limit

- Do not use an entangled state (at the detection stage)

Application: interferometric measurement of phase
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Ê2
in

+

-

Application: measurement of transverse displacement

One	retrieves Caves	configuration:
-an	intense	coherent state	on	one	input	port
- a	vacuum	squeezed state	on	the	other.

implemented now on	gravitational interferometers
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noise mode:
TEM10 in squeezed 
vacuum state

Beyond the standard quantum noise
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also implemented in	ranging and	measurement of	frequency shifts
can also improve clock synchronization
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in	mW	beams photon	number N	can be as	large	as	1015
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