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There are 1013 cells in a human (human cells).

There are 1014 microbial cells in a human.

There are ~1010 carbon atoms in a human cell.

This is a 192 x 128 grid at 18 droplets per cm.
It contains 7212 droplet transfers of 2.5 nl/droplet.
Each droplet contained about 1000 cells. Cells were grown for ~24h.
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The Subway 
(in Paris, The 
Metro) 
Diagram

“Wait… there’s 
no stop for 
Biology?!?”
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JIMB focusing on Operational Mastery of Living Matter 

JIMB is focused on 
Operational Mastery of living 
matter at the cellular level.
• Organizing principle: 

“Measure, Model, Make”
• Through Genomics and 

Synthetic Biology
• measure everything inside 

the cell…

Not focusing on metrology of 
biomaterials properties, medical 
diagnostics, biotherapeutics, 
regenerative medicine, diagnostic 
imaging…



What’s different about metrology in biology?
Characterizing living matter requires 
measuring massively multiplexed 
measurands of heterogeneous systems 
with complex dynamics and 
interactions.

• A living cell is a dance of interacting 
chemical systems governed by 
biophysics.

• The cell is the atom of biology.

DNA
Genome

RNA
Transcriptome

Protein
Proteome



There was a revolution in measuring biology in 2006.
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Accurate Multiplex Polony
Sequencing of an Evolved

Bacterial Genome
Jay Shendure,1*. Gregory J. Porreca,1*. Nikos B. Reppas,1

Xiaoxia Lin,1 John P. McCutcheon,2,3 Abraham M. Rosenbaum,1

Michael D. Wang,1 Kun Zhang,1 Robi D. Mitra,2 George M. Church1

We describe a DNA sequencing technology in which a commonly available,
inexpensive epifluorescence microscope is converted to rapid nonelectrophoretic
DNA sequencing automation. We apply this technology to resequence an evolved
strain of Escherichia coli at less than one error per million consensus bases. A
cell-free, mate-paired library provided single DNA molecules that were amplified
in parallel to 1-micrometer beads by emulsion polymerase chain reaction.
Millions of beads were immobilized in a polyacrylamide gel and subjected to
automated cycles of sequencing by ligation and four-color imaging. Cost per
base was roughly one-ninth as much as that of conventional sequencing. Our
protocols were implemented with off-the-shelf instrumentation and reagents.

The ubiquity and longevity of Sanger sequenc-
ing (1) are remarkable. Analogous to semicon-
ductors, measures of cost and production have
followed exponential trends (2). High-throughput
centers generate data at a speed of 20 raw bases
per instrument-second and a cost of $1.00 per
raw kilobase. Nonetheless, optimizations of elec-

trophoretic methods may be reaching their lim-
its. Meeting the challenge of the $1000 human
genome requires a paradigm shift in our under-
lying approach to the DNA polymer (3).

Cyclic array methods, an attractive class
of alternative technologies, are Bmultiplex[ in
that they leverage a single reagent volume to
enzymatically manipulate thousands to mil-
lions of immobilized DNA features in paral-
lel. Reads are built up over successive cycles
of imaging-based data acquisition. Beyond
this common thread, these technologies di-
versify in a panoply of ways: single-molecule
versus multimolecule features, ordered versus
disordered arrays, sequencing biochemistry,

scale of miniaturization, etc. (3). Innovative
proof-of-concept experiments have been re-
ported, but are generally limited in terms of
throughput, feature density, and library com-
plexity (4–9). A range of practical and tech-
nical hurdles separate these test systems from
competing with conventional sequencing on
genomic-scale applications.

Our approach to developing a more mature
alternative was guided by several consider-
ations. (i) An integrated sequencing pipeline
includes library construction, template ampli-
fication, and DNA sequencing. We therefore
sought compatible protocols that multiplexed
each step to an equivalent order of magnitude.
(ii) As more genomes are sequenced de novo,
demand will likely shift toward genomic rese-
quencing; e.g., to look at variation between in-
dividuals. For resequencing, consensus accuracy
increases in importance relative to read length
because a read need only be long enough to
correctly position it on a reference genome.
However, a consensus accuracy of 99.99%, i.e.,
the Bermuda standard, would still result in hun-
dreds of errors in a microbial genome and hun-
dreds of thousands of errors in a mammalian
genome. To avoid unacceptable numbers of
false-positives, a consensus error rate of 1 !
10j6 is a more reasonable standard for which
to aim. (iii) We sought to develop sequencing
chemistries compatible with conventional epi-
fluorescence imaging. Diffraction-limited optics
with charge-coupled device detection achieves
an excellent balance because it not only pro-
vides submicrometer resolution and high sen-
sitivity for rapid data acquisition, but is also
inexpensive and easily implemented.

1Department of Genetics, Harvard Medical School,
Boston, MA 02115, USA. 2Department of Genetics,
3Howard Hughes Medical Institute, Washington Uni-
versity, St. Louis, MO 63110, USA.

*These authors contributed equally to this work.
.To whom correspondence should be addressed.
E-mail: shendure@alumni.princeton.edu (J.S.),
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We selected a derivative of E. coli MG1655,
engineered for deficiencies in tryptophan bio-
synthesis and evolved for È200 generations
under conditions of syntrophic symbiosis via
coculture with a tyrosine biosynthesis–deficient
strain (23). Specific phenotypes emerged during
the laboratory evolution, leading to the expec-
tation of genetic changes in addition to inten-
tionally engineered differences.

An in vitro mate-paired library was con-
structed from genomic DNA derived from a
single clone of the evolved Trpv

j strain. To
sequence this library, we performed successive
instrument runs with progressively higher bead
densities. In an experiment ultimately yielding
30.1 Mb of sequence, 26 cycles of sequencing
were performed on an array containing ampli-
fied, enriched ePCR beads. At each cycle, data
were acquired for four wavelengths at 20!
optical magnification by rastering across each
of 516 fields of view on the array (Fig. 1D). A
detailed description of the structure of each
sequencing cycle is provided in Note S6. In
total, 54,696 images (14 bit, 1000 !1000)
were collected. Cycle times averaged 135 min
per base (È90 min for reactions and È45 min
for imaging), for a total of È60 hours per
instrument run.

Image processing and base calling algo-
rithms are detailed in Note S7. In brief, all
images taken at a given raster position were
aligned. Two additional image sets were ac-
quired: brightfield images to robustly identify
bead locations (Fig. 2A) and fluorescent primer
images to identify amplified beads. Our algo-
rithms detected 14 million objects within the
set of brightfield images. On the basis of size,
fluorescence, and overall signal coherence over
the course of the sequencing run, we deter-
mined 1.6 million to be well-amplified, clonal
beads (È11%). For each cycle, mean inten-
sities for amplified beads were extracted and
normalized to a 4D unit vector (Fig. 2, B and
C). The Euclidean distance of the unit vector
for a given raw base call to the median cen-
troid of the nearest cluster serves as a natural
metric of the quality of that call.

The reference genome consisted of the E.
coliMG1655 genome (GenBank accession code
U00096.2) appended with sequences corre-
sponding to the cat gene and the lambda Red
prophage, which had been engineered into the
sequenced strain to replace the trp and bio
operons, respectively. To systematically assess
our power to detect single-base substitutions,
we introduced a set of 100 random single-
nucleotide changes into the reference sequence
at randomly selected positions (Bmock SNCs[)
(Table 1).

An algorithm was developed to place the
discontinuous reads onto the reference sequence
(Note S7). The matching criteria required the
paired tags to be appropriately oriented and
located within 700 to 1200 bp of one anoth-
er, allowing for substitutions if exact matches

were not found. Of the 1.6 million reads, we
were able to confidently place È1.16 million
(È72%) to specific locations on the reference
genome, resulting in È30.1 million bases of
resequencing data at a median raw accuracy
of 99.7%. At this stage of the analysis, the
data were combined with reads from a pre-
vious instrument run that contributed an addi-
tionalÈ18.1 million bases of equivalent quality
(Fig. 2D). In this latter experiment, È1.8 mil-
lion reads were generated from È7.6 million
objects (È24%), of which È0.8 million were
confidently placed (È40%).

High-confidence consensus calls were de-
termined for 70.5% of the E. coli genome for
which sufficient and consistent coverage was
available (3,289,465 bp; generally positions
with È4! or greater coverage). There were
six positions within this set that did not agree
with the reference sequence, and thus were
targeted for confirmation by Sanger sequenc-
ing. All six were correct, although in one case
we detected the edge of an 8-bp deletion
rather than a substitution (Table 2). Three of
these six mutations represent heterogeneities
in lambda Red or MG1655, or errors in the

Fig. 2. Raw data acquisition and base calling. (A) Brightfield images (area shown corresponds to
0.01% of the total gel area) facilitate object segmentation by simple thresholding, allowing resolution
even when multiple 1-mm beads are in contact. (B) False-color depiction of four fluorescence images
acquired at this location from a single ligation cycle. A, gold; G, red; C, light blue; T, purple. (C) Four-
color data from each cycle can be visualized in tetrahedral space, where each point represents a single
bead, and the four clusters correspond to the four possible base calls. Shown is the sequencing data
from position (j1) of the proximal tag of a complex E. coli–derived library. (D) Cumulative distribu-
tion of raw error as a function of rank-ordered quality for two independent experiments (red tri-
angles, 18.1-Mb run; blue squares, 30.1-Mb run). The x axis indicates percentile bins of beads, sorted
on the basis of a confidence metric. The y axis (logarithmic scale) indicates the raw base-calling
accuracy of each cumulative bin. Equivalent Phred scores are Q20 0 1 ! 10j2, Q30 0 1 ! 10j3

{Phred score 0 j10[log10(raw per-base error)]}. Cumulative distribution of raw error with sequencing
by ligation cycles considered independently is shown in fig. S8.

Table 1. Genome Coverage and SNC prediction. Bases with consistent consensus coverage were used to
make mutation predictions. To assess power, the outcome of consensus calling for the mock SNC
positions with various levels of coverage was determined. Data from two independent sets of mock
SNCs are shown. ‘‘86 of 87,’’ for example, means that 87 of the 100 mock SNCs were present in the
sequence that was covered with 1! or more reads, and 86 of these were called correctly.

Coverage Percent of genome Correctly called mock substitutions

1! or greater 91.4% 86 of 87
88 of 90

2! or greater 83.3% 78 of 78
75 of 76

3! or greater 74.9% 67 of 67
68 of 68

4! or greater 66.9% 58 of 58
62 of 62
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Genome Regulation Transcriptome Reg. Proteome Reg. Metabolome

Organelle

Cell
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Organism

System

…

You can scan the landscape to frame a roadmap.
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It’s more granular than this –
there’s work to do to roadmap our measurement capabilities.



Community is reaching out for Standards.
• Protocols
• Data Representation
• Data Exchange
• Requirements 

/Specifications
• Calibration Materials
• Validation/Benchmark 

Materials
• Validation/Benchmark 

Data

from https://www.encodeproject.org
based on an image from Darryl Leja (NHGRI), Ian Dunham (EBI), Michael Pazin (NHGRI)

https://www.encodeproject.org/


This 2012 Nature
Comment triggered 
recognition of a 
“Reproducibility Crisis” 
in biomedical 
science…



Taking a cue from Chemical Metrology… 
Reference Materials can work in Biology
• Both RMs depicted 

were created in 
consortium 
partnerships
• Both are widely 

adopted
• Both address needs in 

Genome-Scale 
Measurements 

Transcriptome Spike-ins
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 C
on

tro
ls

Human Genomes
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Quantitative
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Use the ERCC Reference Material plasmid library to 
make controls

SRM 2374 Plasmid 
DNA Library

in vitro
transcription

RNA transcripts

Pooling

Pools with known
abundance ratios

…



Design of Ambion ERCC Spike-In Ratio Mixtures

23 Controls per 

Subpool
Design abundance 

spans 220 range 

within each Subpool



erccdashboard gives standard measures of 
technical performance

• Technology-independent 
ratio performance 
measures
• Shows differences in 

performance across
• Experiments
• Laboratories
•Measurement processes

Munro, S. A. et al. Nat. 
Commun. 5:5125 
doi: 10.1038/ncomms6125 
(2014).



Evaluate Dynamic
Range Performance

Evaluate Ratio
Performance –

“MA Plot”

Evaluate Diagnostic
Performance –
“ROC Curve”

Establish Lower
Limit of Detection for
Differential Expression 
Detection – “LODR”



Good Lab



Bad Lab



Genome in a Bottle Consortium is making and 
disseminating human genome reference materials.

Sample

gDNA isolation

Library Prep

Sequencing

Alignment/Mapping

Variant Calling

Confidence Estimates

Downstream Analysis

• create shared reference samples
• validation materials to evaluate, 

demonstrate, refine, optimize 
technologies
• red light/yellow light…

• developed benchmarking dashboard 
with stakeholders @ GA4GH
• meeting needs for technology 

developers, regulators, clinical 
research teams
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GIAB “Open Science” Virtuous Cycle

Users 
analyze 

GIAB 
Samples

Benchmark 
vs. GIAB 

data

Critical 
feedback 
to GIAB

Integrate 
new 

methods

New 
benchmark 

data

Method 

development, 

optimization, and 

demonstration

Part of assay 

validation

GIAB/NIST 

expands to more 

difficult regions

Reference data
• phased variant calls across 7 

human genomes
• ~ 4M small variants 
• ~20,000 larger “structural 

variants”

All data available immediately 
without embargo
• consistent with

transparency and metrology



Evolving with Technologies: Single-molecule 
nanopore sequencer



We’re Accumulating 
Nanopore Coverage N50 and Coverage 

over time
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Important characteristics of benchmark calls
What does “reference standard” mean?

Accurate 
• high-confidence variants, 

genotypes, haplotypes, and 
regions
• compared to the benchmark, the 

majority of differences (FPs/FNs) 
are errors in the method

Representative examples 
• different types of variants in 

different genome contexts

Comprehensive characterization
• many examples of different variant 

types/genome contexts
• eventually, diploid assembly 

benchmarking



Important characteristics of benchmark calls
What does “reference standard” mean?

Accurate 
• high-confidence variants, 

genotypes, haplotypes, and 
regions
• compared to the benchmark, the 

majority of differences (FPs/FNs) 
are errors in the method

Representative examples 
• different types of variants in 

different genome contexts

Comprehensive characterization
• many examples of different variant 

types/genome contexts
• eventually, diploid assembly 

benchmarkingEstablishing shared references, 

analytical approaches, 

performance metrics, and best 

practices for nominal properties 

is essential biometrology



Single-cells – the atoms of biology! 
Single-cell genomics is being widely adopted.

• “Quantum” shift from 
measuring bulk populations of 
heterogeneous cells
• Innovation in ”Wet” lab 
• tissue disaggregation
• including spatial location
• single-cell processing

• Innovation in ”Dry” lab
• data management
• meaningful analysis
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Building a human cell atlas with single-cell RNA-Seq
	

	 18	

• Multiple normal live tissue samples from the same organ (e.g., entire length of the gastrointestinal 
tract and its secondary lymphoid organs).  

• Multiple normal live samples from several organs and anatomical locations from the same donor. 
• Normal live tissue that must be processed very rapidly and within seconds of interruption of the 

blood supply (e.g., oxygenated myocardium).  
CBTM is already providing tissue for pilot projects to perform tissue dissociation and scRNA-Seq 
and is planning a CBTM-HCA collaboration for up to 3,000 specimens per donor from 5 to 10 
deceased donors.  
Feasibility Case Study 2: The GTEx project collection network  

GTEx is a U.S. NIH Common Fund project initiated in 2010 to determine how genetic variation 
affects gene expression across 44 normal human tissues. To support this effort, it developed a 
tissue-collection platform, spanning multiple organ procurement sites, that meets the ethical, 
scientific, informatic, and operational challenges of large-scale, rapid, viable postmortem 
biospecimen collection. To date, GTEx has collected ~30,000 tissue specimens from 960 donors, 
across 53 distinct tissue sites (median of ~26 tissues per donor), from both transplant organ 
donors and rapid-autopsies. A small portion of the archived samples have been flash frozen and 
can be profiled by using single-nucleus RNA-Seq2-4. Unfortunately, most of the samples were not 
archived for such purposes, and the original project does not specify consent that data would be 
shared and released openly, so previously collected samples cannot be used for the open-access 
HCA.  

Nevertheless, the GTEx collection network has demonstrated that it can fulfill all of the aims and 
objectives of the HCA for tissue acquisition from postmortem donors, including open access. 

• It conducted a successful pilot project to enroll four donors who consented to full open-
access sharing of research results (performed together with the ENCODE 4 consortium).  

• All of the protocols and standard operating procedures developed for the GTEx 
collection network have been made publicly available and remain in place.  

• All of the aims and objectives outlined above were met by the GTEx collections.  
• Although GTEx tissues were not specifically collected for single-cell analysis, the organ-

procurement sites involved have considerable experience with the collection and 

Figure 5. Retrospective samples from GTEx can be successfully profiled using single-nucleus RNA-
Seq. (A) Bulk gene expression profiles from all GTEx tissues. Hippocampus and frontal cortex sample clusters, from 
which samples in (B) are obtained, are circled. (B) Single nucleus RNA-Seq (by DroNc-Seq) of hippocampus and 
frontal cortex samples from the GTEx collection. tSNE plots are colored by k-NN graph clustering and labeled post 
hoc by cell type. (C) Each cluster is supported by multiple individuals (from relevant tissue). 
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What could we do with iPS
Reference Material Sets?
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Develop reference sets
from a single individual that 
represent a “body map” of 
functional ‘omes
• use for model

development and 
validation

• use as substrate for 
technology development

• benchmark sets for biology



Essential genes of 
unknown function

Unknown functions 
that are essential

“what is naturally alive 
I do not understand” 
     — D. Endy

“what I cannot create 
I do not understand”
       — R. Feynman
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Frontiers of Metrology in Biology? What if…

• NMIs establish biometrology
• coupled to emerging needs 

• We figure out how to establish 
metrics and comparability for 
results from complex algorithms
• bioinformatics is part of the 

measurement process
• this isn’t new per se, but the 

degree of complexity is significant

• We develop more metrology of 
“nominal properties” 
• is traceability a useful concept?
• measurement uncertainty? 
• are there analogues to yield 

compatability/comparability?

• We consider metrology of 
“Completeness” of 
Knowledgebases…



The Joint Initiative for Metrology in Biology 
was built to work in this space.
• Collaborative home for 

measurement science and 
standards for ‘omics and 
synthetic biology
• NIST, Stanford University, and 

private sector
• operated by SLAC

• Watch for series of workshops to 
scope measurement science, 
measurement tool, and 
standards development
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