Optical Atomic Clocks – Opening New Perspectives on the Quantum World

Jun Ye, JILA, NIST & University of Colorado 26th CGPM Open Session, November 16 2018

Ultra-coherence

Quantum sensing

New physics on table top

Many-body dynamics

04:29:22.80042298 333 M

National Institute of Standards and Technology U.S. Department of Commerce

7 SI Base Units

133**C** N_A S e Α mol Κ cd kg , *K*_{cd}

Almost all units, base or derived, can be traced to time

- Fundamental laws & constants are our units
- "For all times, For all people."

Probes for Fundamental Physics

Time Scales

Quantum pendulum period: 10⁻¹⁵ s 0.000 000 000 000 001 second

Sr atoms:

- ${}^{1}S_{0} \leftrightarrow {}^{3}P_{0}$ (160 s)
- $Q \simeq 10^{17}$

The geometric mean ~30 s

Life of the Universe: 15 billion years (10¹⁸ s) 1,000,000,000,000,000,000 seconds

Quantum Certainty and Uncertainty

The Strength of MANY – when you are certain

Quantum Phase Noise of Atoms

Quantization of Motion & Interaction (Quantum Certainty) \sqrt{N}

Classical Phase Noise of Probe Laser

Laser is the Central Ruler of Time & Space

Cooling Atoms with Light Chu, Cohen-Tannoudji, Phillips

Holding Atoms in a Magic Light Bowl

Ashkin, ...

Quantizing the Doppler Effect

Kolkowitz et al., Nature 542, 66 (2017).

Quantum State Control

Haroche, Wineland

Ludlow et al., Rev. Mod. Phys. 87, 647 (2015).

- Doppler shift = 0 (motion quantized)
- Precision improvement by $N^{1/2}$

JILA Sr Clock II : 2.1×10^{-18} Nicholson *et al.*, Nature Comm. **6** (2015).

Atomic Clock: Sensors of Space-time

Poli et al. La rivista del Nuovo Cimento, **36**, 555 (2013).

along x & y

3D Fermi Gas Clock

Quantum gases: Cornell, Ketterle, Wieman; Jin

A Fermi Gas Mott Insulator Clock

Goban *et al.*, Nature **563**, 369 – 373 (2018).

Long Atom-Light Coherence

S. Campbell et al., Science 358, 90 (2017).

Atom-Light coherence: 10 sQuality factor: 8×10^{15}

Limit: photon scattering ; need shallow lattices

A Fermi Band/Mott Insulator Clock

Kolkowitz et al., Nature 542, 66 (2017); Bromley et al., Nature Phys. 14, 399 (2018).

Clock under a Microscope

Marti et al., Phys Rev Lett 120, 103201 (2018).

Gravitational Potential & Atomic Coherence

Extreme spatial resolution & precision

Sr optical clock – a big playground

E. Marti (Stanford U) S. Bromley (U. Durham) W. Zhang (NIST) S. Campbell (UC Berkeley) S. Kolkowitz (U. Wisconsin) X. Zhang (Peking U.) T. Nicholson (NUS) M. Bishof (Argonne) B. Bloom (Atom Compute) M. Martin (Los Alamos) J. Williams (JPL/Caltech) M. Swallows (Honeywell) S. Blatt (MPQ, Garching)

A. Ludlow (NIST) G. Campbell (JQI, NIST) T. Zelevinsky (Columbia U.) Y. Lin (NIM) M. Boyd (AO Sense) J. Thomsen (U. Copenhagen) T. Zanon (Univ. Paris 6) S. Foreman (U. San Fran) X. Huang (WIPM) T. Ido (NICT Tokyo) X. Xu (ECNU) T. Loftus (Honeywell)

Current Sr Group

T. Bothwell A. Goban
D. Kedar R. Hutson
C. Kennedy C. Sanner
L. Sonderhouse

W. Milner E. Oelker J. Robinson

Collaboration: NIST Time & Frequency, PTB (Riehle, Sterr, Legero)

Theory: A. M. Rey, M. Safronova, P. Julienne, M. Lukin, P. Zoller, ...

Laser is the Central Ruler of Time & Space

Clock Meets Atomic Interactions

Martin *et al.*, Science **341**, 632 (2013). Zhang *et al.*, Science **345**, 1467 (2014).

National Institute of Standards and Technology U.S. Department of Commerce

Quantum sensing

Table-top search for new physics

Many-body dynamics

Atomic Clock: Sensors of Space-time

Poli et al. La rivista del Nuovo Cimento, 36, 555 (2013).

along x & y