

How can metrology support the digital economy?

- Providing trustworthy data

- Addressing the "reproducibility crisis"

- Supporting open data

- Adopting the FAIR principles

- Digitial formats for Metrology

- New initiatives by the CIPM

www.bipm.org

-

Trustworthy data?

6

<u>Trustworthy data?</u>

Example No 1 - The speed of light, c

Trustworthy data?

Trustworthy data?

11

Example No 3 - The gravitational constant , G

When can we be confident in data?

- > We can only be confident ...if we can fully trust it as the product of the independent, rigorous application of multiple, essentially different methods.
- Measurement data with these qualities are trustworthy and are a cornerstone of scientific consensus that enables advances in all areas of science and technology.
- ➤ The organized practice of measurement science includes principles and practices that if widely adopted should ensure that data are trustworthy.
- > "Lack of reproducibility is not necessarily bad news; it may herald new discoveries and signal scientific progress".

Reproducible research and decision making is underpinned by trustworthy data

To be published in Nature by: Martin J. T. Milton (BIPM) and Antonio Possolo (NIST)

data management and stewardship

Statement from the <u>G20 leaders</u> at the 2016 summit in Hangzhou

Data management and stewardship

Data and supplementary materials have sufficiently rich metadata and a unique and persistent identifier.

FINDABLE

Metadata and data are understandable to humans and machines. Data is deposited in a trusted repository.

ACCESSIBLE

Metadata use a formal, accessible, shared, and broadly applicable language for knowledge representation.

INTEROPERABLE

Data and collections have a clear usage licenses and provide accurate information on provenance.

REUSABLE

Applying the FAIR principles?

The (**Digital**) International System of Units (SI)

The (**Digital**) International System of Units (SI)

www.bipm.org

17

The (**Digital**) International System of Units (SI)

www.bipm.org

		-	
10 ²⁴	yotta	Υ	1 000 000 000 000 000 000 000 000
1021	zetta	Z	1 000 000 000 000 000 000 000
1018	сха	E	1 000 000 000 000 000 000
1015	peta	Р	1 000 000 000 000 000
1012	tera	Т	1 000 000 000 000
10°	giga	G	1 000 000 000
10°	mega	М	1 000 000
10 ³	kilo	k	1000
10 ²	hecto	h	100
10 ¹	deca	da	10
10-1	deci	d	0.1
10-2	centi	С	0.01
10-3	milli	m	0.001
10-4	micro	μ	0.000 601
100	nano	n	0.000 000 001
10-12	pico	р	0.000 000 000 001
10-15	femto	f	0.000 000 000 000 001
10-10	atto	a	0.000 000 000 000 000 001
10-21	zepto	z	0.000 000 000 000 000 000 000 001

10⁻²⁴ yocto y 0.000 000 000 000 000 000 000 001

From NIST -http://physics.nist.gov/cuu/Units/SIdiagram.html

CIPM initiatives to provide <u>Digital Formats for Metrology</u>

The CIPM has launched a Task Group on the "Digital SI"

- To enable SI-based digital communication in industry
- To support the digital science and open-science paradigms
- To get metrological services ready for artificial intelligence

Summit meeting on "Digital communication in the SI" BIPM, 22nd and 23rd June 2020

Collaborations with ... other IOs ... experts nominated by NMIs.

"Comparable measurements for a digital world"

The BIPM — an international organization

CGPM – Conférence générale des poids et mesures

Official representatives of Member States.

CIPM – Comité international des poids et mesures

Eighteen individuals of different nationalities elected by the CGPM.

- Ten Consultative Committees
- Three Joint Committees with other International Organisations
- Sub-committees on Strategy, Finance, Pension etc

Scientific and technical secretariat (in Sèvres)

- International coordination and liaison
- Scientific collaboration—laboratories
- Capacity building and knowledge transfer

The Metre Convention was signed in Paris by 17 nations on **20 May 1875**

$\label{eq:theorem} \textbf{The BIPM} - \text{an international organization}$

CGPM - Conférence générale des poids et mesures

Official representatives of Member States.

CIPM – Comité international des poids et mesures

Eighteen individuals of different nationalities elected by the CGPM.

- Ten Consultative Committees
- Three Joint Committees with other International Organisations
- Sub-committees on Strategy, Finance, Pension etc

Scientific and technical secretariat (in Sèvres)

- International coordination and liaison
- Scientific collaboration—laboratories
- Capacity building and knowledge transfer

• Interr • Poid

Mesures

The Metre Convention was signed in Paris by 17 nations on **20 May 1875**

The BIPM — an international organization

CGPM - Conférence générale des poids et mesures

Official representatives of Member States.

CIPM – Comité international des poids et mesures

Eighteen individuals of different nationalities elected by the CGPM.

- Ten Consultative Committees
- Three Joint Committees with other International Organisations
- Sub-committees on Strategy, Finance, Pension etc

Scientific and technical secretariat (in Sèvres)

- International coordination and liaison
- Scientific collaboration—laboratories
- Capacity building and knowledge transfer

IN 1875

17 MEMBER STATES

14 CIPM MEMBERS

DIRECTOR

+ 2 ASSISTANTS

Bureau Intern Poids et

The Metre Convention was signed in Paris by 17 nations on 20 May 1875

The BIPM — an international organization

CGPM - Conférence générale des poids et mesures

Official representatives of Member States.

CIPM – Comité international des poids et mesures

Eighteen individuals of different nationalities elected by the CGPM.

- Ten Consultative Committees
- Three Joint Committees with other International Organisations
- Sub-committees on Strategy, Finance, Pension etc

Scientific and technical secretariat (in Sèvres)

- International coordination and liaison
- Scientific collaboration—laboratories
- Capacity building and knowledge transfer

In 2019

61 Member States

41 Associate States/Economies

> **18 CIPM** Members

Director and 70 staff

Bureau

How can metrology support the digital economy?

- By providing the basis for trustworthy data
- By supporting open data practices
- By developing digital formats for metrology

Le Système international d'unités rateural The International System of Units

Brings Physical Laboratory 26

How can metrology support the digital economy?

- By providing the basis for trustworthy data
- By supporting open data practices
- By developing digital formats for metrology
- By .. applying distributed ledger technology (blockchain) ...?

mal Physical Laboratory 2019.

Four 'Grand Challenges' that will profoundly transform society in the future:

- Al and data putting transformative artificial intelligence, machine learning and other datasetbased technologies to the best possible use to achieve both economic and social goals.
- Ageing society as the number of elderly citizens grows in the UK (and throughout the
 developed world), emerging technologies are being harnessed to maintain this group's quality
 of life.
- Clean growth the transition to low-carbon technologies.
- Future of mobility How people, goods and services are being moved around within cities, nations and, ultimately, the world is being rapidly re-imagined. Autonomous vehicles are already gaining traction.