How can metrology support the digital economy? - Providing trustworthy data - Addressing the "reproducibility crisis" - Supporting open data - Adopting the FAIR principles - Digitial formats for Metrology - New initiatives by the CIPM www.bipm.org - ## Trustworthy data? 6 ## <u>Trustworthy data?</u> Example No 1 - The speed of light, c ## Trustworthy data? ### Trustworthy data? 11 Example No 3 - The gravitational constant , G ### When can we be confident in data? - > We can only be confident ...if we can fully trust it as the product of the independent, rigorous application of multiple, essentially different methods. - Measurement data with these qualities are trustworthy and are a cornerstone of scientific consensus that enables advances in all areas of science and technology. - ➤ The organized practice of measurement science includes principles and practices that if widely adopted should ensure that data are trustworthy. - > "Lack of reproducibility is not necessarily bad news; it may herald new discoveries and signal scientific progress". Reproducible research and decision making is underpinned by trustworthy data To be published in Nature by: Martin J. T. Milton (BIPM) and Antonio Possolo (NIST) # data management and stewardship Statement from the <u>G20 leaders</u> at the 2016 summit in Hangzhou ## Data management and stewardship Data and supplementary materials have sufficiently rich metadata and a unique and persistent identifier. **FINDABLE** Metadata and data are understandable to humans and machines. Data is deposited in a trusted repository. **ACCESSIBLE** Metadata use a formal, accessible, shared, and broadly applicable language for knowledge representation. **INTEROPERABLE** Data and collections have a clear usage licenses and provide accurate information on provenance. REUSABLE # Applying the FAIR principles? # The (**Digital**) International System of Units (SI) # The (**Digital**) International System of Units (SI) www.bipm.org 17 # The (**Digital**) International System of Units (SI) www.bipm.org | | | - | | |------------------|-------|----|-----------------------------------| | 10 ²⁴ | yotta | Υ | 1 000 000 000 000 000 000 000 000 | | 1021 | zetta | Z | 1 000 000 000 000 000 000 000 | | 1018 | сха | E | 1 000 000 000 000 000 000 | | 1015 | peta | Р | 1 000 000 000 000 000 | | 1012 | tera | Т | 1 000 000 000 000 | | 10° | giga | G | 1 000 000 000 | | 10° | mega | М | 1 000 000 | | 10 ³ | kilo | k | 1000 | | 10 ² | hecto | h | 100 | | 10 ¹ | deca | da | 10 | | 10-1 | deci | d | 0.1 | | 10-2 | centi | С | 0.01 | | 10-3 | milli | m | 0.001 | | 10-4 | micro | μ | 0.000 601 | | 100 | nano | n | 0.000 000 001 | | 10-12 | pico | р | 0.000 000 000 001 | | 10-15 | femto | f | 0.000 000 000 000 001 | | 10-10 | atto | a | 0.000 000 000 000 000 001 | | 10-21 | zepto | z | 0.000 000 000 000 000 000 000 001 | 10⁻²⁴ yocto y 0.000 000 000 000 000 000 000 001 From NIST -http://physics.nist.gov/cuu/Units/SIdiagram.html ### CIPM initiatives to provide <u>Digital Formats for Metrology</u> ### The CIPM has launched a Task Group on the "Digital SI" - To enable SI-based digital communication in industry - To support the digital science and open-science paradigms - To get metrological services ready for artificial intelligence Summit meeting on "Digital communication in the SI" BIPM, 22nd and 23rd June 2020 Collaborations with ... other IOs ... experts nominated by NMIs. # "Comparable measurements for a digital world" ### **The BIPM** — an international organization CGPM – Conférence générale des poids et mesures Official representatives of Member States. #### CIPM – Comité international des poids et mesures Eighteen individuals of different nationalities elected by the CGPM. - Ten Consultative Committees - Three Joint Committees with other International Organisations - Sub-committees on Strategy, Finance, Pension etc #### Scientific and technical secretariat (in Sèvres) - International coordination and liaison - Scientific collaboration—laboratories - Capacity building and knowledge transfer ## The Metre Convention was signed in Paris by 17 nations on **20 May 1875** ### $\label{eq:theorem} \textbf{The BIPM} - \text{an international organization}$ CGPM - Conférence générale des poids et mesures Official representatives of Member States. #### **CIPM – Comité international des poids et mesures** Eighteen individuals of different nationalities elected by the CGPM. - Ten Consultative Committees - Three Joint Committees with other International Organisations - Sub-committees on Strategy, Finance, Pension etc #### Scientific and technical secretariat (in Sèvres) - International coordination and liaison - Scientific collaboration—laboratories - Capacity building and knowledge transfer • Interr • Poid Mesures ## The Metre Convention was signed in Paris by 17 nations on **20 May 1875** ### **The BIPM** — an international organization CGPM - Conférence générale des poids et mesures Official representatives of Member States. #### CIPM – Comité international des poids et mesures Eighteen individuals of different nationalities elected by the CGPM. - Ten Consultative Committees - Three Joint Committees with other International Organisations - Sub-committees on Strategy, Finance, Pension etc #### Scientific and technical secretariat (in Sèvres) - International coordination and liaison - Scientific collaboration—laboratories - Capacity building and knowledge transfer IN 1875 17 MEMBER STATES 14 CIPM MEMBERS DIRECTOR + 2 ASSISTANTS Bureau Intern Poids et #### The Metre Convention was signed in Paris by 17 nations on 20 May 1875 ### **The BIPM** — an international organization CGPM - Conférence générale des poids et mesures Official representatives of Member States. #### CIPM – Comité international des poids et mesures Eighteen individuals of different nationalities elected by the CGPM. - Ten Consultative Committees - Three Joint Committees with other International Organisations - Sub-committees on Strategy, Finance, Pension etc #### Scientific and technical secretariat (in Sèvres) - International coordination and liaison - Scientific collaboration—laboratories - Capacity building and knowledge transfer In 2019 **61** Member States 41 Associate States/Economies > **18 CIPM** Members Director and 70 staff Bureau ## How can metrology support the digital economy? - By providing the basis for trustworthy data - By supporting open data practices - By developing digital formats for metrology Le Système international d'unités rateural The International System of Units Brings Physical Laboratory 26 ## How can metrology support the digital economy? - By providing the basis for trustworthy data - By supporting open data practices - By developing digital formats for metrology - By .. applying distributed ledger technology (blockchain) ...? mal Physical Laboratory 2019. ### Four 'Grand Challenges' that will profoundly transform society in the future: - Al and data putting transformative artificial intelligence, machine learning and other datasetbased technologies to the best possible use to achieve both economic and social goals. - Ageing society as the number of elderly citizens grows in the UK (and throughout the developed world), emerging technologies are being harnessed to maintain this group's quality of life. - Clean growth the transition to low-carbon technologies. - Future of mobility How people, goods and services are being moved around within cities, nations and, ultimately, the world is being rapidly re-imagined. Autonomous vehicles are already gaining traction.