QED tenth-order contribution to the electron anomalous magnetic moment and a new value of the fine-structure constant

> Fundamental Constants Meeting 2015 February 3, 2015 Eltville, Germany Makiko Nio (RIKEN, Japan)

On behalf of the collaboration with Toichiro Kinoshita (Cornell U, UMASS at Amherst), Tatsumi Aoyama and Masashi Hayakawa (Nagoya U), and K. Asano and N. Watanabe (Nagoya U)

new calculation of QED electron g-2 & new value of α

AHKN(T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio)

arXiv:1412.8284 to appear in Physical Review D in Feb. 2015.

updated and more precise values of the 8th- & 10th- order terms

D. Hanneke, S. Fogwell, and G. Gabrielse, PRL100, 120801 (2008) This leads to a new value of the fine structure constant:

 $\alpha^{-1}(a_e : \text{HV08 \& QED14}) = 137.035\ 999\ 1570\ (29)(27)\ 18)(331)\ [0.25ppb]$ $\alpha^{-1}(a_e : \text{HV08 \& QED12}) = 137.035\ 999\ 1727\ (68)(46)\ 19)(331)\ [0.25ppb]$ QED 8th, 10th, Weak&Hadron, Experiment

QED 8th-order term: (68) → (29), factor 2.3 improvement 10th-order term: (46) → (27), factor 1.7 improvement
Shift 157 is larger than the combined uncertainties of QED terms
Need explanation for the new QED results

Plan of talk

How accurate are the QED 8th and 10th-order terms?

0. g-2 in QED, perturbation theory for g-2

- 1. Confirmation of part of the QED calculation by other groups
 - 8th-order diagrams including fermion loops
 - 10th-order diagrams, Set I, 208 Feynman vertex diagrams
- 2. Analytic work of our QED *g*-2 calculation
 - automation of writing the integrands
 - identification of UV and IR subtraction terms
- 3. Numerical work of our QED *g*-2 calculation
 - mapping from 14 Feynman parameters to 13 dim. cube
 - quadruple precision calculation w/ a double-double precision library
- 4. How far can we go ahead in precision of the QED calculation?

Anomalous magnetic moment(g-2) in QED

The standard-model contribution to the electron anomalous magnetic moment:

 $a_e \equiv (g-2)/2$

 $a_e = a_e (\text{QED}) + a_e (\text{hadronic}) + a_e (\text{electroweak})$ $a_e (\text{QED}) \text{ accounts for 99.999 999 8 \% of } a_e$

 a_e (QED) arises from contributions of

virtual photons and leptons

Perturbation theory of QED can well describe *g*-2:

$$a_e(\text{QED}) = \frac{\alpha}{\pi} a_e^{(2)} + \left(\frac{\alpha}{\pi}\right)^2 a_e^{(4)} + \left(\frac{\alpha}{\pi}\right)^3 a_e^{(6)} + \left(\frac{\alpha}{\pi}\right)^4 a_e^{(8)} + \cdots$$
$$a_e^{(2n)} = A_1^{(2n)} + A_2^{(2n)}(m_e/m_\mu) + A_2^{(2n)}(m_e/m_\tau) + A_3^{(2n)}(m_e/m_\mu, m_e/m_\tau)$$

QED non-perturbative effect on vp function

Recent discussion on positronium contribution to g-2: G. Mishima, arXiv:1311.7109 M. Fael and M. Passera, vacuum-polarization(vp) function consisting of PRD 90, 056004 (2014) infinitely many Coulomb photons M. A. Braun, Zh. Eksp. Teor. Fiz. 54, 1220 (1968) R. Barbieri, P. Christillin, and E. Remiddi, PRA 8, 2266 (197 When $q^2 \sim 4 m_{e}^2$, need to sum up all Coulomb photon exchange diagrams Π (non-perturvative)(q^2) = Π (bound state) + Π (Coulomb scattering) $-\Pi$ (overlap with perturbative calculation) q² dependence of bound state and Coulomb scattering terms is $\left| \frac{\alpha m_e}{\sqrt{q^2 - 4m_e^2}} \right|$, it cannot be expanded if $q^2 \sim 4 m_e^2$

The overlapping term is obtained from the sum of bound. + scatt. taking the limit $q^2 \rightarrow -\infty$ and expanding it in power series of α .

QED non-perturbative VP contribute to g-2?

No.
 K. Melnikov, A. Vainshtein, and M. Voloshin, Phys. Rev. D 90, 017301 (2014)
 M. I. Eides, Phys. Rev. D 90, 057301 (2014), M. Fael and M. Passera, PRD 90, 056004(2014)
 No non-perturbative effect on g-2 exists in any power of α.

VP function effect on *g*-2 through a virtual photon:

$$M_{2,\rm VP} = -\int_0^1 dy (1-y) \Pi(-\frac{y^2}{1-y})$$

 $q^2 = -y^2/(1-y) < 0$ as a consequence of

Wick rotation of a loop momentum q^2

For $q^2 < 0$, $\frac{\alpha m_e}{\sqrt{q^2 - 4m_e^2}}$ is a small parameter. Both bound. and scatt. terms are expandable in $\frac{\alpha m_e}{\sqrt{q^2 - 4m_e^2}}$. This is nothing but the overlapping term. Trivially they cancel out each other.

Thus, the non-perturbative vp cannot contribute to g-2.

QED perturbation 2,4, and 6th orders

2,4, and 6th-order terms both mass-dependent and massindependent terms are well established

mass-independent terms:

 $A_1^{(2)} = 0.5$

J. S. Schwinger, Phys. Rev. 73, 416 (1948) A. Petermann, Helv. Phys. Acta 30, 407 (1957) C. M. Sommerfield, Ann. Phys. (N.Y.) 5, 26 (1958) S. Laporta and E. Remiddi, Phys. Lett. B379, 283 (1996)

$$A_1^{(4)} = -0.328 \ 478 \ 965 \ 579 \ 193 \cdots$$

$$A_1^{(6)} = 1.181 \ 241 \ 456 \cdots$$

mass-dependent terms:

QED 8th-order terms

8th-order independent check

891 vertex Feynman diagrams divided into 13 gauge-invariant groups:

373 diagrams, 12 groups, contribute to

the mass-dependent terms A_2 and/or A_3 .

With correction of IV(d) in 2003 Kinoshita and Nio, PRL90(2003)021803,

our numerical and their analytic calculations are in good agreement.

Our numerical approach to 12 groups is

correct even for the mass-independent term A₁

because we need only to replace $r=m_{\mu}/m_{e}=206.76...$ by r=1.

QED 10th-order terms

New 10th-order terms

AHKN, arXiv:1412.8284

10th-order terms in 2012

AHKN, PRL109(2012) 111807

 $A_1^{(10)} = 7.795 \ (336)$

 $A_1^{(10)} = 9.16 \ (58)$

Shift -1.37 is much larger than the uncertainties, 0.34 and 0.58

- No analytic incorrectness has been found in the whole 10th-order calculation.
- The shift comes purely from the numerical integrations.
- The diagrams concerned with are 6354 Feynman diagrams of Set V involving no fermion loop, only photonic corrections.

This is the cause of the shift in α determined from the electron *g*-2. Muon contribution has not been changed from the 2012 value: $A_2^{(10)}(m_e/m_\mu) = -0.003 \ 82 \ (39)$ tau-lepton contribution is too small.

10th-order Feynman diagrams

12,672 vertex Feynman diagrams can be divided into 32 gauge-invariant sets:

Independent check of 10th-order Set I

Recently, Set I, 208 diagrams are (semi-)analytically calculated for both electron and muon *g-2*, and their mass-dependent and mass-independent terms: P. A. Baikov, A. Maier, and P. Marquard,

theoretical value of the electron g-2

J. Prades, E. de Rafael, and A. Vainshtein,

in 'Lepton Dipole Moments', (2009), pp. 303.

Hadronic and weak corrections are small but not negligible:

• $a_e(\text{hadronic}) = (1.866(10)(5) - 0.2234(12)(7) + 0.035(10)) \times 10^{-12}$ D. Nomura and T. Teubner, NPB867, 236 (2013)

•
$$a_e(\text{electroweak}) = 0.0297 \ (5) \times 10^{-12}$$

K. Fujikawa, B. W. Lee, and A. I. Sanda, PRD 6, 2923 (1972). M. Knecht, S. Peris, M. Perrottet, and E. de Rafael, A. Czarnecki, B. Krause, and W. J. Marciano, PRL. 76, 3267 (1996). A. Czarnecki, W. J. Marciano, and A. Vainshtein, PRD 67, 073006 (2003), 73, 119901(E) (2006).

Input values for
$$a_e(\text{QED})$$
: α is from the h/m_{Rb} measurement $\alpha^{-1}(\text{Rb10}) = 137.035\ 999\ 049\ (90)\ [0.66ppb]$ R. Bouchendira, P. Claďe, S. Guellati-Kh´elifa, F. Nez, and
F. Biraben, PRL106, 080801\ (2011) $m_e/m_{\mu} = 4.836\ 331\ 66\ (12) \times 10^{-3}$ P. J. Mohr, B. N. Taylor, and D. B. Newell,
Rev. Mod. Phys. 84, 1527\ (2012)

$$a_e(\text{theory}) = 1\ 159\ 652\ 181.643(25)(23)(16)(763) \times 10^{-12}$$

D. Hanneke, S. Fogwell, and G. Gabrielse, PRL100, 120801 (2008)

$$a_e(\text{HV08}) = 1\ 159\ 652\ 180.73(28) \times 10^{-12}\ [0.24\text{ppb}]$$

$$a_e(\text{HV08}) - a_e(\text{theory}) = -0.91 \ (0.82) \times 10^{-12}$$

JHEP 11, 003 (2002).

Diagrams w/o closed lepton loops

The uncertainties of $A_1^{(8)}$ and $A_1^{(10)}$ entirely come from Group V and Set V, respectively. Let us focus on Group V and Set V.

8th-order Group V: 518 of 819 vertex Feynman diagrams

10th-order Set V: 6,354 of 12,672 vertex Feynman diagrams

Summing up the vertex diagrams w/ similar photon corrections:

$$\Lambda^{\nu}(p,q) \simeq -q_{\mu} \left[\frac{\partial \Lambda_{\mu}(p,q)}{\partial q_{\nu}} \right]_{q=0} - \frac{\partial \Sigma(p)}{\partial p_{\nu}}$$

Thanks for the gauge symmetry and Ward-Takahashi identity.

Time reversal symmetry

 8^{th} -order Group V: 518/7=74 \rightarrow 47 independent integrals

10th-order Set V: 6,354/9=706 \rightarrow 389 independent integrals

represented by self-energy like diagrams

47 self-energy like diagrams of 8th-order Group V

389 self-energy like diagrams of 10th-order Set V

Automatic calculation w/ gencodeN

Peak 12Tflops

17

Test of gencodeN w/ 8th-order Group V

8th-order Group V, 47 integrals + residual renormalization

- 1st try w/ human effort T. Kinoshita, W. B. Lindquist, PRD 42 (1990) 635
 UV & IR terms are identified using power counting rules
- 2nd try w/gencodeN AHKN, PRL99(2007)110406

UV terms are same. IR terms are different in finite amount

47 integrals of Group V are compared:

1st calculation ?=? 2nd calculation + finite term due to IR difference separately calculated

• All 47 integrals are OK. AHKN, PRD77(2008)053012

M16 & M18 of the 1st try should receive a finite correction.
inconsistency between the IR subtraction terms of their integrands and those of the residual renormalization term.

Fine-structure constant α : a_e and Rb

389 numerically calculable integrands are made by gencodeN: $\Delta M(X...) = M(X...; bare term)-(UV subtraction) - (IR subtraction)$

Does gencodeN correctly work even for the 10th-order Set V?

1. Bare terms OK

trivial extension from the lower-order

2. UV subtraction terms by K-operation OK

UV divergence occurs from only vertex and self-energy subdiagrams. if UV divergence is left in ΔM , numerical integration immediately breaks down.

3. IR subtraction terms by R-subtraction and I-operation not OK numerical integration cannot distinguish IR divergence from fluctuation of the integral due to small statistics.

We analytically identified what the missing IR subtraction terms are.

Two kinds of IR divergence mechanism

1. R-subtraction: residual mass-renormalization

our UV renormalization by K-operation for the mass-renormalizationsubtracts part of the mass-renormalization termdetermined by

standard mass-renormalization UV renormalization by K-operation

R-subtraction

```
–dm4a x M6c(4*)
–dm4a<sup>∪∨</sup> x M6c(4*)
–dm4a<sup>R</sup> x M6c(4*),
```

```
where dm4a = dm4a^{UV} + dm4a^{R}
```


the IR divergence comes from the magnetic moment $M6c(4^*)$

K-operation

2. I-operation:

a lower-order magnetic moment

× a vertex renormalization constant

the IR divergence comes form the vertex renorm. constant L6c(4)^R

Nested I and R-subtractions in gencode N

One of nested IR singularities in X253, I₁₉ I₂₄₈ R₅₆₇

The IR subtraction term should be $-L2^{R} \times L2^{*} \times dm4a^{R} \times M2$. But, the rule in gencodeN uses $L2^{*R}$ instead. Similar to $L2^{R}$.

$$L2 = L2^{UV} + L2^{R},$$

UV term IR term
$$L2^{*} = \Delta L2^{*} + L2^{*R}$$
finite term IR term IR term

Code modification for X253 and X256

So, we should make the IR subtraction terms by hand

 $-L2^{R} \times \Delta L2^{*} \times dm4a^{R} \times M2$ for X253

 $-L2^{R} \times \Delta L2^{*} \times dm4b^{R} \times M2$ for X256

There are only two diagrams at the 10th order which require the code modification.

Necessary conditions:

- a rainbow structure, at least 1+1 powers of α
- a self-mass inside the rainbow, at least 2 powers
 - UV K-operation entirely subtracts the 2nd-order self-mass *dm2*.
- a self-energy diagram which provides a magnetic moment should exists. At least 1 power.

The 389 integrals of Set V are ready to go to numerical evaluation.

These IR terms were already included in our 2012 result.

The sum of our 389 integrals is not the physical contribution to g-2. We adapt the standard-on-shell renormalization scheme to ensure

- the coupling constant α is the one measured by experiments.
- the electron masse m_e is the one measured by experiments.

def.

- $a_e = M(bare) (standard on-shell renormalization)$
 - = [M(bare) (UV subtraction) (IR subtraction)]Finite integral ΔM made by gencodeN and to be numerically evaluated

Finite residual renormalization

We need to know what the residual renormalization formula is and what its numerical value is.

Derivation of the residual renorm.: direct sum

gencodeN knows what the UV and IR subtraction terms are. Example: X253

Further decomposition of lower order terms:

eg. $M4a = 2 L2^{\cup \vee} M2 + \Delta M4a$, $M4b = dm2 M2^* + B2^{\cup \vee} M2 + L2^{\mathbb{R}} M2 + \Delta M4b$ Sum up over 389 integrals of Set V, which requires analytic sum over ~16,000 symbolic UV & IR terms.

Derivation of residual renom.: hand-waving

Consider a 8th-order diagram *M8* w/ a 2nd-order correction.

- 7 fermion lines \rightarrow 2nd-order self-energy *B2* can be inserted in 7 ways
- 8 vertices \rightarrow 2nd-order vertex *L2* can correct a vertex in 8 ways.
- Standard renormalization must have (7 B2 + 8 L2) M8, where M8 is the sum of all 8th-order bare magnetic moments.

UV-subtraction term involving M8

• K-operation should yield the term $(7 B2^{UV} + 8 L2^{UV}) M8$.

IR-subtraction term involving M8

• I-operation should yield the term *L2^R M8*

The residual renorm. term. Using L2=L2^{uv}+L2^R, B2=B2^{UV}+B2^R,

−(7 *B2* + 8 *L2*) *M8* +(7 *B2*^{UV}+ 8 *L2*^{UV}) *M8*+*L2*^{*R*} *M8* = −7 (*B2*^R+*L2*^R) M8

Because of Ward-Takahashi identity B2+L2=0, the IR singularity in the sum ($B2^{R}+L2^{R}$) cancels out, and it is finite: $\Delta LB2 = (B2^{R}+L2^{R})$ We must have $-7 \Delta LB2 \Delta M8$ in our residual renorm. formula.

M8

L2

Residual renormalization formula

The physical contribution from Set V

 $A_{1}^{(10)}[\text{Set V}] = \Delta M_{10}[\text{Set V}]$ $+ \Delta M_{8}(-7\Delta LB_{2})$ $+ \Delta M_{6}\{-5\Delta LB_{4} + 20(\Delta LB_{2})^{2}\}$ $+ \Delta M_{4}\{-3\Delta LB_{6} + 24\Delta LB_{4}\Delta LB_{2} - 28(\Delta LB_{2})^{3} + 2\Delta L_{2*}\Delta dm_{4}\}$ $+ M_{2}\{-\Delta LB_{8} + 8\Delta LB_{6}\Delta LB_{2} - 28\Delta LB_{4}(\Delta LB_{2})^{2}$ $+ 4(\Delta LB_{4})^{2} + 14(\Delta LB_{2})^{4} + 2\Delta dm_{6}\Delta L_{2*}\}$ $+ M_{2}\Delta dm_{4}(-16\Delta L_{2*}\Delta LB_{2} + \Delta L_{4*} - 2\Delta L_{2*}\Delta dm_{2*}),$

where quantities w/ Δ are finite *n*th-order ones. (*n*=2,4,6,8, and 10)

- ΔLBn vertex and wave-function renom. constants.
- Δ*dmn* mass-renormalization constants.
- ΔLn^* , Δdmn^* * indecates that it has one mass-insertion
- ΔMn , M2 finite magnetic moments numerically calculated w/ help of gencodeN We need not to subtract IR divergence from Ln and from Bn, when we numerically calculate ΔLBn . Thanks the Ward-Takahashi identity.

Numerical value of Set V contribution

Substitute the following numbers to the residual renorm. formula:

Integral	Value (Error)	Integral	Value (Error)
ΔM_{10}	3.468(336)	ΔL_{4^*}	$-0.459\ 051\ (62)$
ΔM_8	1.738 12 (85)	ΔL_{2^*}	-0.75
ΔM_6	0.425 8135 (30)	Δdm_6	$-2.340 \ 815 \ (55)$
ΔM_4	$0.030 \ 833 \ 612 \cdots$	Δdm_4	$1.906 \ 3609 \ (90)$
M_2	0.5	Δdm_{2^*}	-0.75
ΔLB_8	2.0504 (86)		
ΔLB_6	$0.100 \ 801 \ (43)$		
ΔLB_4	$0.027 \ 9171 \ (61)$		
ΔLB_2	0.75		

 $\Delta LB8$ and $\Delta L4^*$ are newly calculated for Set V. Others are known.

 $\Delta LB8$ is the sum of 47 integrals evaluated numerically. The programs are obtained by using the automation gencodeLBn, a slight modification of gencodeN.

We obtain

$$A_1^{(10)}[\text{Set V}] = 8.726 \ (336).$$

The uncertainty of the numerical evaluation of $\Delta M10$ dominates.

Numerical evaluation of $\Delta M10$

The shift of the 10th-order term comes from the shift of $\Delta M10$. AHKN, 2014 AHKN, 2012

 $A_1^{(10)}[\text{Set V}] = 8.726 \ (336).$ $A_1^{(10)}[\text{Old Set V}] = 10.092 \ (570).$

 $\Delta M_{10}[\text{Set V}] = 3.468 \ (336) \text{ shift } -1.4 \ \Delta M_{10}[\text{Old Set V}] = 4.877 \ (570)$

Why it happened?

Uncertainties of each 389 integrals is

less than 0.038

less than 0.050

Reliable uncertainty

Underestimate for

some class of integrals

To explain it, let us divide 389 integrals into two classes:

- *XL* 153 diagrams including no self-energy(s.e.) subdiagrams
- **XB** 236 diagrams including at least one s.e. subdiagram.

Numerical properties of XL and XB

	XL	ХВ		
# of integrals	153	236		
# of s.e. subdiagrams	0	Ns =1, 2, 3, or 4		
dimension of an integral	13	13 – Ns		
UV cancelation	Logarithmic	Logarithmic		
IR cancelation	None, no IR divergence	Power law divergence		
precision required for real numbers	double precision	quadruple precision for some integrals double for rest of integrals		

XL is relatively easy to perform numerical integration.

XB is tough due to the *digit-deficiency* problem.

Integration performed so far

performance	# of integrals	dimension	mapping	Precision
XL1	153	13	default	double
XL2	153	13	adjusted	double
XB1	236	13	default	double
XB2a	162	13-Ns	adjusted	quadruple
XB2b	74=236-162	13-Ns	adjusted	quadruple
ХВЗ	176 60	13-Ns	adjusted	double quadruple

Large discrepancy in some integrals are found

b/w XL1 and XL2, and b/w XB1 and {XB2 or XB3}

XB2 and XB3 are consistent each other.

The uncertainties of *XL1* and *XB1* are underestimated.

 $\Delta M10[Set V: 2012] = XL1 (153) + XB2a(162) + XB1(74=236-162)$

We excluded the results XL1 and XB1 whose mappings are default. ΔM10[Set V: 2014] = XL2 (153)

+ statistical average of { {*XB2a(162)+XB2b(74)*} & *XB3(236)*}

Mapping of Feynman parameters

Our integrals **XL** and **XB** are defined w/ 14 Feynman parameters. Each are assigned to 9 electron lines and 5 photon lines w/ the constraints:

1 = z1 + z2 + z3 + + z8 +z9 + za + zb + ...+ ze

 $0 \le zi \le 1$, for i=1, 2, ..., 9, a, b,..., e.

The numerical integration algorithm VEGAS uses

a unit hypercube as an integration volume.

There are many ways to map the hyperplane z1+...+ze=1 onto a 13 dimensional unit cube.

- The result of the integration must not depend on choice of the mapping. → good check of the numerical integration
- Different mappings show different convergent speed of VEGAS.
 There is no 1st principle to pick up the best mapping.
 But, we know by experience what better mappings are.

z12=z12a q(3) and so on.

	$11100101 - 0.1757 \pm 0.1200$
accumulated results:	final value =-0.1748 ±0.0181
	chi**2 per it'n = 0.9653

UV singularity $z12a \rightarrow 0$ of $L2^{\cup \vee}$ is translated into $q(2) \rightarrow 0$.

VEGAS forms its grid structure looking at

the shape of an integrand projected onto each dimension.

A better grid structure is more rapidly achieved

if the important region of the integral is in the edges of one dimension.

Numerical results of Set V: X001-X099

dgrm	sub.	Value (Error)	it	dgrm	sub.	Value (Error)	it	dgrm	sub.	Value (Error)	it
X001	47	-0.1724(91)	20	X002	47	-5.9958(333)	13	X003	19	-0.1057(52)	10
$\mathbf{X004}$	71	5.1027(339)	9	$\mathbf{X005}$	43	1.1112(168)	20	$\mathbf{X006}$	59	-5.2908(245)	9
$\mathbf{X007}$	47	-3.4592(254)	25	X008	47	-16.5070(289)	11	$\mathbf{X009}$	19	-3.1069(71)	24
X010	83	11.2610(337)	128	$\mathbf{X011}$	43	6.0467(338)	22	$\mathbf{X012}$	67	-9.3328(267)	26
X013	7	-1.3710(31)	2	$\mathbf{X014}$	31	0.8727(42)	10	$\mathbf{X015}$	2	2.1090(8)	2
X016	2	-0.9591(7)	2	$\mathbf{X017}$	6	0.5146(13)	20	$\mathbf{X018}$	6	0.0309(13)	20
X019	31	1.2965(48)	10	$\mathbf{X020}$	134	-8.1900(318)	43	$\mathbf{X021}$	11	-0.2948(15)	10
$\mathbf{X022}$	79	0.8892(226)	22	$\mathbf{X023}$	27	0.4485(55)	25	$\mathbf{X024}$	75	-6.0902(246)	23
X025	39	-0.7482(194)	20	$\mathbf{X026}$	95	-7.8258(277)	8	$\mathbf{X027}$	15	-2.3260(54)	13
$\mathbf{X028}$	71	4.5673(331)	53	$\mathbf{X029}$	35	6.9002(233)	1	$\mathbf{X030}$	67	-12.6224(328)	38
$\mathbf{X031}$	2	2.3000(14)	4	$\mathbf{X032}$	2	-0.2414(6)	2	$\mathbf{X033}$	2	-1.3806(7)	2
$\mathbf{X034}$	2	1.2585(9)	4	$\mathbf{X035}$	2	-0.5899(3)	2	$\mathbf{X036}$	11	0.2318(11)	30
$\mathbf{X037}$	2	-0.7407(5)	2	$\mathbf{X038}$	11	-0.2927(14)	20	$\mathbf{X039}$	11	0.3292(12)	10
$\mathbf{X040}$	47	1.3397(50)	12	$\mathbf{X041}$	63	3.1076(94)	25	$\mathbf{X042}$	119	-4.1353(192)	20
$\mathbf{X043}$	15	-2.9620(29)	21	$\mathbf{X044}$	59	4.4121(281)	4	$\mathbf{X045}$	43	3.4331(212)	20
$\mathbf{X046}$	95	-7.7564(339)	15	$\mathbf{X047}$	2	-4.4496(40)	8	$\mathbf{X048}$	2	-0.8061(8)	2
$\mathbf{X049}$	2	-0.0278(7)	2	$\mathbf{X050}$	2	-1.2213(9)	4	$\mathbf{X051}$	2	-0.1776(6)	2
$\mathbf{X052}$	11	1.0293(17)	20	$\mathbf{X053}$	2	0.3699(4)	2	$\mathbf{X054}$	11	-0.5174(11)	20
$\mathbf{X055}$	2	-0.3673(4)	2	$\mathbf{X056}$	11	-0.2650(27)	20	$\mathbf{X057}$	23	2.7370(31)	30
$\mathbf{X058}$	44	-5.2510(70)	12	$\mathbf{X059}$	23	2.1866(28)	30	$\mathbf{X060}$	92	-3.2089(188)	22
X061	68	-3.7724(137)	20	X062	161	5.9174(262)	26	X063	6	3.4295(14)	20
X064	6	-0.2772(8)	20	X065	6	0.1551(13)	20	X066	26	-3.6145(45)	21
X067	50	-1.6761(85)	25	X068	98	2.7855(217)	22	X069	18	-1.2627(31)	11
X070	70	3.2149(144)	20	X071	54	3.7025(96)	20	X072	134	-5.5704(208)	15
X073	47	3.4114(254)	24	X074	47	4.4104(251)	49	X075	47	-8.1138(340)	33
X076	19	-5.3405(74)	26	X077	39	3.5459(86)	56	X078	39	1.1666(80)	56
X079	71	5.3956(305)	41	X080	43	0.4597(257)	28	X081	59	-5.6566(248)	26
X082	47	-8.5083(339)	97	X083	47	18.7498(340)	122	X084	19	8.9888(129)	20
X085	39	-2.2833(197)	20	X086	39	0.5180(223)	20	X087	77	-16.5792(342)	167
X088	43	-5.2606(340)	58	X089	63	12.6779(330)	63	X090	19	1.5206(130)	20
X091	39	-1.6355(97)	56	X092	39	2.1303(218)	15	X093	7	-1.7594(42)	10
X094	15	-1.0419(66)	10	X095	7	0.5838(35)	6	X096	31	1.3458(73)	10
X097	17	5.0319(89)	24	X098	33	-1.9806(183)	20	X099	39	3.0771(187)	20

Numerical results of Set V: X100-X198

dgrm	sub. Value (Error)	it	dgrm	sub.	Value (Error)	it	dgrm	sub.	Value (Error)	it
X100	77 - 15.2924(314)	248	X101	15	-0.2462(64)	12	X102	31	-1.2883(75)	26
X103	31 0.9424(74)	10	X104	79	6.4131(298)	42	X105	35	3.0503(215)	21
X106	71 - 11.5662(344)	48	X107	43	-4.6643(338)	80	$\mathbf{X108}$	63	12.9812(334)	61
X109	17 -0.0860(85)	25	$\mathbf{X110}$	35	1.9248(204)	20	$\mathbf{X111}$	33	3.3578(132)	24
X112	71 - 11.8998(332)	53	$\mathbf{X113}$	39	-4.3847(322)	16	X114	63	11.0640(336)	58
X115	7 -0.5974(52)	12	X116	7	1.8362(28)	10	X117	7	0.3292(27)	10
X118	15 -3.2721(55)	10	$\mathbf{X119}$	15	-0.0751(53)	10	$\mathbf{X120}$	31	1.8769(72)	10
X121	7 -0.8549(43)	6	$\mathbf{X122}$	7	-0.7337(42)	6	X123	15	-3.3559(67)	12
X124	$29 \ 11.5746(106)$	26	$\mathbf{X125}$	31	0.8677(64)	10	X126	59	-1.5696(162)	26
X127	15 1.1412(46)	10	X128	31	0.6493(59)	10	X129	31	1.4833(70)	10
X130	59 -1.5696(180)	20	X131	59	3.1060(287)	33	X132	101	-8.8300(337)	43
X133	17 2.7263(88)	24	X134	33	-0.6712(123)	23	X135	33	0.9256(153)	22
X136	65 -7.5256(305)	46	X137	45	-2.3541(233)	23	X138	85	10.1610(284)	38
X139	47 14.8674(342)	110	X140	39	-2.7901(206)	21	X141	74	-12.5546(342)	271
X142	43 -1.5792(339)	67	X143	61	10.3213(335)	61 07	X144 X147	83	23.7226(360)	241
X145 X149	07 - 18.0193(338)	122	X146 X140	39	-2.2990(335)	25	X147 X150	15	1.1243(55)	20
A148 V151	31 -1.4150(70)	21 79	A149 V159	$\frac{1}{77}$	-8.3898(139) 14.6605(225)	19	A150 V159	33 77	2.8758(200) 14.8010(225)	2 04
A151 V154	-87 - 10.9300(333) -67 - 20.6250(224)	12	A154 V155	15	14.0090(330) 5 0241(46)	119	A155 V156	11 21	14.8910(333) 0.8977(60)	04 14
A154 V157	07 - 20.0209(004) 29 11 $9400(059)$	94	X155 V159	10	0.0341(40) 0.4607(220)	20 6	X150 X150	01 65	-0.0277(09) 0.4425(251)	$\frac{14}{97}$
X160	116 140729(202)	182	X150 X161	00 71	78080(336)	71	X159 X169	05	12820(301)	41 43
X100 X163	10 14.0722(345) 10 6.8168(202)	102	X101 X164	10	-128880(208)	11	X162 X165	90 15	-12.8293(339) -2.1661(.76)	40 10
X105 X166	15 -2.3080(202)	10	X104 X167	20	12.000(200) 12.1361(150)	20	X168	17	-2.1001(10) -3.4447(120)	$\frac{10}{24}$
X169	25 -6.9379(108)	20	X170	$\frac{20}{39}$	0.2635(288)	$\frac{20}{36}$	X171	39	-2.5229(313)	$\frac{21}{7}$
X172	31 1.5601(76)	$\frac{1}{26}$	X173	59	0.0193(298)	48	X174	35	1.7158(191)	25
X175	51 - 1.8253(175)	$\frac{10}{19}$	X176	7	0.7450(35)	$\frac{10}{20}$	X177	15	0.0079(81)	$\frac{1}{21}$
X178	5 0.7159(28)	$\overline{2}$	X179	2	-0.4377(8)	4	X180	11	0.0284(25)	4
X181	6 -4.4372(28)	30	X182	12	1.2822(43)	20	X183	7	-0.0791 (29)	20
X184	31 0.1973(134)	25	$\mathbf{X185}$	5	-0.1269(16)	10	X186	23	1.1883(21)	10
X187	6 1.2699(27)	20	$\mathbf{X188}$	24	1.7966(36)	11	$\mathbf{X189}$	17	-3.7500(105)	20
X190	33 -2.4966(217)	20	$\mathbf{X191}$	13	0.1892(62)	11	X192	25	2.3868(91)	24
X193	15 -4.2570(84)	19	X194	27	-0.6785(102)	25	X195	2	-1.0708(19)	10
X196	2 -2.0432(20)	6	X197	2	-0.3848(8)	2	$\mathbf{X198}$	5	-2.3533(26)	2

Numerical results of Set V: X199-X297

dgrm	sub.	Value (Error)	it	dgrm	sub.	Value (Error)	it	dgrm	sub.	Value (Error)	it
X199	5	1.0636(26)	2	X200	11	0.0266(26)	4	X201	2	-0.4897(18)	6
$\mathbf{X202}$	2	1.9313(17)	6	$\mathbf{X203}$	2	0.9061(10)	4	$\mathbf{X204}$	11	-1.9485(26)	2
X205	5	-0.9039(13)	10	X206	23	1.6836(23)	10	$\mathbf{X207}$	5	0.2908(23)	2
X208	11	0.5283(28)	2	$\mathbf{X209}$	5	0.1496(19)	2	$\mathbf{X210}$	23	0.7803(19)	10
X211	23	5.1339(90)	12	$\mathbf{X212}$	41	-0.4617(138)	25	X213	6	-2.4516(29)	20
$\mathbf{X214}$	12	0.6801(39)	20	$\mathbf{X215}$	6	0.0724(24)	20	$\mathbf{X216}$	24	-1.3029(42)	12
X217	18	-2.2261(71)	15	$\mathbf{X218}$	30	-1.6396(84)	25	$\mathbf{X219}$	39	1.3579(311)	5
$\mathbf{X220}$	59	-2.5734(222)	27	$\mathbf{X221}$	35	0.6650(161)	20	$\mathbf{X222}$	51	0.8293(178)	20
X223	116	17.5190(339)	135	$\mathbf{X224}$	31	2.4729(110)	20	X225	23	0.3434(39)	10
X226	13	1.0443(58)	11	$\mathbf{X227}$	25	0.5835(97)	21	X228	75	-6.8113(333)	52
X229	35	-1.9843(323)	11	X230	71	15.6790(342)	121	X231	11	-0.7737(28)	10
X232	23	0.4608(38)	10	X233	31	8.6698(116)	25	X234	63	-2.5793(179)	21
X235	23	0.7486(35)	10	X236	63	2.0560(180)	20	X237	113	-12.9913(363)	154
X238	25	1.2747(45)	21	X239	69	-2.8075(345)	49	X240	93	10.9428(298)	55
X241	43	13.8127(349)	140	X242	68	-10.4867(377)	183	X243	57	3.8891(336)	44
X244	35	-3.3041(334)	10	X245	27	0.0658(83)	12	X246	29	-0.3959(174)	20
X247	39	15.9592(335)	46	X248	31	-1.9165(278)	2	X249	13	4.0116(46)	20
X250	27	-1.0558(68)	24	X251	27	-1.3906(76)	12	X252	56	-10.9021(335)	34
X253	113	17.8455(345)	231	X254	29	2.2265(175)	20	X255	43	8.1598(340)	0
X256	93	-14.0423(340)	82	X257	1	5.7475(51)	11	X258		-0.5254(39)	20
A259 Noco	0 C	0.0053(27)	10	A260 Naca	$\frac{3}{7}$	-0.3958(20)	2	A201 N004	15	0.4040(30)	20
X202	0	-2.2854(24)	20	A203	(11	-2.8330(35)	20	A204 N267	15	4.8820(04)	12
A200 V269	0 19	-0.0730(20)	2	A200 V260		0.1200(23) 0.7100(56)	10	A207 V270	0 91	-0.0008(19) 1 6991(07)	20 25
A400 V971	11	0.1100(01)	20 10	A209 X272	10	-0.7190(-00)	12	A410 V979	01 19	-1.0001(97) 2.0474(45)	20 11
A411 X974	11 25	0.2492(23) 0.8675(72)	$\frac{10}{94}$	A414 X975	20 9	-0.7260(-52) 0.7406(-12)	10	A213 X276	10	-2.0474(40) 0.5547(10)	11
A414 X977	20 9	2.7036(10)	24 /	A215 X278	2 5	-0.7490(12) 0.1577(-23)	10	A270 X270	2 5	-0.0347(10) 0.8300(15)	4 9
A211 X280	$\frac{2}{2}$	2.7930(10) 1.0127(-8)	10	X281	5	-0.1377(23) 1 3739(25)	$\frac{10}{2}$	X213 X282	5	0.0399(10) 0.4007(18)	$\frac{2}{2}$
X280	11	-0.0427(-23)	$\frac{10}{2}$	X281	$\frac{1}{2}$	-1.5752(25) -0.2670(9)	$\frac{2}{2}$	X282	5	0.4307(10) 0.0271(16)	$\frac{2}{2}$
X286	11	-0.0427(20) 0.8014(21)	$\frac{2}{2}$	X287	$2\frac{2}{3}$	0.2010(19)	10	X288	6	$4\ 2112(\ 28)$	20^{2}
$\mathbf{X}289$	6	-1.5651(19)	$2\overline{0}$	X290	20 6	-37763(23)	$\frac{10}{20}$	$\mathbf{X}200$	12	1.5957(32)	$\frac{20}{20}$
$\mathbf{X}292$	12	0.9114(36)	$\frac{20}{20}$	X 293	24	-1.2653(41)	11	$\mathbf{X}294$	$\frac{12}{7}$	-3.3891(25)	$\frac{20}{20}$
X295	$\frac{12}{7}$	1.7883(26)	$\frac{10}{20}$	X296	$\overline{5}$	0.5511(13)	10	X297	5	-0.4696(16)	10^{-10}

Numerical results of Set V: X298-X389

dgrm	sub.	Value (Error)	it	dgrm	sub.	Value (Error) it	dgrm	sub.	Value (Error) it
X298	6	-1.9142(28)	20	X299	6	-0.2907(22)20	X300	29	-9.4327(194) 28
X301	31	-1.3351(81)	22	$\mathbf{X302}$	59	-1.8294(223) 30	$\mathbf{X303}$	2	0.3341(7) 2
X304	5	-0.3397(16)	10	$\mathbf{X305}$	5	0.4715(14) 2	$\mathbf{X306}$	23	0.1228(55)20
X307	47	-0.3071(59)	21	$\mathbf{X308}$	6	1.8122(22)20	$\mathbf{X309}$	26	-4.2448(173) 20
X310	50	0.2490(191)	21	$\mathbf{X311}$	15	-0.5291(58)12	X312	31	-1.2454(139) 14
X313	11	0.9660(38)	4	$\mathbf{X314}$	23	0.8266(29)10	$\mathbf{X315}$	13	-1.3728(43)20
X316	25	0.0094(39)	12	X317	59	1.4535(221) 23	X318	62	-8.7599(340) 60
X319	47	0.6801(179)	25	$\mathbf{X320}$	11	0.5627(17)10	$\mathbf{X321}$	23	-0.9005(26)10
$\mathbf{X322}$	23	0.9338(23)	2	$\mathbf{X323}$	25	-0.0053(40)12	$\mathbf{X324}$	53	-8.8058(243) 23
X325	107	11.5958(343)	51	X326	17	-9.0047(145) 24	X327	33	1.5517(229) 29
X328	13	-0.2781(42)	20	X329	25	-0.9627(67)11	X330	15	-4.9591(88)14
X331	27	4.7241(127)	25	X332	33	3.0539(161) 25	X333	65	6.8060(331) 52
X334	47	5.1727(340)	23	$\mathbf{X335}$	37	-2.0294(132) 25	X336	6	-0.7685(20)20
X337	12	-1.2039(32)	20	X338	13	-1.8505(38)20	X339	25	0.4111(40)12
X340	53	-2.1543(202)	25	X341	24	1.7815(33)20	X342	27	2.6063(125) 0
X343	2	3.8873(30)	6	X344	2	3.4223(18) 6	X345	2	-1.0075(18) 4
X346	2	0.2864(20)	6	X347	2	-2.6846(21) 6	X348	2	-0.4899(15) 4
X349	5	2.0800(36)	2	X350	2	1.4643(11) 4	X351	5	0.2554(20) 2
X352	2	-0.1260(8)	2	X353	5	0.1950(16) 2	X354	5	-2.0503(20) 2
X355		-1.0738(25)	2	X356	6	2.0684(24)10	X357	5	0.3746(16) 2
X358	5 00	0.0463(16)	2	X359	11	-0.1396(17)10	X360		-0.4604(37) 2
X361	23	2.5600(26)	10	X362	2	-0.5714(12) 4	X363	2	-2.3442(19) 4
X304	2	2.3957(18)	4	X305	11	0.4177(30)20	A300 Naco	23	5.0759(43)20
A307 N970	0 F	-0.7170(12)	10	A308 V971	23	-0.3404(45)20	A369 N979	41	-3.3812(59)21
A370 V979	0 00	-1.4(03(12))	10	A371 V974	0 47	0.0045(10) 2 0.0188(266) 18	A372 V975	11	-1.2900(33) 2 1.0001(162) 25
A313 V976	23	0.3851(24)	2	A314 V977	41	0.9188(200) 18 0.4264(27) 2	A313 V979	89	1.0991(103) 25 1.2106(.21) 2
A370 V970	0 99	1.0484(10) 0.2201(17)	2 10	АЗ// V200	11	0.4204(27) 2 1.0268(48) 21	入り(0 又り 01	11	1.3190(21) 2 1.0861(20) 2
1019 1000	23 71	-0.3201(17) 1 7719(20)	10 91	АЭОU Хэсэ	41 6	-1.0200(40)21	лэот Хэол	20 19	1.0001(29) 2 1.0266(21) 20
Л J 0 2 V 9 0 г	41 19	-1.(112(80)) 0.7497(10)	∠⊥ 20	ДЭОЭ Хэос	0 94	-4.0004(22)20 0.6997(29)11	ЛЭ04 Х907	12 50	1.9200(-51)/20 1.0508(152)/21
AJ0J V200	$\frac{12}{94}$	-0.7427(19) 0.4240(40)	20 20	АЭОО Х 200	24 20	0.0007(-00) 11 0.0422(-68) 25	V90 (50	1.9900(192) 21
ЛЭОО	$\angle 4$	-0.4349(40)	20	A309	9 0	-0.0433(00)23			

Conclusion

The updated QED value of the electron *g*-2 leads to a new value of the fine-structure constant:

 $\alpha^{-1}(a_e : \text{HV08 \& QED14}) = 137.035 \ 999 \ 1570 \ (29)(27)(18)(331) \ [0.25\text{ppb}]$

QED 8th, 10th, Weak&Hadron, Experiment

- 1. The goal of QED calculation is to reduce the uncertainty of QED term smaller than that of the Weak & Hadronic term.
- We are very sure that there are no analytic errors in our 8thand 10th-order QED calculations.
- 3. Improvement of the 8th and 10th-order terms relies on future numerical work.
- A new Vegas (2013) by P. Lepage has more refined algorithm for a grid formation. Maybe helpful. <u>https://github.com/gplepage/vegas</u>
- RIKEN RICC was shutdown at the end of 2014.
 An entirely new machine will launch in April of 2015. Maybe helpful, too.

Values of the fine-structure constant

