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Outlook

• Motivation

• g -factor measurement principle in a Penning trap

• Observation of single spin flips of a single proton

• Measurement of proton g –factor

• Status on Antiproton g -factor at BASE - CERN



Test of CPT invariance

• CPT invariance is the most fundamental symmetry in the Standard 

Model. 

• Strategy: Compare properties of matter and antimatter conjugates 

with high precision. 



Proton / Antiproton Magnetic Moments
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Requires theoretical corrections at the level of 
17.7ppm.

Proton Magnetic Moment

P. F. Winkler et al., Phys. Rev.  A 5, 83 (1972).

Antiproton Magnetic Moment

• Until 2012: Exotic atom spectroscopy 
(ASACUSA) with at per-mille level

• 2012: First direct single particle 
measurement with 4.4 ppm in 
precision J. DiSciacca et al., PRL 110, 130801 (2013)

Proton magnetic moment has never been measured directly AND with high precision
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Determination of the g -factor
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Determination of Larmor frequency
in a given magnetic field 

Monitoring magnetic field
via simultaneous measurement
of the free cyclotron frequency



axial

modified cyclotron

magnetron

The Penning trap

Superposition of homogeneous magnetic field and electrostatic quadrupole potential

Invariance Theorem: 
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[L. S. Brown and G. Gabrielse, Phys. Rev. A, 25:2423, 1982.]
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Measurement of eigenfrequencies
Ion in thermal equilibrium - axial frequency

• Particle acts as a perfect short

Single Proton
pz N

Linewidth:
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• Detection of tiny image currents [fA]

• Highly sensitive detection circuits – High-Q
QRSignal P ~~
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Auto-resonant excitation for energy 
selective particle reduction



Measurement of eigenfrequencies
Access to radial modes

Coupling of modes via rf-sideband coupling, e.g. zrf   

Amplitude modulation of the axial motion
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Detection of the spin state
The continuous Stern-Gerlach effect
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Introduce magnetic inhomogeneity, the 
magnetic bottle

Coupling of spin moment to axial 
oscillation

Spin flip results in shift of the axial 
frequency
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Detection of spin state
Challenge

Hz/µeV 1/  Ez

Dealing with nuclear magneton requires huge magnetic bottle of

to obtain frequency jump due to spin transition of

BUT
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Tiny energy fluctuations in radial modes cause huge axial frequency shifts
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Frequency fluctuation X

Axial frequency fluctuation X increases due to frequency jump 
caused by spin transitions
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Detecting spin transitions in a statistical measurement!

Measure XSF and Xref →  obtain SF-Probability!!!
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Frequency jump due to spin flip

X  150mHz - not stable enough for observation individual spin transition
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g -Factor measurement

• Larmor frequency measurement with a relative uncertainty of 1.8*10-6

• With cyclotron frequency measurement

g = 5. 585 696 (50)

C. C. Rodegheri et al., New J. Phys. 14 063011 (2012)

reduction of line broadening using 
feedback cooling

relative precision of 10-4

S. Ulmer et al., Phys. Rev. Lett 106, 253001 (2011)

Limited by magnetic field inhomogeneity

similar method used by Harvard group – relative precision of 2.5 ppm 
di Sciacca et al., PRL 108, 153001 (2012)



Precision Trap:

Measurement of 

frequencies

Double Penning trap technique

• High Precision measurement demands homogeneous magnetic field

• Introduce two traps – double Penning trap setup (H. Häffner, Phys. Rev. Lett.85, 5308 (2000))

B

44 mm

Analysis Trap:

Detection of spin 

state

I. Determination of Spin State (AT) V. Determination of Spin State (AT)

IV. Transport 
to AT

II. Transport 
to PT

# Measurement

III. Driving Spin Transition and measure B-field(PT)
g-factor measurement

Demands detection of every single spin transition!

Frequency – offset (Hz)
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Improvement of frequency stability
White noise
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Novel toroid detection coils allow for 4 times faster and
precise frequency measurements
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Quality of spin state detection
Bayes and threshold method

Bayes method superior to threshold method - Optimal fidelity of 88%

Fidelity: fraction of correctly assigned spin states in a series of measurements

Threshold method: Accept spin flip if frequency jump above given threshold

Bayes rule – conditional probability of having a spin state

Update of state probability given complete frequency, noise and previous state 
information

     11212 ,,|,| fSPfSfPffSP 



Observation of Single Spin Flips

Algorithms initialized with maximum uncertainty (p=50%)

No extraordinary frequency jumps at off-resonant drives – cyclotron mode not affected

Series of axial frequency measurements in AT

Apply resonant and off-resonant spin flip drives – background check

A. Mooser, K. Franke et al., Phys. Rev. Lett. 110, 140405 (2013).

Related observations are discussed in J. DiSciacca et al., Phys. Rev. Lett. 110, 140406 (2013).



Double Penning trap technique

3 hours for one spin flip trail in precision trap with fidelity of 75%

• Coupling to thermal bath in precision trap

• Preparation of subthermal E+

• Cyclotron frequency measurement heats cyclotron mode to 30 meV

• Low energies required in analysis trap for high fidelity spin state detection

Cyclotronenergy E+ (meV)
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• Additionally spin-state has to be detected two times

Reduction of detection fidelity

Cyclotronenergy E+ (meV)



Demonstration of double Penning trap technique

Finite spin flip probability for off-resonant drive due to finite spin state detection fidelity

A. Mooser et al., Phys. Lett. B 723, 78–81 (2013).

# measurement

Observation of spin flips excited in the homogeneous magnetic field

• Detect spin state - magnetic bottle in analysis trap
• Excite spin transition in precision trap 
• Detect spin state - magnetic bottle in analysis trap 

Measurement:

After two weeks of data taking



The g -factor of the proton

Sweep spin flip excitation frequency to obtain g-factor resonance

25 ppb

• To avoid systemtic effects spin flip excitation frequency randomly chosen

• Blindfold analysis of axial frequency in analysis trap for spin state detection 

using Bayesian analyses

• Line width: due to residual B2 in precision trap and satuartion

ppb 2.6 is  that 704(14) 694 5.585g



The g -factor of the proton

Systematic errors

Parameter Relative Shift of gp/2 Uncertainty

Trapping Potential (C4) 0 0.2 ppb
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The g -factor of the proton

Systematic errors

Parameter Relative Shift of gp/2 Uncertainty

Relativistic Shift 0.030 ppb <0.003 ppb

Image-Charge Shift -0.088 ppb <0.010 ppb

• Negligible systematic shifts due to

• Relativistic effects - proton at cryogenic temperature

• Additional Electrostatic Potential due to image charge - single charge 

Compare electron:

• Groundstate cooling

• Cyclotron quantum jump spectroscopy

Compare highly charged ions 12C5+:

• Dominant systematic shift

• Increase trap radius r0



The g -factor of the proton

Systematic errors

Parameter Relative Shift of gp/2 Uncertainty

Trapping Potential (C4) 0 0.2 ppb

Relativistic Shift 0.030 ppb <0.003 ppb

Image-Charge Shift -0.088 ppb <0.010 ppb

Nonlinear Magnetic Field Drift 0 2 ppb

Cyclotron Cooling -0.51 ppb 0.08 ppb

Voltage Stability -0.07 ppb 0.35 ppb

Total Systematic Shift -0.64 ppb 2 ppb

• Voltage Stability – accounts for possible drift of applied potentials due to DC-Filters after 

transport from AT to PT 

• In addition at level of << ppt :

• Detector damping – damped harmonic oscillator

• Bloch Siegert Shift – linear polarization of SF-driving field

• retarded part of image charge found negligible



The g -factor of the proton

• First direct and high precision measurement of the proton magnetic moment.

• Improves 42 year old MASER value by factor of 3.3 (P. F. Winkler et al., Phys. Rev. A 5, 83 (1972))

• Value in agreement with accepted CODATA value, but 2.5 times more precise

A. Mooser, S. Ulmer, K. Blaum, K. Franke, H. Kracke, C. 

Leiteritz, W. Quint, C. Smorra, J.Walz, Nature 509, 596 (2014)

sysstat(11)700(14) 694 5.585g

(gP – offset) *109



- GERN

Antiproton



New Advanced Penning Trap System

Catching trap and 
reservoir for antiprotons. 

Cooling trap:   
Weak magnetic bottle with cyclotron energy 
resolution of 5Hz/K. Small trap with improved 
cooling time constant.

Procedure: 
Alternate fast coupling and measuring cycles.
Preparation of particle with single spin flip 
resolution within a few minutes.

Increased distance smaller B2

Improved detectors:

two times faster detection
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BASE-CERN Apparatus

• Experiment was approved in June 2013.

Constructed new apparatus

Constructed antiproton transfer line
Implemented system into AD facility

Developed advanced trapping system



Installation

...about 1 and a half year ago there was nothing...
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Methods

• Established meanwhile all standard techniques used in the 

antiproton community:

– Catching
• Deceleration of 5.3 MeV antiprotons using degrader foils.

• Fast HV catching pulses to confine the slow antiprotons up to 5 keV. 

– Electron cooling
• Electron and resistive cooling to 4 K thermal equilibrium energy 

~ 320 eV

– Electron kick-out

– Trap cleaning

– Single particle preparation
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Catching: G. Gabrielse et al, PRL  57, 2504 (1986)
Cooling: G. Gabrielse et al, PRL  63, 1360 (1989)
Measurement: G. Gabrielse et al, PRL  65, 1317 (1990)



The Reservoir Trap

Initial state: antiproton cloud in 
trap 1

step 1: separation of particle 
cloud

step 2: adiabatic transport to 
second trap

Final state: cloud ion reservoir, 

single particle in experiment 

cycle

Basic idea: serve as antiproton reservoir – survive accelerator 
shutdown



Realization

• Found that adequate potential ramps are most efficient 

to perform this scheme.

• All experiments were 
performed with the same 
cloud of particles -> also 
merging of particle 
clouds works.

• No particle loss during 
separation/merging 
experiments

• One separation cycle 
takes only 12s

• Potential-tweezer scheme:



Noise

10 nT fluctuation
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Datapoint

• Cyclotron frequency fluctuations of 500ppt – proves magnetic 

inhomogeneity problems seen in Mainz solved

• With respect to magnetic field stability 500ppt measurement feasible
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• Careful electronics layout: No issues with electrical interference

• Magnetic noise is a pain:



Conclusion

• Detection of single proton spin transitions

• Demonstration of double Penning-trap technique

• Most precise and direct high-precision measurement

of proton g -factor

• BASE experiment successfully installed

• Captured and prepared first single antiproton

CERN Mainz
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