HVP CONTRIBUTION TO MUON (G-2) AND RECENT RESULTS FROM VEPP-2000

Logashenko Ivan

Budker Institute of Nuclear Physics Novosibirsk State University

Fundamental Constants Meeting 2015

- QED: Kinoshita et al., 2012: up to 5 loops (12672 diagrams). 0.7 ppb
- EW: 2 loops, now Higgs mass is known. 9 ppb
- Hadronic

LBL: model-dependent calculations; improvement is expected from lattice calculations

HVP: the value is based on the hadronic cross-section e^+e^- data; there are effort to get it via lattice calculations.

New experiment at FNAL: 140 ppb

The lowest-order hadronic contribution

The hadronic contribution is calculated by integrating experimental cross-section $\sigma(e^+e^- \rightarrow hadrons)$.

Weighting function $\sim 1/s$, therefore lower energies contribute the most.

Starting from $\sqrt{s} \sim 2 \ GeV$ the pQCD estimation of $\sigma(e^+e^- \rightarrow hadrons)$ is used. At lower energies only the experimental data are used.

Many sources of data:

- Novosibirsk: CMD-2 and SND (VEPP-2M), CMD-3 and SND (VEPP-2000)
- Factories: Babar, KLOE

• BES

The diagram to be evaluated:

FCM2015

pQCD not useful. Use the dispersion relation and the optical theorem.

Inclusive vs exclusive measurements

 measure each final state separately and calculate the sum

VEPP-2M, VEPP-2000, Babar, KLOE

Inclusive approach:

 select events with any hadron(s) in the final state

BES, KEDR (now)

Inclusive measurement at BES

There is ongoing R measurement with KEDR detector at VEPP-4M (Novosibirsk)

ISR approach

New approach to measurement of the hadronic cross-sections was fully developed over last decade: ISR (Initial State Radiation), mainly by BaBar and KLOE.

$e^+e^- \rightarrow \pi^+\pi^-$ and the hadronic contribution

In units of hadronic contribution:

 $\delta a_{\mu}^{HVP} = 0.6\%$

 $\Delta a_{\mu}(\exp - \text{theory}) \approx 4.0\% \pm 1.1\%$

Estimated accuracy of Fermilab experiment

 $\delta a_{\mu} = 0.25\%$

Energy range $\sqrt{s} < 2$ GeV contribute >90% of the a_{μ}^{HVP} value

 $e^+e^- \rightarrow \pi^+\pi^-$ alone contribute 73% of the value and 0.45% out of 0.6% of the error

VEPP-2000 goal: measure $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$ with systematic accuracy of ~0.3% and small statistical errors

$$a_{\mu}^{ ext{had,LO}} = rac{m_{\mu}^2}{12\pi^3} \int_{s_{ ext{th}}}^{\infty} ds \; rac{1}{s} \hat{K}(s) \sigma_{ ext{had}}(s)$$

Contribution to the value and error of $a_{\mu}^{had,LO}$ from different energy ranges

Do existing data agree?

Cross section $e^+e^- o \pi^+\pi^-$

- In integral, there is reasonable agreement between existing data sets
- But there are local disagreements well beyond claimed syst.errors

VEPP-2000 and the world

VEPP-2000: direct exclusive measurement of $\sigma(e^+e^- \rightarrow hadrons)$ World-best luminosity below 2 GeV (1 GeV excluded)

There was VEPP-2M

Energy range: 0.36 - 1.4 GeVLuminosity up to $5*10^{30} \text{ 1/cm}^2\text{s}$

Cross-section measurements at VEPP-2M

Hadronic cross-section measurements with precision from <1% to $\sim5\%$

From VEPP-2M to VEPP-2000

Main VEPP-2000 advantages:

- maximum energy up to 2 GeV
- higher luminosity

- 2001 VEPP-2M decommissioned
- 2010 first engineering run at VEPP-2000 collider with 2 new detectors: CMD-3 and SND

VEPP-2000 (2010-2013)

Maximum c.m. energy is 2 GeV, project luminosity is $L = 10^{32} 1/cm^2 s$ at $\sqrt{s} = 2$ GeV Unique optics, "round beams", allows to reach higher luminosity Experiments with two detectors, CMD-3 and SND, started by the end of 2010

14

Energy measurement

Starting from 2012, energy is monitored continuously using compton backscattering

M.N. Achasov et al. arXiv:1211.0103v1 [physics.acc-ph] 1 Nov 2012

Detector CMD-3

Advantages compared to CMD-2:

- new drift chamber with two times better resolution, higher B field better tracking better momentum resolution
- thicker barrel calorimeter $(8.3X_0 \rightarrow 13.4 X_0)$ better particle separation
- LXe calorimeter measurement of conversion point for γ's measurement of shower profile
- TOF system particle id (mainly *p*, *n*)

Detector SND

- 1 beam pipe
- 2 tracking system
- 3 aerogel
- 4 Nal(TI) crystals
- 5 phototriodes
- 6 muon absorber
- 7–9 muon detector
- 10 focusing solenoid

Advantages compared to previous SND:

- new system Cherenkov counter (n=1.05, 1.13)
 - e/π separation E<450 MeV
 - π/K separation E<1 GeV
- new drift chamber
 - better tracking
 - better determination of solid angle

Collected luminosity

Currently the luminosity is limited by a deficit of positrons (from E > 650 MeV) and limited energy of the booster (from E > 825 MeV).

After upgrade (ongoing) we expect luminosity increase by up to factor 10 at maximum energy.

About 60 pb-1 c	collected per detector
ω(782)	8.3 1/pb

$2E < 1 \text{ GeV} (\text{except } \omega)$	9.4 1/pb
$\varphi(1019)$	8.4 1/pb
2E > 1.04 GeV	34.5 1/pb

VEPP-2000 after upgrade (2015-)

Physics program

- 1. Precision measurement of $R = \sigma(e^+e^- \rightarrow hadrons) / \sigma(e^+e^- \rightarrow \mu^+\mu^-)$ exclusive approach, up to <1% for major modes
- 2. Study of hadronic final states:

 $e^+e^- \rightarrow 2h, 3h, 4h, \dots$ $h = \pi, K, \eta$

3. Study of vector mesons and theirs excitations:

ρ', ρ'', ω', φ', ...

- 4. Comparison of cross-sections $e^+e^- \rightarrow hadrons$ (T = 1) with spectral functions of τ -decays
- 5. Study of nucleon electromagnetic formfactor at threshold

$$e^+e^- \rightarrow p\bar{p}$$
, $n\bar{n}$

- 6. Measurement of the cross-sections using ISR
- 7. Study of higher order QED processes

Overall, we plan to collect $0.5 \div 1$ 1/fb

$e^+e^- \rightarrow \pi^+\pi^-$ cross section

1. Select final state with 2 back-to-back charged particles

Cuts: $p_{avr}, \Delta p, \Delta \Theta, \Delta \varphi$ Fiducial volume: $\Theta_0 \le \Theta_{avr} \le (\pi - \Theta_0), \qquad \Theta_0 = 0.9 \dots 1.1$

- 2. Identify e^+e^- , $\pi^+\pi^-$, $\mu^+\mu^-$ and background
- 3. Use "master" formula:

$$|F_{\pi}|^{2} = \frac{N_{\pi\pi}}{N_{ee}} \frac{\sigma_{ee}^{B} (1 + \delta_{ee}) \varepsilon_{ee}}{\sigma_{\pi\pi}^{B} (1 + \delta_{\pi\pi}) \varepsilon_{\pi\pi}}$$
$$\sigma(e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}) = \frac{\pi\alpha^{2}}{3s} \left(1 - \frac{4m_{\pi}^{2}}{s}\right)^{3/2} |F_{\pi}|^{2}$$

$e^+e^- \rightarrow \pi^+\pi^-$: e, μ, π separation

$e^+e^- \rightarrow \pi^+\pi^-$: VERY preliminary results

$e^+e^- \rightarrow \pi^+\pi^-$: statistics and systematics

FCM2015

Main sources of systematics:

- $e/\mu/\pi$ separation 0.2% multiple ways to get detector response from data itself
- fiducial volume 0.1%
 - 2 independent systems, which can be used to determine fiducial volume
- beam energy 0.1% constant monitoring with Compton backscattering
- radiative corrections 0.1% proof from data

Many systematic studies rely on high statistics

Expected statistical error for 2013 data

25

 $e^+e^- \rightarrow \pi^+\pi^-\gamma\gamma \quad (\gamma\gamma=\pi^0,\eta)$

Preliminary results from SND, using about 50% of available data. Estimated systematic error ~5%.

There is ongoing analysis to measure 3π cross section below φ

 $e^+e^- \rightarrow 4\pi$

Need to measure these channels to few %.

The dominant source of systematic error is the model uncertainty (evaluation of the detector acceptance). High statistics allows for more accurate study of the dynamics.

 $e^+e^- \rightarrow K^+K^-\pi^+\pi^-$

Many intermediate states: $K^*K\pi$, ρKK , $\varphi \pi\pi$, K^*K^* , ...

29

Dominated by intermediate ω and η ω and η are observed in several final states, e.g. $\eta \rightarrow 3\pi$ and $\eta \rightarrow 2\gamma$ Expected systematic is 10%

 $e^+e^- \rightarrow 6\pi$

Systematic error is 6%, main source is model dependence. High statistics will help to reduce this error.

Preliminary studies of dynamics of $e^+e^- \rightarrow 3(\pi^+\pi^-)$:

- Main production mode: $\rho(770) + 4\pi$ (phase space or $f_0(1370)$)
- Hint of energy dependent dynamics in 1.7-1.9 GeV energy range

Conclusion

- In 2011-2013 CMD-3 and SND have collected 60-70 1/pb per detector in the whole energy range 0.32 ≤ √s ≤ 2.0 GeV, available at VEPP-2000. Collected integral is similar to the total integral available before.
- Data analysis of many inclusive modes of $e^+e^- \rightarrow hadrons$ is in progress. First results ($\omega \pi^0$, 6π , $\eta\gamma$, η') have been published.
- After VEPP-2000 upgrade (scheduled to be finished in 2015) we plan to resume data taking with the ultimate goal of 1 1/fb
- We expect to produce new precise measurements of hadron production R(s), to improve the precision of the hadronic contribution to muon (g-2)