THEORY OF THE LAMB SHIFT IN MUONIC HYDROGEN

Savely Karshenboim

Max-Planck-Institut für Quantenoptik (Garching)

Pulkovo Observatory (ΓΑΟ PAH) (St. Petersburg)

8

MAX-PLANCK-INSTITUTE OF QUANTUM OPTICS GARCHING

OUTLINE

- Level structure
- o QED
 - Unperturbed energy levels
 - Specific QED
 - Re-scaled QED
 - Proton-line QED
 - Hadronic vacuum polarization

- Proton structure
 - Leading term
 - External field
 - Two-photon exchange
 - Recoil proton-size
 - Proton polarizability
- Comparison of theory and experiment
 - Proton radius

OUTLINE

• Level structure

• Proton structure

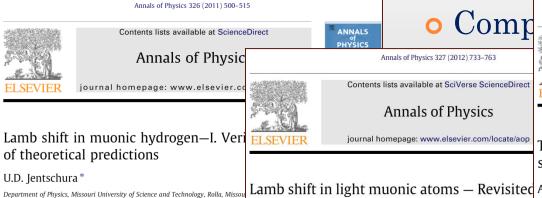
• Leading term

Michael I. Eides Howard Grotch Valery A. Shelyuto

PHYSICAL REVIEW A

VOLUME 53, NUMBER 4

Theory of the Lamb shift in muonic hydrogen


Krzysztof Pachucki* Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straβe 1, 85748 Garching, Germany (Received 28 August 1995)

Specific QED

National Institute of Standards and Technology, Gaithersburg, Maryland, MD 2089

Re-scaled QED

Theory of Light Hydrogenic **Bound States**

E. Borie *

D-76344 Eggenstein-Leopoldshafen, Germany

Karlsruhe Institute of Technology, Institut für Hochleistungsimpuls and Mikrowellentechnik (IHM)

Annals of Physics 331 (2013) 127-145 Contents lists available at SciVerse ScienceDirect ANNALS PHYSICS Annals of Physics journal homepage: www.elsevier.com/locate/aop

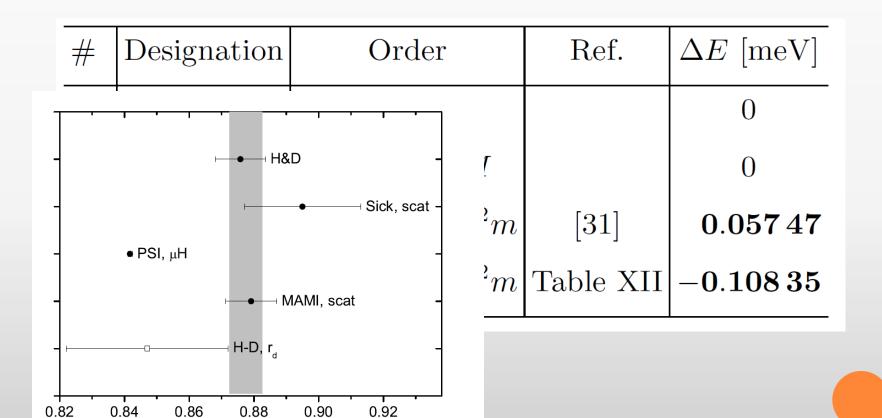
Theory of the 2S–2P Lamb shift and 2S hyperfine splitting in muonic hydrogen

Lamb shift in light muonic atoms — Revisited Aldo Antognini a.*, Franz Kottmann a, François Biraben b, Paul Indelicato b, François Nez^b, Randolf Pohl^c

a Institute for Particle Physics, ETH Zurich, 8093 Zurich, Switzerland

^b Laboratoire Kastler Brossel, École Normale Supérieure, CNRS and Université P. et M. Curie, 75252 Paris, CEDEX 05, France ^c Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany

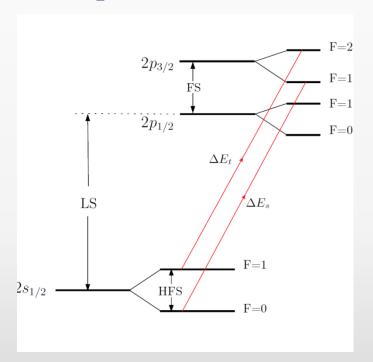
• Effective-Dirac-equation approach


$$E = m_r(f_D - 1) - \frac{m_r^2}{2(M+m)} (f_D - 1)^2$$

Breit-Hamiltonian approach

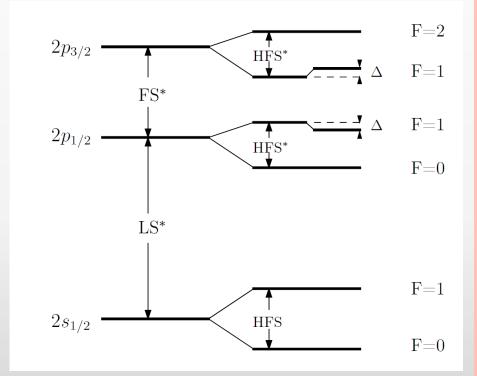
$$\Delta E_{\rm BG}(nl) = \frac{(Z\alpha)^4 m_r^3}{2n^3 M^2} \left(\frac{1}{j+1/2} - \frac{2}{3} \right) (1 - \delta_{l0})$$

#	Designation	Order	Ref.	$\Delta E \text{ [meV]}$
0.1	Rel	$(Z\alpha)^{4+}m$		0
0.2	Rel-Rec*	$(Z\alpha)^4 m^2/M$		0
0.3	BG^*	$(Z\alpha)^4 (m/M)^2 m$	[31]	0.05747
0.4	$\mathrm{BP}^{*\dagger}$	$(Z\alpha)^4 (m/M)^2 m$	Table XII	-0.10835


 $R_{_{D}}$ [fm]

#	Designation	Order	Ref.	$\Delta E \text{ [meV]}$
0.1	Rel	$(Z\alpha)^{4+}m$		0
0.2	Rel-Rec*	$(Z\alpha)^4 m^2/M$		0
0.3	BG^*	$(Z\alpha)^4 (m/M)^2 m$	[31]	0.05747
0.4	$\mathrm{BP}^{*\dagger}$	$(Z\alpha)^4 (m/M)^2 m$	Table XII	-0.10835

LEVELS STRUCTURE


Experiment

Proton Structure from the Measurement of 2S-2P Transition Frequencies of Muonic Hydrogen

Aldo Antognini, ^{1,2,4} François Nez, ³ Karsten Schuhmann, ^{2,4} Fernando D. Amaro, ⁵ François Biraben, ³ João M. R. Cardoso, ⁵ Daniel S. Covita, ^{5,6} Andreas Dax, ⁷ Satish Dhawan Marc Diepold, ⁷ Luis M. P. Fernandes, ⁵ Andrea Giesen, ^{4,6} Andrea L. Gouvea, ⁵ Thomas Graf, ⁷ Theodor W. Hänsch, ^{1,6} Paul Indelicato, ⁵ Lucile Julien, ⁷ Cheng-Yang Kao, ^{1,0} Paul Knowles, ⁷ Franz Kottmann, ² Eric-Olivier Le Bigot, ³ Yi-Wei Liu, ^{1,0} José A. M. Lopes, ⁵ Livia Ludhova, ^{1,1} Cristina M. B. Monteiro, ⁵ Françoise Mulhauser, ^{1,1} Tobias Nebel, ¹ Paul Rabinowitz, ^{1,2} Joaquim M. F. dos Santos, ⁵ Lukas A. Schaller, ^{1,2} Catherine Schwob, ⁵ David Taqqu, ^{1,3} João F. C. A. Veloso, ⁶ Jan Vogelsang, ⁸ Randolf Pohl¹

Level structure

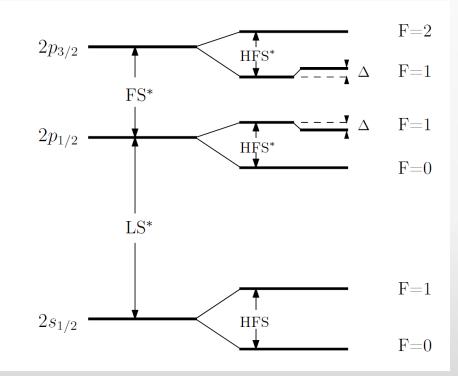
PHYSICAL REVIEW

VOLUME 163, NUMBER 1

5 NOVEMBER 1967

Precise Theory of the Zeeman Spectrum for Atomic Hydrogen and Deuterium and the Lamb Shift*

STANLEY J. BRODSKY AND RONALD G. PARSONS†
Stanford Linear Accelerator Center, Stanford University, Stanford, California


UNPERTURBED ENERGY LEVELS: BRODSKY-PARSONS TERM

HFS mixing

$$\langle 2p_{1/2}(F=1)|H_{HFS}|2p_{3/2}(F=1)\rangle \neq 0$$

 $\Delta \simeq 0.145 \text{ meV}$

Level structure

PHYSICAL REVIEW

VOLUME 163, NUMBER 1

5 NOVEMBER 1967

Precise Theory of the Zeeman Spectrum for Atomic Hydrogen and Deuterium and the Lamb Shift*

STANLEY J. BRODSKY AND RONALD G. PARSONS†
Stanford Linear Accelerator Center, Stanford University, Stanford, California

PHYSICAL REVIEW A

VOLUME 53, NUMBER 4

Theory of the Lamb shift in muonic hydrogen

Krzysztof Pachucki*

Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straβe 1, 85748 Garching, Germany (Received 28 August 1995)

UNPERTURBED ENERGY LEVELS: BRODSKY-PARSONS TERM

HFS mixing

$$\langle 2p_{1/2}(F=1)|H_{HFS}|2p_{3/2}(F=1)\rangle \neq 0$$

• We consider

• Level structure

$$\Delta E_{\rm L}(2p_{1/2} - 2s) \equiv \Delta E(2p_{1/2}) - \Delta E(2s)$$

$$\Delta E(2p_{1/2}) \equiv \frac{3}{4} \Delta E(2p_{1/2}(F=1)) + \frac{1}{4} \Delta E(2p_{1/2}(F=0))^{5}$$

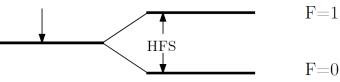
PHYSICAL REVIEW

VOLUME 163. NUMBER 1

NOVEMBER 1967

Precise Theory of the Zeeman Spectrum for Atomic Hydrogen and Deuterium and the Lamb Shift*

STANLEY J. BRODSKY AND RONALD G. PARSONS†


Stanford Linear Accelerator Center, Stanford University, Stanford, California

ISSN 1063-7788, Physics of Atomic Nuclei, 2008, Vol. 71, No. 1, pp. 125-135. © Pleiades Publishing, Ltd., 2008.

ELEMENTARY PARTICLES AND FIELDS

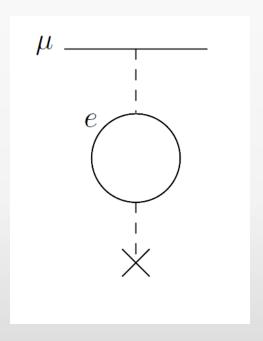
Fine and Hyperfine Structure of $P ext{-Wave Levels}$ in Muonic Hydrogen

A. P. Martynenko*
Samara State University, ul. Akademika Pavlova I, Samara, 443011 Russia

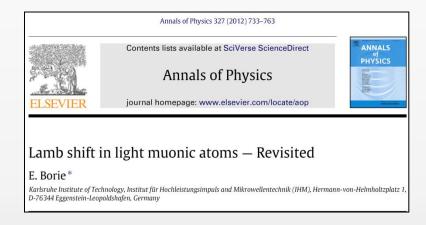
PHYSICAL REVIEW A

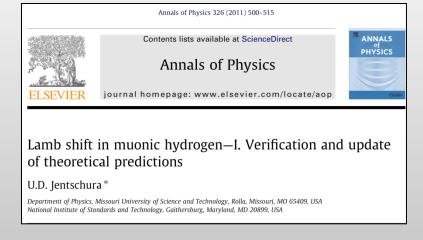
VOLUME 53, NUMBER 4

Theory of the Lamb shift in muonic hydrogen

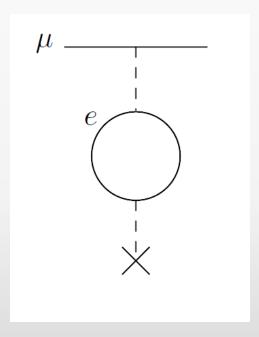

Krzysztof Pachucki*

Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straβe 1, 85748 Garching, Germany (Received 28 August 1995)

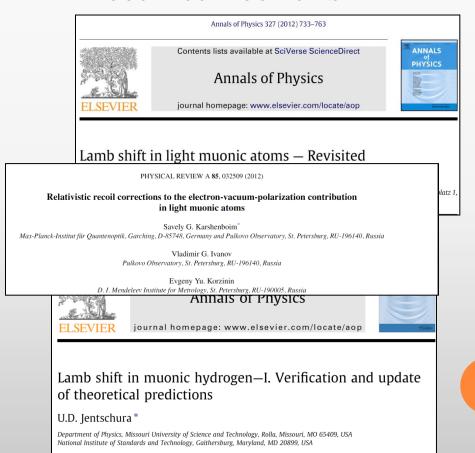

#	Designation	Order	Ref.	$\Delta E \text{ [meV]}$
0.1	Rel	$(Z\alpha)^{4+}m$		0
0.2	$Rel-Rec^*$	$(Z\alpha)^4 m^2/M$		0
0.3	BG^*	$(Z\alpha)^4 (m/M)^2 m$	[31]	0.05747
0.4	$\mathrm{BP}^{*\dagger}$	$(Z\alpha)^4 (m/M)^2 m$	Table XII	-0.10835

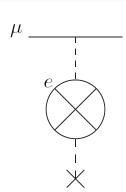

#	Designation	Order	Ref.	$\Delta E \text{ [meV]}$
1.1	eVP1 (NR)*	$\alpha(Z\alpha)^2m$		205.00736
1.2	eVP1 (Rel)	$\alpha(Z\alpha)^4m$		0.02084
1.3	eVP1 (Rel-Rec)*	$\alpha (Z\alpha)^4 \frac{m^2}{M}$	[25, 34]	-0.00208
2	$eVP2 (NR)^*$	$\alpha^2 (Z\alpha)^2 m$	[21, 50]	$\boldsymbol{1.65885}$
3	$eVP3 (NR)^*$	$\alpha^3 (Z\alpha)^2 m$	[51, 52]	0.00752
4	${ m LbL^{*\dagger}}$	$\alpha^5 m$	Table III	-0.00089(2)
5	eVP+SE	$\alpha^2 (Z\alpha)^4 m$	[53]	-0.00254
6	SE[eVP]	$\alpha^2 (Z\alpha)^4 m$	[26, 54]	-0.00152

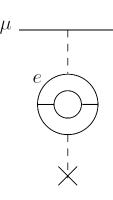
• The leading term

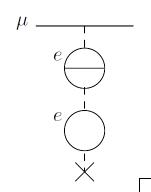


• + relativistic and recoil corrections




• The leading term




• + relativistic and recoil corrections

SPECIFIC QED FOR MUONIC HYDROGEN: EVP (3)

RAPID COMMUNIC

PHYSICAL REVIEW A 81, 060501(R) (2010)

Nonrelativistic contributions of order $\alpha^5 m_\mu c^2$ to the Lamb shift in muonic hydrogen and deuterium, and in the muonic helium ion

S. G. Karshenboim

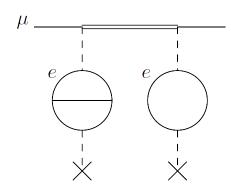
D. I. Mendeleev Institute for Metrology, St. Petersburg RU-190005, Russia and Max-Planck-Institut für Quantenoptik, Garching D-85748, Germany

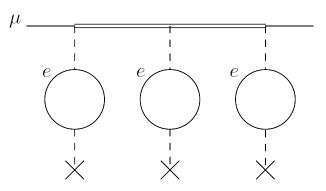
V. G. Ivanov

Pulkovo Observatory, St. Petersburg RU-196140, Russia and D. I. Mendeleev Institute for Metrology, St. Petersburg RU-190005, Russia

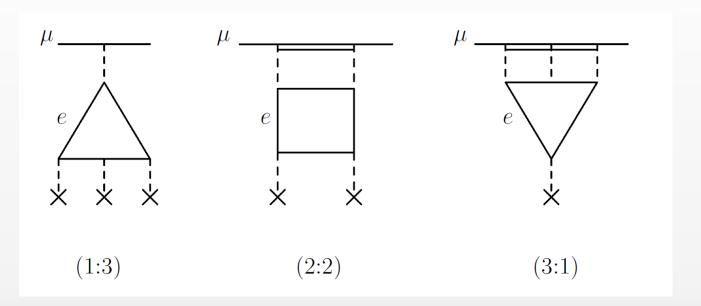
E. Yu. Korzinin and V. A. Shelyuto

D. I. Mendeleev Institute for Metrology, St. Petersburg RU-190005, Russia


PRL 103, 079901 (2009)


PHYSICAL REVIEW LETTERS

week o


Erratum: Sixth-Order Vacuum-Polarization Contribution to the Lamb Shift of Muonic Hydrogen [Phys. Rev. Lett. 82, 3240 (1999)]

T. Kinoshita and M. Nio

SPECIFIC QED FOR MUONIC HYDROGEN: LIGHT-BY-LIGHT

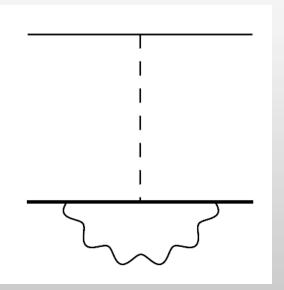
ISSN 0021-3640, JETP Letters, 2010, Vol. 92, No. 1, pp. 8–14. © Pleiades Publishing, Inc., 2010.
Original Russian Text © S.G. Karshenboim, E.Yu. Korzinin, V.G. Ivanov, V.A. Shelyuto, 2010, published in Pis'ma v Zhurnal Eksperimental noi i Teoreticheskoi Fiziki, 2010, Vol. 92, No. 1, pp. 9–15.

Contribution of Light-by-Light Scattering to Energy Levels of Light Muonic Atoms[¶]

S. G. Karshenboim^{a, b}, E. Yu. Korzinin^a, V. G. Ivanov^{a, c}, and V. A. Shelyuto^a

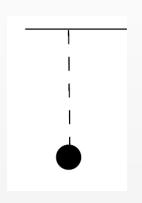
- ^a Mendeleev Institute for Metrology, St. Petersburg, 190005 Russia
- ^b Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
 - e-mail: s.g.karshenboim@vniim.ru
- ^c Central Astronomical Observatory of the Russian Academy of Sciences at Pulkovo, St. Petersburg, 196140 Russia

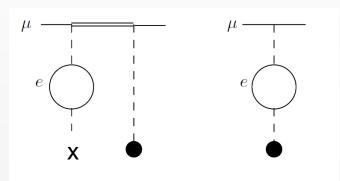
#	Designation	Order	Ref.	$\Delta E \; [\mathrm{meV}]$
1.1	eVP1 (NR)*	$\alpha(Z\alpha)^2m$		205.00736
1.2	eVP1 (Rel)	$\alpha(Z\alpha)^4m$		0.02084
1.3	eVP1 (Rel-Rec)*	$\alpha(Z\alpha)^4 \frac{m^2}{M}$	[25, 34]	-0.00208
2	$eVP2 (NR)^*$	$\alpha^2 (Z\alpha)^2 m$	[21, 50]	1.65885
3	$eVP3 (NR)^*$	$\alpha^3 (Z\alpha)^2 m$	[51, 52]	0.00752
4	$\mathrm{LbL^{*}}^{\dagger}$	$\alpha^5 m$	Table III	-0.00089(2)
5	eVP+SE	$\alpha^2 (Z\alpha)^4 m$	[53]	-0.00254
6	SE[eVP]	$\alpha^2 (Z\alpha)^4 m$	[26, 54]	-0.00152

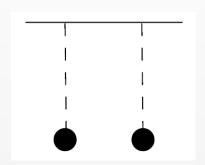

RE-SCALED HYDROGENIC THEORY

#	Designation	Order	$\Delta E \text{ [meV]}$
7.1	QED (Rad)*	$\alpha(Z\alpha)^4m$	-0.66345
7.2	QED (Rad)	$\alpha (Z\alpha)^5 m$	-0.00443
7.3.	QED (Rad-Rec)	$\alpha (Z\alpha)^5 \frac{m^2}{M}$	0.00019
8	QED (Rec)*	$(Z\alpha)^5 m^2/M$	-0.04497

PROTON-LINE QED

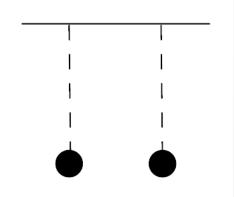

- Infrared divergence in the radius
- Finite corrections to the energy levels


$$\Delta R_p^2 = \frac{\alpha}{\pi} \frac{1}{m_p^2} \ln \left(\frac{m_p^2}{\lambda^2} \right)$$



$$\Delta E_{\text{pQED}}(nl) = \frac{4(Z^{2}\alpha)(Z\alpha)^{4}}{\pi n^{3}} \frac{m_{r}^{3}}{M^{2}} \times \left\{ \left[\frac{1}{3} \ln \frac{M}{(Z\alpha)^{2} m_{r}} + \frac{11}{72} \right] \delta_{l0} - \frac{1}{3} \ln k_{0}(nl) \right\},$$

EXTERNAL-FIELD PROTON-SIZE CONTRIBUTIONS



#	Designation	Order	Ref.	$\Delta E \; [\mathrm{meV}]$	
				Value	Estimation
10	PS (NR)	$(Z\alpha)^4m$		$-5.1974\;r_{p}^{2}$	-3.7
11	PS (Rel)	$(Z\alpha)^6 m$	[65–67]	$-0.0016 r_p^2 - 0.00004(r_p^2)^2$	-0.0011
12	PS (eVP)	$\alpha(Z\alpha)^4m$	Eq. (15)	$-0.0282 \ r_p^2$	-0.020
13	PS (SE)	$\alpha(Z\alpha)^4m$	[6]	$0.0006 r_p^2$	0.0005
14.1	PS (Fri) term	$(Z\alpha)^5 m$	[69]	$-0.0251(35) + 0.06244 r_p^2$	0.019

EXTERNAL-FIELD PROTON-SIZE CONTRIBUTION: PROBLEM

• Friar term

$$E(2s_{1/2}) = -\frac{2(Z\alpha)^5 m_r^4}{\pi} I_{Fr} ,$$

$$I_{Fr} = \frac{\pi}{48} \int d^3r \, d^3r' \rho_E(\mathbf{r}) \rho_E(\mathbf{r}') |\mathbf{r} - \mathbf{r}'|^3$$

$$= \frac{\pi}{48} \langle r^3 \rangle_2 ,$$

$$I_{\rm Fr} = \int_0^\infty \frac{dq}{q^4} \left[\left(G_E(q^2) \right)^2 - 1 - 2G_E'(0) \, q^2 \right]$$

Volume 80B, number 3

PHYSICS LETTERS

FINITE-SIZE CORRECTIONS TO THE ENERGY LEVELS OF LIGHT MUONIC ATOMS

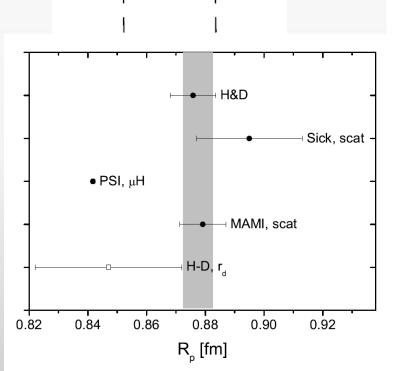
J.L. FRIAR

Theoretical Division, Los Alamos Scientific Laboratory, Los Alamos, NM 87545, USA

PHYSICAL REVIEW A

VOLUME 53, NUMBER 4

Theory of the Lamb shift in muonic hydrogen


Krzysztof Pachucki*

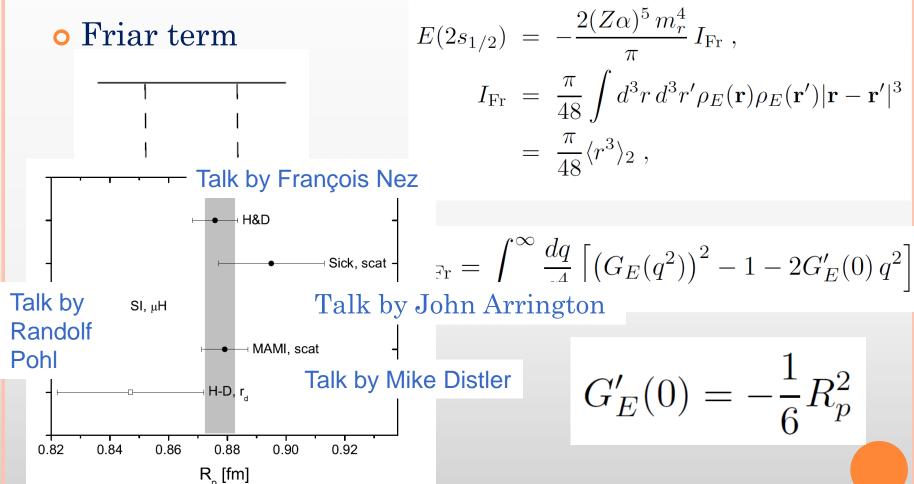
Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany (Received 28 August 1995)

$$G_E'(0) = -\frac{1}{6}R_p^2$$

EXTERNAL-FIELD PROTON-SIZE CONTRIBUTION: PROBLEM

• Friar term

$$E(2s_{1/2}) = -\frac{2(Z\alpha)^5 m_r^4}{\pi} I_{Fr} ,$$


$$I_{Fr} = \frac{\pi}{48} \int d^3r \, d^3r' \rho_E(\mathbf{r}) \rho_E(\mathbf{r}') |\mathbf{r} - \mathbf{r}'|^3$$

$$= \frac{\pi}{48} \langle r^3 \rangle_2 ,$$

$$F_{\rm r} = \int_0^\infty \frac{dq}{q^4} \left[\left(G_E(q^2) \right)^2 - 1 - 2G_E'(0) \, q^2 \right]$$

$$G_E'(0) = -\frac{1}{6}R_p^2$$

EXTERNAL-FIELD PROTON-SIZE **CONTRIBUTION: PROBLEM**

$$G_E'(0) = -\frac{1}{6}R_p^2$$

EXTERNAL-FIELD PROTON-SIZE CONTRIBUTION: METHOD

$$I = \int_0^\infty dq... \equiv I_{<} + I_{>} \equiv \int_0^{q_0} dq... + \int_{q_0}^\infty dq...$$

27 January 1997

PHYSICS LET

Physics Letters A 225 (1997) 97-106

Nuclear structure-dependent radiative corrections to the hydrogen hyperfine splitting

Savely G. Karshenboim¹

D.I. Mendeleev Institute for Metrology (VNIIM), St. Petersburg 198005, Russian Federation

PHYSICAL REVIEW D 90, 053012 (2014)

Self-consistent value of the electric radius of the proton from the Lamb shift in muonic hydrogen

Savely G. Karshenboim

Max-Planck-Institut für Quantenoptik, Garching 85748, Germany and Pulkovo Observatory, St. Petersburg 196140, Russia

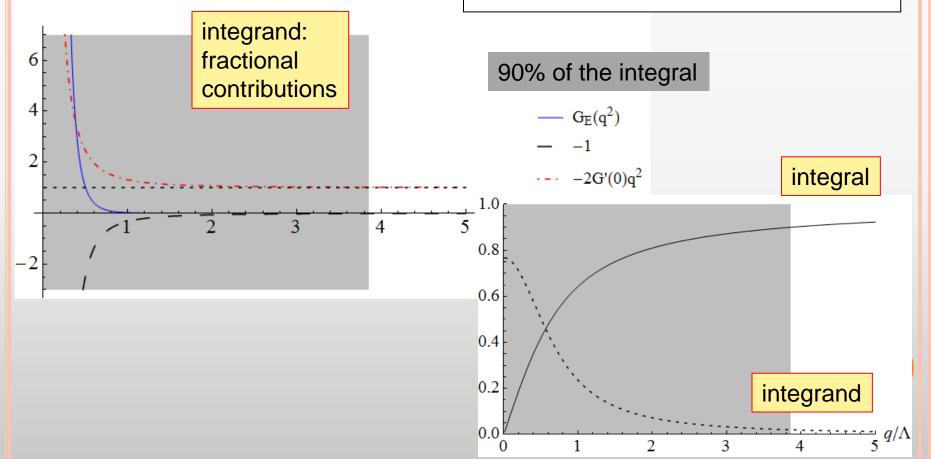
The recoil correction to the proton-finite-size contribution to the Lamb shift in muonic hydrogen

Savely G. Karshenboim*
Max-Planck-Institut für Quantenoptik, Garching, 85748, Germany and
Pulkovo Observatory, St.Petersburg, 196140, Russia

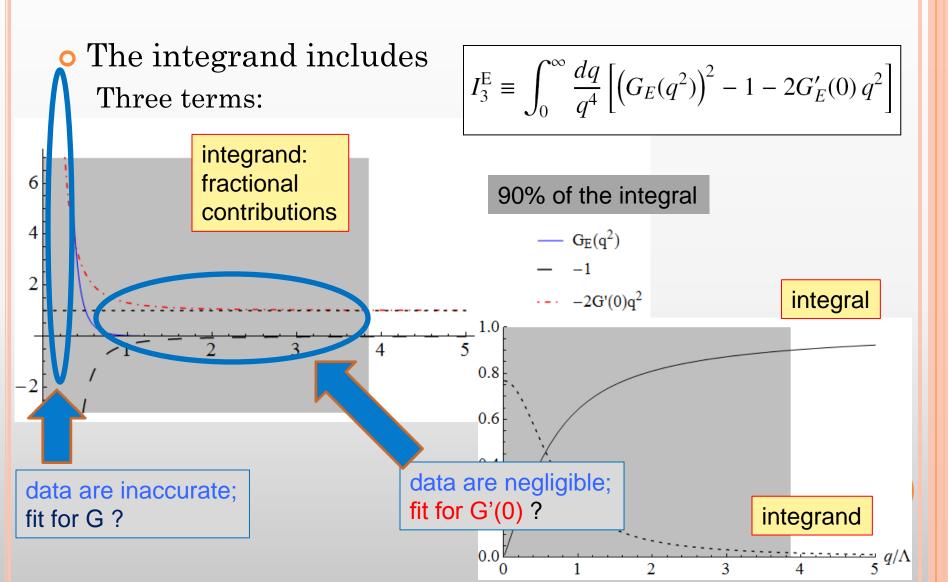
Evgeny Yu. Korzinin and Valery A. Shelyuto D. I. Mendeleev Institute for Metrology, St.Petersburg, 190005, Russia

Vladimir G. Ivanov Pulkovo Observatory, St. Petersburg, 196140, Russia

Poster by Evgeny Korzinin


EXTERNAL-FIELD PROTON-SIZE CONTRIBUTION: RESULTS

#	Designation	Order	Ref.	$\Delta E \; [\mathrm{meV}]$	
				Value	Estimation
10	PS (NR)	$(Z\alpha)^4m$		$-5.1974\;r_{p}^{2}$	-3.7
11	PS (Rel)	$(Z\alpha)^6 m$	[65–67]	$-0.0016 r_p^2 - 0.00004(r_p^2)^2$	-0.0011
12	PS (eVP)	$\alpha (Z\alpha)^4 m$	Eq. (15)	$-0.0282 \ r_p^2$	-0.020
13	PS (SE)	$\alpha (Z\alpha)^4 m$	[6]	$0.0006 \ r_p^2$	0.0005
14.1	PS (Fri) term	$(Z\alpha)^5 m$	[69]	$-0.0251(35) + 0.06244 r_p^2$	0.019


THE LAMB SHIFT IN MUONIC HYDROGEN: CONSISTENCY PROBLEM

• The integrand includes
Three terms:

$$I_3^{\rm E} \equiv \int_0^\infty \frac{dq}{q^4} \left[\left(G_E(q^2) \right)^2 - 1 - 2G_E'(0) \, q^2 \right]$$

THE LAMB SHIFT IN MUONIC HYDROGEN: CONSISTENCY PROBLEM

STRATEGY OF THE EVALUATION

• Split the integral

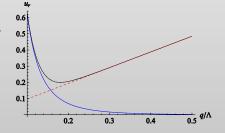
$$I = \int_0^\infty dq... \equiv I_< + I_> \equiv \int_0^{q_0} dq... + \int_{q_0}^\infty dq...$$

Low momentum

$$\left(G_E(q^2)\right)^2 \simeq 1 - \frac{R_E^2}{3}q^2 + C^{\text{dip}}(1 \pm 1)q^4$$

High momentum

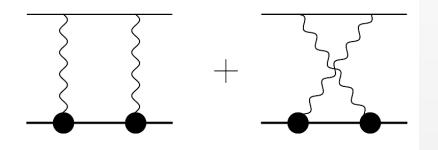
$$I_{3>}^{E} = \int_{q_0}^{\infty} \frac{dq}{q^4} \left(G_E(q^2) \right)^2 - \frac{1}{3q_0^3} + \frac{1}{3} \frac{R_E^2}{q_0}$$

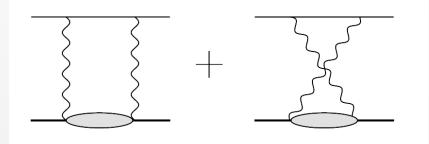

PHYSICAL REVIEW C 83, 015203 (2011)

Realistic transverse images of the proton charge and magnetization densities

Siddharth Venkat, ^{1,2} John Arrington, ³ Gerald A. Miller, ^{2,e} and Xiaohui Zhan ³ ¹Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0002, USA ²Department of Physics, University of Washington, Seattle, Washington 98195-1560, USA ³Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

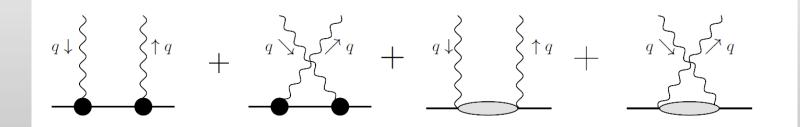
$$\delta I_{3>}^{E} = \frac{1}{3q_0^3} \frac{2\delta G_E(q_0^2)}{G_E(q_0^2)} \left(G_{\text{dip}}(q_0^2) \right)^2$$


Minimization of the uncertainty



TWO-PHOTON EXCHANGE

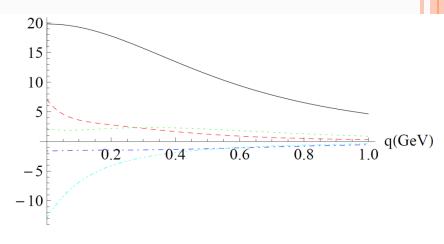
Elastic


Inelastic

Virtual Compton amplitude

Talk by Mike Birse

ELASTIC TPE: RECOIL & FINITE SIZE


$$I_{\text{rec}} = I_{\kappa} + I_{\text{EF}} + I_{\text{M1}} + I_{\text{M2}} ,$$

$$I_{\kappa} = \kappa \int_{0}^{\infty} \frac{dq}{q^{4}} \left\{ (2 + \kappa) f_{M1} + f_{M2} \right\} ,$$

$$I_{\text{EF}} = \int_{0}^{\infty} \frac{dq}{q^{4}} f_{EF}(m, M; q^{2}) \left[\left(G_{E}(q^{2}) \right)^{2} - 1 \right] ,$$

$$I_{\text{M1}} = \int_{0}^{\infty} \frac{dq}{q^{4}} f_{M1} \left[\left(G_{M}(q^{2}) \right)^{2} - (1 + \kappa)^{2} \right] ,$$

$$I_{\text{M2}} = \int_{0}^{\infty} \frac{dq}{q^{4}} f_{M2} \left[G_{M}(q^{2}) G_{E}(q^{2}) - (1 + \kappa) \right] , (21)$$

PHYSICAL REVIEW A

VOLUME 53, NUMBER 4

Theory of the Lamb shift in muonic hydrogen

Krzysztof Pachucki*
Max-Planck-Institut für Quantenopitk, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
(Received 28 August 1995)

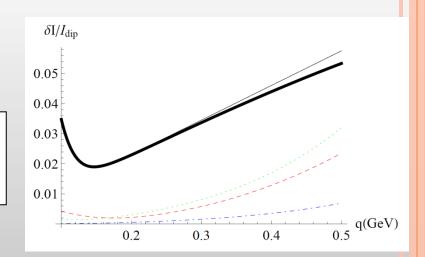
Proton Polarizability and Lamb Shift in the Muonic Hydrogen Atom

A. P. Martynenko and R. N. Faustov¹⁾

Samara State University, ul. Akad. Pavlova 1, Samara, 443011 Russia

PHYSICAL REVIEW A 84, 020102(R) (2011)

Higher-order proton structure corrections to the Lamb shift in muonic hydrogen


Eur. Ph DOI 10. Carl E. Carlson 1,2 and Marc Vanderhaeghen3

¹Helmholtz Institut Mainz, Johannes Gutenberg-Universität, D-55099 Mainz, Germany ²Department of Physics, College of William and Mary, Williamsburg, Virginia 23187, USA ³Institut für Kernphysik, Johannes Gutenberg-Universität, D-55099 Mainz, Germany

Proton polarisability contribution to the Lamb shift in muonic hydrogen at fourth order in chiral perturbation theory

M.C. Birse^a and J.A. McGovern

Theoretical Physics Division, School of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK

ELASTIC TPE: RECOIL & FINITE SIZE

#	Designation	$\Delta E \; [\mathrm{meV}]$		
		Value	Estimation	
14.1	eTPE:Fri	$0.062 r_p^2 - 0.025(4)$	0.019	
14.2	eTPE: κ^*	-0.00305	-0.003	
14.3	eTPE:EF*	$0.00107 r_p^2 + 0.00136(4)$	0.002	
14.4	eTPE:M1*	0.00188(3)	0.002	
14.5	eTPE:M2*	$-0.000016 r_p^2 - 0.00090$	-0.0009	
14	eTPE	$0.064 r_p^2 - 0.026(4)$	0.019	

$$\Delta E_{\rm pol}(nl) = \Delta E_{\rm inel}(nl) + \Delta E_{\rm sub}(nl)$$

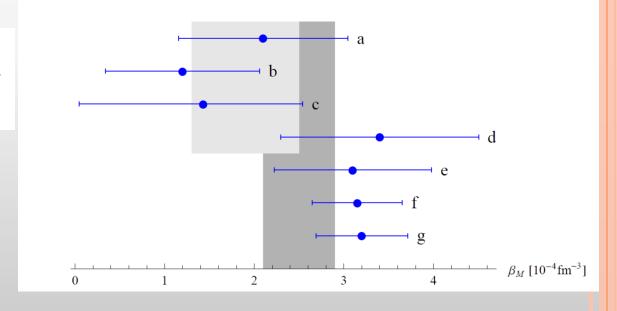
$$\Delta E_{\rm inel}(nl) = -\frac{2\alpha^2}{mM} |\psi_{nl}(0)|^2 \int_0^\infty \frac{dq^2}{q^2} \int_{\nu_{\rm th}}^\infty d\nu \left[\frac{\widetilde{\gamma}_1(\nu, q^2) F_1(\nu, q^2)}{\nu} + \frac{\widetilde{\gamma}_2(\nu, q^2) F_2(\nu, q^2)}{q^2/M} \right] ,$$

$$\Delta E_{\text{inel}}(2p_{1/2} - 2s_{1/2}) = 13.0(0.6) \,\mu\text{eV}$$

PHYSICAL REVIEW A 87, 052501 (2013)

Muonic-hydrogen Lamb shift: Dispersing the nucleon-excitation uncertainty with a finite-energy sum rule

$$\Delta E_{\rm pol}(nl) = \Delta E_{\rm inel}(nl) + \Delta E_{\rm sub}(nl)$$

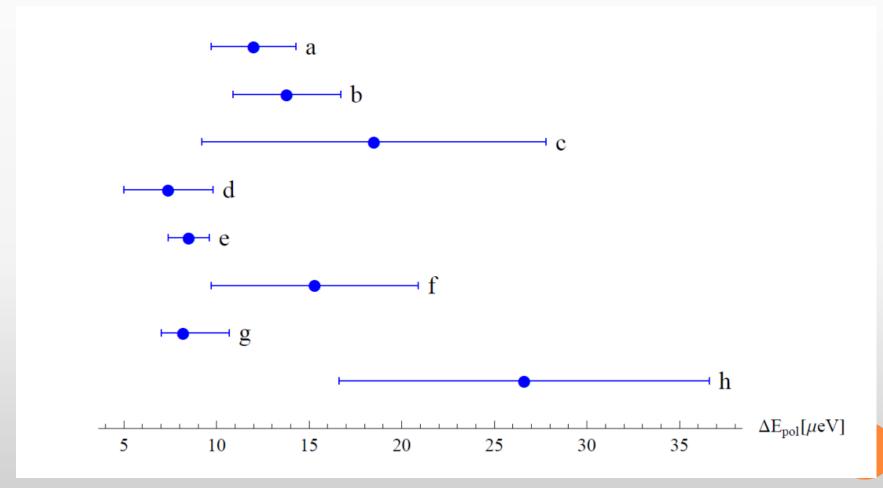

$$\Delta E_{\text{sub}}(nl) = \frac{4\pi\alpha^2}{m} |\psi_{nl}(0)|^2 \int_0^\infty \frac{dq^2}{q^2} \frac{\gamma_1(\tau_{\mu})}{\sqrt{\tau_{\ell}}} \overline{T}_1(0, q^2)$$

$$\overline{T}_1(0,0) = \beta_M$$

$$\Delta E_{\rm pol}(nl) = \Delta E_{\rm inel}(nl) + \Delta E_{\rm sub}(nl)$$

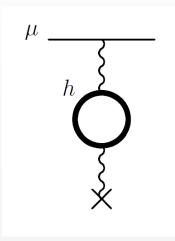
$$\Delta E_{\text{sub}}(nl) = \frac{4\pi\alpha^2}{m} |\psi_{nl}(0)|^2 \int_0^\infty \frac{dq^2}{q^2} \frac{\gamma_1(\tau_\mu)}{\sqrt{\tau_\ell}} \overline{T}_1(0, q^2)$$

$$\overline{T}_1(0,0) = \beta_M$$



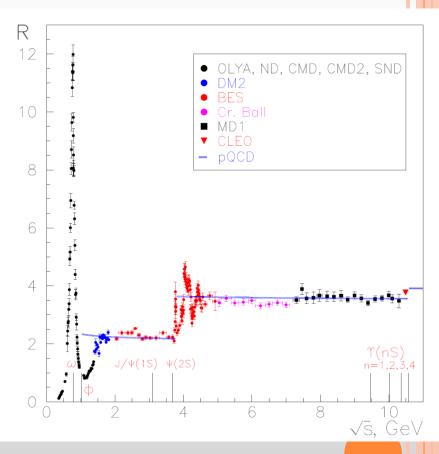
$$\Delta E_{\text{pol}}(nl) = \Delta E_{\text{inel}}(nl) + \Delta E_{\text{sub}}(nl)$$

$$\Delta E_{\text{sub}}(nl) = \frac{4\pi\alpha^2}{m} |\psi_{nl}(0)|^2 \int_0^\infty \frac{dq^2}{q^2} \frac{\gamma_1(\tau_\mu)}{\sqrt{\tau_\ell}} \overline{T}_1(0, q^2)$$



PROTON POLARIZABILITY: OTHER CALCULATIONS

Talk by Mike Birse and Poster by Franziska Hagelstein


HADRONIC VACUUM POLARIZATION

$$\Delta E_{\text{hVP}}(nl) = -4\pi (Z\alpha) \Pi'_{h}(0) |\psi_{nl}(0)|^{2}$$

$$\Pi_{h}(q^{2}) = \frac{\alpha}{\pi} q^{2} \int \frac{ds \, \rho_{h}(s)}{q^{2} + s}.$$

$$\rho_h(s) = \frac{R(s)}{3s}$$

THEORETICAL SUMMARY

#	$\Delta E \text{ [meV]}$	Ref.			
U	Unperturbed quantum mechanics				
0	-0.05088	Table I			
	Specific QED				
1	205.02612	Table II			
2	1.65885	Table II			
3	0.007 52	Table II			
4	-0.00089(2)	Table II			
5	-0.00254	Table II			
6	-0.00152	Table II			
Re-scaled QED					
7	-0.66769	Table IV			
8	-0.04497	Table IV			

	Proton-line QED				
9	-0.01041	Eq. (12)			
	Proton-finite-size				
10	$-5.1974 \; r_p^2$	Table V			
12	$-0.0282 \ r_p^2$	Table V			
13	$0.0006 \ r_p^2$	Table V			
14	$0.06354 r_p^2 - 0.0259(35)$	Table VI			
	Proton polarizability				
15	0.0088(21)	Eq. (31)			
Hadronic VP					
16	0.0106(10)	Eq. (35)			
Total	$205.9067(42) - 5.1620 r_p^2$				

THEORY VS. EXPERIMENT: PROTON CHARGE RADIUS

$$\Delta E(2p_{1/2} - 2s_{1/2}) = [205.9067(42) - 5.1620 r_p^2] \text{ meV}$$

$$\Delta E_L \equiv \Delta E(2p_{1/2} - 2s) = 202.2622(23) \,\text{meV}$$

$$R_p = 0.84025(55) \text{ fm}$$

THEORY VS. EXPERIMENT: PROTON CHARGE RADIUS

$$\Delta E(2p_{1/2} - 2s_{1/2}) = [205.9067(42) - 5.1620 r_p^2] \text{ meV}$$

$$\Delta E_L \equiv \Delta E(2p_{1/2} - 2s) = 202.2622(23) \,\text{meV}$$

$$R_p = 0.84025(55) \text{ fm}$$

Proton Structure from the Measurement of 2S-2P Transition Frequencies of Muonic Hydrogen

Aldo Antognini, 1,2* François Nez, 3 Karsten Schuhmann, 2,4 Fernando D. Amaro, 5 François Biraben, 3 João M. R. Cardoso, 5 Daniel S. Covita, 5,6 Andreas Dax, 7 Satish Dhawar Marc Diepold, 1 Luis M. P. Fernandes, 5 Adolf Giesen, 4,8 Andrea L. Gouvea, 5 Thomas Graf, 8 Theodor W. Hänsch, 1,9 Paul Indelicato, 3 Lucile Julien, 3 Cheng-Yang Kao, 10 Paul Knowles, 1 Franz Kottmann, 2 Eric-Olivier Le Bigot, 3 Yi-Wei Liu, 10 José A. M. Lopes, 5 Livia Ludhova, 11 Cristina M. B. Monteiro, 5 Françoise Mulhauser, 11 Tobias Nebel, 1 Paul Rabinowitz, 12 Joaquim M. F. dos Santos, 5 Lukas A. Schaller, 11 Catherine Schwob, 3 David Taqqu, 13 João F. C. A. Veloso, 6 Jan Vogelsang, 1 Randolf Pohl

nd the magnetic radius, $r_{\rm M} = 0.87(6)$ adius, $r_{\rm E} = 0.84087(39)$ femtometer, LO-CODATA value and at 7σ variance

THEORY VS. EXPERIMENT: PROTON CHARGE RADIUS

$$\Delta E(2p_{1/2} - 2s_{1/2}) = [205.9067(42) - 5.1620 r_p^2] \text{ meV}$$

$$\Delta E_L \equiv \Delta E(2p_{1/2} - 2s) = 202.2622(23) \,\text{meV}$$

$$R_p = 0.84025(55) \text{ fm}$$

PHYSICAL REVIEW D 90, 053012 (2014)

Self-consistent value of the electric radius of the proton from the Lamb shift in muonic hydrogen

and Pulkovo Observatory, St. Petersburg 196140, Russia

Savely G. Karshenboim[®]

Max-Planck-Institut für Quantenoptik, Garching 85748, Germany

value of the electric radius of the $R_E \neq 0.84022(56)$ fm.

The results are obtained in cooperation with

- Vladimir Ivanov (Pulkovo Obs)
- Evgeny Korzinin (VNIIM)
- Valery Shelyuto (VNIIM)

I AM GRATEFUL FOR FRUITFUL AND STIMULATING DISCUSSIONS

Jose Manuel Alarcon, Igor Anikin, Aldo Antognini, Andrej Arbuzov, John Arrington, Jan Bernauer, Michael Birse, Edith Borie, Vladimir Braun, Carl Carlson, Victor Chernyak, Michael Distler, Dieter Drechsel, Simon Eidelman, Misha Eides, Ron Gilman, Misha Gorshteyn, Richard Hill, Franz Kottmann, Vadim Lensky, Ina Lorenz, Judith McGovern, Ulf Meissner, Makiko Nio, Krzysztof Pachucki, Vladimir Pascalutsa, Gil Paz, Randolf Pohl, Guy Ron, Akaki Rusetsky, Ingo Sick, Marc Vanderhaeghen