PROGRESS IN THE DETERMINATION OF THE BOLTZMANN CONSTANT WITH DIELECTRIC-CONSTANT GAS THERMOMETRY

C. Gaiser, T.Zandt, B. Fellmuth

PROGRESS IN THE DETERMINATION OF THE BOLTZMANN CONSTANT WITH DIELECTRIC-CONSTANT GAS THERMOMETRY

Dielectric-Constant Gas Thermometry

Previous Results

Improvements and Status

Polarizability of ⁴He

Summary & Outlook

Dielectric-Constant Gas Thermometry (DCGT)

Clausius-Mossotti equation combined with the ideal-gas law:

$$\frac{\varepsilon_{\rm r} - 1}{\varepsilon_{\rm r} + 2} = \frac{p}{kT} \frac{\alpha_0}{3\varepsilon_0}$$

Measuring quantity :

$$\frac{C(p) - C(0)}{C(0)} = \underbrace{\varepsilon_{\rm r} - 1}_{\chi} + \varepsilon_{\rm r} \kappa_{\rm eff} p$$

- ε_0 electric constant
- α_0 atomic polarizability
- $\kappa_{\rm eff}$ effective compressibility
- χ electric susceptibility
- *p* pressure
- T temperature

Main Challenges

Pressure

Change of capacitance ratio

Determination of the Boltzmann constant with DCGT

Determination of the Boltzmann constant with DCGT 2011

² C. Gaiser and B. Fellmuth, *Metrologia*, **49**, L4-L7 (2012)

Determination of the Boltzmann constant with DCGT 2011

Uncertainty budget DCGT 2011 (TPW)

Тур А

Тур В

Component	<i>u</i> (<i>k</i>)/k ·10 ⁶	
Overall weighted mean of A_1 values	6.3	
	10	

Component	<i>u(k)/k</i> ·10 ⁶
Susceptibility measurement (capacitance change)	1.0
Pressure measurement	1.9
Temperature	0.3
Determination of the effective compressibility	5.8
Head correction	0.2
Impurities (measuring gas)	2.4
Surface layers (impurities)	1.0
Polarizability ab initio calculation (theory)	0.2

Combined standard uncertainty: 9.2 ppm

B. Fellmuth et al., Metrologia 48, 382-390 (2011)

Reducing the uncertainty of the effective compressibility

Improvements in RUS measurements (e.g. temperaturedependent measurements)

Refinement of evaluation models (FEM, Monte-Carlo simulation)

Test samples also for the insulation materials (AI_2O_3)

Determination of the thermal expansion coefficient and the molar specific heat capacity

adiabatic \rightarrow isothermal

Resonant ultrasound spectroscopy (RUS):

Reducing the uncertainty of the effective compressibility

FEM calculations of effective compressibility for specific capacitor geometry

→optimization of capacitor design

Switch from stainless steel to tungsten carbide as capacitor material

Result (2013) Composite isothermal compressibility: -9.370 x 10⁻¹³ Pa⁻¹ ($u_{rel} = 0.17\%$)

Reducing the uncertainty of the susceptibility

Careful analysis of the capacitance measuring network (chokes) and switch to low noise cable

Only one cable for the zero detector (increase of the sensitivity by nearly a factor two)

Purity of the measuring gas

99.99999% Helium	Component	Certificate Gas (ppb)	Specification Getter (ppb)	Specification Adsorber (ppb)
(Linde AG)	H ₂	< 30	< 10	< 0.1
	H ₂ O	< 50	< 10	< 0.1
	O ₂	< 30	< 10	< 0.1
Gas purifier (adsorber) (Micro Torr SP70, SAES Pure Gase, Inc.)	CO	< 30	< 10	< 0.1
	CO ₂	< 30	< 10	< 0.1
$\overline{\mathbf{V}}$	N ₂		< 10	
	Hydro-carbons	< 1	< 10	< 0.1
(HP2 Valco Instruments Co. Inc.)	Noble gases			

 \leq

Purity of the measuring gas

Component	Dectection limit (ppb)
H ₂	< 300
H ₂ O	< 20
O ₂	< 10
CO	< 100
CO ₂	< 50
N ₂	< 100
CH ₄	< 20
Ne	< 10
Ar	< 10
Kr	< 10
Xe	< 10

Purity of the measuring gas

99-99999% Helium	0			
(Linde AG)	Component	Mass-Spec and Getter Spec. (ppb)	Sensitivity in He	Uncertainty (ppm)*
			4	0.02
Gas purifier (adsorber)	п ₂	< 10	4	0.02
(Micro Torr SP70, SAES Pure Gase, Inc.)	H ₂ O	< 10	160	0.9
	O ₂	< 10	10	0.06
Helium purifier (getter)	CO ₂	< 50	10	0.3
(HP2, Valco Instruments, Co. Inc.)	N ₂ & CO	< 100	8	0.4
	Ne	< 10	2	0.01
Mass-spectrometry	Ar	< 10	8	0.05
measurements	Kr	< 10	10	0.06
	Хе	< 10	16	0.09
Experiment	Combined uncertainty			1.0
(UHP gas tubing)				
Mass-spectrometry measurements	*(asymmetric rectangular distribution)			

Results 2013 (10 isotherms)

Uncertainty budget DCGT 2013 (TPW)

Тур А

Тур В

Component	<i>u</i> (<i>k</i>)/ <i>k</i> ·10 ⁶
Overall weighted mean of A_1 values	2.6 (6.3)

Component	<i>u</i> (<i>k</i>)/k ·10 ⁶
Susceptibility measurement (capacitance change)	1.0 (1.0)
Pressure measurement	1.9 (1.9)
Temperature	0.3 (0.3)
Determination of the effective compressibility	2.4 (5.8)
Head correction	0.2 (0.2)
Impurities (measuring gas)	1.0 (2.4)
Surface layers (impurities)	0.5 (1.0)
Polarizability ab initio calculation (theory)	0.2 (0.2)

Combined standard uncertainty: 4.3 ppm (9.2 ppm)

B. Fellmuth et al., *Metrologia* **48**, 382-390 (2011), C. Gaiser et al., *Metrologia*, **50**, L7-L11 (2013)

Determination of the Boltzmann constant with DCGT (TPW)

Improved pressure standard

Improved pressure standard

$u_{2013}(p)=1.9 \text{ ppm} \rightarrow u_{2015}(p)=1.0 \text{ ppm}$

T. Zandt et al., *Metrologia*, **Special-issue on** *k* (2015)

Determination of the Boltzmann constant with DCGT (TPW)

Polarizability of ⁴He (Theory)

Polarizability of ⁴He (Experiment)

$$k = \frac{\alpha_0}{3\varepsilon_0 T_{\text{TPW}} \left(\frac{1}{A_1} - \frac{\kappa_{\text{eff}}}{3}\right)} \Rightarrow \alpha_0 = 3\varepsilon_0 T_{\text{TPW}} \left(\frac{1}{A_1} - \frac{\kappa_{\text{eff}}}{3}\right) k$$

• DCGT data (same uncertainty as for *k*-determination)

• Boltzmann constant derived from NIST AGT value (to avoid correlations and discussions on the actual discrepancies (see you on Friday)) $k = 1.38065027 \cdot 10^{-23}$ J/K with $u_r = 1.8$ ppm

$$\alpha_{0 \text{ DCGT}}$$
 = 2.2815120(98) •10⁻⁴¹Cm²/V with u_r = 4.3 ppm

 $A_{1,K_{eff}}$

K

 α_0

Polarizability of ⁴He (Theory ↔ Experiment)

Outlook / Decrease of the uncertainty

Type A

What is next:

DCGT measurements with two different tungsten carbide cylindrical capacitors and test measurements with a 24-ring cross-capacitor Hope:

Extremely stable results→ reduction in the Type A uncertainty. Consistent results for at least two or even three different capacitors

 \rightarrow reduction for $u(\kappa_{eff})$

Type B

Component	u(k)/k ·10 ⁶
Susceptibility measurement (capacitance change)	1.0
Pressure measurement	1.0
Temperature	0.3
Determination of the effective compressibility	2.4
Head correction	0.2
Impurities (measuring gas)	1.0
Surface layers (impurities)	0.5
Polarizability ab initio calculation (theory)	0.2

A new value for k has been determined applying DCGT

- $k_{\text{DCGT}} = 1.3806509 \text{ x } 10^{-23} \text{ J/K}$ with a relative uncertainty of 4.0 ppm.
- 1.5 ppm larger than the 2010 CODATA value.
- Most accurate experimental value for α_0 . In excellent agreement with the ab initio theory.

Improvements compared to 2011

- Improved determination of the effective compressibility $\kappa_{\rm eff}$
- Use of tungsten carbide cylindrical capacitors
- Increase of the signal to noise ratio
- Better dealing with the purity of the measuring gas
- Extended piston gauge calibration.

Thank for your attention!

