

Proton polarisability contribution to the Lamb shift in muonic hydrogen

Mike Birse University of Manchester

Work done in collaboration with Judith McGovern Eur. Phys. J. A **48** (2012) 120

Mike Birse

Proton polarisability contribution to the Lamb shift

Mainz, June 2014

The Lamb shift in muonic hydrogen

Much larger than in electronic hydrogen:

$$\Delta E_L = E(2p_{\frac{1}{2}}) - E(2s_{\frac{1}{2}}) \simeq +0.2 \text{ eV}$$

Dominated by vacuum polarisation

Much more sensitive to proton structure, in particular, its charge radius

$$\Delta E_L^{\rm th} = 206.0668(25) - 5.2275(10) \langle r_E^2 \rangle \, {\rm meV}$$

Results of many years of effort by Borie, Pachucki, Indelicato, Jentschura and others; collated in Antognini et al, Ann Phys **331** (2013) 127

The Lamb shift in muonic hydrogen

Much larger than in electronic hydrogen:

$$\Delta E_L = E(2p_{\frac{1}{2}}) - E(2s_{\frac{1}{2}}) \simeq +0.2 \text{ eV}$$

Dominated by vacuum polarisation

Much more sensitive to proton structure, in particular, its charge radius

$$\Delta E_L^{\rm th} = 206.0668(25) - 5.2275(10) \langle r_E^2 \rangle \, {\rm meV}$$

Results of many years of effort by Borie, Pachucki, Indelicato, Jentschura and others; collated in Antognini et al, Ann Phys **331** (2013) 127 Includes contribution from two-photon exchange

 $\Delta E^{2\gamma} = 33.2 \pm 2.0 \ \mu \text{eV}$

Sensitive to polarisabilities of proton by virtual photons

Two-photon exchange

Integral over $T^{\mu\nu}(\nu, q^2)$ – doubly-virtual Compton amplitude for proton Spin-averaged, forward scattering \rightarrow two independent tensor structures Common choice:

$$T^{\mu\nu} = \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2}\right) T_1(\nu, Q^2) + \frac{1}{M^2} \left(p^{\mu} - \frac{p \cdot q}{q^2} q^{\mu}\right) \left(p^{\nu} - \frac{p \cdot q}{q^2} q^{\nu}\right) T_2(\nu, Q^2)$$

multiplied by scalar functions of $v = p \cdot q/M$ and $Q^2 = -q^2$

Two-photon exchange

Integral over $T^{\mu\nu}(\nu, q^2)$ – doubly-virtual Compton amplitude for proton Spin-averaged, forward scattering \rightarrow two independent tensor structures Common choice:

$$T^{\mu\nu} = \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2}\right) T_1(\nu, Q^2) + \frac{1}{M^2} \left(p^{\mu} - \frac{p \cdot q}{q^2} q^{\mu}\right) \left(p^{\nu} - \frac{p \cdot q}{q^2} q^{\nu}\right) T_2(\nu, Q^2)$$

multiplied by scalar functions of $v = p \cdot q/M$ and $Q^2 = -q^2$

Amplitude contains elastic (Born) and inelastic pieces: $T^{\mu\nu} = T_B^{\mu\nu} + \overline{T}^{\mu\nu}$

- elastic: photons couple independently to proton (no excitation)
- need to remove terms already accounted for in Lamb shift (iterated Coulomb, leading dependence on $\langle r_E^2 \rangle$)
- \bullet inelastic: proton excited \rightarrow polarisation effects

Doubly-virtual Compton scattering

Elastic amplitude from Dirac nucleon with Dirac and Pauli form factors K. Pachucki, Phys. Rev. A **60** (1999) 3593

$$T_1^B(\mathbf{v}, Q^2) = \frac{e^2}{M} \left[\frac{Q^4 \left(F_D(Q^2) + F_P(Q^2) \right)^2}{Q^4 - 4M^2 \mathbf{v}^2} - F_D(Q^2)^2 \right]$$
$$T_2^B(\mathbf{v}, Q^2) = \frac{4e^2 M Q^2}{Q^4 - 4M^2 \mathbf{v}^2} \left[F_D(Q^2)^2 + \frac{Q^2}{4M^2} F_P(Q^2)^2 \right]$$

Other choices have been used: nonpole terms only

But depend on choice of tensor basis (energy-dependent tensors)

cf Walker-Loud et al, Phys Rev Lett 108 (2012) 232301

Low-energy theorems

V²CS not directly measurable, but constrained by LETs Two independent tensors of order q^2 : correspond to polarisabilities α (electric) and β (magnetic) determined from real Compton scattering

$$\overline{T}_1(\mathbf{v}, Q^2) = 4\pi Q^2 \beta + 4\pi v^2 (\alpha + \beta) + O(q^4)$$

$$\overline{T}_2(\mathbf{v}, Q^2) = 4\pi Q^2 (\alpha + \beta) + O(q^4)$$

Low-energy theorems

V²CS not directly measurable, but constrained by LETs Two independent tensors of order q^2 : correspond to polarisabilities α (electric) and β (magnetic) determined from real Compton scattering

$$\overline{T}_1(\mathbf{v}, Q^2) = 4\pi Q^2 \beta + 4\pi v^2 (\alpha + \beta) + O(q^4)$$

$$\overline{T}_2(\mathbf{v}, Q^2) = 4\pi Q^2 (\alpha + \beta) + O(q^4)$$

Other choices for elastic amplitude \rightarrow LETs containing charge radius cf Hill and Paz, Phys Rev Lett **107** (2011) 160402

Just important to use consistent definitions of elastic and inelastic amplitudes Here: all results expressed using Pachucki's choice

Dispersion relations

Information on forward V²CS away from q = 0 from structure functions $F_{1,2}(v, Q^2)$ $F_{1,2}$ well determined from electroproduction experiments eg at JLab

Dispersion relation for \overline{T}_2 converges since $F_2 \sim 1/v$ at high energies

$$\overline{T}_{2}(\mathbf{v}, Q^{2}) = -\int_{\mathbf{v}_{th}^{2}}^{\infty} \mathrm{d}\mathbf{v}^{\prime 2} \, \frac{F_{2}(\mathbf{v}^{\prime}, Q^{2})}{\mathbf{v}^{\prime 2} - \mathbf{v}^{2}}$$

Dispersion relations

Information on forward V²CS away from q = 0 from structure functions $F_{1,2}(v, Q^2)$ $F_{1,2}$ well determined from electroproduction experiments eg at JLab

Dispersion relation for \overline{T}_2 converges since $F_2 \sim 1/v$ at high energies

$$\overline{T}_{2}(\mathbf{v}, Q^{2}) = -\int_{\mathbf{v}_{th}^{2}}^{\infty} \mathrm{d}\mathbf{v}^{\prime 2} \, \frac{F_{2}(\mathbf{v}^{\prime}, Q^{2})}{\mathbf{v}^{\prime 2} - \mathbf{v}^{2}}$$

But $F_1 \sim v$ so need to use subtracted dispersion relation

$$\overline{T}_{1}(\mathbf{v}, Q^{2}) = \overline{T}_{1}(0, Q^{2}) - \nu^{2} \int_{\nu_{th}^{2}}^{\infty} \frac{\mathrm{d}\nu'^{2}}{\nu'^{2}} \frac{F_{1}(\nu', Q^{2})}{\nu'^{2} - \nu^{2}}$$

Dispersion relations

Information on forward V²CS away from q = 0 from structure functions $F_{1,2}(v, Q^2)$ $F_{1,2}$ well determined from electroproduction experiments eg at JLab

Dispersion relation for \overline{T}_2 converges since $F_2 \sim 1/\nu$ at high energies

$$\overline{T}_{2}(\mathbf{v}, Q^{2}) = -\int_{\mathbf{v}_{th}^{2}}^{\infty} \mathrm{d}\mathbf{v}^{\prime 2} \, \frac{F_{2}(\mathbf{v}^{\prime}, Q^{2})}{\mathbf{v}^{\prime 2} - \mathbf{v}^{2}}$$

But $F_1 \sim v$ so need to use subtracted dispersion relation

$$\overline{T}_{1}(\mathbf{v}, Q^{2}) = \overline{T}_{1}(0, Q^{2}) - \nu^{2} \int_{\nu_{th}^{2}}^{\infty} \frac{\mathrm{d}\nu'^{2}}{\nu'^{2}} \frac{F_{1}(\nu', Q^{2})}{\nu'^{2} - \nu^{2}}$$

Problem: subtraction function $\overline{T}_1(0, Q^2)$ not experimentally accessible Satisfies LET: $\overline{T}_1(0, Q^2)/Q^2 \rightarrow 4\pi\beta$ as $Q^2 \rightarrow 0$

Mike Birse

Subtraction term

Define form factor

$$\overline{T}_1(0,Q^2) = 4\pi\beta Q^2 F_\beta(Q^2)$$

Large Q^2 : operator-product expansion, quark counting rules give $F_{\beta}(Q^2) \propto Q^{-4}$

Small Q^2 : use heavy-baryon chiral perturbation theory at 4th order plus leading effect of $\gamma N\Delta$ form factor

• same as for real Compton scattering McGovern et al, Eur Phys J A 49 (2013) 12

- minor modifications for different kinematics
- subtract elastic (Born) contribution calculated to this order
- \bullet relevant LETs satisfied; consistent with value for β

Form factor

Extrapolate to higher Q^2 by matching ChPT form onto dipole

$$F_{eta}(Q^2) \sim rac{1}{(1+Q^2/2M_{eta}^2)^2}$$

Match at $Q^2 = 0
ightarrow M_{eta} = 462$ MeV; at $Q^2 \sim m_{\pi}^2
ightarrow M_{eta} = 510$ MeV

Mike Birse

Proton polarisability contribution to the Lamb shift

Form factor

Extrapolate to higher Q^2 by matching ChPT form onto dipole

$$F_{\beta}(Q^2) \sim rac{1}{(1+Q^2/2M_{\beta}^2)^2}$$

Match at $Q^2 = 0 \rightarrow M_\beta = 462$ MeV; at $Q^2 \sim m_\pi^2 \rightarrow M_\beta = 510$ MeV $M_\beta = 485 \pm 100 \pm 40 \pm 25$ MeV

- generous allowance for higher-order effects and uncertainties in input (shaded)
- $\beta = (3.1 \pm 0.5) \times 10^{-4}$ fm³ Griesshammer *et al*, Prog Part Nucl Phys **67** (2012) 841
- matching uncertainty

$$\Delta E_{\rm sub}^{2\gamma} = \frac{\alpha_{\rm EM} \phi(0)^2}{4\pi m} \int_0^\infty \mathrm{d}Q^2 \frac{\overline{T}_1(0, Q^2)}{Q^2} \times \left[1 + \left(1 - \frac{Q^2}{2m^2} \right) \left(\sqrt{\frac{4m^2}{Q^2} + 1} - 1 \right) \right]$$

- \bullet with dipole form, 90% comes from $Q^2 < 0.3 \ {\rm GeV}^2$
- rather insensitive to value of M_{eta}
- main source of error: $\beta = 3.1 \pm 0.5$

$$\Delta E_{\rm sub}^{2\gamma} = \frac{\alpha_{\rm EM} \phi(0)^2}{4\pi m} \int_0^\infty \mathrm{d}Q^2 \frac{\overline{T}_1(0, Q^2)}{Q^2} \times \left[1 + \left(1 - \frac{Q^2}{2m^2} \right) \left(\sqrt{\frac{4m^2}{Q^2} + 1} - 1 \right) \right]$$

- \bullet with dipole form, 90% comes from $Q^2 < 0.3 \ {\rm GeV}^2$
- rather insensitive to value of M_{eta}
- main source of error: $\beta = 3.1 \pm 0.5$

Result:

$$\Delta E_{\rm sub}^{2\gamma} = -4.2 \pm 1.0 \,\mu {\rm eV}$$

$$\Delta E_{\rm sub}^{2\gamma} = \frac{\alpha_{\rm EM} \phi(0)^2}{4\pi m} \int_0^\infty \mathrm{d}Q^2 \frac{\overline{T}_1(0, Q^2)}{Q^2} \times \left[1 + \left(1 - \frac{Q^2}{2m^2} \right) \left(\sqrt{\frac{4m^2}{Q^2} + 1} - 1 \right) \right]$$

- \bullet with dipole form, 90% comes from $Q^2 < 0.3 \; {\rm GeV}^2$
- rather insensitive to value of M_{β}
- main source of error: $\beta=3.1\pm0.5$

Result:

$$\Delta E_{\rm sub}^{2\gamma} = -4.2 \pm 1.0 \,\mu {\rm eV}$$

Combined with inelastic (dispersive) contribution: $\Delta E_{inel}^{2\gamma} = 12.7 \pm 0.5 \ \mu eV$ Carlson and Vanderhaeghen, Phys Rev A **84** (2011) 020102 \rightarrow total polarisability contribution: $\Delta E_{pol}^{2\gamma} = 8.5 \pm 1.1 \ \mu eV$

$$\Delta E_{\rm sub}^{2\gamma} = \frac{\alpha_{\rm EM} \phi(0)^2}{4\pi m} \int_0^\infty \mathrm{d}Q^2 \frac{\overline{T}_1(0, Q^2)}{Q^2} \times \left[1 + \left(1 - \frac{Q^2}{2m^2} \right) \left(\sqrt{\frac{4m^2}{Q^2} + 1} - 1 \right) \right]$$

- \bullet with dipole form, 90% comes from $Q^2 < 0.3 \; {\rm GeV}^2$
- rather insensitive to value of M_{β}
- main source of error: $\beta=3.1\pm0.5$

Result:

$$\Delta E_{\rm sub}^{2\gamma} = -4.2 \pm 1.0 \,\mu {\rm eV}$$

Combined with inelastic (dispersive) contribution: $\Delta E_{inel}^{2\gamma} = 12.7 \pm 0.5 \ \mu eV$ Carlson and Vanderhaeghen, Phys Rev A **84** (2011) 020102 \rightarrow total polarisability contribution: $\Delta E_{pol}^{2\gamma} = 8.5 \pm 1.1 \ \mu eV$ Plus elastic term of Carlson and Vanderhaeghen (converted to Pachucki's convention): $\Delta E_{el}^{2\gamma} = 24.7 \pm 1.3 \ \mu eV$ \rightarrow total two-photon exchange: $\Delta E^{2\gamma} = 33.2 \pm 2.0 \ \mu eV$

Mike Birse

Mainz, June 2014

Other treatments

	BM	Р	CV	GLS	NP	PP	ALP
$\Delta E_{\rm sub}^{2\gamma}$	-4.2(1.0)	-1.8	-5.3(1.9)	$2.3(4.6)^{\dagger}$	-1.6	-2.9^{\ddagger}	—
$\Delta E_{\rm inel}^{2\gamma}$	12.7(0.5)	13.9	$12.7(0.5)^{\dagger}$	13.0(0.6)	20.1	29 [‡]	—
$\Delta E_{\rm pol}^{2\gamma}$	8.5(1.1)	12.1	7.4(2.4)	15.3(5.6)	19(9)	26(10)	$8.2(^{+2.5}_{-1.2})$

* all values in μeV

[†] converted to value corresponding to Pachucki's elastic term

[‡] cannot be separated without model assumptions; could be up to 10 μ eV larger

BM (our result): DR (from CV) + 4th order EFT with extrapolation for subtraction P, CV: DR + model for subtraction Pachucki, Phys. Rev. A **60** (1999) 3593; Carlson and Vanderhaeghen, Phys Rev A **84** (2011) 020102 GLS: energy-weighted sum rules Gorchtein *et al*, Phys Rev.A **87** (2013) 052501 NP: 3rd order EFT Nevado and Pineda, Phys Rev C **77** (2008) 035202 PP: 3rd order EFT + Δ Peset and Pineda, arXiv:1403.3408, Nucl Phys B **887** (2014) 69 ALP: 3rd order covariant EFT Alarcón *et al*, Eur Phys J C **74** (2014) 2852

	BM	Р	CV	GLS	NP	PP	ALP
$\Delta E_{\rm sub}^{2\gamma}$	-4.2(1.0)	-1.8	-5.3(1.9)	$2.3(4.6)^{\dagger}$	-1.6	-2.9^{\ddagger}	—
$\Delta E_{\rm inel}^{2\gamma}$	12.7(0.5)	13.9	$12.7(0.5)^{\dagger}$	13.0(0.6)	20.1	29 [‡]	—
$\Delta E_{\rm pol}^{2\gamma}$	8.5(1.1)	12.1	7.4(2.4)	15.3(5.6)	19(9)	26(10)	$8.2(^{+2.5}_{-1.2})$

Older DR approaches used model for subtraction term \rightarrow hard to estimate errors Also older values for β from DRs significantly smaller than new EFT ones

	BM	Р	CV	GLS	NP	PP	ALP
$\Delta E_{\rm sub}^{2\gamma}$	-4.2(1.0)	-1.8	-5.3(1.9)	$2.3(4.6)^{\dagger}$	-1.6	-2.9^{\ddagger}	—
$\Delta E_{\rm inel}^{2\gamma}$	12.7(0.5)	13.9	$12.7(0.5)^{\dagger}$	13.0(0.6)	20.1	29 [‡]	—
$\Delta E_{\rm pol}^{2\gamma}$	8.5(1.1)	12.1	7.4(2.4)	15.3(5.6)	19(9)	26(10)	$8.2(^{+2.5}_{-1.2})$

Older DR approaches used model for subtraction term \rightarrow hard to estimate errors Also older values for β from DRs significantly smaller than new EFT ones

EWSR not a precision tool – consistent with other results given uncertainty ("wrong" sign for subtraction term as $\beta = -1.4 \pm 4.6$)

	BM	Р	CV	GLS	NP	PP	ALP
$\Delta E_{\rm sub}^{2\gamma}$	-4.2(1.0)	-1.8	-5.3(1.9)	$2.3(4.6)^{\dagger}$	-1.6	-2.9^{\ddagger}	—
$\Delta E_{\rm inel}^{2\gamma}$	12.7(0.5)	13.9	$12.7(0.5)^{\dagger}$	13.0(0.6)	20.1	29 [‡]	—
$\Delta E_{\rm pol}^{2\gamma}$	8.5(1.1)	12.1	7.4(2.4)	15.3(5.6)	19(9)	26(10)	$8.2(^{+2.5}_{-1.2})$

Older DR approaches used model for subtraction term \rightarrow hard to estimate errors Also older values for β from DRs significantly smaller than new EFT ones

EWSR not a precision tool – consistent with other results given uncertainty ("wrong" sign for subtraction term as $\beta = -1.4 \pm 4.6$)

Lowest (3rd) order EFTs: model-independent but with large uncertainties

- EM polarisabilities of right magnitude only
- \bullet inelastic term too large, especially when Δ included
- 3rd Zemach moment much smaller than values from empirical form factors
- ALP: large relativistic corrections compared to NP; Δ contributions cancelled due to additional low-energy expansion \rightarrow errors probably underestimated

Better to use experimental data as far as possible

- get inelastic contribution from DRs
- empirical form factors for elastic piece (3rd Zemach moment)

(but see Karshenboim, Phys Rev D 90 (2014) 053012 for discussion)

Better to use experimental data as far as possible

- get inelastic contribution from DRs
- empirical form factors for elastic piece (3rd Zemach moment) (but see Karshenboim, Phys Rev D **90** (2014) 053012 for discussion)

4th order EFTs contain γp contact interactions

- needed to fit EM polarisabilities to Compton scattering
- contain leading relativistic/recoil corrections
- including charge radius piece of LET
- \rightarrow subtraction term consistent with determination of β

Better to use experimental data as far as possible

- get inelastic contribution from DRs
- empirical form factors for elastic piece (3rd Zemach moment) (but see Karshenboim, Phys Rev D **90** (2014) 053012 for discussion)

4th order EFTs contain γp contact interactions

- needed to fit EM polarisabilities to Compton scattering
- contain leading relativistic/recoil corrections
- including charge radius piece of LET
- \rightarrow subtraction term consistent with determination of β

But γp contact terms also lead to divergences in two-photon exchange

- renormalised by unknown μp contact interactions (could fit these to Lamb shift!)
- \rightarrow instead calculate form factor for subtraction term for momenta $\lesssim 3 m_{\pi}$ and extrapolate

Extrapolation

Region $Q^2 > 0.3~{
m GeV}^2$ contributes only about $-0.4~\mu{
m eV}$ to $\Delta E^{2\gamma}$

Results not sensitive to details of extrapolation, unless

Extrapolation

Region $Q^2 > 0.3 \text{ GeV}^2$ contributes only about $-0.4 \,\mu\text{eV}$ to $\Delta E^{2\gamma}$

Results not sensitive to details of extrapolation, unless . . . nucleons become very soft for momentum scales $Q^2\gtrsim 1~{
m GeV}^2$ Miller, Phys Lett B **718** (2013) 1078

Extrapolation

Region $Q^2 > 0.3~{
m GeV}^2$ contributes only about $-0.4~\mu{
m eV}$ to $\Delta E^{2\gamma}$

Results not sensitive to details of extrapolation, unless

nucleons become very soft for momentum scales $Q^2\gtrsim 1~{
m GeV}^2$

Miller, Phys Lett B 718 (2013) 1078

But no evidence from related processes:

- dispersion relations for $T_2(0,Q^2)$ ($\sim \alpha + \beta$)
- proton-neutron mass difference Walker-Loud et al, Phys Rev Lett 108 (2012) 232301
- quasi-elastic electron-nucleus scattering Miller, Phys Rev C 86 (2012) 065201

Summary

Subtraction term in two-photon-exchange contribution to Lamb shift calculated using chiral EFT at 4th order, with extrapolation of form factor to $Q^2 \gtrsim 0.3 \text{ GeV}^2$

 $\Delta E_{\rm sub}^{2\gamma} = -4.2 \pm 1.0 \,\mu {\rm eV}$

Complete two-photon exchange contribution

 $\Delta E^{2\gamma} = 33 \pm 2 \,\mu\text{eV}$

• factor 10 too small to explain proton radius puzzle (330 μ eV)

Still largest uncertainty in theoretical determination of Lamb shift in muonic H

• two main sources: β (subtraction) and form factors (elastic)

Prospects for improvement in β :

- re-analysis of world Compton data set using DRs
- upcoming experiments on (polarised) Compton scattering at HiGS, MAMI