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The Lamb shift in muonic hydrogen

Mike Birse Proton polarisability contribution to the Lamb shift Mainz, June 2014

Much larger than in electronic hydrogen:

∆EL = E(2p1
2
)−E(2s1

2
)'+0.2 eV

Dominated by vacuum polarisation

Much more sensitive to proton structure, in particular, its charge radius

∆E th
L = 206.0668(25)−5.2275(10)〈r2

E〉meV

Results of many years of effort by Borie, Pachucki, Indelicato, Jentschura and others;

collated in Antognini et al, Ann Phys 331 (2013) 127
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Dominated by vacuum polarisation

Much more sensitive to proton structure, in particular, its charge radius

∆E th
L = 206.0668(25)−5.2275(10)〈r2

E〉meV

Results of many years of effort by Borie, Pachucki, Indelicato, Jentschura and others;

collated in Antognini et al, Ann Phys 331 (2013) 127

Includes contribution from two-photon exchange

∆E2γ = 33.2±2.0 µeV

Sensitive to polarisabilities of proton by virtual photons



Two-photon exchange
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Integral over T µν(ν,q2) – doubly-virtual Compton amplitude for proton

Spin-averaged, forward scattering→ two independent tensor structures

Common choice:

T µν =
(
−gµν +

qµqν

q2

)
T1(ν,Q2)+

1
M2

(
pµ− p ·q

q2 qµ
)(

pν− p ·q
q2 qν

)
T2(ν,Q2)

multiplied by scalar functions of ν = p ·q/M and Q2 =−q2
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Integral over T µν(ν,q2) – doubly-virtual Compton amplitude for proton

Spin-averaged, forward scattering→ two independent tensor structures

Common choice:

T µν =
(
−gµν +

qµqν

q2

)
T1(ν,Q2)+

1
M2

(
pµ− p ·q

q2 qµ
)(

pν− p ·q
q2 qν

)
T2(ν,Q2)

multiplied by scalar functions of ν = p ·q/M and Q2 =−q2

Amplitude contains elastic (Born) and inelastic pieces: T µν = T µν

B +T µν

• elastic: photons couple independently to proton (no excitation)

• need to remove terms already accounted for in Lamb shift (iterated Coulomb,

leading dependence on 〈r2
E〉)

• inelastic: proton excited→ polarisation effects



Doubly-virtual Compton scattering
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Elastic amplitude from Dirac nucleon with Dirac and Pauli form factors

K. Pachucki, Phys. Rev. A 60 (1999) 3593

T B
1 (ν,Q2) =

e2

M

[
Q4
(

FD(Q2)+FP(Q2)
)2

Q4−4M2ν2 −FD(Q2)2

]

T B
2 (ν,Q2) =

4e2MQ2

Q4−4M2ν2

[
FD(Q2)2 +

Q2

4M2 FP(Q2)2

]
Other choices have been used: nonpole terms only

But depend on choice of tensor basis (energy-dependent tensors)

cf Walker-Loud et al, Phys Rev Lett 108 (2012) 232301



Low-energy theorems
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V2CS not directly measurable, but constrained by LETs

Two independent tensors of order q2: correspond to polarisabilities

α (electric) and β (magnetic) determined from real Compton scattering

T 1(ν,Q2) = 4πQ2
β+4πν

2(α+β)+O(q4)

T 2(ν,Q2) = 4πQ2(α+β)+O(q4)
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V2CS not directly measurable, but constrained by LETs

Two independent tensors of order q2: correspond to polarisabilities

α (electric) and β (magnetic) determined from real Compton scattering

T 1(ν,Q2) = 4πQ2
β+4πν

2(α+β)+O(q4)

T 2(ν,Q2) = 4πQ2(α+β)+O(q4)

Other choices for elastic amplitude→ LETs containing charge radius

cf Hill and Paz, Phys Rev Lett 107 (2011) 160402

Just important to use consistent definitions of elastic and inelastic amplitudes

Here: all results expressed using Pachucki’s choice



Dispersion relations
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Information on forward V2CS away from q = 0 from structure functions F1,2(ν,Q2)
F1,2 well determined from electroproduction experiments eg at JLab

Dispersion relation for T 2 converges since F2 ∼ 1/ν at high energies

T 2(ν,Q2) =−
Z

∞

ν2
th

dν
′2 F2(ν′,Q2)

ν′2−ν2
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Information on forward V2CS away from q = 0 from structure functions F1,2(ν,Q2)
F1,2 well determined from electroproduction experiments eg at JLab

Dispersion relation for T 2 converges since F2 ∼ 1/ν at high energies

T 2(ν,Q2) =−
Z

∞

ν2
th

dν
′2 F2(ν′,Q2)

ν′2−ν2

But F1 ∼ ν so need to use subtracted dispersion relation

T 1(ν,Q2) = T 1(0,Q2)−ν
2

Z
∞

ν2
th

dν′2

ν′2
F1(ν′,Q2)
ν′2−ν2

Problem: subtraction function T 1(0,Q2) not experimentally accessible

Satisfies LET: T 1(0,Q2)/Q2→ 4πβ as Q2→ 0



Subtraction term
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Define form factor

T 1(0,Q2) = 4πβQ2 Fβ(Q2)

Large Q2: operator-product expansion, quark counting rules give Fβ(Q2) ∝ Q−4

Small Q2: use heavy-baryon chiral perturbation theory at 4th order

plus leading effect of γN∆ form factor

• same as for real Compton scattering McGovern et al, Eur Phys J A 49 (2013) 12

• minor modifications for different kinematics

• subtract elastic (Born) contribution calculated to this order

• relevant LETs satisfied; consistent with value for β



Form factor
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Extrapolate to higher Q2 by matching ChPT form onto dipole

Fβ(Q2)∼ 1
(1+Q2/2M2

β
)2

Match at Q2 = 0→ Mβ = 462 MeV; at Q2 ∼ m2
π→ Mβ = 510 MeV
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Extrapolate to higher Q2 by matching ChPT form onto dipole

Fβ(Q2)∼ 1
(1+Q2/2M2

β
)2

Match at Q2 = 0→ Mβ = 462 MeV; at Q2 ∼ m2
π→ Mβ = 510 MeV

Mβ = 485±100±40±25 MeV

• generous allowance for higher-order effects and uncertainties in input (shaded)
• β = (3.1±0.5)×10−4 fm3 Griesshammer et al, Prog Part Nucl Phys 67 (2012) 841

• matching uncertainty



Energy shift

Mike Birse Proton polarisability contribution to the Lamb shift Mainz, June 2014

.

∆E2γ

sub =
αEM φ(0)2

4πm

Z
∞

0
dQ2 T 1(0,Q2)

Q2 ×

1+

(
1− Q2

2m2

)√4m2

Q2 +1−1


• with dipole form, 90% comes from Q2 < 0.3 GeV2

• rather insensitive to value of Mβ

• main source of error: β = 3.1±0.5
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pol = 8.5±1.1 µeV
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• with dipole form, 90% comes from Q2 < 0.3 GeV2

• rather insensitive to value of Mβ

• main source of error: β = 3.1±0.5
Result:

∆E2γ

sub =−4.2±1.0 µeV

Combined with inelastic (dispersive) contribution: ∆E2γ

inel = 12.7±0.5 µeV

Carlson and Vanderhaeghen, Phys Rev A 84 (2011) 020102

→ total polarisability contribution: ∆E2γ

pol = 8.5±1.1 µeV

Plus elastic term of Carlson and Vanderhaeghen

(converted to Pachucki’s convention): ∆E2γ

el = 24.7±1.3 µeV

→ total two-photon exchange: ∆E2γ = 33.2±2.0 µeV



Other treatments
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BM P CV GLS NP PP ALP

∆E2γ

sub −4.2(1.0) −1.8 −5.3(1.9) 2.3(4.6)† −1.6 −2.9‡ −

∆E2γ

inel 12.7(0.5) 13.9 12.7(0.5)† 13.0(0.6) 20.1 29‡ −

∆E2γ

pol 8.5(1.1) 12.1 7.4(2.4) 15.3(5.6) 19(9) 26(10) 8.2
(+2.5
−1.2

)
∗ all values in µeV
† converted to value corresponding to Pachucki’s elastic term
‡ cannot be separated without model assumptions; could be up to 10 µeV larger

BM (our result): DR (from CV) + 4th order EFT with extrapolation for subtraction

P, CV: DR + model for subtraction Pachucki, Phys. Rev. A 60 (1999) 3593; Carlson and

Vanderhaeghen, Phys Rev A 84 (2011) 020102

GLS: energy-weighted sum rules Gorchtein et al, Phys Rev.A 87 (2013) 052501

NP: 3rd order EFT Nevado and Pineda, Phys Rev C 77 (2008) 035202

PP: 3rd order EFT + ∆ Peset and Pineda, arXiv:1403.3408, Nucl Phys B 887 (2014) 69

ALP: 3rd order covariant EFT Alarcón et al, Eur Phys J C 74 (2014) 2852
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BM P CV GLS NP PP ALP

∆E2γ

sub −4.2(1.0) −1.8 −5.3(1.9) 2.3(4.6)† −1.6 −2.9‡ −
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inel 12.7(0.5) 13.9 12.7(0.5)† 13.0(0.6) 20.1 29‡ −

∆E2γ

pol 8.5(1.1) 12.1 7.4(2.4) 15.3(5.6) 19(9) 26(10) 8.2
(+2.5
−1.2

)
Older DR approaches used model for subtraction term→ hard to estimate errors

Also older values for β from DRs significantly smaller than new EFT ones
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EWSR not a precision tool – consistent with other results given uncertainty

(“wrong” sign for subtraction term as β =−1.4±4.6)
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BM P CV GLS NP PP ALP

∆E2γ

sub −4.2(1.0) −1.8 −5.3(1.9) 2.3(4.6)† −1.6 −2.9‡ −

∆E2γ

inel 12.7(0.5) 13.9 12.7(0.5)† 13.0(0.6) 20.1 29‡ −

∆E2γ

pol 8.5(1.1) 12.1 7.4(2.4) 15.3(5.6) 19(9) 26(10) 8.2
(+2.5
−1.2

)
Older DR approaches used model for subtraction term→ hard to estimate errors

Also older values for β from DRs significantly smaller than new EFT ones

EWSR not a precision tool – consistent with other results given uncertainty

(“wrong” sign for subtraction term as β =−1.4±4.6)

Lowest (3rd) order EFTs: model-independent but with large uncertainties

• EM polarisabilities of right magnitude only

• inelastic term too large, especially when ∆ included

• 3rd Zemach moment much smaller than values from empirical form factors

• ALP: large relativistic corrections compared to NP; ∆ contributions cancelled

due to additional low-energy expansion→ errors probably underestimated



Comments 2
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Better to use experimental data as far as possible

• get inelastic contribution from DRs

• empirical form factors for elastic piece (3rd Zemach moment)

(but see Karshenboim, Phys Rev D 90 (2014) 053012 for discussion)
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• get inelastic contribution from DRs

• empirical form factors for elastic piece (3rd Zemach moment)

(but see Karshenboim, Phys Rev D 90 (2014) 053012 for discussion)

4th order EFTs contain γp contact interactions

• needed to fit EM polarisabilities to Compton scattering

• contain leading relativistic/recoil corrections

• including charge radius piece of LET

→ subtraction term consistent with determination of β
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Better to use experimental data as far as possible

• get inelastic contribution from DRs

• empirical form factors for elastic piece (3rd Zemach moment)

(but see Karshenboim, Phys Rev D 90 (2014) 053012 for discussion)

4th order EFTs contain γp contact interactions

• needed to fit EM polarisabilities to Compton scattering

• contain leading relativistic/recoil corrections

• including charge radius piece of LET

→ subtraction term consistent with determination of β

But γp contact terms also lead to divergences in two-photon exchange

• renormalised by unknown µp contact interactions (could fit these to Lamb shift!)

→ instead calculate form factor for subtraction term for momenta . 3mπ

and extrapolate



Extrapolation
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Region Q2 > 0.3 GeV2 contributes only about −0.4 µeV to ∆E2γ

Results not sensitive to details of extrapolation, unless . . .
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nucleons become very soft for momentum scales Q2 & 1 GeV2

Miller, Phys Lett B 718 (2013) 1078



Extrapolation

Mike Birse Proton polarisability contribution to the Lamb shift Mainz, June 2014

Region Q2 > 0.3 GeV2 contributes only about −0.4 µeV to ∆E2γ

Results not sensitive to details of extrapolation, unless . . .

nucleons become very soft for momentum scales Q2 & 1 GeV2

Miller, Phys Lett B 718 (2013) 1078

But no evidence from related processes:

• dispersion relations for T2(0,Q2) (∼ α+β)

• proton-neutron mass difference Walker-Loud et al, Phys Rev Lett 108 (2012) 232301

• quasi-elastic electron-nucleus scattering Miller, Phys Rev C 86 (2012) 065201



Summary
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Subtraction term in two-photon-exchange contribution to Lamb shift calculated

using chiral EFT at 4th order, with extrapolation of form factor to Q2 & 0.3 GeV2

∆E2γ

sub =−4.2±1.0 µeV

Complete two-photon exchange contribution

∆E2γ = 33±2 µeV

• factor 10 too small to explain proton radius puzzle (330 µeV)

Still largest uncertainty in theoretical determination of Lamb shift in muonic H

• two main sources: β (subtraction) and form factors (elastic)

Prospects for improvement in β:

• re-analysis of world Compton data set using DRs

• upcoming experiments on (polarised) Compton scattering at HiGS, MAMI


