Fine and hyperfine structure of helium atom

Vladimir A. Yerokhin St. Petersburg State Polytechnical University

in collaboration with

Krzysztof Pachucki Warsaw University

Fundamental Constants Meeting, 1-6 February 2015, Eltville, Germany

Helium: Introduction

The simplest few-body system. Three-body bound-state QED.

· Very accurately measured

accuracy 8×10⁻¹², 2³S₁->2¹S₀ in ³He [R. van Rooij et al., Science 333, 196 (2011)] up to 5×10⁻¹², 2³P->2³S in ³He [P. Cancio Pastor et al., PRL 108, 143001 (2012)] up to 8×10⁻¹², 2³P->2³S in ⁴He [P. Cancio Pastor et al., PRL 92, 023001 (2004)]

Determination of fine-structure constant and nuclear charge radius

Determination of the fine-structure constant

free-electron g factor (accurate to 2.5×10⁻¹⁰)
 α⁻¹ = 137.035 999 173 (35) [Aoyama et al., PRL 109, 111807 (2012)]

• atomic recoil velocity measurements (accurate to 7×10^{-10}) $\alpha^{-1} = 137.035 999 037 (91)$ [Bouchendira et al., PRL 106, 080801 (2011)]

helium fine structure (accurate to 3x10⁻⁸)
 α⁻¹ = 137.035 999 6 (34)

Theory: Pachucki and Yerokhin, PRL 104, 070403 (2010) Exp.: Smiciklas and Shiner, PRL 105, 123001 (2010)

Highly sensitive test of consistency of different theories across a wide range of energy scales.

Determination of the nuclear charge radius

³He - ⁴He isotope shift can be used to determine the difference of the (squares of the) nuclear charge radii δr^2

Experiments:

A 2³P-2³S, Cancio Pastor et al., PRL 108, 143001 (2012)
 B 2¹S-2³S, van Rooij et al., Science 333, 196 (2011)
 C 2³P-2³S, Shiner et al., PRL 74, 3553 (1995)

Nuclear charge radium from muonic helium coming soon (talk of Randolph Pohl)

NRQED Expansion

Small parameters: $\alpha(\approx Z\alpha) ==$ fine-structure constant (relativistic effects, QED effects) m/M == electron-to-nucleus mass ratio (nuclear recoil effects)

Expansion for energy levels:

 $E = E_{\rm NR}^{(2)} + E_{\rm Breit}^{(4)} + E_{\rm QED}^{(5)} + E^{(6)} + E^{(7)} + \dots$

 $E^{(n)} = \langle H^{(n)} \rangle \sim m \, \alpha^n$

 $E^{(2)}$ - nonrelativistic energy $E^{(4)}_{\text{Breit}}$ - leading relativistic (Breit) correction $E^{(5)}_{\text{QED}}$ - leading QED (Araki-Sucher) correction

Expansion is non-alalytic in α == contains log's

Nonrelativistic wave function

All matrix elements are calculated with the nonrelativistic wave function.

Singular operators => high accuracy wave function is required.

Fully correlated basis sets that depend explicitly on r_1 , r_2 , r_{12} and satisfy the cusp condition.

Vladimir Korobov 2000, 2002

The spatial part of the triplet P wave function is represented as

$$\vec{\phi}(\vec{r}_1, \vec{r}_2) = \sum_i c_i \left[\vec{r}_1 \, \exp(-\alpha_i \, r_1 - \beta_i \, r_2 - \gamma_i \, r_{12}) - (1 \leftrightarrow 2) \right]$$

Real nonlinear parameters α_i , β_i , and γ_i are chosen quasirandomly from the intervals $\alpha_i \in [A_1, A_2]$, $\beta_i \in [B_1, B_2]$, $\gamma_i \in [C_1, C_2]$, with the parameters $A_{1,2}$, $B_{1,2}$, and $C_{1,2}$ determined by a variational optimization.

The single master integral is

$$\frac{1}{16\pi^2} \int d^3r_1 \, d^3r_2 \, \frac{e^{-\alpha \, r_1 - \beta \, r_2 - \gamma \, r_{12}}}{r_1 \, r_2 \, r_{12}} = \frac{1}{(\alpha + \beta)(\beta + \gamma)(\gamma + \alpha)} \, .$$

The nonrelativistic energy of the 2^3P state of helium is obtained with a 23-digit accuracy. Octuple arithmetics (appr. 72 digits) is required for calculations.

E(2³P) = -2.133 164 190 779 283 205 146 96 ⁺⁰-10

Fine structure

Structure of 2P states of ⁴He

Fine structure: NRQED expansion

 $\langle H_{\rm fs} \rangle = \langle H_{\rm Breit}^{(4+)} \rangle + \langle H_{\rm DK}^{(6)} \rangle + \langle H_{\rm Breit}^{(4)} \frac{1}{(E-H)'} H_{\rm Breit}^{(4)} \rangle + \langle H^{(7)} \rangle + 2 \langle H_{\rm Breit}^{(4)} \frac{1}{(E-H)'} H^{(5)} \rangle + E_L^{(7)} \rangle + E_L^{(7)} \langle H^{(6)} \rangle + E_L^{(7)} \rangle + E_L^{(7)} \langle H^{(6)} \rangle + E_L^{(7)} \rangle + E_L^{(7)} \langle H^{(6)} \rangle + E_L^{(7)} \rangle + E_L^{(7)} \rangle + E_L^{(7)} \langle H^{(6)} \rangle + E_L^{(7)} \rangle + E_L^{$ ma⁴ and ma⁵ corrections ma⁶corrections Lewis and Serafino 1978 ma⁷ corrections Yan and Drake 1995 Pachucki 2006

Pachucki and Yerokhin 2009,2010

- Second-order perturbative corrections induced by local operators
- Bethe-logarithm type corrections (non-local operators) $E_L^{(7)}$

Fine structure of helium: present status

Table 2. Summary of individual contributions to the fine-structure intervals in helium, in kHz. The parameters [25] are $\alpha^{-1} = 137.035\,999\,679(94)$, $cR_{\infty} = 3\,289\,841\,960\,361(22)$ kHz, and $m/M = 1.370\,933\,555\,70 \times 10^{-4}$. The label (+m/M) indicates that the corresponding entry comprises both the non-recoil and recoil contributions of the specified order in α .

Term	$ u_{01}$	$ u_{12}$	$ u_{02}$
$m\alpha^4(+m/M)$	29563765.45	2320241.43	
$m\alpha^5(+m/M)$	54704.04	-22545.00	
$m \alpha^6$	-1607.52(2)	-6506.43	
$m \alpha^6 m/M$	-9.96	9.15	
$m\alpha^7\log(Z\alpha)$	81.43	-5.87	
$m\alpha^7$, nlog	18.86	-14.38	
$m\alpha^8$	± 1.7	± 1.7	
Total theory	29616952.29 ± 1.7	2291178.91 ± 1.7	31908131.20 ± 1.7
Experiment	$29616951.66(70)^a$	$2291177.53(35)^d$	$31908131.25(30)^f$
	$29616952.7(10)^b$	$2291175.59(51)^a$	$31908126.78(94)^a$
	$29616950.9(9)^c$	$2291175.9(10)^e$	

Experiments:

- a Zelevinsky et al. PRL 95, 203001 (2005) [Gabrielse]
- b Guisfredi et al. Can. J. Phys. 83, 301 (2005) [Inguscio]
- c George et al. PRL 84, 4321 (2000) [Hessels]
- d Borbely et al. PRA 79, 0605030(R) (2009) [Hessels]
- e Castillega et al. PRL 84, 4321 (2000) [Shiner]
- f Smiciklas and Shiner, PRL 105, 123001 (2010) [Shiner]

Theory: Pachucki and Yerokhin, PRL 104, 070403 (2010)

Hyperfine structure

⁴He and ³He: energy level scheme

Fine and hyperfine structure in helium are of the same order of magnitude!

Combined fine and hyperfine structure

Basis of strongly interacting quasi-degenerate states: $|FJ\rangle \equiv |2^{3}P_{I}^{F}\rangle$, with J = 0, 1, 2 and $F = J \pm 1/2$

5x5 matrix of the effective Hamiltonian:

 $E_{JJ'}^F = \langle FJ|H|FJ'\rangle$

Energy levels are obtained as the eigenvalues of the Hamiltonian matrix.

Energy levels are calculated relative to the centroid (center-of-mass) energy:

 $E(2^{3}P) = \frac{\sum_{F,J} (2F+1)E(2^{3}P_{J}^{F})}{(2I+1)(2S+1)(2L+1)}$

All effects that do not depend on electron or nuclear spin do not contribute.

Fine + Hyperfine structure: NRQED expansion

ma⁶corrections

 $\langle H \rangle = \langle H_{\rm fs} \rangle + \langle H_{\rm hfs}^{(4+)} \rangle + \langle H_{\rm hfs}^{(6)} \rangle + 2 \langle H_{\rm hfs}^{(4)} \frac{1}{(E-H)'} H_{\rm Breit}^{(4)} \rangle + \langle H_{\rm hfs}^{(4)} \frac{1}{(E'-H)'} H_{\rm hfs}^{(4)} \rangle + \langle H_{\rm nucl} \rangle$

Pachucki and Yerokhin 2012

H_{fs} – fine-structure effective Hamiltonian (operators depend on electron spins) H_{hfs} – hyperfine-structure effective Hamiltonian (operators depend on nuclear spin) H_{Breit} – Breit Hamiltonian (operators do not depend on spin) H_{nucl} – effective Hamiltonian of nuclear effects

Nuclear effects

Hyperfine interaction $1/r^2 \Rightarrow$ nuclear effects are significant.

Cannot be (accurately) calculated from first principles.

One can claim that

$$H_{\rm nucl} = C \,\delta^3(r)$$

The constant C can be extracted by comparing theory and experiment for 1s He⁺ hyperfine splitting.

An example of second-order contributions

$$\begin{split} \delta E_{\rm reg}(^{3}P) &= \sum_{n>2} \frac{1}{E(2^{3}P) - E(n^{3}P)} \left[\langle 2^{3}\vec{P}|Q|n^{3}\vec{P}\rangle \langle n^{3}\vec{P}|\vec{T}|2^{3}\vec{P}\rangle \langle \frac{2}{3}\vec{I}\cdot\vec{L} + I^{i}L^{j}(S^{i}S^{j})^{(2)} \rangle \right. \\ &+ \langle 2^{3}\vec{P}|Q|n^{3}\vec{P}\rangle \langle n^{3}\vec{P}|\hat{T}|2^{3}\vec{P}\rangle \langle -\frac{3}{5}I^{i}S^{j}(L^{i}L^{j})^{(2)} \rangle \\ &+ \langle 2^{3}\vec{P}|\vec{Q}|n^{3}\vec{P}\rangle \langle n^{3}\vec{P}|\vec{T}|2^{3}\vec{P}\rangle \langle \vec{I}\cdot\vec{L}\rangle \\ &+ \langle 2^{3}\vec{P}|\vec{Q}|n^{3}\vec{P}\rangle \langle n^{3}\vec{P}|\vec{T}|2^{3}\vec{P}\rangle \langle \frac{1}{3}\vec{I}\cdot\vec{S} + \frac{1}{2}I^{i}S^{j}(L^{i}L^{j})^{(2)} \rangle \\ &+ \langle 2^{3}\vec{P}|\vec{Q}|n^{3}\vec{P}\rangle \langle n^{3}\vec{P}|\vec{T}|2^{3}\vec{P}\rangle \langle -\frac{3}{10}I^{i}L^{j}(S^{i}S^{j})^{(2)} \rangle \\ &+ \langle 2^{3}\vec{P}|\hat{Q}|n^{3}\vec{P}\rangle \langle n^{3}\vec{P}|T|2^{3}\vec{P}\rangle \langle -\frac{6}{5}I^{i}S^{j}(L^{i}L^{j})^{(2)} \rangle \\ &+ \langle 2^{3}\vec{P}|\hat{Q}|n^{3}\vec{P}\rangle \langle n^{3}\vec{P}|\vec{T}|2^{3}\vec{P}\rangle \langle -\frac{1}{3}\vec{I}\cdot\vec{L} + \frac{9}{20}I^{i}S^{j}(L^{i}L^{j})^{(2)} - \frac{1}{20}I^{i}L^{j}(S^{i}S^{j})^{(2)} \rangle \\ &+ \langle 2^{3}\vec{P}|\hat{Q}|n^{3}\vec{P}\rangle \langle n^{3}\vec{P}|\vec{T}|2^{3}\vec{P}\rangle \langle \frac{1}{5}\vec{I}\cdot\vec{S} - \frac{21}{100}I^{i}S^{j}(L^{i}L^{j})^{(2)} - \frac{27}{100}I^{i}L^{j}(S^{i}S^{j})^{(2)} \rangle \end{split}$$

2³P hyperfine structure in He

(J,F) - (J',F')	Value [kHz]	
(0, 1/2) $(1, 1/2)$		Theory procent
(0, 1/2) - (1, 1/2)	28 092 855.9 (1.8) 28 092 870 (60)	Theory, previous
今日 長本 (1995年)	28 092 858 (3)	Experiment, Texas
	28 092 858.6 (2.1)	Experiment, Florence
(1, 1/2) - (1, 3/2)	4 512 214.1 (0.9)	Theory, present
	4 512 191 (12)	Theory, previous
	4 512 213 (3)	Experiment, Texas
Carlos and the second second	4 512 211.9 (2.7)	Experiment, Florence

Theory, present: Pachucki and Yerokhin, PRA 85, 042517 (2012) Theory, previous: Wu and Drake, J. Phys. B 40, 393 (2007) Experiment, Texas: Smiciklas, 2003, xxx.lanl.gov/abs/1203.2830 Experiment, Florence, Cancio Pastor et al., PRL 108, 143001 (2012)

Isotope shift

⁴He - ³He Isotope shift

Isotope shift == the difference between the centroids of the energy levels.

⁴He, Centroid energy:

$$E(2^{3}P) = \frac{\sum_{J} (2J+1)E(2^{3}P_{J})}{(2S+1)(2L+1)}$$

³He, Centroid energy:

$$E(2^{3}P) = \frac{\sum_{F,J} (2F+1)E(2^{3}P_{J}^{F})}{(2I+1)(2S+1)(2L+1)}$$

⁴He - ³He Isotope shift, results

Contribution	$2^{3}P-2^{3}S$ transition	$2^{1}S-2^{3}S$ transition
$m_r lpha^2$	12412458.1	8 63 2 56 7.86
$m_r \alpha^2 (m_r/M)$	21243041.3	-608175.58
$m_r lpha^2 (m_r/M)^2$	13874.6	7319.80
$m_r lpha^2 (m_r/M)^3$	4.6	-0.30
$m_r lpha^4$	17872.8	8954.22
$m_r \alpha^4 (m_r/M)$	-20082.4	-6458.23
$m_r lpha^4 (m_r/M)^2$	-3.0	-1.84
$m \alpha^5 (m/M)$	-60.7	-56.61
$m \alpha^6 (m/M)$	-15.5(3.9)	-2.75(69)
Nuclear polarizability	-1.1(1)	-0.20(2)
HFS mixing	54.6	-80.72
Total theory	33667143.2(3.9)	8034065.66(69)
Other theory $[1,2]^a$	33667146.2(7)	8034067.8(1.1)

TABLE I: ⁴He–³He isotope shift of the centroid energies, for the point-like nucleus, in kHz.

[1] D. C. Morton, Q. Wu, and G. W. F. Drake, Can. J. Phys. 84, 83 (2006),

[2] G. W. F. Drake, priv. comm. from R. van Rooij et al. Science 333, 196 (2011).

^a Corrected by adding the triplet-singlet HFS mixing.

Theory: Pachucki and Yerokhin, from [Cancio Pastor, PRL 108 143001 (2012)]

Difference of the squares of charge radii of ³He and ⁴He

 $\delta r^2 = r^2(^{3}He) - r^2(^{4}He)$

2³P-2³S, Cancio Pastor et al., PRL 108, 143001 (2012); theory by Pachucki and Yerokhin (2012) δ r² = 1.074 (3) fm²

2¹S-2³S, van Rooij et al., Science 333, 196 (2011) + theory by Pachucki and Yerokhin (2012) δ r² = 1.028 (11) fm²

 $2^{3}P-2^{3}S$, Shiner et al., PRL 74, 3553 (1995) + theory by Pachucki and Yerokhin (2012) $\delta r^{2} = 1.066$ (4) fm²

Conclusion

Experiment versus Theory in He

	Experiment, accuracy	Theory, accuracy
Lamb shift	2 kHz	3000 kHz
Fine structure	0.2 kHz	2 kHz
Hyperfine structure	2 kHz	2 kHz