Recent Progress in Determining

Gravitational Constant G at HUST

Jun Luo

Center for Gravitational Experiments

Huazhong University of Science & Technology

February 5th, 2015, Germany

Output to the second second

HUST-09 experiment

Recent progress

About big G

Newtonian law of universal gravitation

The first G value

Cavendish' experiment

$$G = \frac{2\pi^2 L R^2}{MT^2} \theta$$

1798, $G = (6.67 \pm 0.07) \times 10^{-11} \text{ m}^3\text{kg}^{-1}\text{s}^{-2}$ 1%

G was known earliest, but with worst precision.

Year	G value/ $\times 10^{-11}$ m ³ kg ⁻¹ s ⁻²	Uncertainty
1798, Cavendish	6.67 ±0.07	1%
1973 CODATA	6.6720 ±0.0041	0.061%
1986 CODATA	6.67259 ± 0.00085	0.013%
1998 CODATA	6.673 ±0.010	0.15%
2002 CODATA	6.6742 ±0.0010	0.015%
2006 CODATA	6.67428 ±0.00067	0.01%
2010 CODATA	6.67384 ±0.00080	0.012%

During past 200 years, there are more than 300 results but its accuracy was improved by only two orders !

CODATA 2010

Uncertainty < 50 ppm

consistent with each other at only ~500 ppm

HUST-09 experiment

Time-of-swing method

 $I\ddot{\theta} + \gamma\dot{\theta} + K\theta = \tau_G(\theta)$ $= \tau_G(\theta) \approx \tau_G(\theta) \approx \tau_0 - K_G\theta$

$$G = \frac{I\left(\omega_n^2 - \omega_f^2\right) - \left(K_n - K_f\right)}{C_{gn} - C_{gf}}$$
$$= \frac{I\Delta\omega^2 - \Delta K}{\Delta C_g}$$

- **1. Determination of** $P_g = \Delta C_g / I$
- **2.** $\Delta \omega^2$ between near and far positions
- **3.** Anelasticity of torsion fiber ΔK

HUST-99 G measurement

HUST-99=(6.6699±0.0007) ×10⁻¹¹ m³kg⁻¹s⁻² 1

10

HUST-09 experimental design

Compare with HUST-05

Merits:

- 1. Spherical source mass
- 2. Simple pendulum
- 3. All in vacuum
- 4. Direct Measurement of anelasticity

Experimental environment

Determination of $\Delta \omega_{nl}^2$

10 sets of data (6 days per set) with the spheres in near and far positions alternately

Period drift:

 Aging
 Background gravitational change caused by zero drift effect
 A-B-A

Determination of $\Delta \omega^2_{back}$

4 sets of background data (without the spheres) in near and far positions alternately

 $\Delta(\omega^2) = \Delta \omega_{nf}^2 - \Delta \omega_{back}^2 = 1.682245(31) \times 10^{-6} \text{ s}^{-2} \quad 18.428 \text{ ppm}$

$$K = K_0 + \Delta K(\omega)$$

Correction for *G* **value due to the fiber's anelasticity**

Kuroda:	$\frac{\Delta G}{G} = \frac{1}{\pi Q}$	PRL 75 (1995) 2796
Newman:	$0 < \frac{\Delta G}{G} < \frac{1}{2Q}$	MST 10 (1999) 445
If Q =	1000 , $\frac{\Delta G}{G} =$	$\frac{1}{\pi Q} \approx 320 \text{ ppm}$

Direct measurement of anelasiticity

 $\boldsymbol{\omega}_2^2, \boldsymbol{I}_2$

 Ω_2^2, I_2

Pendulum1 Pendulum2

TABLE IV. One σ uncertainty budget of the anelasticity to $\Delta G/G$.

 ω_1^2, I_1

 Ω_1^2, I_1

Source	Value (error)	p	pm
$\overline{I_1}$	$5.3318(8) \times 10^{-5} \text{ kgm}^2$		0.03
I_G	$4.505679(35) \times 10^{-5} \text{ kgm}^2$		0.00
Magnetic damper	N 10 10 10 10 10 10 10 10 10 10 10 10 10	4.78	
Statistical $(\omega_2/\omega_1)^2$	1.4171723(92)		18.41
Statistical $(\Omega_1/\Omega_2)^2$	0.7056861(5)	2.01	
3	$-4.14(89) \times 10^{-6}$	2.52	
$\frac{I_2}{I_1} = (\frac{\Omega_1}{\Omega_2})^2 (1 + \varepsilon)$	0.7056832(8)		3.22
Total			18.69

$$\frac{K(\omega_n) - K(\omega_f)}{I_G(\omega_n^2 - \omega_f^2)} = \frac{I_1}{I_G(\omega_2^2 / \omega_1^2 - 1)} \left(\frac{\Omega_1^2 \omega_2^2}{\Omega_2^2 \omega_1^2} - 1\right) = (211.80 \pm 18.69) \text{ ppm}$$

Silica fiber

PRD 80 (2009) 122005 16

Final G value: HUST-09

Result of $G (10^{-11} \text{ m}^3 \text{kg}^{-1} \text{s}^{-2})$ $G1 = (6.67352 \pm 0.00019)$

After change the position and orientation of spheres: $G_2 = (6.67346 \pm 0.00021)$ The difference: 9 ppm **Combined result:** $G = (6.67349 \pm 0.00018)$ **26.3 ppm** PRL 102 (2009) 240801 PRD 82 (2010) 022001

TABLE I. One σ uncertainty budget (in units of ppm).

Error Sources	Corrections	Δc	G/G
Pendulum		5.07	
Dimensions			1.95
Attitude			0.13
Nonalignment with fiber			0.45
Flatness			0.34
Clamp			1.65
Density inhomogeneity			≤ 0.21
Coating layer	-24.28		4.33
Edge flaw	-0.12		0.17
Source masses		10.68	
Masses			0.82
Distance of GC			9.64
Density inhomogeneity			4.50
XYZ positions			0.48
Fiber		18.76	
Nonlinearity			< 0.70
Thermoelasticity	-39.83		1.52
Anelasticity	-211.80		18.69
Aging			< 0.01
Gravitational nonlinearity	7.73	0.30	
Magnetic damper	17.54	0.31	
Magnetic field		0.40	
Electrostatic field		0.10	
Combined statistical $\Delta(\omega^2)$		14.18	
Total		26.33	

Uncertainty < 50 ppm

consistent with each other at only ~500 ppm

18

Are there any method-dependent systematic errors?

Brief Review of G

HUST-09 experiment

Two methods

D Time-of-swing $I\ddot{\theta} + \gamma\dot{\theta} + K\theta = \tau_g$

$$G = \frac{I\left(\boldsymbol{\omega}_{n}^{2} - \boldsymbol{\omega}_{f}^{2}\right) - \left(\boldsymbol{K}_{n} - \boldsymbol{K}_{f}\right)}{C_{gn} - C_{gf}}$$

C Angular Acceleration $I\ddot{\theta} + \gamma\dot{\theta} + K\theta = \tau_g - I\alpha_t$

•	Simple device Differential measurement	• Independent of anelasticity
•	Dependence on fiber properties	Complicated device
•	Environmental influences	High-performance turntable

1. Improved time-of-swing method

22

			L
	Error sources	Corrections (ppm)	$\delta G/G$ (ppm)
To reduce the large	Torsion pendulum		5.05 [5.05]
corrections in HUST-00.	Dimension		1.95
	Attitude		0.13 [0.07]
	Density inhomogeneity		< 0.21
Aluminum lovon	Chamfer property		0.34
1. Alumnum layer	Three chips	-0.12	0.17
	 Coating layer 	-24.28	4.33
	Clamp and ferrule		1.65
2. Three-noint mount 💊	Reflecting mirror		0.03
2. Three point mount	Source masses		10.66 [10.64]
	Masses		0.82
	 Distance of GCs 		9.64 [9.61]
3. Copper tube	Density inhomogeneity		4.50
	Relative positions		1.10 [1.31]
	Height of pendulum		0.76 [0.40]
	Height of spheres		0.48 [0.27]
4. High-Q Silica fiber	Position of torsion fiber		0.63 [1.22]
	Position of turntable		0.05
$Q>5\times10^4$	θ_0		0.06 [0.01]
	Fiber		18.76
	Nonlinearity		< 0.70
📮 Thick torsion fiber 🍋	• Thermoelasticity	-39.83 [8.37]	1.52 [0.82]
3. THICK COTSTOLL HIDET	 Anelasticity 	-211.80	18.69
	Aging		< 0.01
	Gravitational nonlinearity	7.73 [4.79]	0.30 [0.20]
6. Gravity compensation	 Magnetic damper 	17.54	0.31
• -	Magnetic field		0.40
	Electrostatic field		0.10
	Statistical $\Delta \omega^2$		18.43 [23.31]
	Total		28.86 [32.17]
	Combined		26.33

Improvement I: coating layer

Experiment	Material	Density(g/cm ³)	Correction to G(ppm)	
HUST-09	Cu	8.96	-24.28(4.33)	
	Au	19.26		
Present	Al	2.70	-1.7(8)	

Improvement II: three-point mount

Zerodur ring

Supporting ring in HUST-09Three-point mountThe repeatability of mounting is better than 0.25 μm

Improvement III: copper tube

Improvement IV: silica fiber

Trade name: SuprasilR 311 Length: 900 mm Diameter: 44 and 50 μm Germanium: 8-nm-thickness Bismuth: 11-nm-thickness Anelasticity: ~6.4 ppm

3-mm rod

Pull fiber

Coating

Pre-loaded fibers

Improvement V: magnetic damper

Two-stage torsion balance

Correction to G: 17.54(0.31) ppm→0.4(0.1) ppm

Improvement VI: gravity compensatio

Lead blocks ~800 kg

- 1. The background gravitational gradient is reduced to 1/5 of that before compensation
- 2. The equilibrium position of *G* pendulum is located at the mingradient position

For G: <0.4 ppm

Present result

44-µm-diameter silica fiber determine *G* (10⁻¹¹ m³kg⁻¹s⁻²): $G_1 = (6.674^{**} \pm 0.00011)$ ~18 ppm After change the orientation of spheres: $G_2 = (6.674^{**} \pm 0.00013)$ ~19 ppm

The difference between them is: ~10 ppm TABLE I: The complete 1σ error budget. (Unit: ppm)

Error sources	Corrections	$\delta G/G$
Pendulum		2.2
Dimensions		2.0
Attitude		0.1
Density inhomogeneity		0.2
Chamfer property		0.1
Chips	0.6	0.2
Coating layer	-1.7	0.8
Clamp and ferrule		0.2
Reflecting mirror		0.1
Source masses		9.0
Masses		0.7
Distance of GC		9.0
Density inhomogeneity		5.0
Relative positions		1.4
Height of pendulum		0.3
Height of spheres		0.5
Position of fiber		1.2
Position of turntable		0.4
$ heta_{ m o}$		0.1
Fiber		6.6
Nonlinearity		< 0.4
Thermoelasticity	38.4	1.5
Anelasticity		6.4
Aging		< 0.1
Gravitational nonlinearity	19.7	0.3
Magnetic damper	0.4	0.1
Magnetic field		0.4
Electrostatic field		0.1
Statistical $\Delta \omega^2$		11.1
Present uncertainty		<18

Following work

Repeat the measurements with different fibers to find the potential systematic errors, such as entangled dislocations:

Parameter	Present	Next	
Fiber material	Silica	Silica	Tungsten
Diameter(µm)	44	50	25
Natural period(s)	391	306	535
Period change(s)	1.26	0.61	3.2 7
Period relative change	0.32%	0.20%	0.61%
Ratio of loading	40%	31%	57%
Thickness of Ge and Bi(nm)	~8、~11	~2、~2	_
Resistance(Ω)	~ 2.3 ×10 ⁶	(8-10) ×10 ⁶	<50
Q	~ 5.0 ×10 ⁴	~8×10 ⁴	~3×10 ³
Anelasticity(ppm)	~6.4	~4.0	~106

2. Angular acceleration feedback

Preliminary result

Rev. Sci. Instrum. 85, 014501(2014) Phil. Trans. R. Soc. A 372, 20140031(2014)

Repeatability of $\alpha_t(\omega)$ **:** ~100ppm

Major problems

- 1. C.M. of apparatus is too high: inverted pendulum
- 2. Temperature fluctuation: distance of sphere
- 3. Effect of shelves

New apparatus

Air Bearing Turntable 00 Vacuum **Chamber Torsion Balance** (not visible)

SS316 Spheres

544

ULE Shelves

Gear Bearing Turntable

Shock-proof Platform

Sphere shelves

Ultra-low expansion coefficient 0.1×10⁻⁶/°C

ULE Shelves

Distance (mm)	Expansion Coefficient (/°C)	Temperature Fluctuation (°C)	Distance Variation (µm)	Relative Uncertainty (ppm)
Horizontal 342.319	0.1×10 ⁻⁶		0.02	0.10
Vertical 139.751	0.1×10 ⁻⁶	U. 7	0.01	0.04

Distance measurement

Coordinate Measuring Machine

Distance vs. Temperature

Effect of shelves

sphere + shelves

shelves

Effect of shelves

Compensate with copper and aluminum cylinders 920(15) ppm \Rightarrow 4(7) ppm

Result from raw data

Error budget (not complete)

 $G = (6.674^{**} \pm 0.00011)$ $\times 10^{-11} \text{ m}^3 \text{kg}^{-1} \text{s}^{-2}$ $\sim 16.8 \text{ppm}$

Error Sources	Correction	δG/G
Torsion pendulum	(ppm)	2.0
Pendulum		2.0
Coating layer		0.1
Clamp and ferrule		0.2
Glue		0.2
Source masses		6.5
Masses (×4)		0.2
Distance of GCs (×4)		6.5
Relative positions		0.9
Residual twist angle		0.9
Time base		0.1
Magnetic damper	455.6	1.6
Air buoyancy	149.9	1.5
Amplitude of $\alpha(\omega)$		15.2
Total		16.8

Present results of two methods

TOS : $G = (6.674^{**}\pm 0.00010) \times 10^{-11} \text{ m}^3\text{kg}^{-1}\text{s}^{-2}$ < 20 ppm

AAF : $G = (6.674^{**}\pm 0.00011) \times 10^{-11} \text{ m}^3\text{kg}^{-1}\text{s}^{-2}$

< 20 ppm

"Blind" experiments

We expect to get the updated *G* value in 2015 !

Staffs and Students of CGE 2014.09.10

Thanks for Your Attention!

Next plan

Room 2068 Experimental site

Directly measure the distance of spheres in the experimental site

Room 209 Measuring room

