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The NRC watt balance 



The NRC watt balance Subsections 

Control 
 

Beam control – position, velocity, acceleration, limits 
Mass control – raising and lowering mass and tare 
Temperature control, vibration isolation, electrical isolation, 
     vacuum, heat flow … 

 

Measurement 
 

Voltage  
Resistance, 
Velocity and position  and synchronization 
Mass 
Gravity 
Alignment 
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Voltage uncertainties (parts in 109) 

Microwave frequency 0.2 

Filter leakage < 0.1 

Nanovoltmeter gain 0.3 

Voltmeter non-linearity 1.6 

Combined 1.63 

Voltage Uncertainties 



The watt balance 50 ohm resistors are calibrated in-situ with a 
portable QHR and CCC at the operating currents. 
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Resistance uncertainties (parts in 109) 

Measurement vs QHR 3 

Sample dissipation 3 

Resistor stability 5 

Resistor power coefficient (1 kg) 2 

Combined 6.9 

Resistance Uncertainties 



The laser is calibrated in-situ 
through an optical fiber link to the 
NRC time and frequency lab. 
 
 
 

B 

He-Ne Laser 

v 

Frequency 
counter 

Operation at constant 
velocity means detector rise 
times do not cause an error.   
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He – Ne gain curve 

Old laser – polarization stabilized  

∆f = 640 MHz  

Error caused by second mode leaking into the interferometer  

∆f = 0.5 MHz  

6101 −×≈
∆
f
f

New laser – transverse Zeeman stabilized  

9101 −×≈
∆
f
f

Polarization leakage 



Velocity uncertainties (parts in 109) 

Laser wavelength 0.8 

Mode leakage < 0.1 

Diffraction correction 0.2 

Retroreflector imperfections 0.2 

Beam shear 0.3 

Frequency measurement 0.1 

Index of refraction correction 0.1 

Synchronization < 0.1 

Position error 0.9 

Combined 1.3 

Velocity Uncertainties 



NRC M-one vacuum 
mass comparator 

•Pt-Ir mass calibrated at BIPM 
•Vacuum-Air difference evaluated 
•Test masses measured in vacuum 

Mass 



Mass uncertainties for 1 kg (parts in 109) 

BIPM calibration uncertainty 7.2 

Transport stability 3.5 

Balance uncertainties 2 

Stability of reference mass 2.8 

Pressure dependence 1 

Corrections 

 Sorption on reference 2 

 Center of gravity < 0.1 

 Weighing range sensitivity 0.2 

Combined 9.0 

Mass Uncertainties 



•Three isolated gravity pads. 
•3D Mapping of variations within 

lab 
•Modeling of variations with 

balance in place 
•Tide program, polar motion… 
•Seasonal variations ~ 3ppb 
•Gravity re-measured in July 2013 

and Jan 2014 
•Gravimeter compared with NIST 

and NRCan with good agreement 

J. Liard, C.  Sanchez, B Wood, D. Inglis and R. 
Silliker, Gravimetry for watt balance 
measurements, Metrologia 51 S32–41, 2014 

Gravity 



Gravity uncertainties (parts in 109) 

Absolute measurement 2.7 

Horizontal transfer 2.5 

Vertical transfer 3 

Corrections 

 Balance attraction 1 

 Earth tide < 0.1 

 Polar motion 0.1 

 Ocean loading 0.3 

 Atmospheric pressure 0.3 

Seasonal changes 3 

Combined 5.7 

Gravity Uncertainties 



C. Sanchez and B. Wood,  Alignment of the NRC watt balance: 
considerations, uncertainties and techniques, Metrologia 51 S42–53 

•Horizontal forces: Fx , Fy ≈ 0 
•Horizontal velocities: vx , vy ≈ 0 
•Torques: τx , τy , τz ≈ 0 
•Angular velocities: ωx , ωy , ωz ≈ 0. 
•Optical alignment (laser beam vertical, Abbe offset) 
•Mass pan position 

 
 
 

All alignment related quantities are measured in vacuum. 
 
 
 

Alignment 



Alignment 



Alignment uncertainties, m1 ( x 10-9) 

Fxv’x 0.4 

Fyv’y < 0.1 

τxωx 0.2 

τyωy 0.7 

Abbe offset correction 3.9 

Mass pan alignment 0.2 

Laser vertical 0.8 

Horizontal displacement 2.8 

Vertical displacement 2.8 

Change in θz 1.3 

Change in θx and θy 0.5 

Combined 5.9 

Alignment Uncertainties 



1. Stretching of the coil support 

( )
N
Nµ018.0238.0 ±+=Initial correction  

   Solution 
•  Modification of the coil support 
•  Adjustment of the beam center of mass 

N
nN1<Error reduced to  

The coil is servoed to z=0, so if the coil 
support stretches then beam will tilt. 

Systematic Effects - Mass Exchange Errors 



2.  Tilting of the balance base 
 

Initial correction  

   Solution 
•  Modification of the mass lift 

The coil is servoed to z=0 so if the 
beam platform tilts the angle between 
the beam and the platform changes.  

( )
N
Nµ056.0636.0 ±−=

N
nN7.1<Error reduced to  

Systematic Effects - Mass Exchange Errors 



• Change of coil position / orientation between moving  
and weighing phases 

•  Knife-edge hysteresis 
•  Voice coil coupling 
•  Dielectric absorption 

These effects were found to be smaller than 3 ppb  

Other Tests for Systematic Effects 



Miscellaneous uncertainties ( parts in 109) 

Mass-exchange errors 1.7 

Knife-edge hysteresis 1.0 

Buoyancy correction 0.1 

Asymmetric magnetization 0.1 

Mass magnetic susceptibility 0.1 

Combined 2.0 

Other Uncertainties 



1 kg 
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0.5 kg 
Si 

0.5 kg 
AuCu 

0.25 kg 
Si 

Type A: 3 – 6 parts in 109 

Original Results – All Data Points 



h Results from Each Mass 



Have we considered ALL systematic effects that can have a 
significant influence? 

Apparently Not!   

Any Other Systematic Effects ?? 

The IPK has only been taken out of its vault 
three times (1948, 1990, 2013) since it was 
originally stored in 1889.  



During the Extraordinary Calibration against the IPK 
conducted by the BIPM in 2014, it was discovered that 
the as-maintained mass unit of the BIPM has been 
drifting with respect to the IPK since about the year 
2000.   
 
Corrections for the mass calibrations of NRC’s mass 
standards were received in mid-December 2014 and they 
impact the NRC Planck determination of 2014.   
 
The resulting corrections for the NRC Planck 
determination are 35 ppb in value and a reduction in the 
mass traceability uncertainty from 7.2 ppb to 3 ppb.   

Another Systematic Effect 
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h Results from Each Mass – Mass Corrected 



– 1 = (189 ± 18) × 109  
h 

h 90 

NRC-14 

h 
NRC-14 = 6.626 070 11(12) × 10-34 Js 

NRC Combined Result – Mass Corrected 
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