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sitioned larger spheres (source masses) will cause
the balance to rotate by an angle that depends on
the gravitational force and the wire’s torque con-
stant κ. The torque constant can be determined by
measuring the natural oscillation period T0 of the
torsion assembly and using κ = I(2π/T0)2, where I is
the moment of inertia. Michell had invented the tor-
sion balance.

Not until after Michell’s death was the appara-
tus put to use: Henry Cavendish used it to “weigh”
Earth by comparing the gravitational attraction be-
tween test and source masses with that between the
source masses and Earth. Cavendish’s 1798 publica-
tion describes in exquisite detail arguably the first
precision experiment in physics. His torsion balance
was one of the most significant pieces of physical
apparatus ever invented. In a compilation of pub-
lished work on measurements of G, George Gillies
listed about 350 papers, almost all of which refer to
work done with a torsion balance.4 Among the
dozen or so experiments used in the latest  CODATA
evaluation, all except three were made with torsion
balances. 

Had Cavendish walked into any of the modern
 torsion- balance labs, he would have immediately
known what was going on. Although today’s torsion-
balance assemblies are protected by vacuum cham-
bers, not the wooden boxes used in the Cavendish
experiment, the basic principle of separating the
minute gravitational force between laboratory-scale
masses from Earth’s large, downward pull remains
the same. 

Cavendish would have been surprised, how-
ever, to find that after so many years, measurement
accuracy has improved only modestly—not nearly as
much as it has for almost every other physical quan-
tity. We now estimate the accuracy of Cavendish’s
measurements to be something like 1%, which is not
much worse than the spread of measurements that
figure into the current  CODATA value. To under-
stand how we’ve arrived at this situation, let’s first

take a look at what actually has changed in the de-
sign and operation of torsion balances since the time
of Cavendish.

Inspiration . . .
One of the first important improvements to the
Cavendish method was made in 1894 by Charles
Boys, who realized that the best sensitivity would
be obtained with the thinnest possible wire. That’s
because the torque constant increases as the fourth
power of a wire’s diameter, whereas the load the
wire can support increases as the diameter squared.
Although thinner wires require lighter test masses,
the decreased gravitational force is more than com-
pensated for by the increase in wire flexibility; the re-
sult is a larger,  easier-to- measure deflection angle. Al-
most all torsion-balance experiments since the time
of Boys have used a fine wire with a suspended mass
assembly of a few grams at most. In Cavendish’s
original setup, the test masses were much larger,
lead balls weighing some 750 grams each.

The next major advance was made in 1895 by
Loránd Eötvös, who introduced the so-called time-
of-swing method. In that approach, the free-oscilla-
tion period of the  torsion- balance assembly is meas-
ured with the source masses positioned first along,
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Figure 2. A  torsion- balance experiment has, as its
central element, two test masses balanced on a beam
suspended by a thin metal wire. (a) In the original
setup conceived by John Michell and later used by
Henry Cavendish, two large source masses are 
positioned to exert a gravitational force that causes 
the torsion balance to turn through a small angle. The
arrangements indicated by the dark and light source
masses would yield clockwise and counterclockwise
displacements, respectively. (b) In so-called time-of-
swing experiments, G is calculated from the change in
oscillation period when source masses are repositioned
between arrangements lying along (dark spheres) and
orthogonal to (light spheres) the resting test-mass axis.
(c) In a third approach, the electrostatic servo- control
technique, the gravitational force is calculated from the
voltage that must be applied to nearby electrodes to
hold the test assembly in place. In all three configura-
tions, the gravitational coupling between the source
masses and the whole of the torsion-balance assembly
has to be calculated.
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FIG. 1. Diagram of the apparatus with inset showing
detail of the damper.

mm in diameter mounted on the ends of a 1.0347-
mm centerless-ground tungsten rod 28.5472 mm
long. The mass of the entire assembly is approxi-
mately 7 g.
(3) The small mass enclosed in a vacuum of
10 ' Torr or less is supported by a 10-12-pm
quartz fiber 40 cm long. The fiber was plated
with chromium and gold to make it conductive.
The period without the large masses in place
was approximately 6 min. The change in the
period due to the large masses is a few percent.
(4) The damper, crucial to the success of this
experiment, is shown in the inset in Fig. 1. It
consists of a small circular aluminum disk sus-
pended in a strong magnetic field approximately
10 cm from the top of the vacuum chamber by a
125-p,m quartz fiber. The spindle through the
center of the disk serves as the support for the
much smaller 10-12-p.m fiber which holds the
bob. The larger top fiber is quite flexible with
respect to motions of the bob in the pendulous
mode which are introduced by seismic distur-
bances. These vibrations are damped in a few
seconds. The torsion constant of the larger top
fiber is much greater (10') than that of the small-
er fiber, i.e., the top fiber is rigid, compared
to the bottom fiber, with regard to torsional mo-
tions; therefore, the damping of the torsion
mode is negligible.
(5) The detector consists of a 170-mm focal

length autocollimator with a 25-mm aperture in

which the light through a 15-p,m slit is colli-
mated, reflected twice from the mirror attached
to the small-mass system, and refocused on a
1024-element diode array. The 1024 light-sensi-
tive elements are 15 pm on centers, which al-
lows the small system to be monitored over a
range of 2&10 ' rad. The width of the refocused
image of the slit covers 4 to 5 elements of the
array. The angular position of the small-mass
system is measured every 20 sec by determining
the amount of light on each element of the array.
The apparatus is enclosed in an acoustically
isolated, thermally controlled cube about 2.5 m
on a side. This is mounted on a reinforced con-
crete slab of about 5000 kg. It is located in a
large basement room of the Physics Building at
the National Bureau of Standards, Gaithersburg,
Maryland, where the temperature is held con-
stant to within approximately 2 'C. The inner
room temperature is controlled to within approxi-
mately 0.1 'C.
The large masses are positioned on three small

pads located in wells machined into a monolithic
aluminum plate. The separation of the centers
of the large masses, 14.059454 cm, was deter-
mined to within 0.3 pm. The consistency of the
separation, after removing and replacing the
large masses, was found to be less than 0.05 p,m
rms.
Data are taken alternately with the large mass-
es in place and with them removed. Usually,
each of these conditions would last from 6 to 12
h. Typically a series lasts from 50 to 75 h. The
frequencies for each of the individual sets (6 to
12 h) were determined by use of the algorithm of
Snyder. " These frequencies were squared. The
midpoint time of the run was assigned to each
run. Each set of runs was separated into two
groups (masses on, masses off) and a linear
least-squares fit was made of ~' versus time
for each group with the constraint that the slopes
of the fits are the same. The implication of this
procedure is that any underlying drift (slope of
the fits) affects the runs in the same way, i.e.,
is independent of whether the balls are on or off.
As a check on the effects of the Earth's magnetic
field, data were taken with the apparatus in dif-

ferentt

orientations.
The calculation of G was made from the aver-

age &(~') value listed in Table 1.
The final assignment of the uncertainty in this

determination of G was arrived at by the conven-
tional .method of taking the square root of the sum
of the squares of the uncertainties listed in Table
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TABLE I. Summary of correction factors.

Finite pendulum thickness 1.0007857
Pendulum attachment and imperfections 1.0000433
a62 correction 0.9998767
a82 correction 0.9999951
Data averaging (t ! 1 s, vd ! 20 mrad!s) 1.0000667
Numeric derivatives (Dt ! 10 s, vd ! 20 mrad!s) 1.0134544

Total 1.0142322

height h vanishes by choosing h2 ! 3
10 "w2 1 t2#, and

the Q42 vanishes by using two spheres on each side with
their centers spaced vertically by z !

p

2!3 r, where r
is the radial distance from the pendulum axis. The lowest
l . 2, m ! 2 contribution which does not vanish by
design is the small and easily calculable a62:

a62

a22
!

99
7 683 200

213"w4 1 t4# 1 626w2t2

r4 . (6)

Table I contains the numeric values of the a62 and a82
corrections. We checked the accuracy of our multipole
analysis with a full angular acceleration calculation using
direct numeric integration.

The attractor spheres are located on a separate coaxial
turntable which is rotated with angular velocity va"t# !
vd 1 vi"t#, where vi"t# is the angular velocity of the
torsion balance turntable. The difference angular velocity,
vd ! "f, is held constant. Rotation of the attractor masses
allows us to cleanly remove gravitational interactions due
to the environment. Furthermore, we are able to set the
signal, sin"2vdt#, at a relatively high frequency to suppress
the 1!f noise characteristic of the torsion balance and the
gravitational background.

A schematic of the apparatus is shown in Fig. 1. The tor-
sion balance turntable consisted of an air bearing, a preci-
sion angle encoder, and an eddy-current motor. The torsion
pendulum was located in an aluminum vacuum chamber
and was surrounded by a m-metal shield. The pendulum
was hung from a 41.5 cm long, 17 mm diameter tungsten
fiber, which was attached to a swing damper. The pendu-
lum was a 1.506 mm thick, 76 mm wide, and 41.6 mm tall
Pyrex glass plate with a thin gold coating. The small pen-
dulum deflection angle was sensed with an autocollimator
using four reflections off the pendulum plate.

The centers of the spheres were located at r !
16.76 cm on three stainless steel seats that were embedded
in two cast-aluminum shelves. The shelves were supported
by a turntable made from a steel bearing. The attractor
spheres were machined from the same selected stock of
ultrasonically tested No. 316 stainless steel. Their average
diameter was 124.89 mm and their mass was $8.140 kg
[11]. A pressure-dependent air-density correction was ap-
plied to the G measurements. The apparatus was located
in the former cyclotron cave in the Nuclear Physics Lab at
the University of Washington on a massive platform 3.5 m
above the floor. The partially underground room was

temperature stabilized. Temperature drifts and fluctuations
were typically ,0.05 K!day. The instrument itself was
in a passive thermal enclosure made of Styrofoam. The
apparatus temperature was monitored and a correction
was applied to compensate for the thermal expansion of
the attractor mass assembly during the measurement.

A digital signal processor (DSP) recorded the data and
controlled the experiment. The DSP’s loop frequency
(2.5 KHz) was used for the timing, which was derived
from a temperature-controlled quartz oscillator which
was calibrated with a Global Positioning System receiver.
The data were averaged by the DSP over exactly 1 s and
uploaded to the host PC.

We recorded six data runs, each approximately three
days long. A typical data segment is shown in Fig. 2. After

FIG. 1. Cut-away view of the apparatus.
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then orthogonal to, the test mass axis (see figure 2b).
In the first configuration, gravitational attraction 
between the source and test masses decreases the
period; in the second configuration, it increases the
period. The advantage of the method is that a small
change in oscillation period is easier to accurately
measure than a small change in the deflection angle. 

Techniques improved over the next half cen-
tury, but the methods remained the same. By the
1970s Gabriel Luther of the US National Bureau of
Standards (NBS, now NIST) in Gaithersburg, Mary-
land, and William Towler of the University of Vir-
ginia had used the time-of-swing method to meas-
ure G with an uncertainty of 70 ppm.5 That result
was largely the basis for the value adopted in the
 CODATA’s 1986 edition of fundamental constants.
Later, Charles Bagley and Luther, at Los Alamos Na-
tional Laboratory, repeated the NBS experiment
using a different disposition of source masses.6
Around the same time, a team at Moscow’s Tri-
botech Research and Development Co conducted a
long series of time-of-swing measurements using
various wires and various arrangements of source
and test masses.7

Metrologists of the day had every reason to
think that an uncertainty of 10 ppm was within
reach. Attempts to improve estimates of G by using

extremely large masses such as mountains and
reservoirs failed; although the gravitational signals
were larger, so were the uncertainties, for instance,
of the mass distribution inside the mountain and the
shape of the bed of the reservoir. Nevertheless, there
was little reason to think that the  CODATA value
was in serious error.

. . . and perspiration
During the 1990s two developments cast doubt on
the 1986  CODATA value. First was the problem of
anelasticity, the fact that the metal wire in a torsion
balance doesn’t behave as an ideal spring. A stan-
dard approach in materials science is to treat such a
wire as a Maxwell material—essentially, a damped
spring having both elastic and viscous components.
The Maxwell model predicts an anelastic  after-
 effect, observed by Cavendish, wherein the spring
takes a finite time to relax after an applied stress is
removed. 

In the early 1990s, we and our coworkers dis-
covered that the standard Maxwell model doesn’t
fully explain the behavior of torsion balances.
Specifically, our theory and experiments suggested
that the torsion assemblies have not one character-
istic relaxation time but many; the damping appears
to grow stronger as the period becomes longer, and
the relaxation time becomes essentially infinite.8
The effect is evident at periods ranging from less
than a second to more than 10 minutes. We were
able to relate the anelastic  aftereffect to the presence
of so-called 1/f noise arising from the movement of
dislocations in the metal wire.

Kazuaki Kuroda then deduced that anelastic
behavior would subject time-of-swing measure-
ments to an error inversely proportional to the qual-
ity factor Q, a quantity indicating how closely the
balance approximates a lossless elastic spring.9 He
calculated corrections for many of the classic tor-
sion-balance measurements; he revised all of them
downward, in most cases by a few tenths of a per-
cent. The NBS measurements on which the 1986
 CODATA value was based were revised downward
by about 50 ppm following confirmatory experi-
ments by Bagley and Luther, who used two wires of
widely different Q.

In 1996 a second development shook confi-
dence in the  CODATA value: the publication of a 
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Figure 3. Two twists on the torsion balance. (a) A group
at the University of Washington used the flat plate visible
at center, rather than the traditional dumbbell arrange-
ment, as the test mass in a torsion-balance measurement
of the gravitational constant G. (A penny at the  bottom
left conveys the scale.) In such a geometry, the derived
value of G is almost completely independent of the mass
distribution of the test masses. (Image courtesy of Jens
Gundlach.) (b) Researchers at Huazhong University of
Science and Technology in Wuhan, China, used a quartz
slab as the test mass, which offers similar metrology 
advantages. The source masses are arranged in the 
so-called time-of-swing configuration, detailed in 
figure 2b. (Image courtesy of Jun Luo.)

a

b
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Figure 4. The cryostat and associated apparatus. (Online version in colour.)

(LANL). A dimensionally critical 650 mm spacing of the two rings was maintained by a pair of
8 mm diameter fused silica rods extending between them. The rings hung outside the dewar,
suspended by a Kevlar string from a turntable 1.87 m above their centre. The turntable rotated the
rings under computer control at intervals of about 30 min to modulate the gravitational signal.
Stationary positions of the turntable were determined by detentes located at 45◦ intervals, with
relative angular positions calibrated to within 20 µrad using a Heidenhain model 800 angular
encoder. An optical lever that views mirrors on the turntable confirmed accurate arrival of the
turntable at a detente, and if necessary provided a correction signal to the turntable. The turntable
transport speed envelope was designed to bring the rings to rest without swinging at the end of
a transport. The output of an optical lever viewing a small mirror on one of the rings allowed
the turntable control system to actively damp residual swing motion. This swing signal was
recorded for later analysis. A platinum resistor thermometer embedded in each ring monitored
its temperature, supporting the calculation of correction for its thermal expansion.

(b) Pendulum and torsion fibres
The pendulum was a 10.7 g Corning 7980-OAA fused silica plate, with dimensions 40 × 40 ×
3 mm, made by General Optics Inc. The four sides of the pendulum were coated with a 100 nm
layer of aluminium and a 27 nm layer of SiO2 by Newport Optics. Two similar pendulums
were used in the course of the project. In later years, an additional coating was applied to the
second pendulum, adding 5 nm of chromium and 200 nm of gold, to improve its reflectivity and
thus reduce heat absorption. The pendulum suspension had two stages: an upper phosphor–
bronze fibre, 380 µm in diameter and 73 mm long, which suspended an aluminium damping
disc between a pair of ring magnets, and the main 250 mm long fibre which extended from
this disc down to the pendulum. Eddy current damping in the disc served to damp swinging
modes of the pendulum without significantly reducing the mechanical Q of the torsional
oscillation mode. The torsion fibres were mounted with Stycast1266 epoxy in 1.6 mm diameter
20 mm long aluminium ferrules which were clamped to support the fibre upper end and tapped
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ring position 1 ring position 2

Figure 1. Diagram of source mass rings and the torsion pendulum in the two measurement positions 90◦ apart.

considerable advantage of requiring neither a calibrated reference force nor precision
measurement of angular displacements. A potential drawback of the method is its susceptibility
to systematic error arising from anelastic properties of the torsion fibre which suspends the
pendulum. This danger was emphasized by Kuroda [1], who showed that a widely accepted
model for linear anelastic behaviour, with reasonable parameter assumptions as investigated by
Quinn et al. [2], leads to an upward fractional bias in a G measurement of 1/(πQ), where Q is the
quality factor of the pendulum’s torsional oscillation mode.

(a) Features of our measurement
For our measurement, we use a thin-plate torsion pendulum and a pair of ring-shaped source
masses separated by fused silica rods moved alternately between the positions indicated in
figure 1. The gravitational interaction of the rings with the thin-plate pendulum has a form which
makes the experiment extremely insensitive to error in the pendulum’s position, size and mass
distribution. Advantages of cryogenic operation include the following. (i) The pendulum Q is
increased from a few thousand to over 100 000, reducing bias from the Kuroda mechanism to
below 5 ppm. (ii) Thermal noise acting on the pendulum, which scales as

√
kBT/Q, is reduced

by nearly two orders of magnitude. (iii) The sensitivity of fibre properties, including its torsion
constant, to temperature variation is greatly reduced. (iv) Excellent temperature control is easily
maintained. (v) High vacuum is easily maintained. (vi) Highly effective magnetic shielding with
superconducting lead becomes possible.

Our source mass system was necessarily positioned outside of the dewar, at the relatively large
distance of 40 cm from the pendulum within the dewar. This large distance was an advantage
in that it allowed a rapidly converging multipole treatment of the source mass–pendulum
interaction and reduced sensitivity to non-uniformity of the rings’ mass density, but the large
distance meant that the magnitude of the signal torsional period change that must be measured
(from 1.7 to 0.2 ms, depending on fibre material and oscillation amplitude) was many orders of
magnitude smaller than that experienced in other ‘dynamic’ G measurements.

(b) Extracting G from data
A full formalism for analysing the behaviour of the pendulum and source mass system is
presented in §4. Here, we outline the main features of the analysis.

The gravitational torque on a torsion pendulum may be expressed as

τ (θ ) = −
∑

ℓm

imqℓma∗
ℓm e−imθ , (1.1)
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and their orientations are changed deliberately. The surface
separation of the spheres is remeasured, and the relative
positions between the source masses and the pendulum are
also adjusted and redetermined in experiment II.

II. APPARATUS

A. General description

Figures 3 and 4 show a cutaway view of our G measure-
ment and photographs of our experimental apparatus, re-
spectively. The heart of the apparatus is a two-stage
pendulum system, which is suspended from the top of
the electrically grounded vacuum chamber by a rotational
feedthrough. The pendulum twist is monitored by an opti-
cal lever outside the vacuum chamber.

The source masses are two SS316 stainless steel spheres.
Four small identical Zerodur rings, two of them supporting
the source masses and the others acting as the gravitational
counterbalances, are symmetrically adhered on a Zerodur
disk of 240-mm diameter and 25-mm thickness. The
Zerodur disk is mounted on a turntable driven by a stepper
motor [39]. Because of the extremely low thermal expan-
sion coefficient of Zerodur, ð0" 1Þ $ 10%7=&C, the varia-
tion of the separation between the mass centers of the
source masses caused by the temperature fluctuations is
negligible. The Zerodur rings and the disk are coated with a
thin layer of aluminum to keep the source masses well
grounded in experiment I. Because of frequent handling of
the Zerodur disk in subsequent measurements, most of the
aluminum layer has been scraped off by the time experi-
ment I is finished. Therefore, a thin layer of aluminum foil
is used to cover the Zerodur rings and the disk for ground-
ing in experiment II (as shown in Fig. 4). This causes a
slightly larger separation between the two spheres than in
experiment I. A thin hollow gold-coated aluminum cylin-
der is inserted between the pendulum and the source

masses for electrostatic shielding, which seems to improve
the stability of the pendulum’s period.
The main body of the vacuum chamber is a stainless

steel cylinder with an inner diameter of 450 mm and a
height of 500 mm. A rotary vane pump [40] and a turbo-
molecular pump [41] at the bottom of the chamber are used
to acquire vacuum, and an ion pump [42], located behind
the vacuum chamber, is used to maintain a pressure of
'10%5 Pa in the chamber during the experiments. Three
optical telescopes, mounted on separate tables free from
the vacuum chamber, are used to monitor the changes in
the pendulum’s position from air to the vacuum condition.
Two of them, aimed at the fiber in two mutually perpen-
dicular directions, and the third one, aimed at the pendu-
lum, monitored the change in the vertical direction. Six
temperature sensors with four inside the chamber, two
tiltmeters in two orthogonal directions, and one barometer
are used to monitor the temperature variations of the

FIG. 3 (color online). A cutaway view of the two-stage pen-
dulum system and source masses in our G measurement. The
coordinate axes in the laboratory frame are also shown.

FIG. 4 (color online). The upper photo shows an external view
of the entire experimental apparatus. The lower photo shows the
suspended pendulum and source masses in the vacuum chamber
in experiment II. A thin hollow gold-coated aluminum cylinder
is inserted between them for electrostatic shielding.
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has a dissipative component that depends largely
on its thickness and a gravitational component that
depends on its width and loading. A heavily loaded
strip, much wider than it is thick, has a restoring
torque that’s almost wholly gravitational and hence
essentially lossless. We could therefore obtain qual-
ity factors exceeding 105, meaning that it would take
roughly 100 000 oscillations—or nearly five months,
given the two- minute period of our balance—for the
energy of our torsion balance to decay by 1/e. Second,
because a torsion strip can support a much heavier
load than can a wire with a similar quality factor,
we were able to use four heavy test masses, which
gives a bigger signal and significantly reduces the
sensitivity of the balance to local gravity gradients.
The resulting gravitational signal, 3 × 10−8 N · m,
was some four orders of magnitude larger than in
typical torsion-balance experiments.

Our experiments remain the only ones to meas-
ure G using the same apparatus in two significantly
different methods: the classic Cavendish method,
which essentially depends on an angle measurement
and timing, and the servo-control method, which
depends on electrical measurements. We believe
such pairing of methods is a powerful way to check
for systematic errors. If the results of the two meth-
ods agree, as ours did, then unknown errors in angle,
timing, and electrical measurements are unlikely,
and one need only look for errors in parameters that
are common to both methods—mainly uncertain-
ties in dimensional metrology and in the uniformity
of source-mass densities. Had a different apparatus
been used for each method—or had each experiment
been performed in a different lab—errors could not
have been constrained in the same way. Searching

for biases through a number of experimental config-
urations housed in the same laboratory and publish-
ing a final result only when the measurements agree
should lead to more reliable values of G.

Beyond the torsion balance
Since the 1990s a few groups have developed suc-
cessful alternatives to the torsion balance. Among
the firsts, researchers at the University of Wuppertal
in Germany devised a simple pendulum gravity gra-
diometer, which consisted of two metal mirrors sus-
pended by thin wires to form a hanging microwave
cavity, as illustrated in figure 4. When 125-kg source
masses were positioned behind each mirror, they in-
duced a slight displacement of the mirrors, detectable
as a change in the cavity resonance frequency.

By 2002 the Wuppertal group had refined the
technique sufficiently to measure Gwith a reported
uncertainty of 100 ppm.16 Soon after, Harold Parks
and James Faller of JILA adopted a similar ap-
proach, except they replaced the microwave cavity
with a more sensitive optical cavity and used four
source masses instead of two.17 Their result, with an
uncertainty of 21 ppm, was some 200 ppm smaller
than the 2010  CODATA value.

In an experiment in Zürich, Stephan Schlam-
minger and colleagues measured G using the beam-
 balance method18 depicted in figure 5. Conceptually
similar to a method used by John Henry Poynting
in the 1880s, the team’s approach involved observ-
ing the change in the relative weights of two test
masses suspended just above and just below two
large source masses—steel containers each filled
with 6.5 tons of mercury.

Despite the large source masses, the gravita-
tional signal amounted to only 8 µN. Although
that’s large compared with most torsion-balance 
experiments, it still represents a signal of only
800 µg—roughly the mass of a millimeter-sized
drop of water—superimposed on the roughly 1.1-
kg weight of the test masses. The final uncertainty,
less than 20 ppm, was constrained by the stability of
the state-of-the-art commercial balance used to do
the weighing. Although the resulting value sits
squarely within the 2010 CODATA range, it differs
significantly, sometimes by hundreds of parts per
million, from more than half the measurements
made during the past three decades. 

Quo vadis?
What is one to make of all the disagreement? We
mentioned above the possibility of modifications to
Newton’s laws. At present, however, none of the al-
ternative theories seems compelling. More likely, the
results have systematic errors much larger than their
estimated uncertainties. Despite rigorous probing at
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Newton’s constant
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Upper
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Balance

Source masses

Wires

Figure 5. In a beam- balance experiment, a Zürich
team compared the weights of two 1.1-kg test masses
suspended just above and just below 6.5-ton source
masses. In switching between the left and right 
configurations, the test masses’ differential weight
changes by an amount equivalent to the weight of a
millimeter-sized drop of water. (Adapted from ref. 18.)
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New Measurements of G Using the Measurement Standards Laboratory Torsion Balance
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This Letter presents the results of a series of measurements of the Newtonian gravitational constant
G using the compensated torsion balance developed at the Measurement Standards Laboratory. Since
our last published result using the torsion balance in the compensated mode of operation [Meas. Sci.
Technol. 10, 439 (1999)], several improvements have been made to reduce the uncertainty in the final
result. The new measurements have used both stainless steel and copper large masses. The values of G
for the two sets of masses are in good agreement. After combining all of the measurements we get a
value of G ! 6:673 87"0:000 27# $ 10%11 m3 kg%1 s%2. This new value is 5 parts in 105 smaller than our
previous published values.

DOI: 10.1103/PhysRevLett.91.201101 PACS numbers: 04.80.Cc, 06.20.Jr

In 1998 the CODATA committee decided to increase
the uncertainty in the recommended value for the
Newtonian gravitational constant G by about 12 times
to 1.5 parts in 10%3 [1]. Since then a number of new
measurements of G have been completed with three of
them having uncertainties below 5 parts in 105. The
measurements of Gundlach and Merkowitz [2] and
Schlamminger et al. [3] are in good agreement with
each other while the result of Quinn et al. [4] is 2 parts
in 104 higher.

We have been making precise measurements of G using
the Measurement Standard Laboratory (MSL) torsion
balance for over ten years [5–8]. Over that time, we
have improved the apparatus, the measurement method,
and the analysis of the results. The results of our final
measurement of G are described in this Letter.

Figure 1 shows a schematic diagram of our torsion
balance. It uses two large cylindrical masses (&27 kg
each) to produce a gravitational attraction on a &500 g
cylindrical small mass made of copper. The small mass is
suspended from a &1 m long tungsten fiber with a rect-
angular cross section of 300 !m$ 17 !m so that it is
free to rotate in response to the gravitational attraction of
the large masses. This rotation is detected by an autocol-
limator viewing a mirror attached to the small mass. The
signal from the autocollimator goes to a feedback control
system to generate a voltage applied to an electrometer.
This produces an electrostatic force on the small mass
that compensates the gravitational attraction so that
the fiber is not required to twist. At each large mass
position, positive and negative voltages are used to permit
the calculation of the contact potential Vc between the
stainless steel of the electrometer plates and the copper
small mass.

The electrometer consists of the four plates below and
four plates above the small mass connected as two diago-
nally opposite pairs of electrodes. The lower four plates
are shown in Fig. 1 and four similar plates are positioned
above the small mass. The box surrounding the elec-

trometer is earthed. The small mass is also earthed and
acts as the moving vane of the electrometer. The elec-
trometer can produce a torque on the small mass in either
the clockwise or the anticlockwise direction by applying
a voltage to the appropriate pairs of electrodes.

The large masses are kinematically mounted on a
turntable that rotates them about the small mass system
stopping at the two angular positions corresponding to
the maximum in the gravitationally induced torque on the
small mass. At each large mass position, the voltage VG
required to hold the small mass at the same constant
position is measured and G is determined from

G"KI % KII# ! 0:5'"dC=d"#1"VGI ( Vc#2
% "dC=d"#2"VGII ( Vc#2) (1)

FIG. 1. A schematic diagram of the MSL torsion balance.
SM, small mass; LM, large masses; T, turntable; A, autocolli-
mator; F, fiber; AB, air bearing; E, electrometer; M, mirror.
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Absolute measurement of the
Newtonian force and a determination
of G
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Abstract. We present the status and preliminary results of the Wuppertal gravitational
experiment which is based on a microwave resonator. The gravitational force of two test
masses acting on the resonator is measured as a function of distance. From new data taken
recently we determine the gravitational constant G and test Newton’s inverse square law in a
distance range between 0.7 m and 2.2 m. From our measurements we obtain a preliminary
value for G = 6.6735⇥ 10�11 m3 kg�1 s�2 with an uncertainty of 432 ppm dominated by
systematic considerations.

Keywords: gravitational constant G, microwave resonator (GHz)

1. Introduction

The Fabry–Pérot Pendulum gravimeter at the University of
Wuppertal has been in development since 1988 for absolute
experiments on Newtonian gravity. Accounts of those
developments can be found in several earlier papers [1, 2],
contributions to conferences [3] and in the theses of N Klein
[4], J Schurr [5] and H Walesch [6]. The value of G,
the gravitational constant, was determined with nominal
precision of a few times 10�4, however we found the
absolute value to differ by 10�3 between different sets of
measurements and in addition to depend on the distance of
the fieldmasses from the Fabry–Pérot gravimeter [7]. The
following investigations revealed a rather large systematic
shift in the determination of the absolute distance of the
field masses that could qualitatively explain the distance
dependence of the G measurements [8]. In 1997 a new
method for measuring the absolute position of the field
masses was installed that allowed for a sufficiently precise
determination of the absolute distances in our set-up [9]. Here
we report on a first set of measurements using the improved
experimental arrangement and give a new preliminary value
for Newton’s constant G.

2. The Fabry–Pérot gravimeter

In the Fabry–Pérot gravimeter two fieldmasses provide a
gravitational field to influence the relative positions of
two pendula that constitute the defining walls of an open
microwave cavity. Both pendula are suspended by two loops
of tungsten wire, which are mounted from a suspension
platform. The pendula are placed inside a vacuum tank with

Figure 1. Schematic view of the experimental set-up with the
Fabry–Pérot resonator and the two fieldmasses.

a pressure of p 6 5⇥10�5 mbar. The position change of the
two cavity mirrors is determined by measuring the resonance
frequency of the cavity to high precision. The separation of
the fieldmasses is changed periodically between a reference
distance (r

ref

) and ameasuring position (r
i

). The basic signal
is then a change in the resonance frequency of the cavity

1f = f

resonance

r

i

� f

resonance

r

ref

(1)

which is related with high precision to the change in the
separation of the two pendula using cavity theory [10].
Figure 1 shows the set-up and in table 1 lists values of some
parameters.

The position of the pendula (and therefore the resonance
frequency of the cavity) is rather sensitive to changes in the
ambient temperature which is, however, a very smooth and
slow effect and is quantitatively described by a polynomial
of fourth order. Noise affecting the pendula positions is

0957-0233/99/060492+03$19.50 © 1999 IOP Publishing Ltd

follow-up paper is planned to more fully describe the
experimental details. The uncertainties are summarized
in Table I and are dominated by components related to
the mass distributions.

The source masses are arranged so that, in both measur-
ing positions, the pendulum bobs are at a saddle point in the
gravitational field from the source masses. This makes the
gravitational signal quite insensitive to the position
of the pendulum bobs relative to the source masses,

though the signal does depend critically on the distance—
perpendicular to the interferometer axis—between the two
opposite pairs of source mass cylinders as well as the along-
axis distance between the two adjacent source masses when
they are in the inner position. This geometry reduces the
hardest part of defining the three-dimensional mass distri-
bution to just six one-dimensional measurements. We con-
structed a large caliper with a movable stand that can reach
around the apparatus. With this and a smaller caliper, we
were able to measure the six critical separations with an
uncertainty of about 3 !m. This measurement contributes a
relative uncertainty of 1.4 parts in 105 to our combined
uncertainty. The gravitational signal is much less sensitive
to uncertainties in all the other dimensional measurements,
but we also invested less effort in making these other
measurements, which contribute a total of 0.8 parts in 105

to the uncertainty budget.
Density variations within the source masses are also a

significant contributor to the uncertainty of our final value.
The masses are made of an alloy of 95.5% tungsten sin-
tered with copper and nickel. Because the cylinders were
cast on their sides, our finding a density variation of 1 to 2
parts in 103 across their diameters is not surprising. This
density variation was measured by allowing individual
billets to rotate freely in an air bearing as well as by cutting
apart one of the billets after the experiment was concluded.
The orientation of each source mass stack (as well as the
orientation of the three billets that comprise it) was ad-
justed to cancel out, by as much as possible, the effect of
this gradient on the total gravity signal. We also rotated the
stacks by 180! halfway through the experiment to average
out the effect of any residual linear component of the
density gradient. Based on the air-bearing data, the
expected fractional change in the gravity signal was ð2:4#
0:5Þ % 10&5 when the masses were rotated 180!. We ac-
tually observed a fractional change of ð1:3# 0:7Þ % 10&5,
in reasonable agreement with the calculated value. The
residual nonlinear density variations contribute an uncer-
tainty of 0.8 parts in 105 to the final result.
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FIG. 1 (color online). A schematic of the apparatus is shown
on top. A Fabry-Perot interferometer measures the spacing
between the two pendulum bobs with respect to a suspension-
point-located reference cavity. The bobs are made of oxygen-
free copper and have a mass of 780 g. The pendulum length is
72 cm, and the spacing between the bob centers is 34 cm. When
the four 120 kg tungsten source masses (which are floated on air
bearings) are moved from one position to another, the horizontal
gravitational force on each pendulum bob changes by 480 nN,
giving rise to a change in pendulum bob separation. Not pictured
is the vacuum chamber that encloses the pendulums but not the
source masses. Magnets (not shown) outside of the vacuum
system and below the pendulum bobs damp the swinging motion
of the pendulums so that the static deflection due to the gravi-
tational pull of the source masses can be measured. The gravi-
tational signal is plotted on the bottom as the source masses are
moved between the inner and outer positions several times (with
the source masses pausing at each position for 80 s). The
125 MHz change in the beat frequency between the laser locked
to the pendulum cavity and the laser locked to the reference
cavity corresponds to a 90 nm change in the pendulum bobs’
separation.

TABLE I. The major components of uncertainty are listed here
expressed in terms of each contribution to "G=G in parts in 105

at the 1# level. The uncertainties in this table, along with all
other uncertainties in this Letter, are expressed as standard (1#)
uncertainties.

Uncertainty component "G=Gð%10&5Þ
Six critical dimensions 1.4
All other dimensions 0.8
Source mass density inhomogeneities 0.8
Pendulum spring constants 0.7
Total mass measurement 0.6
Interferometer 0.6
Tilt due to source mass motion 0.1
Day-to-day scatter 0.4

Combined uncertainty 2.1
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result by Winfried Michaelis and coworkers at
Physikalisch-Technische Bundesanstalt (PTB) in
Braunschweig, Germany.10 Michaelis and his col-
leagues used a novel torsion balance in which the
test masses were floated in a mercury bath rather
than hung from a wire. Instead of measuring the dis-
placement or change in period due to the gravita-
tional pull of nearby source masses, the researchers
used feedback control to apply an electrostatic
torque just strong enough to hold the test masses in
place (see figure 2c). The value of the applied volt-
age could then be used to infer G. Because there was
no wire to twist, there were no anelastic effects.

The PTB team’s estimate of G differed from the
accepted  CODATA value at the time by some 0.7%,
orders of magnitude larger than both the experi-
ment’s estimated uncertainty of around 80 ppm and
the  CODATA uncertainty of 127 ppm. Several
groups, including one headed by one of us (Quinn)
at the International Bureau of Weights and Meas-
ures (BIPM)—home of the international prototype
of the kilogram—responded by embarking on their
own G experiments. 

The BIPM group discovered that the  servo-
 control technique could suffer significant errors if
the electrostatic actuator was calibrated at a fre-
quency different from the one at which it was used.
Soon after, the other of us (Speake) suggested an-
other likely source of error in the PTB experiment:
A cross- capacitance term in the electrostatic calibra-
tion had been neglected. Subsequent studies at the
PTB11 confirmed that the omission did indeed cause
measurements to overestimate G by about 0.7%. 

Servo- control methods have since been used to
make some of the most precise measurements of G.
In 2003, Tim Armstrong and Mark Fitzgerald of the
Measurement Standards Laboratory of New Zealand
used the method to calculate G with an uncertainty
of 40 ppm.12 The researchers used the inertial accel-
eration of a turntable-mounted torsion balance,
rather than capacitance measurements, to calibrate
their electrostatic actuator. Thus they elegantly
avoided the problems encountered by the PTB
workers. 

Refinements and revisions
Among the biggest sources of uncertainty in a tor-
sion-balance measurement are the source and test
masses—one can be no more confident in G than in
the properties of the objects used to measure it. Even
small spatial variations in the density of a test mass
can introduce sizeable error. In 2000 Jens Gundlach
and Stephen Merkowitz of the University of Wash-
ington demonstrated a way around that problem.13
Instead of using the typical  dumbbell-shaped test-

mass assembly, they used a thin, flat plate, pictured
in figure 3a. The authors noted that the gravitational
coupling between the test mass and neighboring
spheres becomes proportional to the test mass’s mo-
ment of inertia in the thin-plate limit. Because the
value of G is calculated in terms of the ratio of the
gravitational coupling to the test-mass moment of
inertia, the test-mass density—and, to a good ap-
proximation, its uniformity—cancels out, provided
that the field of the source masses is suitably tailored.

Gundlach and Merkowitz introduced another
innovation, an adaptation of an idea that was devel-
oped by Jesse Beams for the NBS experiment but
that wasn’t fully exploited: They rotated their
turntable-mounted torsion balance so that the plate
experienced a sinusoidal gravitational coupling
with the source masses. The researchers then com-
pensated for that sinusoidal coupling by continually
adjusting the turntable’s rotation speed, until the
wire experienced no torque. The value of G could
then be inferred from the time- dependent accelera-
tion profile of the turntable. To ensure that results
weren’t skewed by environmental gravity gradi-
ents, the source masses also rotated. The Washing-
ton experiment yielded the smallest uncertainty
ever achieved in a G experiment, about 14 ppm.
Their value, however, was significantly larger than
the one obtained at NBS. 

In an experiment at the Huazhong University
of Science and Technology in Wuhan, China, Jun
Luo and coworkers performed a time-of-swing
measurement using a very long tungsten wire and
a dumbbell-shaped mass assembly in which the
spheres were set at different heights.14 In their latest
work, published in 2009, they followed the approach
of the University of Washington group and used a
solid quartz slab as a test mass—the advantage
being that the slab’s moment of inertia could be eas-
ily calculated to high precision (see figure 3b). Lo-
cated deep inside a mountain, their lab has excellent
thermal and seismic stability. 

At the BIPM, we made two determinations of
G, in 2001 and in 2013, using the apparatus shown
on page 27.15 Instead of a traditional dumbbell-
shaped test-mass assembly, we used a set of four 
1-kg test masses set on the periphery of a 2-kg disk
assembly suspended by a 160-mm-long, 30-µm-thick,
2.5-mm-wide torsion strip.

Such a strip confers two important advantages.
First, the restoring torque of a loaded torsion strip
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Figure 4. A simple pendulum gravity gradiometer
consists of a microwave or optical cavity formed by 
two hanging mirrors. When source masses are moved
toward the cavity mirrors, the varying gravitational pull
leads to a change in the cavity’s optical length and,
hence, a change in its resonant frequency. In a Fabry–
Perot experiment performed at JILA, the change in the 
optical length was on the order of tens of nanometers.
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Meyer and colleagues 2002: simple pendulum 
gradiometer with a microwave Fabry-Perot 
cavity.  

Parks and Faller simple 
pendulum gradiometer with 
an optical Fabry-Perot cavity. 



of the other. Experimental points are distributed around an ellipse. The
differential phase shift is extracted from the eccentricity and the rota-
tion angle of the ellipse fitting the data22. The instrument sensitivity for
differential acceleration is 3 3 1029g for 1 s of integration (g is the accel-
eration due to Earth’s gravity).

The source mass is composed of 24 tungsten alloy cylinders, for a
total mass of about 516 kg. Each cylinder is machined to have a diameter
of 99.90 mm and a height of 150.11 mm. They are positioned on two
titanium platforms and distributed with hexagonal symmetry around
the vertical axis of the tube (Fig. 1). The cylinders’ centres lie around
two circles with nominal radii 2R and 2R

ffiffiffi
3
p

, respectively, where R is

the radius of a single cylinder. The vertical positioning of the two plat-
forms is ensured by precision screws synchronously driven by stepper
motors and by an optical readout system. The reproducibility of the
positioning was verified with a laser tracker to be within 1 mm (ref. 20).
With respect to the position of the apogee of the lower atomic cloud,
the centres of the lower and upper sets of cylinders lie at respective
vertical distances of 40 and 261 mm in one configuration (the C con-
figuration) and at 274 and 377 mm in another (the F configuration).

The value of the Newtonian gravitational constant was obtained from
a series of gravity gradient measurements performed by periodically
changing the vertical position of the source masses between configurations
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Figure 1 | Sketch of the experiment. The Rb atom interferometer operates
as a gravity gradiometer and the W masses are used as the source of the
gravitational field. For the measurement of G, the position of the source masses
is alternated between configurations F and C. Plots of gravitational acceleration
(az) produced along the symmetry axis by the source masses are also shown

for each configuration; a constant value for Earth’s gravity was subtracted. The
spatial regions of the upper and lower atom interferometers are indicated by the
thick lines. The vertical acceleration plots show the effect of source mass in
cancelling the local gravity gradient at the positions of the atomic apogees.
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Figure 2 | Experimental data. a, Typical Lissajous figures obtained by plotting
the output signal of the upper atom interferometer versus that of the lower
one for the two configurations of the source masses. b, Modulation of the
differential phase shift for the two configurations of source masses for a given
direction of the Raman beams’ k vector. Each phase measurement is obtained
by fitting a 360-point scan of the atom interference fringes to an ellipse.
The error bars, not visible on this scale, are given by the standard error of the

least-squares fit to the ellipse. c, Results of the measurements to determine G.
Each point is obtained by averaging the signals recorded for the two directions
of the Raman k vector (Methods). Data acquisition for each point took
about one hour. These data were recorded on different days during one week in
July 2013. The error bars are given by the combined errors in the phase angles of
four ellipses. d, Histogram of the data in c.
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•  Use two methods to determine G with the same 
apparatus in order to identify and eliminate 
systematic errors that affect one method 
independently of the other. 
•   Simple ‘free-deflection’ (or Cavendish) method 

and 
•   Electrostatic torque balance  method. 

•  Both methods have potential sources of error that 
need to be addressed in the design. 

•  Uncorrelated errors are effectively eliminated if the 
values from both methods agree within their random 
uncertainties.  

•  Perhaps necessary but not necessarily sufficient! 

BIPM G experiment 

PRL 2001, PRL 2013 



•  The restoring torque of the torsion strip comprises a 
lossy elastic component and a lossless gravitational 
component: 

 
•  We can achieve a Q of ~105 this mitigates the effects 

of anelasticity see later. 
•  Allow a large mass and gravity torque which is ~103 

larger than round-section fibre. 
•  We use a test mass geometry with 4-fold symmetry. 

Coupling to sources drops as 1/R5.  

 The torsion strip 
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30 µm 
Cross section of strip 

The strip loaded to about 2/3 of its yield stress and stretches by 
nearly 1 mm as the load is applied.  

The Cu-Be torsion strip, 160 mm long, 2.5 mm wide and 30 µm thick 







The torsion strip 

Measured restoring torque as a function of load, Phys 
Letts 1997. (Measurements made by RSD and TJQ 
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A New Determination of G Using Two Methods

T. J. Quinn,1,* C. C. Speake,2 S. J. Richman,1,† R. S. Davis,1 and A. Picard1
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We present the results of a measurement of G made with a torsion-strip balance used in two substan-
tially independent ways. The two results agree to within their respective uncertainties; the correlation
coefficient of the two methods is 20.18. The result is G ! 6.675 59!27" 3 10211 m3 kg21 s22 with a
standard uncertainty of 4.1 parts in 105. Our result is 2 parts in 104 higher than the recent result of
Gundlach and Merkowitz.

DOI: 10.1103/PhysRevLett.87.111101 PACS numbers: 04.80.Cc, 06.20.Jr

There has in recent years been considerable uncertainty
as to the correct value of the Newtonian gravitational con-
stant, G, despite precision measurements extending back
two centuries [1,2]. We note in particular the value from
Michaelis et al. [3] of the PTB (Braunschweig) that dif-
fered from the 1986 CODATA value by !0.6 6 0.008"%.
There is still no explanation for this large discrepancy, al-
though we present here one possible effect that could have
led to an error of this magnitude. A number of recent pa-
pers [2,4] give values rather closer to the CODATA value,
particularly the paper by Gundlach and Merkowitz that
gives a result with the very low uncertainty of 14 parts
per million (ppm). We report here a new determination
of G, which has a standard uncertainty of 41 ppm. Our
value is unique in that it is based on two results obtained
using the same apparatus but with different methods of
measurement. Our result does, however, differ from that
of Gundlach and Merkowitz by some 200 ppm.

The BIPM torsion balance [5] (see Fig. 1) has the fol-
lowing principal features: (1) a four-mass configuration to
give a much reduced sensitivity to external gravitational
fields; (2) a torsion strip to give much improved stability
with practically no dependence on the material proper-
ties of the strip; (3) a gravitational signal torque of 1.7 3
1028 N m, some 4 orders of magnitude larger than in most
previous comparable experiments; this improves the ratio
of gravitational signal to nongravitational noise and allows
a very precise measurement to be made in a short time;
(4) three possible methods of operation, (a) electrostatic
servo control, (b) free-deflection (Cavendish method), and
(c) change in period of free oscillation; the result presented
here is based on (a) and (b), the timing precision of the
third method not at present being sufficient to give a useful
result; (5) dimensional metrology that is quick and accu-
rate by having the whole apparatus mounted on the base
of a coordinate measuring machine (CMM).

The source and test masses are made from Cu-0.7%Te
free-machining alloy. They are right-circular cylinders
with heights equal to their diameters and with masses of
12 and 1.2 kg, respectively. The test masses are mounted
on a radius of about 120 mm around the periphery of an

aluminum-alloy disk suspended from the torsion strip in-
side a vacuum chamber.

The torsion strip is made from Cu-1.8%Be dispersion-
hardened alloy of thickness t ! 30 mm, width
b ! 2.5 mm, and length L ! 160 mm. It is loaded to
800 MPa, about 80% of its yield strength. The torsion
constant, c, is given by c ! bt3F#3L 1 Mgb2#12L,
where F is the shear modulus of elasticity and g is
the local gravitational acceleration. For our strip, the
second (gravitational) term is 27 times larger than the first
(elastic) term, which thus makes up less than 4% of the
total. Anelasticity in the suspension is thus much reduced,
leading to a high mechanical Q of the system, 3 3 105,
and very small zero drift of less than 1 mrad per week.
The high Q removes as significant sources of concern
systematic biases caused by the anelastic aftereffect [6],
or a frequency-dependent torsion constant [7]. The natural
period of torsional oscillations is 125 sec; thus the balance
has a ring-down time of some five months.

FIG. 1. Outline of apparatus: T, test masses; S, source masses;
D, torsion balance disk; B, torsion strip; C, carousel; L, drive belt;
M, mirrors for sixfold multiplying optics; A, autocollimator.
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•  We can correct for a 
systematic error or bias in the 
result of an experiment. Our 
incomplete knowledge of the 
magnitude of this correction 
gives rise to its uncertainty.* 

•  ‘Experimental uncertainties 
that can be revealed by 
repeating the measurements 
are called random 
uncertainties; those that 
cannot be revealed in this 
way are  called systematic 
biases.’** 

 

Systematic Error 

*Joint Committee for Guides in Metrology 100-2008  page 5  3.2.3 BIPM website.  
*‘ An Inttoduction to error analysis:The study of Uncertainties in physical measurements ’ J.R.Taylor, University Science Books 1997. 
 



 
•  Type A evaluation 

method of evaluation of uncertainty by the 
statistical analysis of a series of observations,  

•  Type B evaluation 
method of evaluation of uncertainty by means 
other than the statistical analysis of a series of 
observations.  

Uncertainties: Type A and Type B 

http://physics.nist.gov/cuu/Uncertainty/basic.html 





  
 

Anelasticity 

•  The shear modulus of torsion strip will be frequency 
dependent due to the range of time constants 
determining the damping processes in the Cu-Be.  

•  A simple model that is consistent with observations 
assumes that the density of relaxation processes 
increases inversely proportional to the relaxation time. 
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Anelasticity 
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•  Kuroda’1995 
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•  Leads to an overestimate of G 
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Does the Time-of-Swing Method Give a Correct Value
of the Newtonian Gravitational Constant?

Kazuaki Kuroda
Institute for Cosmic Ray Research, University of Tokyo, 3-2-I, Midoricho, Tanashi, Tokyo I88, Japan

(Received 12 June 1995)
A standard way of measuring the Newtonian gravitational constant has been the time-of-swing

method using a torsion pendulum. A key assumption is that the spring constant of the torsion fiber is
independent of frequency. This is likely to be true to a good approximation if any damping present
is proportional to velocity. However, recent work on the elasticity of flexure hinges suggests that
typically the damping at low frequency is best modeled by including a frequency-independent imaginary
component in the spring constant. In this case, the real part of the spring constant must vary, leading
to an upward bias in a measurement of G.

PACS numbers: 04.80.Cc, 06.30.Gv, 62.20.Dc

Measurements of the Newtonian gravitational constant
have commonly been performed using a torsion balance
and the time-of-swing method, in which the time of
swing is measured for two positions of the source masses,
shown as "near" and "far" in Fig. 1 [1]. The accuracy
of such measurements depends on constancy of the spring
constant of the torsion fiber.
Recently, in the neighboring field of gravity wave de-

tection, there has been a considerable amount of work
done concerning the elasticity of materials at very low
frequencies, motivated by the need for test mass suspen-
sions with ultralow mechanical noise for use in laser in-
terferometric gravity wave detectors. Attention has been
focused on the frequency dependence of internal friction
because of the connection with thermomechanical noise
via the fluctuation dissipation theorem. Quinn et al. [2]
obtained good agreement between the dissipation obtained
experimentally and a model of an anelastic solid incorpo-
rating an infinite number of relaxation processes with a
continuum of time constants from a minimum of 7.0 up to
a maximum r, each with the same relaxation amplitude.
A similar model has also been treated by Saulson [3] and

an experimental method to probe such behavior has been
devised by Saulson et al. [4]. It is thought that such a
model may be applicable to a broad class of materials.
A consequence of the anelastic solid model is that not

only the dissipation but also the elasticity is frequency
dependent. This is irrelevant compared to thermal noise
in suspensions and has thus been neglected. However, in
this paper I point out that it is highly relevant to high-
precision quantitative applications such as time-of-swing
measurements. Of course, anelasticity is only one of many
possible error sources in measurements of G [5], and is not
relevant to certain other recent measurements [6], which
work on different principles. Nonetheless, if the fiber
materials used in recent measurements of G have anelastic
parameters similar to materials already measured, it could
well explain some of the observed discrepancies [7].
Anelasticity can be represented by a generalized com-

plex Young's modulus, the real part of which leads to the
normal spring constant and the imaginary part of which
represents damping. A simple system that shows anelas-
ticity is the spring and dash-pot system of Fig. 2, which has
the following relationship between stress o and strain e:

eEjt + e. (ER + 6E)r = o + o r .

NEAR

R
FIG. 1. In the time-of-swing method, the period of the torsion
balance is measured for two positions of the attracting masses
labeled "near" and "far."

Eg is the relaxed Young's modulus, i.e., the effective
value in the limit of low frequencies, and 6E is the
difference EU —ER between the relaxed modulus and the
high frequency, unrelaxed modulus. The relaxation time
constant ~ is the ratio of the dash-pot viscosity v and 6E.
Since we are interested in the frequency response we take
the Fourier transform of Eq. (1),

tr (co) CO 7 1CO T
E(co) = = ER + 6E +

E co i+co w ]+co
(2)

Certain materials are well modeled by an ideal spring with
a single Maxwell unit over certain frequency ranges, im-
plying a relaxation process with a well-defined time scale.
However, in order to explain experimental results, Quinn

2796 0031-9007/95/75(15)/2796(3)$06. 00 1995 The American Physical Society

G values from time of swing method are biased to larger valus due to anelastiicity 
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Anelasticity 

 
 
 
 
 
 

 

•  We have determining Δ ≈ 1.0(2) x10-4 at a range of 
oscillation periods down to about 100 s. 

•  Damping measurements are consistent with τ0 < 10 s. 

•  No measurements have been made at low enough 
frequency to determine τinf.

•  This leads to: 

•  This leads to a correction on G of -6 ppm we correct 
and add uncertainty of 6 ppm. 

Phys Letts A 1995 

9
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.........................................................

where we have assumed that ω0τ0, ωmτ0 ≪ 1 which is consistent with observations [8]. If we
further suppose that ω0τ∞, ωmτ∞ ≫ 1, which implies that we are still in the regime where the
full spectrum of damping processes has not relaxed during the data taking runs, we find

kr(ωm) − kr(ω0) = ke
δF/F

ln(τ∞/τ0)
ln
(

T0

Tm

)
, (2.6b)

with T0 = 2π/ω0 = 121 s and Tm = 2π/ωm = 1800 s. In the same frequency regime, we find that the
damping constant given in equation (2.3c) can be written

γ = 1
2Iω

ke&, (2.6c)

where & = (δF/F)(π/2 ln(τ∞/τ0)). The quantity & for Cu–1.8% Be at the appropriate stress has
been measured to be 1.0(2) × 10−4 [8,14]. The fractional bias in the value of G owing to anelasticity
can be written

δGan

G
= kr(ωm) − kr(ω0)

ke + kg
= 2

π

ke& ln(T0/Tm)
ke + kg

. (2.7)

This leads to a correction to G when calculated using the stiffness at resonance of −5.9 ppm. The
importance of equation (2.6a) was pointed out by Kuroda [15] and its implications in time of
swing experiments have become known as the ‘Kuroda effect’. Our 2013 value for G included, as
did the 2001 value, a correction for anelasticity of −13 ppm with an uncertainty of 4 ppm. We now
believe that this correction was an overestimation based on our anelasticity data and should be
only −6 ppm with a conservative uncertainty of 6 ppm.

Because the second term in equation (2.1) does not contain the modulus of elasticity, it should
be independent of material properties and thus lossless. We confirmed this in experiments [8]
in which we showed that under heavy load, in which the second gravitational term represented
nearly 99% of the restoring torque, it was possible to make a torsion balance supporting a load
of 10 kg having a period of 18 s with a Q of 1.24 × 106. This was only slightly below the expected
value, the difference being attributable to losses at the ends, which were not optimally designed,
and residual viscous damping in the vacuum that we could achieve. We also note that the
time-dependent relaxation after deflection of a torsion balance, the anelastic after-effect, is also
proportional to & [7,12].

The origin of the second, gravitational term is the fact that as the torsion strip turns the
lower end rises. The potential energy thus gained supplies the restoring torque. For an angular
deflection θ , the potential energy of the suspended mass, Mp, increases by an amount given by

1
2

kgθ2 =
Mpgb2

24L
θ2. (2.8a)

This can be due only to the mass being raised to a height &h above its rest position

Mpg&h =
Mpgb2θ2

24L
, (2.8b)

so that

&h = b2

24L
θ2. (2.8c)

For small angular deflections, &h can be very small. In the present G experiment, in which the
deflection of the torsion balance during the Cavendish mode is about 150 µrad, we find &h is
only 10 fm (which is roughly the diameter of the nucleus of a copper atom).

It is interesting to note that Heyl & Chrzanowski [16] attempted to exploit the properties of a
bifilar suspension that provides an apparently similar gravitational restoring torque. In fact, there
is a crucial difference. In a wide torsion strip, the strain is distributed uniformly along the length
of the strip, whereas in a bifilar suspension all of the strain occurs at the points of attachment of
the wires where it is impossible to avoid frictional losses.
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Calibration of electrostatic torque balance 
actuator. 

method first devised by Beams (Rose et al. 1969). In the experiment of Rose
et al. (1969) the torsion balance, carrying a test mass assembly with a
quadrupole geometry, and two source masses are mounted on a rotating table.
As the torsion balance twists under the gravitational attraction of the source
masses, the turntable is driven to produce an angular rotational acceleration so
as to maintain the angular deflection of the beam constant within the rotating
frame. A value for G is measured in terms of the constant angular acceleration
of the rotating table. Gundlach and colleagues (Gundlach et al. 1996) mounted
the balance and masses on independent turntables. The turntable supporting
the torsion balance was rotated at a nominally constant rotation rate. The
rotation rate is controlled by a servo system in such a way that the torsion
balance remained aligned with an autocollimator in the rotating frame. This
results in a sinusoidal modulation of the rotational acceleration: as the test mass
comes into alignment with the source masses, the turntable accelerates and
subsequently decelerates as the test masses move past the aligned configuration.
The product of the amplitude of the sinusoidal acceleration of the torsion
balance and the moment of inertia of the source mass assembly gives the
Newtonian torque. A value for G can then be derived by dividing this product
by a factor that depends on the geometry of the test masses and source masses.
As the torsion balance is used as a null detector for the turntable drive control
system, the torsional stress in the fibre is kept to a minimum and so, therefore,
are the effects of anelasticity.

Gundlach et al. noticed that for test masses in the shape of thin plates, the
spherical quadrupole and the moment of inertia are proportional. Thus with this
arrangement the value of G did not depend critically on the geometry of the test
mass assembly. Torques due to gravity gradients coupling to the test mass
assembly are averaged out by also rotating the source masses.

Another class of G determinations employs some kind of external torque to
balance the gravitational torque. The experiments that have used beam balances
fall into this category where the gravitational couple is calibrated in terms of
calibration weights (Schlamminger et al. 2002). The electrostatic force-balance
method described in §2 also falls into this category. The traditional configuration of
electrodes used to apply electrostatic torques to the torsion balance was developed
by LordKelvin (Maxwell 1892) and is known as a quadrant electrometer. The basic
design comprises a cylindrical cavity that is divided into quadrants (electrodes 1
and 2 in figure 3). Electrode 3 is butterfly shaped, is suspended from the torsion
balance and lies at the centre of the cylindrical cavity as shown. VoltagesV1 andV2

are applied to opposite quadrants of the fixed plates while a voltageV3 is applied to
the butterfly electrode. The electrometer can be, in principle, calibrated by
measuring the change in capacitance of the electrodes with angle. The energy in the
electrostatic field can be written in general as (Smythe 1989)

W Z 1

2 !
V tC

!
V; ð2:25Þ

where
!
V is a vector of potentials applied to the various electrodes,

!
V t is its transpose

andC is a matrix of self- andmutual capacitances. It is interesting to note that the
expression given by Maxwell is in terms of the self-capacitances of the electrodes 1
and 2

W Z 1

2
ðV1KV2ÞfðV1 KV3ÞC11KðV2 KV3ÞC22g: ð2:26Þ

2281Newton’s constant

Phil. Trans. R. Soc. A (2005)

 on February 25, 2014rsta.royalsocietypublishing.orgDownloaded from 

method first devised by Beams (Rose et al. 1969). In the experiment of Rose
et al. (1969) the torsion balance, carrying a test mass assembly with a
quadrupole geometry, and two source masses are mounted on a rotating table.
As the torsion balance twists under the gravitational attraction of the source
masses, the turntable is driven to produce an angular rotational acceleration so
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by LordKelvin (Maxwell 1892) and is known as a quadrant electrometer. The basic
design comprises a cylindrical cavity that is divided into quadrants (electrodes 1
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method first devised by Beams (Rose et al. 1969). In the experiment of Rose
et al. (1969) the torsion balance, carrying a test mass assembly with a
quadrupole geometry, and two source masses are mounted on a rotating table.
As the torsion balance twists under the gravitational attraction of the source
masses, the turntable is driven to produce an angular rotational acceleration so
as to maintain the angular deflection of the beam constant within the rotating
frame. A value for G is measured in terms of the constant angular acceleration
of the rotating table. Gundlach and colleagues (Gundlach et al. 1996) mounted
the balance and masses on independent turntables. The turntable supporting
the torsion balance was rotated at a nominally constant rotation rate. The
rotation rate is controlled by a servo system in such a way that the torsion
balance remained aligned with an autocollimator in the rotating frame. This
results in a sinusoidal modulation of the rotational acceleration: as the test mass
comes into alignment with the source masses, the turntable accelerates and
subsequently decelerates as the test masses move past the aligned configuration.
The product of the amplitude of the sinusoidal acceleration of the torsion
balance and the moment of inertia of the source mass assembly gives the
Newtonian torque. A value for G can then be derived by dividing this product
by a factor that depends on the geometry of the test masses and source masses.
As the torsion balance is used as a null detector for the turntable drive control
system, the torsional stress in the fibre is kept to a minimum and so, therefore,
are the effects of anelasticity.

Gundlach et al. noticed that for test masses in the shape of thin plates, the
spherical quadrupole and the moment of inertia are proportional. Thus with this
arrangement the value of G did not depend critically on the geometry of the test
mass assembly. Torques due to gravity gradients coupling to the test mass
assembly are averaged out by also rotating the source masses.

Another class of G determinations employs some kind of external torque to
balance the gravitational torque. The experiments that have used beam balances
fall into this category where the gravitational couple is calibrated in terms of
calibration weights (Schlamminger et al. 2002). The electrostatic force-balance
method described in §2 also falls into this category. The traditional configuration of
electrodes used to apply electrostatic torques to the torsion balance was developed
by LordKelvin (Maxwell 1892) and is known as a quadrant electrometer. The basic
design comprises a cylindrical cavity that is divided into quadrants (electrodes 1
and 2 in figure 3). Electrode 3 is butterfly shaped, is suspended from the torsion
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•  Start from the energy stored in the electrostatic field: 

•  where C is the matrix of the self and mutual capacitances. 

•  If the system is isolated by a complete electrostatic shield we 
can express the self-capacitances, Cii, in terms of the mutual 
capacitances, Cij, and cross-capacitances, Ccij. The latter can 
be measured using 3-terminal methods. 
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•  Note that capacitances are often frequency dependent. 

•  Need to apply voltages to the actuators at the same 
frequency at which we measure capacitance (1 kHz) .  

•  We have to include ALL terms in the sum. 
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 A 

C 

B 
Vacuum can is 
connected to C 

•   Finite element design in 2d to 
ensure that d2CAC/dφ2  ≈ 0.  

•  Note that dCAB/dφ cannot be 
ignored. 

•  Zero stiffness design. 
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The idea of the electrostatic torque transducers came from the following observation regarding
the capacitance between two cylinders moving in a plane perpendicular to their axes: if one
cylinder approaches the other along a straight line such that the two cylinders will not touch,
then there is obviously a maximum in capacitance at the point when the cylinders are at their
smallest separation. This implies that the gradient of capacitance with respect to motion along
the line must reach a maximum somewhere on either side of this peak. An analytical expression
for the capacitance per unit length, Ccc, between two infinite cylinders of radius R1 and R2, with
centres separated by distance D can be found in Smythe [18]:

Ccc = 2πε0

cosh−1 u
, (3.3a)

where

u2 =
D2 − R2

1 − R2
2

2R1R2
. (3.3b)

This was used to define the position of a cylindrical electrode relative to a test mass cylinder
such that the change in capacitance with angle of motion of the mass was a maximum. In
order to achieve a working control system, we clearly needed two electrodes. A two-dimensional
finite-element program was written to investigate the cross-capacitances between the two puller
electrodes and the test mass, CAC and CBC, and between both electrodes, CAB themselves. The
capacitance gradients, dCAC/dθ , dCBC/dθ , were found to be given to a good approximation
by equations derived from equation (3.3). The electrostatic actuator was designed with two
electrodes of radius 3 mm with a centre-to-centre distance of 9.4 mm and with a nominal
minimum gap between the surfaces of the test masses and the electrodes of 1.5 mm. The nominal
values of the capacitance gradients in the Mk II apparatus dCAC/dθ , dCBC/dθ and dCAB/dθ were
60.88, −61.74 and 0.33 pF rad−1, respectively. This compares with values for dCAC/dθ from the
simple model of 70 pF rad−1, with dCAB/dθ being nominally zero.

The gap between the surfaces of the puller and the test mass in the Mk II experiment was
1.8 mm with the test masses having radii of 27.49 mm. Each set of four puller electrodes was
electrically connected together using coaxial cables external to the vacuum can. The shielded
cables within the vacuum can and the insulated ceramic mounts for the electrodes were confined
to the bottom of the vacuum can where they were shielded by an aluminium plate that closely
fitted around the base of the electrodes. This arrangement was a deliberate improvement on the
Mk I apparatus where copper braid was used to provide a grounded shield around the insulation
of the shielded cables in the vacuum can. All four pairs of puller electrodes were connected to
ends of an aluminium ‘cross’, located underneath the false bottom of the vacuum can, that could
be translated in two directions to centre the electrodes on the torsion balance.

An Andeen–Hagerling 2500A capacitance bridge was used to measure the three cross-
capacitances at 1 kHz using the three-terminal method. It is important to note that this powerful
method enables small capacitances, of order picofarads, between electrodes at the ends of long
coaxial cables to be measured with ppm accuracy in terms of a standard capacitor. This is achieved
by enclosing the electrodes in an electrostatic shield: one electrode is connected to the bridge
drive voltage which has negligible output impedance (bridge ‘hi’) and the other is connected to
bridge ‘lo’ which is at the potential of the bridge ground [19]. In this scheme, any currents that
flow to the electrostatic shields owing to stray capacitances do not influence the bridge balance.
Measurements of CAC, for example, were made with the bridge ‘lo’ terminal attached to the ‘A’ set
of electrodes and the bridge ‘hi’ was connected to the vacuum can, which was in turn electrically
connected to the torsion balance. During this phase, electrodes B were connected to bridge
ground. Capacitances, CBC, were measured in a similar fashion. Capacitance CBC was measured
with the set A puller electrodes connected to bridge ‘hi’ and set B connected to bridge ‘lo’. In this
case, the vacuum can was connected to bridge ground. The standard 10 pF capacitance (model
AH 11A) was calibrated at BIPM. The capacitance gradient was derived from measurements of
capacitance and angle with the torsion balance freely swinging that were made before and after
each data run.
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During the phase of the experiment when the gravitational torques were being balanced by
the electrostatic torques, each set of electrodes was connected via transformers to an Agilent
33120A function generator. The vacuum can, coaxial cable shields and the torsion balance were
connected to ground. The servo signal, which was derived from the angular displacement readout
of the autocollimator, was used to modulate the amplitude of the AC voltages produced by each
generator. The generators were phase locked, and the servo voltage increased the amplitude of
the output of one and reduced the amplitude of the other. We can write

VA = (V0 + v) sin 2π ft, (3.3c)

and
VB = (V0 − v) sin 2π ft, (3.3d)

where V0 was 13 V and f = 1 kHz and the value of v, the drive voltage that balanced the
gravitational torque, was about 10 V. The purpose of this scheme is to ensure that the torque
was approximately linear in terms of the drive voltage v. The true RMS values of the AC voltages
were measured using Fluke 5790A voltmeters that were calibrated at the Laboratoire National de
Métrologie et d’Essais (LNE) leading to a fractional correction of −30 ppm to the value of G (see
§11b). The potential drop across the cables between the meter and the electrodes amounted to less
than 1 ppm of that measured.

The test masses are not expected to be at the same potential as the puller electrodes because of
the contact potentials generated by the different metals comprising the torsion balance. During
the early work using a DC servo system, we established that this contact potential was 24 mV.
When this effect is included, the torque can be written

τs = 1
2

{
dCAC

dθ

〈
(VA − δ)2

〉
+ dCBC

dθ

〈
(VB + δ)2

〉
+ dCAB

dθ

〈
(VA − VB)2

〉}
, (3.4a)

where the angle brackets indicate the time average is taken. Clearly with VA = VB, the cross terms
in the angle brackets average to zero and the only remaining term is

δτs0 = δ2

2

(
dCAC

dθ
+ dCBC

dθ

)
≈ −2 × 10−17 N m. (3.4b)

In addition to this torque being entirely negligible, note that δτs0 is a fixed offset and therefore
cancels in the experimental procedure when the difference between the gravitational torques of
alternate sign is found. Spatial variations in the potential (patch potentials) on the surfaces of
the copper rods and the disc could give rise to further electrostatic forces that would have a
stronger gap dependence than those modelled in the design of the torque actuator and so give
rise to a contribution to the restoring torque. However, if present, this does not enter into the
servo measurements and is accounted for by the measurement of the oscillation period in the
Cavendish method.

Initially, we used a DC servo system but were unable to eliminate the possibility of frequency-
dependent losses that could render the calibration of dCij/dθ at 1 kHz inconsistent with dCij/dθ

at around 1 mHz. Biases in the calibration were such as to increase the apparent value of G in
contradiction to that expected owing to loss mechanisms in surface films on the electrodes [20].
However, it can be shown that a grounded lossy dielectric located in the electric field will add,
in parallel, a frequency-dependent capacitance such that the measurement of dCij/dθ at high
frequency overestimates the calibration constant. We encountered the possibility of such a bias
in our early work by noting that the Q of the torsion balance was halved on application of
2 kV DC to the electrodes. We later identified a coaxial cable whose electrostatic shield was not
grounded and whose insulating cover was exposed thus affecting the fringing field of a pair of
electrodes. We suggested that a similar effect may have been present in the PTB measurement,
because, in their experiment, the calibration and measurement frequencies differed by orders of
magnitude, as was the case in our preliminary work. Such problems are eliminated by using an
AC servo. Supplementary investigations [21] by the PTB team discovered (at the instigation of
one of us, C.C.S.) that a term in the electrostatic energy had not been measured. Although the
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Figure 3. Simplified representation of the equipment, two side views.

balance, and the attraction between the source masses
and those parts of the balance bearing the test masses.
As only the difference between the torques for the two
end positions of the movable masses enters into the
evaluation, torques generated by gravitational fields of
masses, which are invariable during the experiment,
need not be taken into account. Consequently, the
difference of the torques is

(1)

On the basis of the law of gravitation, the following
results:

(2)

The calculation of the difference which, but
for the factor , represents the gravitation torque,
makes it necessary to calculate a six-fold integral over
the volumes of the sample masses. Four of the six
integrations were made in a closed form which resulted
in a complicated formalism. The other two integrations
were carried out numerically.

We used tungsten masses to determine the
gravitational constant. In another test series we
gradually increased the close-up distances and

(Figure 4) to 197 mm to check the 1/ law. To
examine the material independence of the gravitational
constant, it had been planned to use different materials
for the masses. However, for reasons of time, the only
comparison made was between tungsten and Zerodur.
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Figure 1. A drawing of the double electrometer system used in the
G experiment with the various electrodes.

For the slopes ∂Ci/∂α we obtained
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≈ −34.5 pF rad−1,

∂CBO

∂α
,

∂CDO

∂α
≈ −0.25 pF rad−1,

∂CAO
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,

∂CCO

∂α
≈ +0.25 pF rad−1,

∂CAB

∂α
,
∂CCD

∂α
,
∂CAC

∂α
,
∂CAD

∂α
,
∂CBC

∂α
,
∂CBD

∂α
non-measurable.

These values are approximate ones, because they vary with
each remounting cycle of the apparatus. In our apparatus it
was not possible to find the central position in the radial and
axial directions absolutely. Thus, in the G experiment, we
performed a calibration of the electrometer system before each
measurement.

Contrary to our expectation and the model used before,
the capacitance between the electrode plates and the housing
varied: we explain this behaviour by the fact that the field
components between the plates and the grounded border are
influenced by the position of the moving electrode as illustrated
in figure 2.

The electric field between the electrode plates and the
housing is not rotationally symmetric because the plates are
divided into four segments forming two pairs of electrodes A
and B. Therefore the moving electrode N shields varying parts
of these edge fields. As a consequence there is an additional
contribution to the torque that was not taken into account in
our former experiment and which amounts to about −0.71%.
Hence this effect is capable of reducing the difference between
the previous result [1] and the CODATA value [6] by an order
of magnitude.

Unfortunately, this additional contribution cannot be
determined with the accuracy required for a meaningful
correction of our old result, because the conditions of
the original apparatus cannot be reconstructed in detail.
Furthermore, the influence of deviations on these contributions
cannot be estimated, as the values of the slopes varied with test

(a)

(b)

Figure 2. (a) Top view of the torque transmitter and a cross-section
of one system. (b) A detail of the cross-section with some electric
flux lines.

displacements in radial or axial directions in a complex manner.
Their origin in edge field effects seems to be responsible for
this complication.

3. Requirement of a re-estimation of the uncertainty

Apart from the missing part in the torque transmitter equation,
the contribution of the capacitance measurement to the
uncertainty has been re-investigated. The measurement values
were determined from the capacitance difference #C ≈ 0.2 pF
derived from two capacitance measurements of about 30 pF.
In the former evaluation [1] it has been assumed that the
uncertainty of the measurement of the capacitance difference
was u(#C/C) = 2 × 10−5. This uncertainty was based on
the assumption that the uncertainty of the capacitance bridge
was determined by a set of high-precision standard capacitors
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Calculation of the torque 

•  Model test objects and source objects as either 
cylinders or points.  

•  Three contributions to torque: 
•   perfect source cylinders on perfect test cylinders 

(includes all holes in torsion disc). 
•  Perfect source cylinders on points on torsion 

balance (includes all screws and non-uniformity of 
torsion disc): 150 ppm 

•   source points (kinematic mounts, balls) on 
perfect test cylinders: 1 ppm. 

•  Use three methods to calculate cylinder-cylinder 
torques: double multipole expansion, numerical 
integral of elliptical integral solution and double 
numerical integral. 



•  Hydrostatic weighing of samples of the source mass 
billet  showed a linear gradient of approximately Δ = 
2x10-4. 

•  Establish axial/three-fold symmetry of source masses 
with CMM. 

•  Measurements of the free oscillation period of the 
source masses gave the following results 

Mass homogeneity  

Measurements made by R.S.Davis (after Gabriel Luther, J.E.Faller) 

r = r0 1+
Δ
R
rcosθ
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#
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&
' Δ = 8π 2 R

T 2g



Centre of mass determination using air bearing 



Measurement of density inhomogeneities in 
source masses 

27 

1 2 3 4 

B A C D E 

Hydrostatic weighing of witness 
samples from ingot  (RSD) 



•  The source masses could be placed in 3 orientations on 
their kinematic mounts. Measurements of torques; ΓΑ, ΓΒ, 
Γc , were compared with predictions assuming linear density 
gradients 

•  ONLY 22 ppm of this torque difference is due to density 
gradient. Most is due to shifts in the mass centres as 
they are rotated. 

•  Conclude that linear density model is consistent 
measurements and can only change the value of G by 22 
ppm if ignored.. 

Mass homogeneity 
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=
161±86ppm exp t
121ppm calc
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!

•  Suppose that the source 
masses had identical voids 
located at their centres. We 
require a void of 5 mm radius 
in order to produce a reduction 
of torque of 200 ppm. 

•  We took radiograms with 6 
MeV X-rays. 

•  The grooves for the kinematic 
mounts can be seen as dark 
areas  of  5 mm by 2 
maximum depth.  

•  We can also see calibration 
lines of lead. 

•  Conclude that there are no 
voids that could be 
responsible for 200 ppm error. 

 

Mass homogeneity 

four	
  calibration	
  
lines 

3	
  grooves	
  for	
  kinematic	
  mounts	
  on	
  top	
  
and	
  bottom	
  surfaces	
  



•  Comprehensive model of test objects on torsion balance was used to 
evaluate both torques and moment of inertia. 

•  CAD package was used to calculate moment of inertia and to check 
analytical result. 

Moment of inertia calculation and measurement 



Measurement  of the moment of inertia of the torsion balance disk 



The CMM 



Correlated and uncorrelated uncertainties 
•  Starting point for analysis is an approximate expression for the 

gravity torque due to point masses from a multipole 
expansion . 

•  The uncertainty in the Cavendish method: 

•  The uncertainty in the Servo method: 
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almost to zero as expected. In the Mk II experiment, the source masses were in the configuration
such that the inhomogeneity led to correction of −2 ppm for the Cavendish and −22 ppm for the
servo data that were included in the calculation of the torques. A linear axial variation amounting
to 100 ppm over the length of each source mass was also found by hydrostatic weighing. This
introduced an axial shift in the centres of mass of about 1 µm, which in turn produced a negligible
change in torque. The source masses used in both experiments were the same except that for the
Mk II experiment a 3 mm slice was removed from one end in order to allow new ‘V’ grooves to
be cut. The density inhomogeneity of each mass was then rechecked using the air bearing, the
difference being negligible. In addition, X-ray examination showed the absence of axial voids (the
only inhomogeneity in the source masses that would not have been detected by these and earlier
tests) with diameters greater than 2 mm (1 ppm). Such axial voids in a swaged billet otherwise
free of voids would in any case have been most unlikely.

The far smaller billet from which the test masses were cut showed no azimuthal dependency
within the uncertainty of our measurements. The accuracy of the density measurements was
limited to about 5 ppm but, owing to the shape of the samples used, linear variations of 9 ppm
could not be ruled out. Using equation (4.1) to calculate the analogous torque error for the test
mass inhomogeneity, we find a maximum fractional change in torque for a single mass pair of
about 1.7 ppm. We would expect that, when summed over all pairs, this would be reduced to less
than 1 ppm. This was considered negligible and was not included in the uncertainty budgets.

The variation of density across the radius would shift the centre of gravity of the test masses,
and this would produce an error in the calculation of the moments of inertia. If we have a density
gradient across the diameter of a cylinder with !ρ = !ρ0(r/rt) cos φ, where r and rt are the radial
distance from the axis of symmetry and the radius of the test mass, respectively, the shift in
the centre of mass of the cylinder can be calculated as δr = (!ρ0/ρ)(rt/4). Assuming a random
orientation of the masses, the first-order fractional change in the moment of inertia of the torsion
balance is given by !I/I ≈ δr/(

√
2d), where d is the average radial distance of the centre of the

masses to the axis of rotation. This amounts to a change of much less than 1 ppm in the moment
of inertia which is negligible. This systematic effect, if present, would show up differently in the
Cavendish and servo methods. The experimental measurement of the moment of inertia, albeit
with an uncertainty somewhat larger than 1 ppm, confirmed that there was no significant error in
the calculation of the inertia from this or any other source. The uncertainty in the calculation of
the moment of inertia was based on dimensional metrology as described in §8.

The kinematic mounting of the source masses on the carousel was by means of three ‘V’-
grooves cut in the base of the masses at 120◦ close to the periphery and three cones in the carousel
in which 5 mm diameter phosphor bronze balls were placed. This provided a reproducible
positioning of the 11 kg masses after multiple placing and removals. This is discussed in §5.

5. Dimensional metrology
Dimensional metrology is another key part of any G experiment. Uncertainties owing to errors in
dimensional metrology were calculated using an approximate expression for Γ that was derived
from a multipole expansion assuming all the masses to be points (see §11) [16]

Γ = 35Mm
r4

R5 sin 4θ , (5.1)

where M and m are the nominal source and test mass values, respectively, r and R are the nominal
values of the radial distances of the source and test masses from the torsion strip rotation axis,
respectively. Equation (5.1) gives an approximate value for the amplitude (i.e. half the peak–peak)
torque in terms of the position of the source masses, θ , with θ = 0 corresponding to the source and
test masses at their closest position. This expression agrees with the final computed value within
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such that the inhomogeneity led to correction of −2 ppm for the Cavendish and −22 ppm for the
servo data that were included in the calculation of the torques. A linear axial variation amounting
to 100 ppm over the length of each source mass was also found by hydrostatic weighing. This
introduced an axial shift in the centres of mass of about 1 µm, which in turn produced a negligible
change in torque. The source masses used in both experiments were the same except that for the
Mk II experiment a 3 mm slice was removed from one end in order to allow new ‘V’ grooves to
be cut. The density inhomogeneity of each mass was then rechecked using the air bearing, the
difference being negligible. In addition, X-ray examination showed the absence of axial voids (the
only inhomogeneity in the source masses that would not have been detected by these and earlier
tests) with diameters greater than 2 mm (1 ppm). Such axial voids in a swaged billet otherwise
free of voids would in any case have been most unlikely.

The far smaller billet from which the test masses were cut showed no azimuthal dependency
within the uncertainty of our measurements. The accuracy of the density measurements was
limited to about 5 ppm but, owing to the shape of the samples used, linear variations of 9 ppm
could not be ruled out. Using equation (4.1) to calculate the analogous torque error for the test
mass inhomogeneity, we find a maximum fractional change in torque for a single mass pair of
about 1.7 ppm. We would expect that, when summed over all pairs, this would be reduced to less
than 1 ppm. This was considered negligible and was not included in the uncertainty budgets.

The variation of density across the radius would shift the centre of gravity of the test masses,
and this would produce an error in the calculation of the moments of inertia. If we have a density
gradient across the diameter of a cylinder with !ρ = !ρ0(r/rt) cos φ, where r and rt are the radial
distance from the axis of symmetry and the radius of the test mass, respectively, the shift in
the centre of mass of the cylinder can be calculated as δr = (!ρ0/ρ)(rt/4). Assuming a random
orientation of the masses, the first-order fractional change in the moment of inertia of the torsion
balance is given by !I/I ≈ δr/(

√
2d), where d is the average radial distance of the centre of the

masses to the axis of rotation. This amounts to a change of much less than 1 ppm in the moment
of inertia which is negligible. This systematic effect, if present, would show up differently in the
Cavendish and servo methods. The experimental measurement of the moment of inertia, albeit
with an uncertainty somewhat larger than 1 ppm, confirmed that there was no significant error in
the calculation of the inertia from this or any other source. The uncertainty in the calculation of
the moment of inertia was based on dimensional metrology as described in §8.

The kinematic mounting of the source masses on the carousel was by means of three ‘V’-
grooves cut in the base of the masses at 120◦ close to the periphery and three cones in the carousel
in which 5 mm diameter phosphor bronze balls were placed. This provided a reproducible
positioning of the 11 kg masses after multiple placing and removals. This is discussed in §5.

5. Dimensional metrology
Dimensional metrology is another key part of any G experiment. Uncertainties owing to errors in
dimensional metrology were calculated using an approximate expression for Γ that was derived
from a multipole expansion assuming all the masses to be points (see §11) [16]

Γ = 35Mm
r4

R5 sin 4θ , (5.1)

where M and m are the nominal source and test mass values, respectively, r and R are the nominal
values of the radial distances of the source and test masses from the torsion strip rotation axis,
respectively. Equation (5.1) gives an approximate value for the amplitude (i.e. half the peak–peak)
torque in terms of the position of the source masses, θ , with θ = 0 corresponding to the source and
test masses at their closest position. This expression agrees with the final computed value within
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type B uncertainties are essentially constant, and we determine the value of G from the differences
in gravitational torques acting on the torsion balance so we can write

δτs = δ(β$V2) + δn, (11.7a)

where δn is a random change in torque produced by ground vibrations for example. However,
any random change in the value of β that occurs that is within the bandwidth of the servo will be
balanced by a change in the applied servo voltages

δτs = 0 = δβa$V2 + βδ$V2 + δn. (11.7b)

The type A uncertainties in β become indistinguishable from the noise torques and so we can
define a general noise torque

δn′ = βδ$V2 = −δβa$V2 − δn. (11.7c)

The type A uncertainty in the capacitance gradient can then be considered to be part of the
statistical noise in the torque measurements with δτs = −δβa$V2 − δn. The standard deviation
of the mean of the 10 servo measurements was 30 ppm and this was consistent with the standard
deviations of the individual measured torques, which themselves included the recalibration of
the β values between each torque sequence. The standard deviation of the mean of the 10 torque
sequences measured by the Cavendish method was 19 ppm. We can interpret this difference to
be owing to variations in β. We found that the standard deviations of the calibration constants
measured between each torque sequence were far too large to be consistent with the variance of
the torque data, and we attribute this to high-frequency electrical noise affecting the capacitance
bridge which evidently was averaged out. Finally, we have the following equation describing the
uncertainties in the servo measurement:

δGs

G
= − δM

M
− δm

m
− 4

δra

r
+ 5

δRas

R
− δαs − δαsT − δ$θ

$θ
+ δ$C

$C
+ 2

δ$V
V

+ δτs

τs
. (11.7d)

(c) The Cavendish method
We calculate a value for G for this method using equations (1.2) and (2.6b)

τc = nairkr(ωm)$θc, (11.8)

where kr(ωm) is the angular stiffness of the torsion balance at the frequency of the measurements.
The angle through which the torsion balance moves is $θc. The refractive index correction is
described in §6. We relate the stiffness of the suspension which is measured at the resonance of
the pendulum to that at low frequency using the anelastic correction in §2:

τc = nair

(
1 − ke

kg + ke

2$

π
ln
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Tm

T0

})
I
(

2π

T0

)2
$θc. (11.9)

We find the relative uncertainty in G for this method to be

$Gc
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, (11.10a)

where δτc is the random uncertainty owing to measurement noise and δRac is the uncertainty in
the position of the source masses in the Cavendish experiment. A conservative estimate of a bias
in δk(ωm) equates it to the total correction for anelasticity that we apply to the final result for G in
equation (11.9)

δk(ωm) = δkr + δ(Iω2
0) (11.10b)

and δkr = ke

ke + kg

2$

π
ln
{

Tm

T0

}
. (11.10c)

The moment of inertia comprises two terms

I = 4mr2 + It, (11.11)
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where It is the moment of inertia due to the torsion balance without the test masses in place
having an uncertainty δIt. We can now rewrite equation (11.10a) as
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or finally
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where T0 is the period of free oscillation of the torsion balance.

(d) Combination of uncertainties
We can write the uncertainties for both measurements in matrix form

(
δGs
δGc

)

= A u, (11.13a)

where u is a vector of the values for the uncertainties in the parameters and A is a matrix of the
factors which multiply each component of the uncertainty. We use a shorthand notation where
we write the fractional uncertainty δp/p in parameter p as δp. We can write

A =
(

−1 −1 −4 5 0 −1 −1 0 0 −1 1 2 0 0 1 0
0 −1 −2 0 5 0 0 −1 −1 0 0 0 1 1 0 1

)

, (11.13b)

and the transpose of u is

u′ = (δm δM δra δRas δRac δαs δαsT δαc δαcT δ"θc δ"C δ"V δIt δk0b δτs δτc).
(11.13c)

The variances and covariances of the two values of G can then be written as
(
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where the variances are
σ 2

s =
∑

j

A1jA1jδp2
j (11.14b)

and
σ 2

c =
∑

j

A2jA2jδp2
j , (11.14c)

and the covariance is
κ =

∑

j

A1jA2jδp2
j . (11.14d)

We can write a general combination of the values of G as

Gw = λGs + µGc, (11.15a)

with its uncertainty δGw,
δG2

w = λ2σ 2
s + 2λµκ + µ2σ 2

c . (11.15b)

The uncertainty in the difference in the two values of G can be found by setting λ = 1 and µ = −1.
Using the values in table 1, we find δGDiff = 104 ppm. As the measured difference between the
values, as given in §12, is also 106 ppm this indicates that our statistical analysis is consistent with
this difference and provides an, albeit crude, consistency check on our estimated uncertainties.
Note that if the two methods were completely uncorrelated the uncertainty on their difference
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•  We can express the values of G in a compact form: 
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We can write a general combination of the values of G as

Gw = λGs + µGc, (11.15a)

with its uncertainty δGw,
δG2

w = λ2σ 2
s + 2λµκ + µ2σ 2

c . (11.15b)

The uncertainty in the difference in the two values of G can be found by setting λ = 1 and µ = −1.
Using the values in table 1, we find δGDiff = 104 ppm. As the measured difference between the
values, as given in §12, is also 106 ppm this indicates that our statistical analysis is consistent with
this difference and provides an, albeit crude, consistency check on our estimated uncertainties.
Note that if the two methods were completely uncorrelated the uncertainty on their difference
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where T0 is the period of free oscillation of the torsion balance.
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The uncertainty in the difference in the two values of G can be found by setting λ = 1 and µ = −1.
Using the values in table 1, we find δGDiff = 104 ppm. As the measured difference between the
values, as given in §12, is also 106 ppm this indicates that our statistical analysis is consistent with
this difference and provides an, albeit crude, consistency check on our estimated uncertainties.
Note that if the two methods were completely uncorrelated the uncertainty on their difference
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Table 1. Values for the uncertainities on the parameters required to calculate G in equation (11.13c).

fractional
quantity uncertainty, ppm
test masses δm/m (correlated) 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

source masses δM/M (correlated) 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

test mass type A servo (correlated) 17
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

test mass type A Cavendish (correlated) 8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

source mass type A for both servo and Cavendish (uncorrelated) 12
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

servo type B uncertainty for source and test masses δαs 4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cavendish type B uncertainty for source and test masses δαc −3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

servo type A uncertainty for 0.1 K temperature change δαsT −2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cavendish type A uncertainty for 0.1 K temperature change δαcT −7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

angle measurement δ#φ/#φ (anti-correlated) 47
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

capacitance calibration δ#C/#C 6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

voltage calibration 2 δV/V 12
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

timing error 2#T0/T0 0.5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

moment of inertia of torsion disc 13
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

anelasticity δk/kr 6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

uncertainty in mean servo torque δτs/τ 30
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

uncertainty in mean Cavendish torque δτc/τ 19
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

net uncertainty on servo valueσs 61
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

net uncertainty on Cavendish valueσc 54
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

covariance κ −2080
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

correlation coefficient −0.63
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

would be 81 ppm which is the quadrature sum of the uncertainties on each value. We can calculate
an unbiased weighted mean by setting µ = 1 − λ [25] and by choosing a value of µ that minimizes
equation (11.15b). Using the experimental values, we find δGComb = 25 ppm with the weight for
the servo and Cavendish results being 0.46 and 0.54, respectively. The values of the parameters
are given in table 1.

12. A value for Newton’s constant of gravitation
The peak-to-peak servo torque, τs, obtained as an unweighted mean of 10 data runs was
3.148869(94) × 10−8 N m and using equations (9.2a) and (11.3) we can write

Gs = τs

Γs
= 6.67515(41) × 10−11 m3 kg−1 s−2 (61 ppm). (12.1a)

The unweighted mean of the 10 data runs giving a value of the peak-to-peak deflection angle of
0.1529322(29) mrad using equations (9.2b), (8.2) and (11.8) we can write

Gc = τc

Γc
= 6.67586(36) × 10−11 m3 kg−1 s−2 (54 ppm). (12.1b)

We have used the values for the uncertainties in the experimental measurements given in §11.
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when the aspheric lenses H and H′ are shifted 50 µm away
from the optic axis and the mirrors I and I′ are shifted 50 µm
along the same axis. The normalization amplitude is different
to the normalization amplitude when the components are per-
fectly aligned. At an angle of 1.25◦, the size of the amplitude
reduces to less than 20% of the maximum size for a displace-
ment of s = 0 mm.

IV. REALIZATION AND EXPERIMENTAL
CHARACTERIZATION

An angle interferometer based on the principles de-
scribed above was designed and constructed. The interferom-
eter was required to provide an angular readout for a torsion
balance that is described by Richman et al.28 Previously we
had employed an Elcomat HR autocollimator (AC) and taken
advantage of its accurately calibrated angular readout. How-
ever, for our current application, this was not required and the
performance of the torsion balance was limited by the low
sensitivity of the AC and its small operating range. In addi-
tion we needed to measure the angular readout from within
the vacuum vessel in order to avoid noise due to air currents
and this was not possible with the Elcomat. The new inter-
ferometer was designed to fit into the existing torsion balance
mount within the vacuum chamber and this lead to the com-
pact design shown in Fig. 10. Unfortunately, mainly due to
the lack of adjustable supports which are large and would not
fit in the vessel, this mounting and construction did not allow
us to test the theoretical predictions discussed in Sec. III of

FIG. 10. A photograph of the interferometer on its holder. All components
are labeled.

this paper with the accuracy that we would have liked. Never-
theless we were able to establish performance characteristics
with the accuracy that would be of interest to a potential user.

In this section we describe the measured ability of the
interferometer to be immune from inaccuracies in machin-
ing and alignment of the optical components during assembly
and manufacturing, and from misalignments of the target mir-
ror while in operation. Furthermore, we present the measured
performances of the interferometer as a angular displacement
sensor, in terms of reproducibility, linearity, operating range,
and sensitivity.

A. Manufacture, assembly, and alignment

A photograph of the interferometer prototype is shown
in Fig. 10, where it is mounted upside down with respect
to the drawing shown in Fig. 3. The optical components are
mounted on an Al holder consisting of two main pieces fas-
tened together. The top piece holds the components E, F, I,
E′, F′, and I′ in V-shaped grooves, and the aspheric lenses
are supported by flat surfaces, upon which they can roll side-
ways and can be easily adjusted. The remaining components
are placed on the bottom piece, inside an enclosure partially
covered by the top piece when the holder is assembled. Com-
ponents C and D are supported by a V-shaped groove and the
components A, B, J, and K are placed on a template where
the silhouette of the mounting surface of each component has
been cut. The bottom piece also hosts the photodiodes. The
nominal positions of the components E, I, E′, I′, C, and D
are indicated by marks made at the time of manufacture of
the holder. The holder was manufactured in-house, with con-
ventional machining tolerances of the order of 0.1 mm. Holes
were produced in the holder in order to minimize the amount
of stray light reflecting back from metallic surfaces. The light
is 1550.9 nm in wavelength and is produced by a distributed
feedback laser source with a pigtail polarization maintaining
fibre, which couples to the vacuum chamber with an optical
feedthrough. The light is delivered to the interferometer with
a collimator, which is fastened onto the holder by means of a
kinematic mount which allows the angle of incidence of the
beam to be adjusted. The entire device occupies a volume of
only 54 mm × 58 mm × 46 mm, with a total weight of about
250 g.

The assembly and alignment of the interferometer was
carried out in three main steps. First, with the exception of
wave plate J, all the optical elements were placed on the
holder at their nominal positions indicated by the marks. By
means of the collimator kinematic mount, the angle of inci-
dence of the incoming beam was finely adjusted and, along
with small changes in the position of the polarizing beam
splitters C, D, E, and E′, the beams propagating away from
components F and F′ into the arms of the interferometer were
made to be parallel. This was achieved by measuring the dis-
tance between the two beams at a position far from the inter-
ferometer. The second step was to place a target mirror at the
sweet plane allowing the reflected light to propagate into the
cat’s eye retroreflectors and, by iteratively adjusting the posi-
tions of components H, I, H′, and I′, achieving an interference
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coefficient being zero within 1 × 10−7 rad/rad2, from which
we infer a non-linearity of less than 1 part in 107 with respect
to the AC.

The measured reproducibility of the linear coefficients is
observed to be better than 1 part in 103 for all measurements
sets, and it is limited by vibrations induced by the rotation
of the mirror mount as confirmed by the first plot. Within
the measurement uncertainties, no trend or deviation can be
observed in the data when positioning the mirror far from
the sweet plane. Unfortunately, the measurement resolution
is larger than the deviations predicted by the simulations, i.e.,
few parts in 104 for largest misalignments, therefore a direct
comparison cannot be performed here. However, it is impor-
tant to stress that these remarkable performances were ob-
tained without the use of high precision alignment tools and
techniques, but with a qualitative alignment procedure based
on visual inspection only.

D. Sensitivity

The ultimate sensitivity of the interferometer is nomi-
nally limited by the intrinsic noise sources arising within the
system, most notably current noise in the laser source, laser
power fluctuations, photocurrent noise in the photodiodes,
and digitization noise in the AD converter. In order to assess
the angular sensitivity of the interferometer, it was mounted
on an optical bench and the alignment of a mirror that was
rigidly fixed at the sweet plane was monitored. It is worth not-
ing that this measurement was performed in air, and that no
thermal shielding, nor temperature stabilization system was
implemented, with the exception of the laser diode tempera-
ture control system. We also note that this type of measure-
ment could not be performed using the free swinging torsion
balance as a target, as its mechanical noise would have
been significantly larger than the interferometer ultimate
sensitivity.

Fig. 14 presents some examples of the results obtained
during these measurements. The blue curve shows the ampli-

FIG. 14. The sensitivity of the interferometer is shown in blue and its mean
value is depicted in black. The plot also shows an estimate of the joint laser
and readout noise in green. The readout includes the photodiodes, the am-
plifiers, and the ADC. Finally, the noise produced by the amplifiers and the
ADC is shown in orange.

tude spectral density of the measurement. In the range from
0.3 Hz up to few hundreds Hz the noise spectrum is almost
flat, and is about 5 × 10−11 rad/

√
Hz. At frequencies below

0.3 Hz the sensitivity is visibly limited by effects induced by
thermal drifts and air currents, due to the lack of a dedicated
thermal shielding. At frequencies around 10 Hz and above the
measurement is limited by mechanical vibrations arising from
resonances in the measurement apparatus hosting the target
mirror and the interferometer itself, as shown by the different
visible resonance peaks. The laser power that would yield this
sensitivity in the case in which the anti-reflecting coating of
the optical components was not imperfect is close to 270 µW.

In order to understand the ultimate limits of the interfer-
ometer sensitivity, we also show estimates of the noise con-
tributions given by the photodiodes electronic amplifiers and
by the combined effect given by the amplifiers and the laser
intensity fluctuations (obtained by-passing the interferometer
optics and shining the laser light directly onto the photodi-
odes). In both cases, the measured voltages recorded by the
ADC were then converted into displacement following
Eq. (27), and using the coefficients ai and bi derived with
the readout system on. The laser intensity fluctuations are not
expected to contribute significantly to the overall amount of
noise since Eq. (26) is immune to those fluctuations. Also note
that, because the interferometer has essentially arms of equal
length, laser frequency noise is suppressed to an insignificant
level. The two noise curves are well below the measured sen-
sitivity of the interferometer, and can only partially explain its
behaviour. Furthermore, following a previous calculation13 in
which the shot noise is propagated through Eq. (6) we esti-
mate that the shot noise contribution to the sensitivity is in the
region of 1 × 10−13 rad/

√
Hz, where the photodiodes mea-

sured intensities up to few tens of microwatts. Further inves-
tigations are ongoing to better understand the sources of this
extra noise.

Based on the result shown in Fig. 14, we put an upper
limit to rotational displacement sensitivity of the interferome-
ter of order 5 × 10−11 rad/

√
Hz, in almost the entire measure-

ment frequency range, from audio-band down to 0.1 Hz.

V. CONCLUSIONS

The analysis presented in this paper illustrates how the
mirror tilt immunity of a cat’s eye retroreflector can be used
to measure the angular motion of a flat mirror. The immunity
can be described in terms of the real images that this retrore-
flector produces and, as such, the immunity can be evaluated
in terms of the quality of the images, which are in this case
quantified by defocus and spherical aberration. The symme-
try of the layout of the interferometer cancels out the effect
of the spherical aberration, yielding a measurement error en-
tirely due to defocus. Such a theoretical error is approximately
0.1% for small measurements just below 1.25◦ and lower for
measurements around smaller angles. The theoretical angular
operating range is ±1.25◦ by design.

The actual physical interferometer is realized as a com-
pact device with commercial off-the-shelf optical components
and without relying on adjustable holders. The alignment of
this system can be accomplished by visual inspection only
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Program at Birmingham 

•   Linearity check with plexi-glass masses 
•  Calibrate ILIAD interferometer versus Autocollimator. 

Aim to improve accuracy of capacitance calibration, 
eliminate calibration of autocollimator? 

•  Look for other systematics: AC magnetic fields, tilt,  
sensitivity to microseismic noise, calibration of 
change of period with temperature.  

•  Do we understand anelasticity (de Salvo). Perform 
anelasticity measurements of Cu-Be. 

di Cintio et al (2009)  
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Conclusions on BIPM G experiment 

•  There are a number of ways that bias or systematic 
error can influence the value of Newton’s constant in 
an experimental determination. 

•  I have described anelasticity and biases in 
electrostatic actuators 

•  I have described how we have effectively eliminated 
such biases in the BIPM G determinations. I have also 
described how we have associated Type B 
uncertainties where appropriate. 

•  There remain other effects to look for and eliminate. 
  



•  We held a meeting at Chicheley Hall in February 2014 to 
discuss the issue of the value of G. 

•  The contributors wrote articles that appeared in  Phil. 
Trans. of Royal Society A 372: ‘The Newtonian constant 
of gravitation, a constant too difficult to measure?’ 

•  Our article: Quinn, CCS, Parks and Davis art 20140032 

•  There was a follow-up meeting at NIST in October 2014. 

Ways forward 



•  IUPAP G committee Chairman: Stephan Schlamminger 

•  Decision CIPM/103-43  
The CIPM agreed to establish a consortium of national metrology 
institutes and other institutes, coordinated by the NIST, to 
facilitate new work aimed at resolving the present disagreement 
amongst measurements of the Newtonian  
constant of gravitation, G. The BIPM will provide facilities for 
meetings of those taking part in this work.  

•  In Spring 2016 the BIPM G apparatus will be shipped to NIST 
where we will repeat the measurement and hopefully improve it. 

•  We must proceed in a collaborative way to solve this problem!! 

Ways forward 



Thank you for your kind  attention! 



Calculation of the torque 

Measurements TJQ 



Physikalisch-Techniche 
Bundesantalt apparatus  

Quadrant 

electrometer   

Michealis et al 
1995/6 

Mercury  

Bearing 



6.671

100 ppmNBS (1982)
Moscow (1996)

Wuppertal (2002)

Huazhong (2009)
JILA (2010)

BIPM (2013)

Zurich (2006)

New Zealand (2003)

Los Alamos (1997)

BIPM (2001)

6.672 6.673 6.674 6.675 6.676 6.677

G/(10 m kg s )−11 3 −1 −2

Huazhong (2005)

Washington (2000)


